JP3688265B2 - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector Download PDF

Info

Publication number
JP3688265B2
JP3688265B2 JP2002356640A JP2002356640A JP3688265B2 JP 3688265 B2 JP3688265 B2 JP 3688265B2 JP 2002356640 A JP2002356640 A JP 2002356640A JP 2002356640 A JP2002356640 A JP 2002356640A JP 3688265 B2 JP3688265 B2 JP 3688265B2
Authority
JP
Japan
Prior art keywords
probe
carriage
ultrasonic
flaw detection
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002356640A
Other languages
Japanese (ja)
Other versions
JP2004191086A (en
Inventor
康二 道場
英幸 平澤
光浩 神岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2002356640A priority Critical patent/JP3688265B2/en
Publication of JP2004191086A publication Critical patent/JP2004191086A/en
Application granted granted Critical
Publication of JP3688265B2 publication Critical patent/JP3688265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Description

【0001】
【発明の属する技術分野】
本願発明は、溶接継手部等の探傷部の内部欠陥を非破壊で検査する超音波探傷装置に関するものである。
【0002】
【従来の技術】
従来より、溶接継手部等の内部欠陥を非破壊で検査する手段として、超音波探傷検査(UT)が知られている。この超音波探傷検査は、被検査体の表面に探触子を密着させ、この探触子から被検査体に入射された超音波の反射によって欠陥を検出する非破壊検査であり、入射させた超音波の反射を検出するまでの時間によって欠陥の位置を知ることができる。
【0003】
この種の従来技術として、台車を継手溶接線の始端部から終端部に向って間欠運動させ、台車停止毎にこの台車に設けられた走査機構によって超音波探触子を台車走行方向およびこれと直交する方向に方形走査させることにより、継手溶接線の全線の探傷を行う自動超音波探傷装置がある。この超音波探傷装置によれば、超音波探触子を継手溶接線に対して前後方向に走査させながら、入射させた超音波の反射を検査して全線探傷を行っている(例えば、特許文献1参照。)。
【0004】
一方、超音波探触子によって検査できる被検査体の厚み方向の範囲は限られているので、全厚み方向の安定した検査をするために、超音波探触子を溶接継手部と近接又は離間させる走査を行って、超音波探触子の検査できる範囲を厚み方向に広げる場合もある。
【0005】
【特許文献1】
特開平5−333010号公報(第1頁、図1)
【0006】
【発明が解決しようとする課題】
しかしながら、前記文献1記載の超音波探傷装置の場合、溶接線方向に走行する台車に走査機構が取付けられており、走行しながら検査すると台車からの振動やうねり動作が探触子に伝わって安定した探傷ができないため、台車を走査範囲に対応した走行ピッチで間欠駆動させながら、台車の停止中に走行機構による方形走査を行うようにしている。したがって、連続的な超音波探傷ができず、多くの時間を要することになる。しかも、停止中であってもモータ等の駆動機からの振動等により、安定した超音波探傷ができないおそれもある。
【0007】
また、前記したように被検査体の板厚が厚くなると、それに伴って超音波探触子の前後走査の範囲も大きくなるので、探触子を走査させるための構成寸法が長くなり、それを支持するために装置全体が大きなものになってしまう。
【0008】
さらに、この超音波探傷装置では、平板を突合わせたような溶接継手部の検査は困難であり、限られた溶接継手部の超音波探傷でしか十分な効果を得ることができない。
【0009】
【課題を解決するための手段】
そこで、前記課題を解決するために、本願発明は、被検査体の探傷部に沿って、該探傷部から所定距離離した被検査体の表面にガイド部材を設け、該ガイド部材に沿って、自走する駆動台車と、前記探傷部の側部から該探傷部に向けて超音波を発する一対の超音波探触子を設けた探触子台車とを分離して設け、該駆動台車と探触子台車とを継手で連結するとともに、前記探触子台車に、前記超音波探触子を探傷部と近接又は離間する対称動作で走査を行う走査機構を具備した探触子駆動機を設け、該探触子駆動機の反探傷部側に被検査体の表面との距離を保つ規制部材を設け、該探触子駆動機の超音波探触子側に、該超音波探触子の被検査体表面への押圧力を制限する制限部材を設けている。このように、超音波探傷する超音波探触子を探傷部に沿って移動させる駆動台車と、超音波探触子を設けた探触子台車とを、それぞれ別体として分離し、これらの間を継手で連結することにより、駆動台車で生じる振動やうねりが超音波探触子側に伝わらなくなり、超音波探触子で安定した超音波探傷ができる。
【0010】
しかも、探傷部に向って超音波探触子を近接又は離間するように対称動作させて走査することにより、被検査体の厚み方向を広く検査することができる。その上、被検査体側に押圧される探触子駆動機は、反探傷部側の規制部材によって超音波探触子側を被検査体側へ安定して押圧することができ、超音波探触子の押圧力が規定以上に大きくなるような場合には制限部材で超音波探触子の押圧力を制限することができ、検査条件が変化しても超音波探触子を安定して被検査体に押圧して検査することができる。
【0011】
また、前記ガイド部材に案内される案内部材を前記駆動台車と探触子台車とに設け、該探触子台車に前記探触子駆動機を被検査体側へ押圧する押圧部材を設ければ、ガイド部材に沿って駆動台車と探触子台車とを安定して移動させるとともに、この安定して移動する探触子台車の探触子駆動機を被検査体側へ所定圧力で押圧して、超音波探触子による安定した超音波探傷ができる。
【0012】
さらに、前記継手を、前記ガイド部材とほぼ同軸上に配置する自在継手で構成すれば、駆動台車によって移動させる探触子台車がガイド部材を中心にして移動させられるので、探触子台車に回転モーメント等を生じさせることなく安定して移動させることができる。
【0014】
さらに、前記押圧部材を、前記探触子台車と探触子駆動機との間に設けたスプリングで構成し、該スプリングを、探触子駆動機の進行方向前後に配設すれば、簡単な構成であるスプリングのスプリング力で、探触子駆動機の前後を被検査体側へ安定して押圧することができ、スプリングの交換によって容易に押圧力を変更することもできる。
【0016】
【発明の実施の形態】
