JP2004183809A - Dynamic pressure bearing device and its manufacturing method - Google Patents

Dynamic pressure bearing device and its manufacturing method Download PDF

Info

Publication number
JP2004183809A
JP2004183809A JP2002352387A JP2002352387A JP2004183809A JP 2004183809 A JP2004183809 A JP 2004183809A JP 2002352387 A JP2002352387 A JP 2002352387A JP 2002352387 A JP2002352387 A JP 2002352387A JP 2004183809 A JP2004183809 A JP 2004183809A
Authority
JP
Japan
Prior art keywords
shaft
thrust bearing
dynamic pressure
welding
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002352387A
Other languages
Japanese (ja)
Other versions
JP4265207B2 (en
Inventor
Yoshihiro Kikuchi
美宏 菊池
Ryuji Torio
竜二 鳥生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002352387A priority Critical patent/JP4265207B2/en
Publication of JP2004183809A publication Critical patent/JP2004183809A/en
Application granted granted Critical
Publication of JP4265207B2 publication Critical patent/JP4265207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure bearing device and its manufacturing method capable of keeping high accuracy in flatness and perpendicularity of a rotating shaft and a thrust bearing necessary for a dynamic pressure bearing motor, and obtaining the firm joining strength. <P>SOLUTION: The accuracy in flatness and perpendicularity of the shaft 1 and the thrust bearing 2 necessary for the fluid bearing motor A is secured by welding the whole circumference by using a jig for bringing the thrust bearing 2 and the shaft 1 into closely contact with each other without inclining a contact face, by simultaneously applying the laser to a plurality of points while rotating the jig, simultaneously applying the laser to a plurality of points N (N is integer of 2 or more) obtained by dividing the circumference of a joint part, and rotating the joint part 16 by an angle of more than 360/N degrees. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気ディスク記録装置等に用いられる動圧軸受け装置に関するもので、特に、高い取り付け精度が要求される部材間の固定方法に関するものである。
【0002】
【従来の技術】
従来の動圧軸受け装置では、シャフトとスラスト軸受けとを、直角度の劣化が生じない程度に圧入もしくは挿入した後、両者の接合境界部を表面側から溶接している。この際、当該接合境界部の表面部分には、予め軸方向に窪んだ逃げ部が環状に形成されていて、この逃げ部内においてシャフトとスラスト軸受けとが溶接されている。(例えば、特許文献1参照)
以下、従来の動圧軸受け装置について図7を用いて説明する。図7は従来の溶接後の動圧軸受け装置の平面図と断面図である。図7に示すようにシャフト1とスラスト軸受け2との間には、凹部17が形成されており、レ−ザ−等の溶解エネルギ−により金属を溶解したものを凹部17に流し込み、シャフト1とスラスト軸受け2とを強固に締結させる構成となっている。
【0003】
【特許文献1】
特開2000−324753号公報(第5頁〜第6頁、第1図)
【0004】
【発明が解決しようとする課題】
上記従来の溶接技術では、シャフトとスラスト軸受けを溶接する部材間の窪みにレ−ザ−等の溶解エネルギ−により金属を溶解させ、同心円上に全周あるいは部分的に複数箇所溶接する方法が行われているが、レ−ザ−照射時、1点に高温箇所が発生するため、熱膨張や冷却時の収縮の応力が発生し、変形をおこして流体軸受モ−タ−に必要なシャフトとスラスト軸受との平面度、直角度等の精度を確保できないという問題点を有していた。
【0005】
本発明は、前記問題点を解決し、シャフトとスラスト軸受との平面度、直角度等の精度を確保しつつ、部材間を強固に締結させた動圧軸受け装置を提供できる。
