JP4265207B2 - Dynamic pressure bearing device and manufacturing method thereof - Google Patents

Dynamic pressure bearing device and manufacturing method thereof Download PDF

Info

Publication number
JP4265207B2
JP4265207B2 JP2002352387A JP2002352387A JP4265207B2 JP 4265207 B2 JP4265207 B2 JP 4265207B2 JP 2002352387 A JP2002352387 A JP 2002352387A JP 2002352387 A JP2002352387 A JP 2002352387A JP 4265207 B2 JP4265207 B2 JP 4265207B2
Authority
JP
Japan
Prior art keywords
shaft
thrust bearing
dynamic pressure
welding
push pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002352387A
Other languages
Japanese (ja)
Other versions
JP2004183809A (en
Inventor
美宏 菊池
竜二 鳥生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002352387A priority Critical patent/JP4265207B2/en
Publication of JP2004183809A publication Critical patent/JP2004183809A/en
Application granted granted Critical
Publication of JP4265207B2 publication Critical patent/JP4265207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Motor Or Generator Frames (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気ディスク記録装置等に用いられる動圧軸受け装置に関するもので、特に、高い取り付け精度が要求される部材間の固定方法に関するものである。
【0002】
【従来の技術】
従来の動圧軸受け装置では、シャフトとスラスト軸受けとを、直角度の劣化が生じない程度に圧入もしくは挿入した後、両者の接合境界部を表面側から溶接している。この際、当該接合境界部の表面部分には、予め軸方向に窪んだ逃げ部が環状に形成されていて、この逃げ部内においてシャフトとスラスト軸受けとが溶接されている。(例えば、特許文献1参照)
以下、従来の動圧軸受け装置について図7を用いて説明する。図7は従来の溶接後の動圧軸受け装置の平面図と断面図である。図7に示すようにシャフト1とスラスト軸受け2との間には、凹部17が形成されており、レ−ザ−等の溶解エネルギ−により金属を溶解したものを凹部17に流し込み、シャフト1とスラスト軸受け2とを強固に締結させる構成となっている。
【0003】
【特許文献1】
特開2000−324753号公報(第5頁〜第6頁、第1図)
【0004】
【発明が解決しようとする課題】
上記従来の溶接技術では、シャフトとスラスト軸受けを溶接する部材間の窪みにレ−ザ−等の溶解エネルギ−により金属を溶解させ、同心円上に全周あるいは部分的に複数箇所溶接する方法が行われているが、レ−ザ−照射時、1点に高温箇所が発生するため、熱膨張や冷却時の収縮の応力が発生し、変形をおこして流体軸受モ−タ−に必要なシャフトとスラスト軸受との平面度、直角度等の精度を確保できないという問題点を有していた。
【0005】
本発明は、前記問題点を解決し、シャフトとスラスト軸受との平面度、直角度等の精度を確保しつつ、部材間を強固に締結させた動圧軸受け装置を提供できる。
【0006】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の動圧軸受け装置とその製造方法は、シャフトとスラスト軸受の当て面を傾くことなく密着させるための治具を使って、同時に複数点をレ−ザ−照射して、全周溶接する手段によりシャフトとスラスト軸受を固定したことを特徴とするものである。
【0007】
これによって、スラスト軸受全体の熱収縮の影響が小さくなることで変形が小さくなり、溶接後のスラスト軸受の精度が確保されるという作用を有する。
【0008】
【発明の実施の形態】
本発明の請求項1に記載の動圧軸受装置は、回転軸をなす端面外周縁部に段差部を設けたシャフトと、軸方向に動圧を発生させるために少なくとも一端面に動圧溝が形成され、前記動圧溝のある端面より凹んだ段差部の中央に前記シャフトの段差部と係合するための貫通孔が形成されている円盤状のスラスト軸受とを有し、前記スラスト軸受と前記シャフトとの接合部をレーザ溶接により固定した動圧軸受装置であって、前記スラスト軸受と前記シャフトとの係合はすきま嵌めにすると共に、前記接合部の円周等分割の複数点N(Nは2以上の整数)にレザ照射して、全周溶接して固定したことを特徴とするものである。
本発明の請求項2に記載の動圧軸受装置は、前記スラスト軸受と前記シャフトとの係合はすきま嵌めにすると共に、前記シャフトの凸部の高さと前記スラスト軸受の段差部の底部の高さを合わせることを特徴とするものである。
【0009】
次に、本発明の請求項に記載の動圧軸受装置の製造方法は、回転軸をなす端面外周縁部に段差部を設けたシャフトと、軸方向に動圧を発生させるために少なくとも一端面に動圧溝が形成され、前記動圧溝のある端面より凹んだ段差部の中央に前記シャフトの段差部と係合するための貫通孔が形成されている円盤状のスラスト軸受とを有し、前記スラスト軸受を前記シャフトに接合固定した動圧軸受装置の製造方法であって、前記スラスト軸受と前記シャフトとの接合固定は、前記スラスト軸受と前記シャフトとの係合はすきま嵌めにすると共に、所定圧力で押圧された状態にて、接合部の円周等分割の複数点N(Nは2以上の整数)に同時にレーザ溶接用のレ−ザを照射して、前記接合部を360/N度の角度以上回転させることで全周溶接することを特徴とするものである。