以下、本願発明の一実施形態を図面に基づいて説明する。図1は本願発明の一実施形態を示す超音波探傷装置の斜視図であり、図2は図1に示すII−II矢視図、図3は図2に示すIII−III矢視図、図4は図2に示すIV部拡大図、図5は図1に示すV−V矢視図である。なお、説明のために図の一部は断面で示している。また、この実施形態では、被検査体として突合わせ溶接をした板材を例にし、その溶接継手部の溶接線方向を超音波探傷する超音波探傷装置を例にして説明する。
【0017】
図1に示すように、板材を突合わせて溶接した被検査体1の溶接継手部が探傷部2であり、図示する上下方向に連続した溶接線である。この探傷部2から所定距離離れた位置には、探傷部2と平行にガイド部材3が設けられている。この実施形態では、ガイド部材3として円筒断面のパイプレールが用いられている。このガイド部材3としては、角形断面や他の断面形状であってもよい。
【0018】
ガイド部材3には、このガイド部材3に沿って自走する駆動台車4と、この駆動台車4と連結されてガイド部材3に沿って移動する探触子台車5とが設けられている。これら駆動台車4と探触子台車5とで、超音波探傷装置6が構成されている。なお、これらを制御する制御装置は、駆動台車4内に設けても離れた制御室等に設けてもよい。
【0019】
駆動台車4は、被検査体1の表面と接する車輪11(4箇所)によって自重が支持され、ガイド部材3の両側部に接して回転する案内ローラ12(案内部材:4箇所)によってガイド部材3に沿って移動するように構成されている。探触子台車5は、ガイド部材3の両側部に接して回転する案内ローラ13(案内部材:4箇所)によって自重が支持され、この案内ローラ13によってガイド部材3に沿って移動するように構成されている。
【0020】
探触子台車5には、探傷部2と交差する方向に延びる探触子駆動機15が設けられている。この探触子駆動機15の走査部16に、探傷部2の両側部に位置するように超音波探触子17が設けられている。
【0021】
そして、これら駆動台車4と探触子台車5とは継手14によって連結され、駆動台車4の移動に追従して探触子台車5が移動するように構成されている。この駆動台車4と探触子台車5の制御部18とは配線19によって接続され、駆動台車4は図示しない制御装置と配線20で接続されている。
【0022】
図2に示すように、探触子台車5に設けられた案内ローラ13は、円形断面のガイド部材3の外面とほぼ同じ曲率で外面が形成されている。前記ガイド部材3は、所定高さの支持材21で被検査体1の表面に固定されており、このガイド部材3を前記案内ローラ13で両側部から挟むことにより、探触子台車5がガイド部材3に取付けられている。図示する左側の案内ローラ13Aは、軸22によって回転可能に支持されており、探触子台車5の移動に追従して回転する。右側の案内ローラ13Bは、軸23によってスライド部材24に回転可能に支持されており、探触子台車5の移動に追従して回転する。このスライド部材24は、探触子台車5の台車ベース板27の下部に設けられたスライド部25に沿ってスライド可能に設けられている。このスライド部25の内部にはスプリング26が設けられており、このスプリング26によって案内ローラ13Bは常にガイド部材3側へ押圧されている。このような構成により、ガイド部材3を左右の案内ローラ13A,13Bで所定の力(スプリング26の力)によって挟んだ状態が保たれている。このようにして探触子台車5を取付けることにより、探触子台車5を被検査体1の表面から所定距離の位置に浮かせた状態を保っている。
【0023】
また、探触子台車5の台車ベース板27の上部には、押圧軸28が立設されている。この実施形態では、図1に示すように、ガイド部材3の前後左右位置に押圧軸28が設けられている。この押圧軸28は、探触子駆動機15の駆動機ベース板29に設けられた挿通孔30とスプリングカバー31内に設けられたスプリング32とを貫通して上方に突出している。このスプリングカバー31から上方に突出した押圧軸28は、図示する左右の上端が、保持部材33によって連結されている。
【0024】
さらに、押圧軸28は、所定位置から上部がスプリングカバー31の内径よりも僅かに小径の案内部34に形成されている。この案内部34がスプリングカバー31の内面に沿って上下動することにより、押圧軸28とスプリングカバー31とがほぼ同軸上でスライドするように構成されている。この案内部34の下面が、スプリング32の上端支持部となっている。
【0025】
このようにして、押圧軸28の案内部34によってスプリング32の上端を支持することにより、スプリング32の力によって駆動機ベース板29が被検査体1の表面側へ押圧されるようにしている。この時、スプリングカバー31が押圧軸28の案内部34に案内されて、探触子駆動機15の全体がほぼ平行に被検査体1側へ押圧される。なお、探触子駆動機15を被検査体1側へ押圧する力は、スプリング32を変更することにより容易に可能であり、例えば、被検査体1の下面を上向きに検査する場合や、急傾斜面の被検査体1を横向きに検査する場合等、使用条件等に応じた力のスプリング32に変更することが容易にできる。
【0026】
一方、探触子駆動機15の走査部16には、探傷部2の側部から探傷部2に向けて超音波を発する超音波探触子17が設けられている。この超音波探触子17は、走査部16の軸方向に設けられたガイドレール37に沿って移動する移動部材38から被検査体1側に向けて突設された支持部材39に設けられている。
【0027】
図3に示すように、前記ガイドレール37は走査部16の中央部軸方向に設けられており、その周囲にタイミングベルト40が設けられている。このタイミングベルト40は、走査部16の両端に設けられたスプロケット41に掛けられており、制御部17側(図の右側)に設けられた駆動スプロケット41が駆動モータ35によって回転可能に構成されている。このように設けられたタイミングベルト40の異なる直線部側(図の上下)に、前記移動部材38がそれぞれ固定部材42で固定されている。このように固定することにより、タイミングベルト40を所定距離で間欠的に正方向/逆方向に移動させれば、両超音波探触子17が近接又は離間するように動作をさせることができる。この構成の場合、左側又は右側の超音波探触子17から発した超音波を、右側又は左側の超音波探触子17で受信する。
【0028】
図4に示すように、前記超音波探触子17には、ガイドレール37に沿って移動する移動部材38の支持部材39によって垂直方向にガイドされるガイド軸43と、このガイド軸43の下端に固定された保持部44と、この保持部44に設けた水平方向の支持軸45で支持された探触子本体46とが設けられている。この探触子本体46には、車輪36が設けられている。また、探触子本体46を設けた保持部44は、ガイド軸43に設けられたスプリング47によって被検査体1側へ押圧されており、被検査体1の表面と近接又は離間する方向に移動可能となっている。この保持部44の上下動時には、ガイド軸43が支持部材39に案内される。
【0029】
このように、探触子本体46を、垂直方向に上下動する保持部44に支持軸45で水平方向の揺動が可能なように設けることにより、押圧される探触子本体46が被検査体1の表面と密接するようにしている。これらが走査機構の走査部分である。
【0030】