【0006】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の動圧軸受け装置とその製造方法は、シャフトとスラスト軸受の当て面を傾くことなく密着させるための治具を使って、同時に複数点をレ−ザ−照射して、全周溶接する手段によりシャフトとスラスト軸受を固定したことを特徴とするものである。
【0007】
これによって、スラスト軸受全体の熱収縮の影響が小さくなることで変形が小さくなり、溶接後のスラスト軸受の精度が確保されるという作用を有する。
【0008】
【発明の実施の形態】
本発明の請求項1に記載の動圧軸受け装置は、回転軸をなす端面外周縁部に段差部を設けたシャフトと、軸方向に動圧を発生させるために少なくとも一端面に動圧溝が形成され、前記動圧溝のある端面より凹んだ段差部の中央に前記シャフトの段差部と係合するための貫通孔が形成されている円盤状のスラスト軸受とを有し、前記スラスト軸受と前記シャフトとの接合部をレーザ溶接により固定した動圧軸受け装置であって、溶接加工の際に、前記スラスト軸受と前記シャフトとの係合はすきま嵌めでかつ所定圧力で押圧された状態にて、前記接合部の円周等分割の複数点N(Nは2以上の整数)に同時にレ−ザ−照射して、前記接合部を360/N度の角度以上回転させることで全周溶接して固定したことを特徴とするものである。
【0009】
次に、本発明の請求項2に記載の動圧軸受け装置の製造方法は、回転軸をなす端面外周縁部に段差部を設けたシャフトと、軸方向に動圧を発生させるために少なくとも一端面に動圧溝が形成され、前記動圧溝のある端面より凹んだ段差部の中央に前記シャフトの段差部と係合するための貫通孔が形成されている円盤状のスラスト軸受とを有し、前記スラスト軸受を前記シャフトに接合固定した動圧軸受け装置であって、前記スラスト軸受と前記シャフトとの接合固定は、前記スラスト軸受と前記シャフトとの係合はすきま嵌めでかつ所定圧力で押圧された状態にて、接合部の円周等分割の複数点N(Nは2以上の整数)に同時にレーザ溶接用のレ−ザ−を照射して、前記接合部を360/N度の角度以上回転させることで全周溶接することを特徴とするものである。
【0010】
本発明の請求項1、2の発明によると、1箇所の照射に比べ、同時に複数点を全周に対して均等な角度に照射したほうが、熱膨張、収縮に伴う引っ張りや圧縮、ねじれ等の応力のつりあいがとりやすく、ソリや傾き、偏芯、移動、変形等の熱膨張の影響を小さくすることができ、さらに溶接時間が短縮され生産性が向上するという利点が得られるものである。
【0011】
次に、本発明の請求項3に記載の動圧軸受け装置の製造方法は、請求項2の方法を用いて、前記接合部を360/N度の角度回転させる間は一定のレーザ出力で溶接し、それ以降の回転では、徐々にレ−ザ−の出力を低下させて溶接を完了することを特徴とするものである。
治具を回転して溶接し始め、溶接箇所が重なりはじめると入熱が過度に大きくなり、金属の溶け込みがばらつく。このため、重なり部分の仕上がり面が荒くなり強度も落ちる。本発明の方法である溶接箇所の重なり部分から溶接痕を小さくすることで、重なり部分をきれいに仕上げるとともに、重なり部分の入熱を抑えることでシャフトとスラスト軸受けの溶接強度を上げることができるものである。
【0012】
次に、本発明の請求項4に記載の動圧軸受け装置とその製造方法は、請求項2あるいは3に記載の方法を用いて、前記シャフトを軸方向に案内保持するためのガイド孔と、前記スラスト軸受を保持する保持面を有するホルダーと、前記スラスト軸受を前記ホルダーの保持面との間に挟み込み固定するための押さえ板と、前記スラスト軸受に前記シャフトの段差部を押しつけ固定するための前記ホルダーのガイド孔に挿入された押しピンと、前記押しピンを上下させる移動手段と、前記押しピンを前記シャフトに所定圧で押しつけるための圧力手段を有する治具を用い、前記スラスト軸受を前記ホルダーの保持面に前記押さえ板にて固定した後、前記移動手段にて前記押しピンを移動させて前記シャフトの段差部を前記スラスト軸受の貫通孔に係合するとともに、前記圧力手段にて所定圧で押し当て、しかる後に溶接固定したことを特徴とするものであり、この治具を用いて動圧軸受け装置を製造する際、シャフトとスラスト軸受との平面度、直角度等を位置決めした状態で固定してスラスト軸受がシャフト受け面から浮き上がることを防ぎつつ、ゴミの進入も防いだ状態で溶接を行い、さらに溶接後、溶接部が冷えるまで押さえるため、熱変形の影響を小さくして所定の位置に強固に固定することにより高精度な動圧軸受け装置を製造することができるものである。
【0013】
次に、本発明の請求項5に記載の動圧軸受け装置とその製造方法は、請求項4に記載の方法を用いて、前記押しピンにおいて、シャフトの中央を押す形状を半球状にして、前記押しピンを用いて前記シャフトに押し当て、しかる後に溶接固定したことを特徴とするものである。
【0014】
次に、本発明の請求項6に記載の動圧軸受け装置とその製造方法は、請求項4に記載の方法を用いて、シャフトの中央を押す手段が、前記押しピンの先に球を載せ、前記球を前記シャフトに押し当て、しかる後に溶接固定したことを特徴とするものである。
【0015】
本発明の請求項5,6の発明によると、半球状の押しピン、もしくは球を用いることで、シャフトを面で押すのではなく中央の一点で押すことができ、シャフトに傾きを与えることなく、シャフト軸方向に押す力を加えることができ、シャフトとスラスト軸受との平面度、直角度等をより精度を上げて、固定することができる。
【0016】
(実施の形態1)
以下、本発明の請求項1〜3に記載の実施の形態1について図1〜図4を用いて説明する。図1は本発明の実施の形態に用いる磁気ディスク記録装置の断面図であり、図2は、本発明の実施の形態における動圧軸受け装置の平面図と断面図である。図2(a)は溶接前、図2(b)は溶接後を示す。
図1に示すように、シャフト1の端部に動圧溝が形成されたスラスト軸受け2を挿入し、内周面に動圧溝が形成されたスリ−ブ3にシャフト1を挿入し、スラストプレ−ト4をスリ−ブ3側に圧入固定する。その後、潤滑油をシャフト1とスリ−ブ3の隙間から注入し、軸受けユニットAが完成する。然る後に、軸受けユニットAから突出したシャフト1の端部を反対側から押圧しながらモ−タ−ハブ5に圧入固定する。
【0017】