【0010】
本発明の請求項1、2の発明によると、1箇所の照射に比べ、同時に複数点を全周に対して均等な角度に照射したほうが、熱膨張、収縮に伴う引っ張りや圧縮、ねじれ等の応力のつりあいがとりやすく、ソリや傾き、偏芯、移動、変形等の熱膨張の影響を小さくすることができ、さらに溶接時間が短縮され生産性が向上するという利点が得られるものである。
【0011】
次に、本発明の請求項に記載の動圧軸受装置の製造方法は、請求項の方法を用いて、前記接合部を360/N度の角度回転させる間は一定のレーザ出力で溶接し、それ以降の回転では、徐々にレ−ザの出力を低下させて溶接を完了することを特徴とするものである。治具を回転して溶接し始め、溶接箇所が重なりはじめると入熱が過度に大きくなり、金属の溶け込みがばらつく。このため、重なり部分の仕上がり面が荒くなり強度も落ちる。本発明の方法である溶接箇所の重なり部分から溶接痕を小さくすることで、重なり部分をきれいに仕上げるとともに、重なり部分の入熱を抑えることでシャフトとスラスト軸受けの溶接強度を上げることができるものである。
【0012】
次に、本発明の請求項に記載の動圧軸受装置とその製造方法は、請求項あるいはに記載の方法を用いて、前記シャフトを軸方向に案内保持するためのガイド孔と、前記スラスト軸受を保持する保持面を有するホルダーと、前記スラスト軸受を前記ホルダーの保持面との間に挟み込み固定するための押さえ板と、前記スラスト軸受に前記シャフトの段差部を押しつけ固定するための前記ホルダーのガイド孔に挿入された押しピンと、前記押しピンを上下させる移動手段と、前記押しピンを前記シャフトに所定圧で押しつけるための圧力手段を有する治具を用い、前記スラスト軸受を前記ホルダーの保持面に前記押さえ板にて固定した後、前記移動手段にて前記押しピンを移動させて前記シャフトの段差部を前記スラスト軸受の貫通孔に係合するとともに、前記圧力手段にて所定圧で押し当て、しかる後に溶接固定したことを特徴とするものであり、この治具を用いて動圧軸受装置を製造する際、シャフトとスラスト軸受との平面度、直角度等を位置決めした状態で固定してスラスト軸受がシャフト受け面から浮き上がることを防ぎつつ、ゴミの進入も防いだ状態で溶接を行い、さらに溶接後、溶接部が冷えるまで押さえるため、熱変形の影響を小さくして所定の位置に強固に固定することにより高精度な動圧軸受装置を製造することができるものである。
【0013】
次に、本発明の請求項に記載の動圧軸受装置とその製造方法は、請求項に記載の方法を用いて、前記押しピンにおいて、シャフトの中央を押す形状を半球状にして、前記押しピンを用いて前記シャフトに押し当て、しかる後に溶接固定したことを特徴とするものである。
【0014】
次に、本発明の請求項に記載の動圧軸受装置とその製造方法は、請求項に記載の方法を用いて、シャフトの中央を押す手段が、前記押しピンの先に球を載せ、前記球を前記シャフトに押し当て、しかる後に溶接固定したことを特徴とするものである。
【0015】
本発明の請求項の発明によると、半球状の押しピン、もしくは球を用いることで、シャフトを面で押すのではなく中央の一点で押すことができ、シャフトに傾きを与えることなく、シャフト軸方向に押す力を加えることができ、シャフトとスラスト軸受との平面度、直角度等をより精度を上げて、固定することができる。
【0016】
(実施の形態1)
以下、本発明の請求項1〜3に記載の実施の形態1について図1〜図4を用いて説明する。図1は本発明の実施の形態に用いる磁気ディスク記録装置の断面図であり、図2は、本発明の実施の形態における動圧軸受け装置の平面図と断面図である。図2(a)は溶接前、図2(b)は溶接後を示す。
図1に示すように、シャフト1の端部に動圧溝が形成されたスラスト軸受け2を挿入し、内周面に動圧溝が形成されたスリ−ブ3にシャフト1を挿入し、スラストプレ−ト4をスリ−ブ3側に圧入固定する。その後、潤滑油をシャフト1とスリ−ブ3の隙間から注入し、軸受けユニットAが完成する。然る後に、軸受けユニットAから突出したシャフト1の端部を反対側から押圧しながらモ−タ−ハブ5に圧入固定する。
【0017】
また、図2に示すように回転軸をなす端面外周縁部に段差部1aを設けたシャフト1と、中央の貫通孔2aの周囲に段差部2bが形成されている円盤状のスラスト軸受2において、シャフト1の段差部1aを設けることにより形成された凸部1bの高さをスラスト軸受2の段差部2bの底部の高さに合わせる。貫通孔2aと凸部1bが接する部分である接合部16は0.02〜0.04程度のすきまを設けている。溶接前に圧入、かしめ等にて仮固定しておくことも可能であるが、本発明の実施の形態においては圧入時に内部応力を持たせないことと、圧入工程を省くためにすきまを設けている。
【0018】
この状態で貫通孔2aと凸部1bが接する接合部16を、表面側から照射点6の3箇所を同時に連続的にレ−ザ−照射して、円周上に120度以上回転した最終照射点7まで回転させて、レ−ザ−により連続的に全周溶接して固定する。
【0019】
今回は強度を上げるため、連続的に溶接を行ったが、同時に複数点、あるいは複数点を溶接してから治具を回転させ、さらに複数点を溶接してもよい。
本実施の形態においては、互いに接合する素材同士を溶融させて両者を接合するレ−ザ−溶接法を利用している。溶接部分の直径はφ2と小さいが、レ−ザ−照射径はφ0.2程にすることで強度を保ちつつ、小さな場所に3箇所の照射を行い全周溶接することができる。
なお、複数点のレ−ザ−照射において、分岐したレ−ザ−の各出力のバラツキを10%以内に抑えている。
【0020】
次にレ−ザ−照射の出力とワ−クの回転の関係について説明する。
図3は、本発明の実施の形態1におけるレ−ザ−出力とシャフトとスリ−ブ軸受けを固定している治具の回転の関係を示すグラフであり、レ−ザ−照射開始から治具を回転させたときのレ−ザ−出力の経過を示している。図4は、本発明の実施の形態1におけるレ−ザ−溶接の状態を示す平面図であり、図4の記号a、b、cは図3の記号a、b、cに対応している。