一方、図2に示すように、探触子駆動機15の走査部16の反探傷部2側には、走査部16と被検査体1の表面との距離を保つ規制部材48が設けられている。この規制部材48は、走査部16から被検査体1側に向けて設けられたブラケット49に軸50で取付けられた車輪51であり、被検査体1の表面に接しながら回転可能なように構成されている。この規制部材48は、ガイド部材3を挟んで反超音波探触子17側に設けられており、この規制部材48を設けることにより、スプリング32によって全体的に被検査体1側へ押圧されている探触子駆動機15の規制部材48側が被検査体1の表面側へ移動する距離を規制している。この規制部材48で、スプリング32により全体が被検査体1側へ押圧されている探触子駆動機15の反超音波探触子側の移動を規制することにより、固定されたガイド部材3を中心に超音波探触子側が被検査体1の表面側へ押圧されるようにしている。
【0031】
つまり、探触子台車5に設けられたスプリング32によって常に被検査体1側へ押圧される探触子駆動機15は、その反超音波探触子側が規制部材48によって一定距離に決定されるので、この探触子駆動機15の超音波探触子17側に被検査体1の表面側への力が作用するようにしている。これによって、探触子駆動機15からスプリング47で被検査体1側へ付勢されている探触子本体46が、常に被検査体1の表面に一定の圧力で押し付けられて密着し、安定した超音波探傷を行うことができるようにしている。
【0032】
また、走査部16の超音波探触子17側には、前記超音波探触子17を被検査体1へ押圧することを制限する制限部材52が設けられている。この制限部材52は、走査部16から被検査体1側に向けて設けられたブラケット53に軸54で取付けられた車輪55であり、被検査体1に接しながら回転可能なように構成されている。この制限部材52は、超音波探触子17が所定の押圧力で被検査体1の表面に押圧された状態では、被検査体1の表面とは僅かな隙間が設けられて浮いた状態であり、超音波探触子17が所定の押圧力を越えて押圧された時には被検査体1の表面と接して、超音波探触子17に大きな力が作用するのを防止している。
【0033】
そして、図5に示すように、駆動台車4と探触子台車5とが、ボールジョイント構造の自在継手14によって連結されている。この自在継手14は、探触子台車5に設けられた取付ブラケット56と駆動台車4との間に設けられ、それぞれに球面状のすべり面となるボール部57が設けられ、角変位が可能なように連結されている。このような自在継手14で駆動台車4と探触子台車5とを連結することにより、駆動台車4側の駆動モータ58等で発生する振動や、被検査体1の表面上を車輪11で走行する駆動台車4にうねり運動等を生じても、自在継手14の変位で吸収して振動やうねり等が探触子台車5側へ直接伝わらないようにしている。なお、自在継手14としては、ユニバーサルジョイント等の他の構成であってもよい。
【0034】
また、この自在継手14は、図1に示すように、ガイド部材3とほぼ同軸上に配設されており、駆動台車4による牽引力が探触子台車5の案内ローラ13A,13B間のほぼ走行中心に働くようにしている。これにより、探触子台車5に回転モーメントが作用しないようにしている。
【0035】
以上のように構成された超音波探傷装置6によれば、探傷部2に沿って設けられたパイプレールのガイド部材3にガイドさせて駆動台車4を所定速度で自走させることにより、この駆動台車4に追従して探触子台車5が同一の速度でガイド部材3に沿って移動する。この探触子台車5には、探傷部2の側部から探傷部2を超音波探傷する超音波探触子17が設けられており、探触子駆動機15に設けられた駆動モータ35の正転・逆転を走査範囲で間欠的に行うことにより、タイミングベルト40で超音波探触子17を探傷部2と近接・離間させる走査をさせながら駆動台車4を走行させることができる。これにより、探傷部2に沿って移動しながら超音波探傷できる超音波探傷装置6となる。この時、超音波探触子17と被検査体1の表面との間に水等の液体が供給され、この液体の層によって超音波探触子17と被検査体1の表面との間に空気層が形成されるのを防止している。
【0036】
しかも、超音波探傷装置6を移動させる駆動台車4から超音波探傷する探触子台車5を分離させて自在継手14で連結しているので、駆動台車4の駆動モータ58の振動が超音波探触子17まで伝わったり、駆動台車4そのものの振動やうねり動作が超音波探触子17まで伝わることは無く、安定した超音波探傷を行うことが可能となる。
【0037】
また、このように移動しながら超音波探傷する操作は、制御装置等の設定で自動化することも可能であり、自動超音波探傷装置6として構成することも可能となる。
【0038】
その上、駆動台車4と探触子台車5とはガイド部材3に沿って移動し、その探触子台車5から被検査体1の表面に向けて超音波探触子17が押圧されているので、超音波探触子17が安定して被検査体1の表面(探傷面)と接するようにでき、表面が所定の曲率で形成された被検査体1を外側から検査又は内側から検査するような場合に、探傷姿勢が下向きであろうと横向きであろうと、安定した超音波探傷を行うことが可能である。
【0039】
したがって、例えば、船積みのLPGやLNGタンクのように、曲率半径数十mの線溶接継手等も安定して超音波探傷できる超音波探傷装置1を実現することができるとともに、その自動化も実現可能な超音波探傷装置1となる。
【0040】
なお、前記実施の形態では、駆動台車4で探触子台車5を牽引する構成を説明したが、駆動台車4で探触子台車5を押すようにしてもよく、超音波探触子17によって超音波探傷する構成と探傷部2に沿って移動させる構成とが別体であれば、他の構成であってもよい。
【0041】
また、上述した実施形態は一実施形態であり、本願発明の要旨を損なわない範囲での種々の変更は可能であり、本願発明は上述した実施形態に限定されるものではない。
【0042】
【発明の効果】
本願発明は、以上説明したような形態で実施され、超音波探触子を探傷部に沿って移動させる台車で生じる振動やうねり等が超音波探触子側に伝わらなくなり、超音波探触子による超音波探傷を安定して行うことが可能となる。
【図面の簡単な説明】
【図1】本願発明の一実施形態を示す超音波探傷装置の斜視図である。
【図2】図1に示すII−II矢視図である。
【図3】図2に示すIII−III矢視図である。
【図4】図2に示すIV部拡大図である。
【図5】図1に示すV−V矢視図である。
【符号の説明】
1…被検査体
2…探傷部
3…ガイド部材
4…駆動台車
5…探触子台車
6…超音波探傷装置
11…車輪
12…案内ローラ
13…案内ローラ
14…自在継手
15…探触子駆動機
16…走査部
17…超音波探触子
18…制御部
21…支持材
24…スライド部材
25…スライド部材
26…スプリング
27…台車ベース板
28…押圧軸
29…駆動機ベース板
30…挿通孔
31…スプリングカバー
32…スプリング
33…保持部材
34…案内部
35…駆動モータ
36…車輪
37…ガイドレール
38…移動部材
39…支持部材
40…タイミングベルト
41…スプロケット
42…固定部材
43…ガイド軸
44…保持部
45…支持軸
46…探触子本体
47…スプリング
48…規制部材
49…ブラケット
51…車輪
52…制限部材
53…ブラケット
55…車輪
56…取付ブラケット
57…ボール部
58…駆動モータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic flaw detector that non-destructively inspects internal defects in flaw detection parts such as welded joints.