また、図2に示すように回転軸をなす端面外周縁部に段差部1aを設けたシャフト1と、中央の貫通孔2aの周囲に段差部2bが形成されている円盤状のスラスト軸受2において、シャフト1の段差部1aを設けることにより形成された凸部1bの高さをスラスト軸受2の段差部2bの底部の高さに合わせる。貫通孔2aと凸部1bが接する部分である接合部16は0.02〜0.04程度のすきまを設けている。溶接前に圧入、かしめ等にて仮固定しておくことも可能であるが、本発明の実施の形態においては圧入時に内部応力を持たせないことと、圧入工程を省くためにすきまを設けている。
【0018】
この状態で貫通孔2aと凸部1bが接する接合部16を、表面側から照射点6の3箇所を同時に連続的にレ−ザ−照射して、円周上に120度以上回転した最終照射点7まで回転させて、レ−ザ−により連続的に全周溶接して固定する。
【0019】
今回は強度を上げるため、連続的に溶接を行ったが、同時に複数点、あるいは複数点を溶接してから治具を回転させ、さらに複数点を溶接してもよい。
本実施の形態においては、互いに接合する素材同士を溶融させて両者を接合するレ−ザ−溶接法を利用している。溶接部分の直径はφ2と小さいが、レ−ザ−照射径はφ0.2程にすることで強度を保ちつつ、小さな場所に3箇所の照射を行い全周溶接することができる。
なお、複数点のレ−ザ−照射において、分岐したレ−ザ−の各出力のバラツキを10%以内に抑えている。
【0020】
次にレ−ザ−照射の出力とワ−クの回転の関係について説明する。
図3は、本発明の実施の形態1におけるレ−ザ−出力とシャフトとスリ−ブ軸受けを固定している治具の回転の関係を示すグラフであり、レ−ザ−照射開始から治具を回転させたときのレ−ザ−出力の経過を示している。図4は、本発明の実施の形態1におけるレ−ザ−溶接の状態を示す平面図であり、図4の記号a、b、cは図3の記号a、b、cに対応している。
レ−ザ−照射開始aからシャフトとスラスト軸受が固定された治具を120度b回転するまで一定の出力にて溶接する。120度bを越えてから、溶接を終える130度c近辺まで出力を段階的に低下させている。
【0021】
(実施の形態2)
以下、本発明の請求項4〜6に記載の実施の形態2について図5、図6を用いて説明する。図5は、本発明の実施の形態2における治具の断面図である。図6は、図5の別の例を示す本発明の他の実施の形態2における治具の断面図である。なお、図6において、図5と同じ構成部品については、同じ符号を付して説明を略し、図5と異なる点について説明する。
【0022】
図5において、動圧軸受け装置の製造に用いる治具の構成は、シャフト1を軸方向に案内保持するためのガイド孔14と、スラスト軸受2を保持する保持面9aを有するホルダー9と、スラスト軸受2をホルダー9の保持面9aとの間に挟み込み固定するための押さえ板8と、スラスト軸受2にシャフト1の段差部1bを押しつけ固定するためのホルダー9のガイド孔13に挿入された押しピン10と、押しピン10を上下させる移動手段としてエアーシリンダー11と、押しピン10をシャフト1に所定圧で押しつけるための圧力手段としてエアーレギュレータ12を有しているものである。なお、シャフト1を押しつける押しピン10の先端形状は半球状にしてあり、シャフト1の中央の一点を押す。
【0023】
以上のように構成された治具について、以下その動作、作用を説明する。
【0024】
シャフト1を保持するホルダー9のガイド孔13にシャフト1を挿入し、押しピン10の半球状のピンの先に置く。次にシャフト端面外周縁部に設けた凸部1bがスラスト軸受2の貫通部2aに係合するようにスラスト軸受け2をシャフト段差部1aの当て面に載せ、押さえ8により、スラスト軸受2をホルダー9の保持面9aとの間に固定した後、エアーレギュレータ12にてスラスト軸受2にシャフトの段差部1aを押しつけ、押しピン10をエアーシリンダー11により0.1mmほど押し上げ固定する。これにより、スラスト軸受け2をシャフト段差部1aの当て面に傾くことなく密着させる。シャフト1とスラスト軸受2を治具に固定した後、治具を回転させ、同時に3点をレ−ザ−照射して、同心円上に120度以上回転させることで連続的に全周溶接する。
シャフト1をスラスト軸受け2に押し付ける力が大きすぎるとスラスト軸受け2を変形させてしまうため、スラスト軸受け2が変形しない300gほどの力を加える。押しピン10がシャフト1を押しつけ、シャフト1がスラスト軸受け2を押し付ける力はエアーレギュレータ12を用いて調整する。
【0025】
図6は、他の実施例として図5の半球状の押しピン10を、先が平らな形状の押しピン14に換え、押しピンの先に球15を載せたものであり、半球状の押しピン10と同様の働き、効果が得られる。
【0026】
【発明の効果】
以上のように、本発明の動圧軸受け装置とその製造方法によれば、スラスト軸受けとシャフトの当て面を傾くことなく密着させるための治具を用い、3点同時にレ−ザ−照射を連続して行うことで全周溶接を行ない、流体軸受けモータに必要な回転軸とスラスト軸受との平面度、直角度等の精度を高精度に固定することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に用いる磁気ディスク記録装置の断面図
【図2】本発明の実施の形態1における動圧軸受け装置の平面図と断面図
【図3】本発明の実施の形態1におけるレ−ザ−出力と治具回転の関係を示すグラフ
【図4】本発明の実施の形態1におけるレ−ザ−溶接の状態を示す平面図
【図5】本発明の実施の形態2における治具の断面図
【図6】本発明の他の実施の形態2における治具の断面図
【図7】従来の溶接後の動圧軸受け装置の平面図と断面図
【符号の説明】
1 シャフト
1a 段差部
1b 凸部
2 スラスト軸受け
2a 貫通孔
2b 段差部
3 スリーブ
4 スラストプレート
5 モータハブ
6 照射点
7 最終照射点
8 押さえ
9 ホルダー
9a 保持面
10 押しピン
11 エアーシリンダ
12 エアーレギュレータ
13 ガイド孔
14 押しピン
15 球
16 接合部
17 凹部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dynamic pressure bearing device used for a magnetic disk recording device or the like, and more particularly to a method for fixing members that require high mounting accuracy.