レ−ザ−照射開始aからシャフトとスラスト軸受が固定された治具を120度b回転するまで一定の出力にて溶接する。120度bを越えてから、溶接を終える130度c近辺まで出力を段階的に低下させている。
【0021】
(実施の形態2)
以下、本発明の請求項4〜6に記載の実施の形態2について図5、図6を用いて説明する。図5は、本発明の実施の形態2における治具の断面図である。図6は、図5の別の例を示す本発明の他の実施の形態2における治具の断面図である。なお、図6において、図5と同じ構成部品については、同じ符号を付して説明を略し、図5と異なる点について説明する。
【0022】
図5において、動圧軸受け装置の製造に用いる治具の構成は、シャフト1を軸方向に案内保持するためのガイド孔14と、スラスト軸受2を保持する保持面9aを有するホルダー9と、スラスト軸受2をホルダー9の保持面9aとの間に挟み込み固定するための押さえ板8と、スラスト軸受2にシャフト1の段差部1bを押しつけ固定するためのホルダー9のガイド孔13に挿入された押しピン10と、押しピン10を上下させる移動手段としてエアーシリンダー11と、押しピン10をシャフト1に所定圧で押しつけるための圧力手段としてエアーレギュレータ12を有しているものである。なお、シャフト1を押しつける押しピン10の先端形状は半球状にしてあり、シャフト1の中央の一点を押す。
【0023】
以上のように構成された治具について、以下その動作、作用を説明する。
【0024】
シャフト1を保持するホルダー9のガイド孔13にシャフト1を挿入し、押しピン10の半球状のピンの先に置く。次にシャフト端面外周縁部に設けた凸部1bがスラスト軸受2の貫通部2aに係合するようにスラスト軸受け2をシャフト段差部1aの当て面に載せ、押さえ8により、スラスト軸受2をホルダー9の保持面9aとの間に固定した後、エアーレギュレータ12にてスラスト軸受2にシャフトの段差部1aを押しつけ、押しピン10をエアーシリンダー11により0.1mmほど押し上げ固定する。これにより、スラスト軸受け2をシャフト段差部1aの当て面に傾くことなく密着させる。シャフト1とスラスト軸受2を治具に固定した後、治具を回転させ、同時に3点をレ−ザ−照射して、同心円上に120度以上回転させることで連続的に全周溶接する。
シャフト1をスラスト軸受け2に押し付ける力が大きすぎるとスラスト軸受け2を変形させてしまうため、スラスト軸受け2が変形しない300gほどの力を加える。押しピン10がシャフト1を押しつけ、シャフト1がスラスト軸受け2を押し付ける力はエアーレギュレータ12を用いて調整する。
【0025】
図6は、他の実施例として図5の半球状の押しピン10を、先が平らな形状の押しピン14に換え、押しピンの先に球15を載せたものであり、半球状の押しピン10と同様の働き、効果が得られる。
【0026】
【発明の効果】
以上のように、本発明の動圧軸受け装置とその製造方法によれば、スラスト軸受けとシャフトの当て面を傾くことなく密着させるための治具を用い、3点同時にレ−ザ−照射を連続して行うことで全周溶接を行ない、流体軸受けモータに必要な回転軸とスラスト軸受との平面度、直角度等の精度を高精度に固定することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に用いる磁気ディスク記録装置の断面図
【図2】本発明の実施の形態1における動圧軸受け装置の平面図と断面図
【図3】本発明の実施の形態1におけるレ−ザ−出力と治具回転の関係を示すグラフ
【図4】本発明の実施の形態1におけるレ−ザ−溶接の状態を示す平面図
【図5】本発明の実施の形態2における治具の断面図
【図6】本発明の他の実施の形態2における治具の断面図
【図7】従来の溶接後の動圧軸受け装置の平面図と断面図
【符号の説明】
1 シャフト
1a 段差部
1b 凸部
2 スラスト軸受け
2a 貫通孔
2b 段差部
3 スリーブ
4 スラストプレート
5 モータハブ
6 照射点
7 最終照射点
8 押さえ
9 ホルダー
9a 保持面
10 押しピン
11 エアーシリンダ
12 エアーレギュレータ
13 ガイド孔
14 押しピン
15 球
16 接合部
17 凹部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dynamic pressure bearing device used for a magnetic disk recording device or the like, and more particularly to a fixing method between members requiring high mounting accuracy.
[0002]
[Prior art]
In the conventional dynamic pressure bearing device, the shaft and the thrust bearing are press-fitted or inserted to such an extent that the squareness is not deteriorated, and then the joint boundary between the two is welded from the surface side. In this case, a relief portion that is recessed in the axial direction is formed in a ring shape on the surface portion of the joint boundary portion, and the shaft and the thrust bearing are welded in the relief portion. (For example, see Patent Document 1)