[0002]
[Prior art]
Conventionally, ultrasonic flaw detection (UT) is known as means for nondestructively inspecting internal defects such as welded joints. This ultrasonic flaw detection inspection is a nondestructive inspection in which a probe is brought into close contact with the surface of an object to be inspected, and defects are detected by reflection of ultrasonic waves incident on the object to be inspected from the probe. The position of the defect can be known from the time until the reflection of the ultrasonic wave is detected.
[0003]
As this type of prior art, the carriage is intermittently moved from the beginning to the end of the joint welding line, and the ultrasonic probe is moved in the carriage traveling direction and this by a scanning mechanism provided in the carriage every time the carriage is stopped. There is an automatic ultrasonic flaw detector that performs a flaw detection on all the joint weld lines by performing a rectangular scan in a perpendicular direction. According to this ultrasonic flaw detector, full line flaw detection is performed by inspecting the reflection of incident ultrasonic waves while scanning the ultrasonic probe in the front-rear direction with respect to the joint weld line (for example, patent document). 1).
[0004]
On the other hand, since the range in the thickness direction of the object to be inspected by the ultrasonic probe is limited, in order to perform a stable inspection in the entire thickness direction, the ultrasonic probe is placed close to or away from the welded joint. In some cases, the range in which the ultrasonic probe can be inspected is expanded in the thickness direction by performing scanning.
[0005]
[Patent Document 1]
JP-A-5-333010 (first page, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, in the case of the ultrasonic flaw detector described in Document 1, a scanning mechanism is attached to a carriage that runs in the direction of the weld line, and when inspected while running, vibrations and undulations from the carriage are transmitted to the probe and stabilized. Since the flaw detection cannot be performed, the carriage is intermittently driven at a running pitch corresponding to the scanning range, and the square scanning by the running mechanism is performed while the carriage is stopped. Therefore, continuous ultrasonic flaw detection cannot be performed, and a lot of time is required. In addition, there is a possibility that stable ultrasonic flaw detection cannot be performed due to vibrations from a driving device such as a motor even when the motor is stopped.
[0007]
Further, as described above, when the thickness of the object to be inspected is increased, the range of the longitudinal scanning of the ultrasonic probe is increased accordingly, so that the configuration dimension for scanning the probe becomes longer, The whole device becomes large to support.
[0008]
Further, in this ultrasonic flaw detector, it is difficult to inspect the welded joint portion where the flat plates are abutted, and a sufficient effect can be obtained only by ultrasonic flaw detection of a limited welded joint portion.