[0002]
[Prior art]
In the conventional dynamic pressure bearing device, after the shaft and the thrust bearing are press-fitted or inserted to such an extent that the right angle does not deteriorate, the joint boundary between them is welded from the surface side. At this time, a relief portion which is previously depressed in the axial direction is formed in an annular shape on the surface portion of the joining boundary portion, and the shaft and the thrust bearing are welded in the relief portion. (For example, see Patent Document 1)
Hereinafter, a conventional dynamic pressure bearing device will be described with reference to FIG. FIG. 7 is a plan view and a sectional view of a conventional dynamic pressure bearing device after welding. As shown in FIG. 7, a concave portion 17 is formed between the shaft 1 and the thrust bearing 2, and a material obtained by melting a metal by melting energy of a laser or the like is poured into the concave portion 17, and the shaft 1 is The structure is such that the thrust bearing 2 is firmly fastened.
[0003]
[Patent Document 1]
JP-A-2000-324753 (pages 5 to 6, FIG. 1)
[0004]
[Problems to be solved by the invention]
In the conventional welding technique described above, a method is used in which a metal is melted by a dissolving energy of a laser or the like in a recess between members to which a shaft and a thrust bearing are welded, and the entire circumference or a part of the metal is welded concentrically. However, at the time of laser irradiation, a high-temperature spot is generated at one point, so that stress of thermal expansion and contraction at the time of cooling occurs, causing deformation and causing a problem with the shaft necessary for the fluid bearing motor. There was a problem that the accuracy such as flatness and squareness with the thrust bearing could not be ensured.
[0005]
The present invention can solve the above-mentioned problems, and can provide a dynamic pressure bearing device in which members are firmly fastened while ensuring accuracy such as flatness and perpendicularity between a shaft and a thrust bearing.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, a dynamic pressure bearing device and a method of manufacturing the same according to the present invention use a jig for tightly contacting a shaft and a contact surface of a thrust bearing without tilting, and simultaneously lay out a plurality of points. The shaft and the thrust bearing are fixed by means of laser irradiation and full-circle welding.
[0007]
Thus, the effect of thermal shrinkage of the entire thrust bearing is reduced, so that the deformation is reduced, which has an effect of ensuring the accuracy of the thrust bearing after welding.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The dynamic pressure bearing device according to claim 1 of the present invention has a shaft provided with a stepped portion on an outer peripheral edge of an end surface forming a rotating shaft, and a dynamic pressure groove formed on at least one end surface for generating dynamic pressure in the axial direction. A disk-shaped thrust bearing formed with a through-hole for engaging the step portion of the shaft at the center of the step portion recessed from the end face having the dynamic pressure groove, wherein the thrust bearing and A dynamic pressure bearing device in which a joint with the shaft is fixed by laser welding, wherein, during welding, the engagement between the thrust bearing and the shaft is a clearance fit and is pressed at a predetermined pressure. Laser irradiation is simultaneously applied to a plurality of points N (N is an integer of 2 or more) at equal divisions of the circumference of the joint to rotate the joint at an angle of 360 / N degrees or more, thereby welding the entire circumference. And is fixed.
[0009]
Next, a method of manufacturing a dynamic pressure bearing device according to a second aspect of the present invention includes: a shaft provided with a stepped portion at an outer peripheral edge of an end surface forming a rotary shaft; A disk-shaped thrust bearing in which a dynamic pressure groove is formed on an end surface, and a through hole for engaging with the step portion of the shaft is formed at the center of the step portion recessed from the end surface having the dynamic pressure groove; The thrust bearing is joined and fixed to the shaft, and the thrust bearing and the shaft are joined and fixed in such a manner that the engagement between the thrust bearing and the shaft is a clearance fit and a predetermined pressure. In the pressed state, a laser for laser welding is simultaneously applied to a plurality of points N (N is an integer of 2 or more) at equal divisions of the circumference of the joint to thereby irradiate the joint at 360 / N degrees. Rotating more than an angle to weld all around It is an butterfly.