Hereinafter, a conventional dynamic pressure bearing device will be described with reference to FIG. FIG. 7 is a plan view and a sectional view of a conventional hydrodynamic bearing device after welding. As shown in FIG. 7, a recess 17 is formed between the shaft 1 and the thrust bearing 2, and a metal melted by melting energy such as a laser is poured into the recess 17, and the shaft 1 and The thrust bearing 2 is firmly tightened.
[0003]
[Patent Document 1]
JP 2000-324753 A (pages 5 to 6, FIG. 1)
[0004]
[Problems to be solved by the invention]
In the conventional welding technique described above, there is a method in which a metal is melted by a melting energy such as a laser in a recess between members to be welded to a shaft and a thrust bearing, and a plurality of spots are welded all around or on a concentric circle. However, when a laser is irradiated, a high-temperature spot is generated at one point. Therefore, thermal expansion and contraction stress during cooling occur, and the shaft is necessary for the hydrodynamic bearing motor. There was a problem that accuracy such as flatness and perpendicularity with the thrust bearing could not be secured.
[0005]
The present invention solves the above problems and can provide a dynamic pressure bearing device in which the members are firmly fastened while ensuring the flatness, squareness, etc. between the shaft and the thrust bearing.
[0006]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, the dynamic pressure bearing device and the manufacturing method thereof according to the present invention use a jig for bringing the contact surface of the shaft and the thrust bearing into close contact with each other without inclining them. The shaft and the thrust bearing are fixed by means of irradiating and welding all around.
[0007]
As a result, the influence of the thermal contraction of the entire thrust bearing is reduced, so that deformation is reduced and the accuracy of the thrust bearing after welding is ensured.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Dynamic pressure 受装 location according to claim 1 of the present invention includes a shaft having a step portion on the end face outer peripheral portion forming a rotational shaft, the dynamic pressure in at least one end face in order to generate a dynamic pressure in the axial direction A disc-shaped thrust bearing formed with a through hole for engaging with the stepped portion of the shaft at the center of the stepped portion formed with a groove and recessed from an end surface with the dynamic pressure groove. a dynamic pressure 受装 location fixed by laser welding the joint between the bearing and the shaft, the engagement between the said thrust bearing shaft as well as the clearance fit, the circumference equal division of the joint (the N 2 or more integer) multiple points N Le in - shines the irradiation, is characterized in that it has fixed by circumferential welding.