[0009]
[Means for Solving the Problems]
Therefore, in order to solve the above problems, the present invention provides a guide member on the surface of the object to be inspected at a predetermined distance from the flaw detection part along the flaw detection part of the object to be inspected , and along the guide member, A self-propelled drive carriage and a probe carriage provided with a pair of ultrasonic probes that emit ultrasonic waves from the side of the flaw detection part toward the flaw detection part are separately provided. The probe carriage is connected to the probe carriage by a joint, and the probe carriage is provided with a scanning mechanism that scans the ultrasonic probe in a symmetrical manner to move the ultrasonic probe close to or away from the flaw detection unit. A regulating member for maintaining a distance from the surface of the object to be inspected is provided on the anti-flaw detection side of the probe driver, and the ultrasonic probe is provided on the ultrasonic probe side of the probe driver. A limiting member for limiting the pressing force on the surface of the object to be inspected is provided . In this way, the driving carriage for moving the ultrasonic probe for ultrasonic flaw detection along the flaw detection part and the probe carriage provided with the ultrasonic probe are separated as separate bodies. By connecting the joints with the joint, vibrations and undulations generated in the drive carriage are not transmitted to the ultrasonic probe side, and stable ultrasonic flaw detection can be performed with the ultrasonic probe.
[0010]
Moreover, the thickness direction of the object to be inspected can be widely inspected by scanning the ultrasonic probe symmetrically so as to approach or separate toward the flaw detection portion. In addition, the probe driver that is pressed toward the object to be inspected can stably press the ultrasonic probe side toward the object to be inspected by the regulating member on the anti-flaw detection side. If the pressing force of the probe exceeds the specified value, the pressing force of the ultrasonic probe can be limited by the limiting member, and the ultrasonic probe can be inspected stably even if the inspection conditions change. It can be tested by pressing against the body.
[0011]
Further, if a guide member guided by the guide member is provided in the drive carriage and the probe carriage, and a pressing member that presses the probe driver toward the object to be inspected is provided in the probe carriage, The driving carriage and the probe carriage are stably moved along the guide member, and the probe driving device of the stably moving probe carriage is pressed against the inspected object side with a predetermined pressure to Stable ultrasonic flaw detection with an acoustic probe is possible.
[0012]
Furthermore, if the joint is formed by a universal joint that is arranged substantially coaxially with the guide member, the probe carriage moved by the drive carriage can be moved around the guide member, so that the probe carriage is rotated. It can be moved stably without generating a moment or the like.
[0014]
Further, if the pressing member is constituted by a spring provided between the probe carriage and the probe driving device, and the spring is disposed before and after the traveling direction of the probe driving device, the simple operation can be achieved. The front and rear of the probe driving machine can be stably pressed toward the object to be inspected by the spring force of the spring, which is a configuration, and the pressing force can be easily changed by replacing the spring.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an ultrasonic flaw detector showing an embodiment of the present invention, FIG. 2 is a view taken in the direction of arrows II-II shown in FIG. 1, FIG. 3 is a view taken in the direction of arrows III-III shown in FIG. 4 is an enlarged view of the IV part shown in FIG. 2, and FIG. For the sake of explanation, part of the drawing is shown in cross section. In this embodiment, a plate material butt-welded as an object to be inspected will be described as an example, and an ultrasonic flaw detection apparatus that performs ultrasonic flaw detection in the weld line direction of the weld joint portion will be described as an example.
[0017]
As shown in FIG. 1, a welded joint portion of a test object 1 welded by abutting plate materials is a flaw detection portion 2, which is a weld line continuous in the vertical direction shown in the figure. A guide member 3 is provided in parallel to the flaw detection part 2 at a position away from the flaw detection part 2 by a predetermined distance. In this embodiment, a pipe rail having a cylindrical cross section is used as the guide member 3. The guide member 3 may have a square cross section or another cross section.
[0018]
The guide member 3 is provided with a drive carriage 4 that travels along the guide member 3 and a probe carriage 5 that is connected to the drive carriage 4 and moves along the guide member 3. The drive carriage 4 and the probe carriage 5 constitute an ultrasonic flaw detector 6. The control device for controlling these may be provided in the drive carriage 4 or in a remote control room or the like.
[0019]
The drive carriage 4 is supported by its own weight by wheels 11 (four places) in contact with the surface of the object 1 to be inspected, and by guide rollers 12 (guide members: four places) rotating in contact with both sides of the guide member 3. It is comprised so that it may move along. The probe carriage 5 is configured such that its own weight is supported by guide rollers 13 (guide members: four places) rotating in contact with both side portions of the guide member 3, and moved along the guide member 3 by the guide rollers 13. Has been.
[0020]
The probe carriage 5 is provided with a probe driver 15 that extends in a direction crossing the flaw detection unit 2. An ultrasonic probe 17 is provided on the scanning unit 16 of the probe driver 15 so as to be positioned on both sides of the flaw detection unit 2.
[0021]
The drive carriage 4 and the probe carriage 5 are connected by a joint 14 so that the probe carriage 5 moves following the movement of the drive carriage 4. The drive carriage 4 and the control unit 18 of the probe carriage 5 are connected by a wire 19, and the drive carriage 4 is connected by a control device (not shown) by a wire 20.
[0022]
As shown in FIG. 2, the guide roller 13 provided in the probe carriage 5 has an outer surface with substantially the same curvature as the outer surface of the guide member 3 having a circular cross section. The guide member 3 is fixed to the surface of the inspection object 1 with a support material 21 having a predetermined height, and the probe carriage 5 guides the guide member 3 by sandwiching the guide member 3 from both sides with the guide roller 13. It is attached to the member 3. The left guide roller 13 </ b> A shown in the figure is rotatably supported by a shaft 22 and rotates following the movement of the probe carriage 5. The right guide roller 13B is rotatably supported by the slide member 24 by the shaft 23, and rotates following the movement of the probe carriage 5. The slide member 24 is provided so as to be slidable along a slide portion 25 provided at a lower portion of the carriage base plate 27 of the probe carriage 5. A spring 26 is provided inside the slide portion 25, and the guide roller 13 </ b> B is always pressed toward the guide member 3 by the spring 26. With such a configuration, the guide member 3 is held between the left and right guide rollers 13A and 13B with a predetermined force (the force of the spring 26). By attaching the probe carriage 5 in this way, the probe carriage 5 is kept floating at a predetermined distance from the surface of the inspection object 1.