[0010]
According to the invention of claims 1 and 2 of the present invention, it is preferable to irradiate a plurality of points at an equal angle with respect to the entire circumference at the same time as compared with irradiation of one place, and it is possible to reduce tension, compression, torsion and the like accompanying thermal expansion and contraction. The advantage is that stress can be easily balanced, the influence of thermal expansion such as warpage, inclination, eccentricity, movement, deformation, etc. can be reduced, and the welding time can be shortened to improve productivity.
[0011]
Next, a method of manufacturing a dynamic pressure bearing device according to a third aspect of the present invention uses the method of the second aspect to weld with a constant laser output while rotating the joint at an angle of 360 / N degrees. In the subsequent rotation, the output of the laser is gradually reduced to complete the welding.
When the jig is rotated and welding is started, and the welding spots start to overlap, the heat input becomes excessively large, and the penetration of the metal varies. For this reason, the finished surface of the overlapping portion becomes rough and the strength is reduced. In the method of the present invention, by reducing welding marks from the overlapping portion of the welding portion, the overlapping portion can be finished finely, and the welding strength of the shaft and the thrust bearing can be increased by suppressing the heat input of the overlapping portion. is there.
[0012]
Next, a dynamic pressure bearing device according to a fourth aspect of the present invention and a method for manufacturing the same, using the method according to the second or third aspect, a guide hole for guiding and holding the shaft in the axial direction; A holder having a holding surface for holding the thrust bearing, a pressing plate for sandwiching and fixing the thrust bearing between the holding surface of the holder, and a pressing plate for pressing and fixing a step portion of the shaft to the thrust bearing. Using a jig having a push pin inserted into the guide hole of the holder, moving means for moving the push pin up and down, and pressure means for pressing the push pin against the shaft with a predetermined pressure, the thrust bearing is fixed to the holder. After being fixed to the holding surface by the pressing plate, the push pin is moved by the moving means so that the step portion of the shaft is inserted into the through hole of the thrust bearing. Together with a predetermined pressure by the pressure means, and then fixed by welding, when manufacturing a dynamic pressure bearing device using this jig, the shaft and the thrust bearing Welding is performed with the flatness, squareness, etc. positioned and fixed to prevent the thrust bearing from floating from the shaft receiving surface, while preventing the ingress of dust, and after welding, press down until the weld cools down. In addition, a highly accurate dynamic pressure bearing device can be manufactured by firmly fixing the bearing at a predetermined position while reducing the influence of thermal deformation.
[0013]
Next, the dynamic pressure bearing device and the manufacturing method thereof according to claim 5 of the present invention use the method according to claim 4 to make the push pin press the center of the shaft in a hemispherical shape. The shaft is pressed against the shaft using the push pin, and then fixed by welding.
[0014]
Next, in the dynamic pressure bearing device according to claim 6 of the present invention and the method for manufacturing the same, the means for pressing the center of the shaft uses the method described in claim 4 to place a ball on the tip of the push pin. The sphere is pressed against the shaft and then fixed by welding.
[0015]
According to the invention of claims 5 and 6 of the present invention, by using a hemispherical push pin or a sphere, the shaft can be pushed at a central point instead of being pushed with a surface, and the shaft is not tilted. A pressing force can be applied in the axial direction of the shaft, and the flatness and the perpendicularity between the shaft and the thrust bearing can be fixed with higher accuracy.
[0016]
(Embodiment 1)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view of a magnetic disk recording device used in an embodiment of the present invention, and FIG. 2 is a plan view and a sectional view of a dynamic pressure bearing device in the embodiment of the present invention. FIG. 2A shows the state before welding, and FIG. 2B shows the state after welding.
As shown in FIG. 1, a thrust bearing 2 having a dynamic pressure groove formed at an end of the shaft 1 is inserted, and the shaft 1 is inserted into a sleeve 3 having a dynamic pressure groove formed at an inner peripheral surface thereof. The plate 4 is press-fitted and fixed to the sleeve 3 side. Thereafter, lubricating oil is injected from the gap between the shaft 1 and the sleeve 3, and the bearing unit A is completed. Thereafter, the end of the shaft 1 protruding from the bearing unit A is pressed and fixed to the motor hub 5 while being pressed from the opposite side.
[0017]
In addition, as shown in FIG. 2, a shaft 1 having a stepped portion 1a at an outer peripheral edge of an end surface forming a rotation axis and a disk-shaped thrust bearing 2 having a stepped portion 2b formed around a central through hole 2a. The height of the projection 1b formed by providing the step 1a of the shaft 1 is adjusted to the height of the bottom of the step 2b of the thrust bearing 2. The joint portion 16 where the through hole 2a and the convex portion 1b are in contact has a clearance of about 0.02 to 0.04. It is also possible to temporarily fix by press-fitting, caulking, etc. before welding, but in the embodiment of the present invention, not to have internal stress at the time of press-fitting, and to provide a gap to eliminate the press-fitting step. I have.