In the hydrodynamic bearing device according to claim 2 of the present invention, the thrust bearing and the shaft are engaged with a clearance fit, and the height of the convex portion of the shaft and the height of the bottom portion of the step portion of the thrust bearing. It is characterized by combining the same .
[0009]
Next, a manufacturing method of dynamic pressure 受装 location according to claim 3 of the present invention includes a shaft having a step portion on the end face outer peripheral edge portion forming an axis of rotation in order to generate a dynamic pressure in the axial direction A disk-shaped thrust bearing having a dynamic pressure groove formed at least on one end surface, and a through-hole for engaging with the stepped portion of the shaft at the center of the stepped portion recessed from the end surface having the dynamic pressure groove; has, the thrust bearing method of manufacturing a dynamic pressure 受装 location joined fixed to the shaft, fixedly joined between the thrust bearing and the shaft, the engagement between the shaft and the thrust bearing A laser welding laser is applied to a plurality of circumferentially equally divided points N (N is an integer of 2 or more) at the same time in a state where the clearance is pressed and pressed at a predetermined pressure. Weld all around by rotating the joint more than 360 / N degrees It is characterized in.
[0010]
According to the first and second aspects of the present invention, when multiple points are irradiated at an equal angle with respect to the entire circumference at the same time as compared with irradiation at one place, the tension, compression, torsion and the like associated with thermal expansion and contraction are reduced. It is easy to balance the stress, can reduce the influence of thermal expansion such as warping, tilting, eccentricity, movement, deformation, etc., and can obtain the advantages that the welding time is shortened and the productivity is improved.
[0011]
Next, a manufacturing method of dynamic pressure 受装 location according to claim 4 of the present invention, using the method of claim 3, while for angular rotation of the joint 360 / N degree constant laser output in welding, in the subsequent rotation, gradually - and it is characterized in that to complete the output by reducing welding tHE. When the jig is rotated to start welding and the welded parts start to overlap, the heat input becomes excessively large and the metal penetration varies. For this reason, the finished surface of the overlapping portion becomes rough and the strength also decreases. By reducing the welding trace from the overlapped portion of the welded portion which is the method of the present invention, the overlapped portion can be finished cleanly, and the weld strength of the shaft and the thrust bearing can be increased by suppressing the heat input of the overlapped portion. is there.
[0012]
Next, a manufacturing method and dynamic pressure 受装 location according to claim 5 of the present invention, using the method according to claim 3 or 4, the guide holes for guiding and holding the shaft in the axial direction A holder having a holding surface for holding the thrust bearing, a pressing plate for sandwiching and fixing the thrust bearing between the holding surface of the holder, and pressing and fixing the step portion of the shaft against the thrust bearing A thrust pin inserted into a guide hole of the holder, a moving means for moving the push pin up and down, and a jig having pressure means for pressing the push pin against the shaft with a predetermined pressure, After being fixed to the holding surface of the holder by the pressing plate, the push pin is moved by the moving means to engage the stepped portion of the shaft with the through hole of the thrust bearing. While, pressed at a predetermined pressure by the pressure means, and characterized in that it has welded Thereafter, when manufacturing the hydrodynamic 受装 location using the jig, the shaft and the thrust bearing Fix the flatness, squareness, etc. of the bearing in place and prevent the thrust bearing from lifting from the shaft receiving surface, and also prevent welding from entering, and hold down until the weld has cooled after welding. Therefore, those capable of producing a highly accurate dynamic pressure 受装 location by the effects of thermal deformation by reducing firmly fixed in place.
[0013]
Next, a manufacturing method and dynamic pressure 受装 location according to claim 6 of the present invention, using the method of claim 5, in the press pin, a shape to press the central shaft hemispherical The pressing pin is used to press against the shaft, and then fixed by welding.
[0014]
Next, a manufacturing method and dynamic pressure 受装 location according to claim 7 of the present invention, using the method according to claim 5, means for pressing the center of the shaft, ball ahead of the push pins And the ball is pressed against the shaft and then fixed by welding.
[0015]
According to the inventions of claims 6 and 7 , by using a hemispherical push pin or a sphere, the shaft can be pushed at one central point instead of being pushed by the surface, and the shaft is not inclined. A pressing force can be applied in the axial direction of the shaft, and the flatness and perpendicularity between the shaft and the thrust bearing can be fixed with higher accuracy.