[0023]
A pressing shaft 28 is erected on the top of the carriage base plate 27 of the probe carriage 5. In this embodiment, as shown in FIG. 1, pressing shafts 28 are provided at front, rear, left and right positions of the guide member 3. The pressing shaft 28 projects upward through an insertion hole 30 provided in the drive base plate 29 of the probe drive machine 15 and a spring 32 provided in the spring cover 31. The pressing shaft 28 that protrudes upward from the spring cover 31 is connected at its left and right upper ends by a holding member 33.
[0024]
Further, the upper portion of the pressing shaft 28 from a predetermined position is formed in a guide portion 34 having a slightly smaller diameter than the inner diameter of the spring cover 31. The guide portion 34 moves up and down along the inner surface of the spring cover 31 so that the pressing shaft 28 and the spring cover 31 slide substantially on the same axis. The lower surface of the guide portion 34 is an upper end support portion of the spring 32.
[0025]
In this way, the upper end of the spring 32 is supported by the guide portion 34 of the pressing shaft 28, so that the drive machine base plate 29 is pressed toward the surface of the device under test 1 by the force of the spring 32. At this time, the spring cover 31 is guided by the guide portion 34 of the pressing shaft 28, and the entire probe driver 15 is pressed toward the object 1 to be inspected substantially in parallel. The force for pressing the probe driver 15 toward the inspection object 1 can be easily achieved by changing the spring 32. For example, when the lower surface of the inspection object 1 is inspected upward, For example, when inspecting the inspected object 1 on the inclined surface sideways, it is possible to easily change to the spring 32 having a force according to the use conditions.
[0026]
On the other hand, the scanning unit 16 of the probe driver 15 is provided with an ultrasonic probe 17 that emits ultrasonic waves from the side of the flaw detection unit 2 toward the flaw detection unit 2. The ultrasonic probe 17 is provided on a support member 39 that protrudes from a moving member 38 that moves along a guide rail 37 provided in the axial direction of the scanning unit 16 toward the inspection object 1. Yes.
[0027]
As shown in FIG. 3, the guide rail 37 is provided in the central axis direction of the scanning unit 16, and a timing belt 40 is provided around the guide rail 37. The timing belt 40 is hung on sprockets 41 provided at both ends of the scanning unit 16, and the drive sprocket 41 provided on the control unit 17 side (right side in the figure) is configured to be rotatable by a drive motor 35. Yes. The moving members 38 are respectively fixed by fixing members 42 on different linear portions (upper and lower sides in the drawing) of the timing belt 40 thus provided. By fixing in this way, if the timing belt 40 is intermittently moved in the forward direction / reverse direction at a predetermined distance, the ultrasonic probes 17 can be operated so as to approach or separate from each other. In the case of this configuration, the ultrasonic wave emitted from the left or right ultrasonic probe 17 is received by the right or left ultrasonic probe 17.
[0028]
As shown in FIG. 4, the ultrasound probe 17 includes a guide shaft 43 that is guided in a vertical direction by a support member 39 of a moving member 38 that moves along a guide rail 37, and a lower end of the guide shaft 43. And a probe main body 46 supported by a horizontal support shaft 45 provided on the holding portion 44. The probe main body 46 is provided with wheels 36. Further, the holding portion 44 provided with the probe main body 46 is pressed toward the inspection object 1 by a spring 47 provided on the guide shaft 43 and moves in a direction approaching or separating from the surface of the inspection object 1. It is possible. When the holding portion 44 moves up and down, the guide shaft 43 is guided to the support member 39.
[0029]
As described above, the probe body 46 to be pressed is inspected by providing the probe body 46 on the holding portion 44 that moves vertically in the vertical direction so that the support shaft 45 can swing in the horizontal direction. It is in close contact with the surface of the body 1. These are the scanning parts of the scanning mechanism.
[0030]
On the other hand, as shown in FIG. 2, a regulating member 48 that keeps the distance between the scanning unit 16 and the surface of the inspection object 1 is provided on the anti-flaw detection unit 2 side of the scanning unit 16 of the probe driver 15. Yes. The restricting member 48 is a wheel 51 attached by a shaft 50 to a bracket 49 provided from the scanning unit 16 toward the inspection object 1, and is configured to be rotatable while being in contact with the surface of the inspection object 1. Has been. The restricting member 48 is provided on the anti-ultrasonic probe 17 side with the guide member 3 interposed therebetween. By providing the restricting member 48, the restricting member 48 is entirely pressed toward the inspected object 1 by the spring 32. The distance by which the regulating member 48 side of the probe driver 15 moves to the surface side of the inspection object 1 is regulated. By restricting the movement of the probe driver 15, which is entirely pressed by the spring 32 to the object 1 to be inspected, by the restriction member 48, the fixed guide member 3 is centered. Further, the ultrasonic probe side is pressed against the surface side of the inspection object 1.
[0031]
In other words, the probe driver 15 that is constantly pressed toward the object 1 to be inspected by the spring 32 provided on the probe carriage 5 has its anti-ultrasonic probe side determined by the regulating member 48 at a certain distance. The force to the surface side of the inspection object 1 acts on the ultrasonic probe 17 side of the probe driver 15. As a result, the probe body 46 urged from the probe driver 15 to the inspected object 1 side by the spring 47 is always pressed against the surface of the inspected object 1 with a certain pressure and is in close contact. It is possible to perform ultrasonic flaw detection.
[0032]
Further, on the ultrasonic probe 17 side of the scanning unit 16, a limiting member 52 that restricts pressing of the ultrasonic probe 17 against the inspection object 1 is provided. The restricting member 52 is a wheel 55 attached by a shaft 54 to a bracket 53 provided from the scanning unit 16 toward the inspection object 1, and is configured to be rotatable while being in contact with the inspection object 1. Yes. When the ultrasonic probe 17 is pressed against the surface of the inspection object 1 with a predetermined pressing force, the limiting member 52 is in a state of being floated with a slight clearance from the surface of the inspection object 1. In addition, when the ultrasonic probe 17 is pressed beyond a predetermined pressing force, the ultrasonic probe 17 is brought into contact with the surface of the inspection object 1 to prevent a large force from acting on the ultrasonic probe 17.