[0018]
In this state, the joint portion 16 where the through hole 2a and the convex portion 1b are in contact with each other is continuously and continuously laser-irradiated from the surface side to three irradiation points 6, and the final irradiation is rotated by 120 degrees or more on the circumference. Rotate to point 7 and continuously weld and fix the entire circumference with a laser.
[0019]
This time, in order to increase the strength, welding was performed continuously, but it is also possible to weld a plurality of points or a plurality of points at the same time, then rotate the jig, and further weld a plurality of points.
In this embodiment, a laser welding method is used in which materials to be joined to each other are melted to join them. Although the diameter of the welded portion is as small as φ2, the laser irradiation diameter is set to about φ0.2, so that it is possible to irradiate three places in a small place and weld the entire circumference while maintaining strength.
In laser irradiation at a plurality of points, variations in the outputs of the branched lasers are suppressed to within 10%.
[0020]
Next, the relationship between the output of laser irradiation and the rotation of the work will be described.
FIG. 3 is a graph showing the relationship between the laser output and the rotation of the jig fixing the shaft and the sleeve bearing in the first embodiment of the present invention. Shows the progress of the laser output when is rotated. FIG. 4 is a plan view showing a state of laser welding according to the first embodiment of the present invention. Symbols a, b, and c in FIG. 4 correspond to symbols a, b, and c in FIG. .
From the start of laser irradiation a, the jig to which the shaft and the thrust bearing are fixed is welded at a constant output until the jig rotates 120 degrees b. After exceeding 120 degrees b, the output is gradually reduced to around 130 degrees c at which welding is completed.
[0021]
(Embodiment 2)
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a sectional view of a jig according to Embodiment 2 of the present invention. FIG. 6 is a sectional view of a jig according to another embodiment 2 of the present invention, which shows another example of FIG. In FIG. 6, the same components as those in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted, and points different from FIG. 5 will be described.
[0022]
In FIG. 5, a jig used for manufacturing the dynamic pressure bearing device includes a guide hole 14 for guiding and holding the shaft 1 in the axial direction, a holder 9 having a holding surface 9a for holding the thrust bearing 2, and a thrust bearing. A pressing plate 8 for sandwiching and fixing the bearing 2 between the holding surface 9a of the holder 9 and a pressing plate inserted into the guide hole 13 of the holder 9 for pressing and fixing the step portion 1b of the shaft 1 to the thrust bearing 2. It has a pin 10, an air cylinder 11 as a moving means for moving the push pin 10 up and down, and an air regulator 12 as a pressure means for pressing the push pin 10 against the shaft 1 at a predetermined pressure. The tip of the push pin 10 for pressing the shaft 1 is hemispherical, and pushes a central point of the shaft 1.
[0023]
The operation and operation of the jig configured as described above will be described below.
[0024]
The shaft 1 is inserted into the guide hole 13 of the holder 9 that holds the shaft 1, and is placed at the tip of a hemispherical pin of the push pin 10. Next, the thrust bearing 2 is placed on the contact surface of the shaft step portion 1a so that the projection 1b provided on the outer peripheral edge of the shaft end face engages with the through portion 2a of the thrust bearing 2, and the thrust bearing 2 is held by the holder 8 by the holding member 8. After fixing between the shaft 9 and the holding surface 9a, the step portion 1a of the shaft is pressed against the thrust bearing 2 by the air regulator 12, and the push pin 10 is pushed up by about 0.1 mm by the air cylinder 11 and fixed. Thus, the thrust bearing 2 is brought into close contact with the contact surface of the shaft step portion 1a without tilting. After fixing the shaft 1 and the thrust bearing 2 to the jig, the jig is rotated, and at the same time, three points are irradiated with a laser, and the concentric circle is rotated by 120 degrees or more to continuously weld the entire circumference.
If the force for pressing the shaft 1 against the thrust bearing 2 is too large, the thrust bearing 2 will be deformed. Therefore, a force of about 300 g that does not deform the thrust bearing 2 is applied. The force with which the push pin 10 presses the shaft 1 and the shaft 1 presses the thrust bearing 2 is adjusted using an air regulator 12.
[0025]
FIG. 6 shows another embodiment in which the hemispherical push pin 10 of FIG. 5 is replaced with a push pin 14 having a flat tip, and a ball 15 is placed on the tip of the push pin. Functions and effects similar to those of the pin 10 can be obtained.