[0016]
(Embodiment 1)
Hereinafter, Embodiment 1 according to claims 1 to 3 of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view of a magnetic disk recording device used in an embodiment of the present invention, and FIG. 2 is a plan view and a cross-sectional view of a dynamic pressure bearing device in an embodiment of the present invention. FIG. 2A shows before welding, and FIG. 2B shows after welding.
As shown in FIG. 1, a thrust bearing 2 having a dynamic pressure groove formed at the end of the shaft 1 is inserted, and the shaft 1 is inserted into a sleeve 3 having a dynamic pressure groove formed on the inner peripheral surface. The plate 4 is press-fitted and fixed to the sleeve 3 side. Thereafter, lubricating oil is injected from the gap between the shaft 1 and the sleeve 3 to complete the bearing unit A. Thereafter, the end of the shaft 1 protruding from the bearing unit A is pressed into the motor hub 5 while being pressed from the opposite side.
[0017]
Further, as shown in FIG. 2, in the shaft 1 provided with the stepped portion 1a at the outer peripheral edge of the end surface forming the rotation axis, and the disc-shaped thrust bearing 2 in which the stepped portion 2b is formed around the central through hole 2a. The height of the convex portion 1 b formed by providing the step portion 1 a of the shaft 1 is matched with the height of the bottom portion of the step portion 2 b of the thrust bearing 2. The joint portion 16, which is a portion where the through hole 2 a contacts the convex portion 1 b, has a clearance of about 0.02 to 0.04. Although it is possible to temporarily fix by press fitting, caulking, etc. before welding, in the embodiment of the present invention, a clearance is provided in order not to give internal stress at the time of press fitting and to eliminate the press fitting process. Yes.
[0018]
In this state, the joint 16 where the through-hole 2a and the projection 1b are in contact with each other is continuously laser-irradiated at the three locations of the irradiation point 6 from the surface side, and the final irradiation rotated 120 degrees or more on the circumference. Rotate to point 7 and fix continuously by laser welding all around.
[0019]
In order to increase the strength, welding was continuously performed this time. However, a plurality of points or a plurality of points may be welded at the same time, and then the jig may be rotated to further weld a plurality of points.
In the present embodiment, a laser welding method is used in which the materials to be joined together are melted and joined together. Although the diameter of the welded portion is as small as φ2, the laser irradiation diameter can be set to about 0.2, and the entire circumference can be welded by irradiating three places in a small place while maintaining the strength.
Note that, in laser irradiation at a plurality of points, variation in the output of the branched lasers is suppressed to within 10%.
[0020]
Next, the relationship between the laser irradiation output and the work rotation will be described.
FIG. 3 is a graph showing the relationship between the laser output and the rotation of the jig fixing the shaft and the sleeve bearing in the first embodiment of the present invention, from the start of laser irradiation. 2 shows the progress of the laser output when the motor is rotated. FIG. 4 is a plan view showing a state of laser welding in the first embodiment of the present invention. Symbols a, b, and c in FIG. 4 correspond to symbols a, b, and c in FIG. .
From the laser irradiation start a, the jig on which the shaft and the thrust bearing are fixed is welded at a constant output until it rotates 120 degrees b. After exceeding 120 degrees b, the output is gradually reduced to around 130 degrees c where welding is finished.
[0021]
(Embodiment 2)
Hereinafter, a second embodiment according to claims 4 to 6 of the present invention will be described with reference to FIGS. FIG. 5 is a cross-sectional view of a jig according to Embodiment 2 of the present invention. FIG. 6 is a cross-sectional view of a jig according to another embodiment 2 of the present invention showing another example of FIG. In FIG. 6, the same components as those in FIG. 5 are denoted by the same reference numerals, description thereof is omitted, and differences from FIG. 5 will be described.
[0022]
In FIG. 5, the structure of the jig used for manufacturing the hydrodynamic bearing device includes a guide hole 14 for guiding and holding the shaft 1 in the axial direction, a holder 9 having a holding surface 9a for holding the thrust bearing 2, and a thrust. A pressing plate 8 for sandwiching and fixing the bearing 2 between the holding surface 9a of the holder 9 and a press inserted into the guide hole 13 of the holder 9 for pressing and fixing the step portion 1b of the shaft 1 to the thrust bearing 2 It has a pin 10, an air cylinder 11 as a moving means for moving the push pin 10 up and down, and an air regulator 12 as a pressure means for pressing the push pin 10 against the shaft 1 with a predetermined pressure. The tip shape of the push pin 10 that presses the shaft 1 is hemispherical, and pushes one point at the center of the shaft 1.