[0033]
As shown in FIG. 5, the drive carriage 4 and the probe carriage 5 are connected by a universal joint 14 having a ball joint structure. This universal joint 14 is provided between the mounting bracket 56 provided on the probe carriage 5 and the drive carriage 4, and each of them is provided with a ball portion 57 serving as a spherical sliding surface, and can be angularly displaced. So that they are connected. By connecting the drive carriage 4 and the probe carriage 5 with such a universal joint 14, vibrations generated by the drive motor 58 on the drive carriage 4 side, etc., and traveling on the surface of the object 1 to be inspected by the wheels 11. Even if a swell motion or the like occurs in the driving carriage 4, the vibration or swell is not directly transmitted to the probe carriage 5 side by being absorbed by the displacement of the universal joint 14. The universal joint 14 may have another configuration such as a universal joint.
[0034]
Further, as shown in FIG. 1, the universal joint 14 is disposed substantially coaxially with the guide member 3, and the traction force of the drive carriage 4 is substantially traveled between the guide rollers 13 </ b> A and 13 </ b> B of the probe carriage 5. I try to work at the center. This prevents a rotational moment from acting on the probe carriage 5.
[0035]
According to the ultrasonic flaw detection apparatus 6 configured as described above, this driving is performed by guiding the guide member 3 of the pipe rail provided along the flaw detection portion 2 to cause the drive carriage 4 to self-run at a predetermined speed. Following the carriage 4, the probe carriage 5 moves along the guide member 3 at the same speed. The probe carriage 5 is provided with an ultrasonic probe 17 for ultrasonic flaw detection of the flaw detection unit 2 from the side of the flaw detection unit 2, and a drive motor 35 provided in the probe drive unit 15. By intermittently performing forward / reverse rotation in the scanning range, the drive carriage 4 can be run while scanning the ultrasonic probe 17 to be close to or separated from the flaw detection unit 2 by the timing belt 40. As a result, an ultrasonic flaw detector 6 capable of performing ultrasonic flaw detection while moving along the flaw detector 2 is obtained. At this time, a liquid such as water is supplied between the ultrasonic probe 17 and the surface of the object 1 to be inspected, and a layer of this liquid between the ultrasonic probe 17 and the surface of the object 1 to be inspected. An air layer is prevented from being formed.
[0036]
Moreover, since the probe carriage 5 for ultrasonic flaw detection is separated from the drive carriage 4 for moving the ultrasonic flaw detector 6 and connected by the universal joint 14, the vibration of the drive motor 58 of the drive carriage 4 is detected by the ultrasonic probe. Stable ultrasonic flaw detection can be performed without being transmitted to the transducer 17 or vibrations or undulations of the drive carriage 4 itself being transmitted to the ultrasonic probe 17.
[0037]
In addition, the operation for ultrasonic flaw detection while moving in this manner can be automated by setting the control device or the like, and can be configured as the automatic ultrasonic flaw detection device 6.
[0038]
In addition, the drive carriage 4 and the probe carriage 5 move along the guide member 3, and the ultrasonic probe 17 is pressed from the probe carriage 5 toward the surface of the inspection object 1. Therefore, the ultrasonic probe 17 can be stably in contact with the surface (flaw detection surface) of the inspection object 1, and the inspection object 1 having the surface formed with a predetermined curvature is inspected from the outside or inspected from the inside. In such a case, it is possible to perform stable ultrasonic flaw detection regardless of whether the flaw detection posture is downward or sideways.
[0039]
Therefore, for example, it is possible to realize an ultrasonic flaw detection apparatus 1 that can stably perform flaw detection on a wire welded joint having a curvature radius of several tens of meters, such as a shipping LPG or LNG tank, and can also realize automation thereof. The ultrasonic flaw detector 1 is obtained.
[0040]
In the above embodiment, the configuration in which the probe carriage 5 is pulled by the drive carriage 4 has been described. However, the probe carriage 5 may be pushed by the drive carriage 4, and the ultrasonic probe 17 may be used. Other configurations may be used as long as the configuration for ultrasonic flaw detection and the configuration for movement along the flaw detection unit 2 are separate.
[0041]
Further, the above-described embodiment is an embodiment, and various modifications can be made without departing from the gist of the present invention, and the present invention is not limited to the above-described embodiment.
[0042]
【The invention's effect】
The present invention is implemented in the form as described above, and vibrations and undulations, etc. generated in a carriage that moves the ultrasonic probe along the flaw detection part are not transmitted to the ultrasonic probe side, and the ultrasonic probe It becomes possible to carry out ultrasonic flaw detection with the stability.
[Brief description of the drawings]
FIG. 1 is a perspective view of an ultrasonic flaw detector showing an embodiment of the present invention.
FIG. 2 is a view taken in the direction of arrows II-II shown in FIG.
3 is a view taken in the direction of arrows III-III shown in FIG.
FIG. 4 is an enlarged view of a portion IV shown in FIG.