[0026]
【The invention's effect】
As described above, according to the dynamic pressure bearing device and the method of manufacturing the same of the present invention, laser irradiation is continuously performed at three points simultaneously by using a jig for bringing the thrust bearing and the shaft contact surface into close contact without tilting. By doing so, the entire circumference can be welded, and the accuracy of the flatness and the perpendicularity between the rotating shaft and the thrust bearing required for the fluid bearing motor can be fixed with high accuracy.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a magnetic disk recording device used in a first embodiment of the present invention. FIG. 2 is a plan view and a cross-sectional view of a dynamic pressure bearing device in a first embodiment of the present invention. FIG. 4 is a graph showing the relationship between laser output and jig rotation in Embodiment 1. FIG. 4 is a plan view showing the state of laser welding in Embodiment 1 of the present invention. FIG. FIG. 6 is a sectional view of a jig in another embodiment 2 of the present invention. FIG. 7 is a plan view and a sectional view of a conventional dynamic pressure bearing device after welding. ]
Reference Signs List 1 shaft 1a stepped portion 1b convex portion 2 thrust bearing 2a through hole 2b stepped portion 3 sleeve 4 thrust plate 5 motor hub 6 irradiation point 7 final irradiation point 8 presser 9 holder 9a holding surface 10 push pin 11 air cylinder 12 air regulator 13 guide hole 14 push pin 15 ball 16 joint 17 recess

Claims (6)

回転軸をなす端面外周縁部に段差部を設けたシャフトと、軸方向に動圧を発生させるために少なくとも一端面に動圧溝が形成され、前記動圧溝のある端面より凹んだ段差部の中央に前記シャフトの段差部と係合するための貫通孔が形成されている円盤状のスラスト軸受とを有し、前記スラスト軸受と前記シャフトとの接合部をレーザ溶接により固定した動圧軸受け装置であって、溶接加工の際に、前記スラスト軸受と前記シャフトとの係合はすきま嵌めでかつ所定圧力で押圧された状態にて、前記接合部の円周等分割の複数点N(Nは2以上の整数)に同時にレ−ザ−照射して、前記接合部を360/N度の角度以上回転させることで全周溶接して固定したことを特徴とする動圧軸受け装置。A shaft provided with a step on the outer peripheral edge of an end face forming a rotation axis, and a step formed with a dynamic pressure groove formed on at least one end face for generating a dynamic pressure in the axial direction, the step being recessed from an end face having the dynamic pressure groove And a disk-shaped thrust bearing having a through hole formed in the center of the shaft for engaging with a stepped portion of the shaft, and a dynamic pressure bearing in which a joint between the thrust bearing and the shaft is fixed by laser welding. A thrust bearing and the shaft are engaged with each other at a plurality of points N (N (2 is an integer of 2 or more) at the same time, and the joint is rotated by an angle of 360 / N degrees or more and welded all around to be fixed. 回転軸をなす端面外周縁部に段差部を設けたシャフトと、軸方向に動圧を発生させるために少なくとも一端面に動圧溝が形成され、前記動圧溝のある端面より凹んだ段差部の中央に前記シャフトの段差部と係合するための貫通孔が形成されている円盤状のスラスト軸受を有し、前記スラスト軸受を前記シャフトに接合固定した動圧軸受け装置であって、前記スラスト軸受と前記シャフトとの接合固定は、前記スラスト軸受と前記シャフトとの係合はすきま嵌めでかつ所定圧力で押圧された状態にて、接合部の円周等分割の複数点N(Nは2以上の整数)に同時にレーザ溶接用のレ−ザ−を照射して、前記接合部を360/N度の角度以上回転させることで全周溶接することを特徴とする動圧軸受け装置の製造方法。A shaft provided with a step on the outer peripheral edge of an end face forming a rotation axis, and a step formed with a dynamic pressure groove formed on at least one end face for generating a dynamic pressure in the axial direction, the step being recessed from an end face having the dynamic pressure groove A thrust bearing having a disc-shaped thrust bearing formed with a through hole for engaging with a stepped portion of the shaft at a center of the thrust bearing, wherein the thrust bearing is fixedly joined to the shaft. The joint between the bearing and the shaft is fixed by a plurality of points N (where N is 2) at which the engagement between the thrust bearing and the shaft is a clearance fit and is pressed at a predetermined pressure. A laser welding laser at the same time as the above integer, and rotating the joint at an angle of 360 / N degrees or more to perform full-circle welding. . 前記接合部を360/N度の角度回転させる間は一定のレーザ出力で溶接し、それ以降の回転では、徐々にレ−ザ−の出力を低下させて溶接を完了することを特徴とする請求項2の動圧軸受け装置の製造方法。The welding is performed at a constant laser output while the joint is rotated at an angle of 360 / N degrees, and in subsequent rotations, the output of the laser is gradually reduced to complete the welding. Item 6. A method for manufacturing a dynamic pressure bearing device according to item 2. 前記シャフトを軸方向に案内保持するためのガイド孔と、前記スラスト軸受を保持する保持面を有するホルダーと、前記スラスト軸受を前記ホルダーの保持面との間に挟み込み固定するための押さえ板と、前記スラスト軸受に前記シャフトの段差部を押しつけ固定するための前記ホルダーのガイド孔に挿入された押しピンと、前記押しピンを上下させる移動手段と、前記押しピンを前記シャフトに所定圧で押しつけるための圧力手段を有する治具を用い、前記スラスト軸受を前記ホルダーの保持面に前記押さえ板にて固定した後、前記移動手段にて前記押しピンを移動させて前記シャフトの段差部を前記スラスト軸受の貫通孔に係合するとともに、前記圧力手段にて所定圧で押し当て、しかる後に溶接固定したことを特徴とする請求項2あるいは3に記載の動圧軸受け装置の製造方法。A guide hole for guiding and holding the shaft in the axial direction, a holder having a holding surface for holding the thrust bearing, a holding plate for sandwiching and fixing the thrust bearing between the holding surface of the holder, A push pin inserted into a guide hole of the holder for pressing and fixing a step portion of the shaft to the thrust bearing, a moving means for moving the push pin up and down, and a device for pushing the push pin against the shaft with a predetermined pressure. After fixing the thrust bearing to the holding surface of the holder with the holding plate by using a jig having a pressure means, the push pin is moved by the moving means to move the step portion of the shaft to the thrust bearing. 3. The method as claimed in claim 2, wherein said second pressure unit is engaged with said through hole and pressed by said pressure means at a predetermined pressure, and then fixed by welding. Method for producing the dynamic pressure bearing device according to 3. 前記押しピンにおいて、シャフトの中央を押す形状を半球状にして、前記押しピンを用いて前記シャフトに押し当て、しかる後に溶接固定したことを特徴とする請求項4に記載の動圧軸受け装置の製造方法。5. The dynamic pressure bearing device according to claim 4, wherein the push pin has a hemispherical shape in which the center of the shaft is pushed, and is pressed against the shaft using the push pin, and then fixed by welding. 6. Production method. シャフトの中央を押す手段が、前記押しピンの先に球を載せ、前記球を前記シャフトに押し当て、しかる後に溶接固定したことを特徴とする請求項4に記載の動圧軸受け装置の製造方法。5. The method for manufacturing a dynamic pressure bearing device according to claim 4, wherein the means for pressing the center of the shaft places a ball on the tip of the push pin, presses the ball against the shaft, and then fixes the ball by welding. .