[0023]
About the jig | tool comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
[0024]
The shaft 1 is inserted into the guide hole 13 of the holder 9 that holds the shaft 1 and placed on the tip of the hemispherical pin of the push pin 10. Next, the thrust bearing 2 is placed on the contact surface of the shaft step portion 1a so that the convex portion 1b provided on the outer peripheral edge portion of the shaft end surface engages with the penetrating portion 2a of the thrust bearing 2, and the thrust bearing 2 is held by the holder 8 by the presser 8. 9 is fixed to the holding surface 9a, and the air regulator 12 presses the stepped portion 1a of the shaft against the thrust bearing 2, and the push pin 10 is pushed up and fixed by the air cylinder 11 by about 0.1 mm. Thereby, the thrust bearing 2 is brought into close contact with the contact surface of the shaft step portion 1a without being inclined. After fixing the shaft 1 and the thrust bearing 2 to the jig, the jig is rotated, and at the same time, laser irradiation is performed at three points, and the entire circumference is welded by rotating it 120 degrees or more on a concentric circle.
If the force that presses the shaft 1 against the thrust bearing 2 is too large, the thrust bearing 2 is deformed. Therefore, a force of about 300 g that does not deform the thrust bearing 2 is applied. The force with which the push pin 10 presses the shaft 1 and the shaft 1 presses the thrust bearing 2 is adjusted using an air regulator 12.
[0025]
FIG. 6 shows another embodiment in which the hemispherical push pin 10 of FIG. 5 is replaced with a flat push pin 14 and a ball 15 is placed on the tip of the push pin. The same function and effect as the pin 10 can be obtained.
[0026]
【The invention's effect】
As described above, according to the hydrodynamic bearing device and the manufacturing method thereof of the present invention, the laser irradiation is continuously performed at three points simultaneously using the jig for bringing the thrust bearing and the contact surface of the shaft into close contact with each other without inclining. Thus, the entire circumference is welded, and the accuracy such as the flatness and perpendicularity between the rotating shaft and the thrust bearing necessary for the fluid bearing motor can be fixed with high accuracy.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a magnetic disk recording device used in Embodiment 1 of the present invention. FIG. 2 is a plan view and a cross-sectional view of a dynamic pressure bearing device in Embodiment 1 of the present invention. Fig. 4 is a graph showing the relationship between laser output and jig rotation in Embodiment 1 of the present invention. Fig. 4 is a plan view showing a state of laser welding in Embodiment 1 of the present invention. Sectional view of jig in embodiment 2 FIG. 6 is a sectional view of jig in another embodiment 2 of the present invention. FIG. 7 is a plan view and a sectional view of a conventional hydrodynamic bearing device after welding. ]
DESCRIPTION OF SYMBOLS 1 Shaft 1a Step part 1b Convex part 2 Thrust bearing 2a Through hole 2b Step part 3 Sleeve 4 Thrust plate 5 Motor hub 6 Irradiation point 7 Final irradiation point 8 Presser 9 Holder 9a Holding surface 10 Push pin 11 Air cylinder 12 Air regulator 13 Guide hole 14 Push pin 15 Ball 16 Joint 17 Recess

Claims (7)

回転軸をなす端面外周縁部に段差部を設けたシャフトと、軸方向に動圧を発生させるために少なくとも一端面に動圧溝が形成され、前記動圧溝のある端面より凹んだ段差部の中央に前記シャフトの段差部と係合するための貫通孔が形成されている円盤状のスラスト軸受とを有し、前記スラスト軸受と前記シャフトとの接合部をレーザ溶接により固定した動圧軸受装置であって、前記スラスト軸受と前記シャフトとの係合はすきま嵌めにすると共に、前記接合部の円周等分割の複数点N(Nは2以上の整数)にレ−ザ照射して、全周溶接して固定したことを特徴とする動圧軸受装置。A shaft provided with a step on the outer peripheral edge of the end surface forming the rotation axis, and a step formed with a dynamic pressure groove on at least one end surface for generating dynamic pressure in the axial direction and recessed from the end surface with the dynamic pressure groove A disc-shaped thrust bearing in which a through-hole for engaging with the stepped portion of the shaft is formed at the center of the shaft, and a hydrodynamic shaft in which a joint portion between the thrust bearing and the shaft is fixed by laser welding a 受装 location, the engagement between the thrust bearing and the shaft while the clearance fit, a plurality of points N of circumferentially equal division of the joint (N is an integer of 2 or more) les to - and the irradiation A hydrodynamic bearing device characterized by being welded and fixed all around. 