FIG. 5 is a VV arrow view shown in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Test object 2 ... Flaw detection part 3 ... Guide member 4 ... Drive carriage 5 ... Probe carriage 6 ... Ultrasonic flaw detector 11 ... Wheel 12 ... Guide roller 13 ... Guide roller 14 ... Universal joint 15 ... Probe drive Machine 16 ... Scanning part 17 ... Ultrasonic probe 18 ... Control part 21 ... Supporting material 24 ... Sliding member 25 ... Sliding member 26 ... Spring 27 ... Dolly base plate 28 ... Pressing shaft 29 ... Driver base plate 30 ... insertion hole 31 ... Spring cover 32 ... Spring 33 ... Holding member 34 ... Guide section 35 ... Drive motor 36 ... Wheel 37 ... Guide rail 38 ... Moving member 39 ... Support member 40 ... Timing belt 41 ... Sprocket 42 ... Fixed member 43 ... Guide shaft 44 ... Holding part 45 ... Support shaft 46 ... Probe body 47 ... Spring 48 ... Restricting member 49 ... Bracket 51 ... Wheel 52 ... Restricting member 53 ... Bracket 55 ... Wheel 56 Mounting bracket 57 ... ball portion 58 ... drive motor

Claims (4)

被検査体の探傷部に沿って、該探傷部から所定距離離した被検査体の表面にガイド部材を設け、該ガイド部材に沿って、自走する駆動台車と、前記探傷部の側部から該探傷部に向けて超音波を発する一対の超音波探触子を設けた探触子台車とを分離して設け、該駆動台車と探触子台車とを継手で連結するとともに、前記探触子台車に、前記超音波探触子を探傷部と近接又は離間する対称動作で走査を行う走査機構を具備した探触子駆動機を設け、該探触子駆動機の反探傷部側に被検査体の表面との距離を保つ規制部材を設け、該探触子駆動機の超音波探触子側に、該超音波探触子の被検査体表面への押圧力を制限する制限部材を設けた超音波探傷装置。A guide member is provided on the surface of the object to be inspected at a predetermined distance from the flaw detection part along the flaw detection part of the object to be inspected , and along the guide member, a self-propelled drive carriage and a side part of the flaw detection part A probe carriage provided with a pair of ultrasonic probes that emit ultrasonic waves toward the flaw detection portion is provided separately, and the drive carriage and the probe carriage are connected by a joint, and the probe A probe driving machine provided with a scanning mechanism that scans the ultrasonic probe in a symmetrical manner that moves close to or away from the flaw detection part is provided on the child carriage, and the probe driving machine is provided on the side opposite to the flaw detection part. A restricting member that maintains a distance from the surface of the inspection object is provided, and a limiting member that restricts the pressing force of the ultrasonic probe to the surface of the inspection object is provided on the ultrasonic probe side of the probe driver. An ultrasonic flaw detector provided . 前記ガイド部材に案内される案内部材を前記駆動台車と探触子台車とに設けるとともに、該探触子台車に前記探触子駆動機を被検査体側へ押圧する押圧部材を設けた請求項記載の超音波探傷装置。 Rutotomoni provided a guide member which is guided by the guide member in the probe carriage and the drive carriage, claims the probe drive machine該探probe carriage provided with a pressing member for pressing the object to be inspected side The ultrasonic flaw detector according to 1 . 前記押圧部材を、前記探触子台車と探触子駆動機との間に設けたスプリングで構成し、該スプリングを、探触子駆動機の進行方向前後に配設した請求項2記載の超音波探傷装置。The pressing member, constituted by a spring which is provided between the probe carriage and probe drive motor, the spring, No mounting Claim 2 Symbol is disposed in the longitudinal direction of travel of the probe drive motor Ultrasonic flaw detector. 前記継手を、前記ガイド部材とほぼ同軸上に配置する自在継手で構成した請求項1〜3のいずれか1項に記載の超音波探傷装置。  The ultrasonic flaw detector according to any one of claims 1 to 3, wherein the joint is configured by a universal joint that is disposed substantially coaxially with the guide member.
JP2002356640A 2002-12-09 2002-12-09 Ultrasonic flaw detector Expired - Lifetime JP3688265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356640A JP3688265B2 (en) 2002-12-09 2002-12-09 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356640A JP3688265B2 (en) 2002-12-09 2002-12-09 Ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JP2004191086A JP2004191086A (en) 2004-07-08
JP3688265B2 true JP3688265B2 (en) 2005-08-24

Family

ID=32756923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356640A Expired - Lifetime JP3688265B2 (en) 2002-12-09 2002-12-09 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JP3688265B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031542B (en) * 2019-04-26 2023-02-28 射阳县智能探伤设备有限公司 Magnetic particle flaw detector convenient to adjust
US11419585B2 (en) * 2019-11-18 2022-08-23 GE Precision Healthcare LLC Methods and systems for turbulence awareness enabled ultrasound scanning

Also Published As

Publication number Publication date
JP2004191086A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP2642370B2 (en) Method and apparatus for detecting a feature of a defect in a tubular member
JP4961051B2 (en) Non-destructive inspection scanning device and non-destructive inspection device
CN1033484A (en) The scanister of product ultrasound examination
JP6261939B2 (en) Portable ultrasonic flaw detector and ultrasonic flaw detector method
KR20150074554A (en) Ultrasonic testing apparatus for thick plate
CN201060179Y (en) Aqueous medium ultrasonic inspection machine
JP4528711B2 (en) Working device and working method
JP3688265B2 (en) Ultrasonic flaw detector
KR20170040501A (en) A detection device for welding flaw region inside of pipe having overlay welding
CN109975428B (en) Wire rod on-line full-volume phased array ultrasonic detection device
EP1798550B1 (en) Device for inspecting the interior of a material
JP4160449B2 (en) Automatic flaw detector
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
JP2002005907A (en) Inspection method of junction and inspection device
KR101477386B1 (en) Ultrasonic detecting device
JPH06347250A (en) Plate-thickness measuring apparatus
KR200353038Y1 (en) Apparatus for inspecting a tube using supersonic wave
CN206002484U (en) Gas cylinder ultrasonic thickness measuring defectoscope
JP3088646B2 (en) Probe holding device
JPH0148502B2 (en)
JPH01147361A (en) Ultrasonic inspecting device
JPH0152231B2 (en)
JP2004361353A (en) Automatic flaw detector
JP2001074711A (en) Apparatus and method for inspecting cylindrical body
JP4380941B2 (en) Inspection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3688265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

EXPY Cancellation because of completion of term