JP2002352387A 2002-12-04 2002-12-04 Dynamic pressure bearing device and manufacturing method thereof Expired - Lifetime JP4265207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352387A JP4265207B2 (en) 2002-12-04 2002-12-04 Dynamic pressure bearing device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352387A JP4265207B2 (en) 2002-12-04 2002-12-04 Dynamic pressure bearing device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004183809A true JP2004183809A (en) 2004-07-02
JP4265207B2 JP4265207B2 (en) 2009-05-20

Family

ID=32754020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352387A Expired - Lifetime JP4265207B2 (en) 2002-12-04 2002-12-04 Dynamic pressure bearing device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4265207B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205370A (en) * 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd Fluid bearing device and its manufacturing method, spindle motor and record regenerating device
KR101077427B1 (en) 2009-01-28 2011-10-26 삼성전기주식회사 Spindle motor
JP2013076453A (en) * 2011-09-30 2013-04-25 Seiko Instruments Inc Rolling bearing device, method of manufacturing the same, device of manufacturing rolling bearing, and hard disk device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205370A (en) * 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd Fluid bearing device and its manufacturing method, spindle motor and record regenerating device
KR101077427B1 (en) 2009-01-28 2011-10-26 삼성전기주식회사 Spindle motor
JP2013076453A (en) * 2011-09-30 2013-04-25 Seiko Instruments Inc Rolling bearing device, method of manufacturing the same, device of manufacturing rolling bearing, and hard disk device

Also Published As

Publication number Publication date
JP4265207B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP4756544B2 (en) Double row bearing and manufacturing method of double row bearing
US20080029212A1 (en) Sleeve, sleeve unit, motor, and method for manufacturing sleeve and sleeve unit
JP5179048B2 (en) Polygon mirror scanner motor and manufacturing method thereof
US6554476B2 (en) Dynamic pressure bearing device and method of manufacturing the same
US8622621B2 (en) Rolling bearing apparatus, manufacture method thereof, and hard disk apparatus
JP5967889B2 (en) Method and apparatus for manufacturing rolling bearing device
JP2004183809A (en) Dynamic pressure bearing device and its manufacturing method
US9091299B2 (en) Bearing device, method of manufacturing bearing device, and information recording/reproducing apparatus
JP3991215B2 (en) Hydrodynamic bearing device
JP2004340368A (en) Hydrodynamic bearing and its manufacturing method, device for manufacturing shaft member for hydrodynamic bearing, spindle motor, and recording disc driving apparatus
JP5570308B2 (en) Method for manufacturing rolling bearing device
JP5606116B2 (en) Rolling bearing device and pivot device
US20040111890A1 (en) Method of manufacture and apparatus for a pivot assembly
JP2014070701A (en) Bearing device, manufacturing method of bearing device, and information recording and reproducing device
JP4132749B2 (en) Manufacturing method of shaft portion of hydrodynamic bearing motor
JP2003148498A (en) Dynamic pressure type bearing unit
JP2003314538A (en) Manufacturing method for fluid dynamic bearing unit
JP2006090390A (en) Structure of bearing for spindle motor, and its assembling method
JP2003094190A (en) Method for jointing rotary member
JP5603117B2 (en) Rolling bearing device and pivot device
JPH07100233B2 (en) Gear and manufacturing method thereof
JPH07238943A (en) Connection method for shaft and bearing of small-sized motor
JP2571996B2 (en) Rim-disk friction welding method for disk wheel and its apparatus
US20140104727A1 (en) Bearing device, method of manufacturing bearing device, and information recording/reproducing apparatus
JP2004190786A (en) Dynamic-pressure bearing device and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R151 Written notification of patent or utility model registration

Ref document number: 4265207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term