前記スラスト軸受と前記シャフトとの係合はすきま嵌めにすると共に、前記シャフトの凸部の高さと前記スラスト軸受の段差部の底部の高さを合わせることを特徴とする請求項1に記載の動圧軸受装置。2. The motion according to claim 1, wherein the engagement between the thrust bearing and the shaft is a clearance fit, and the height of the convex portion of the shaft is matched with the height of the bottom portion of the step portion of the thrust bearing. Pressure bearing device. 回転軸をなす端面外周縁部に段差部を設けたシャフトと、軸方向に動圧を発生させるために少なくとも一端面に動圧溝が形成され、前記動圧溝のある端面より凹んだ段差部の中央に前記シャフトの段差部と係合するための貫通孔が形成されている円盤状のスラスト軸受を有し、前記スラスト軸受を前記シャフトに接合固定した動圧軸受装の製造方法であって、前記スラスト軸受と前記シャフトとの接合固定は、前記スラスト軸受と前記シャフトとの係合はすきま嵌めにすると共に、所定圧力で押圧された状態にて、接合部の円周等分割の複数点N(Nは2以上の整数)に同時にレーザ溶接用のレ−ザを照射して、前記接合部を360/N度の角度以上回転させることで全周溶接することを特徴とする動圧軸受装置の製造方法。A shaft provided with a step on the outer peripheral edge of the end surface forming the rotation axis, and a step formed with a dynamic pressure groove on at least one end surface for generating dynamic pressure in the axial direction and recessed from the end surface with the dynamic pressure groove in the has a disk-shaped thrust bearing through hole for engagement with the stepped portion of the shaft is formed in the center, a manufacturing method of the dynamic pressure 受装 location joined secure the thrust bearing in the shaft The thrust bearing and the shaft are joined and fixed with a clearance fit between the thrust bearing and the shaft, and the circumference of the joint is equally divided while being pressed with a predetermined pressure. plurality of points N (N is an integer of 2 or more) at the same time record for laser welding - by irradiating tHE, characterized by circumferential welding by rotating the joint 360 / N degrees of angle or more dynamic method of manufacturing the pressure bearing 受装 location. 前記接合部を360/N度の角度回転させる間は一定のレーザ出力で溶接し、それ以降の回転では、徐々にレ−ザの出力を低下させて溶接を完了することを特徴とする請求項3に記載の動圧軸受装置の製造方法。The welding is completed at a constant laser output while the joint is rotated at an angle of 360 / N degrees, and the laser output is gradually reduced to complete the welding after that rotation. dynamic pressure 受装 location method according to 3. 前記シャフトを軸方向に案内保持するためのガイド孔と、前記スラスト軸受を保持する保持面を有するホルダーと、前記スラスト軸受を前記ホルダーの保持面との間に挟み込み固定するための押さえ板と、前記スラスト軸受に前記シャフトの段差部を押しつけ固定するための前記ホルダーのガイド孔に挿入された押しピンと、前記押しピンを上下させる移動手段と、前記押しピンを前記シャフトに所定圧で押しつけるための圧力手段を有する治具を用い、前記スラスト軸受を前記ホルダーの保持面に前記押さえ板にて固定した後、前記移動手段にて前記押しピンを移動させて前記シャフトの段差部を前記スラスト軸受の貫通孔に係合するとともに、前記圧力手段にて所定圧で押し当て、しかる後に溶接固定したことを特徴とする請求項3または4のいずれか1項に記載の動圧軸受装置の製造方法。A guide hole for guiding and holding the shaft in the axial direction; a holder having a holding surface for holding the thrust bearing; and a pressing plate for sandwiching and fixing the thrust bearing between the holding surface of the holder; A push pin inserted into a guide hole of the holder for pressing and fixing the step portion of the shaft against the thrust bearing, a moving means for moving the push pin up and down, and a force for pressing the push pin against the shaft with a predetermined pressure Using a jig having pressure means, the thrust bearing is fixed to the holding surface of the holder by the pressing plate, and then the push pin is moved by the moving means so that the stepped portion of the shaft is moved to the thrust bearing. together to engage the through holes, pressed at a predetermined pressure by the pressure means, according to claim 3 also characterized by being welded thereafter Dynamic pressure 受装 location method according to any one of 4. 前記押しピンにおいて、シャフトの中央を押す形状を半球状にして、前記押しピンを用いて前記シャフトに押し当て、しかる後に溶接固定したことを特徴とする請求項に記載の動圧軸受装置の製造方法。In the press pin, a shape to press the center of the shaft and hemispherically, pressed against the shaft with the push pin, dynamic pressure 受装 of claim 5, characterized in that the welded thereafter Manufacturing method. シャフトの中央を押す手段が、前記押しピンの先に球を載せ、前記球を前記シャフトに押し当て、しかる後に溶接固定したことを特徴とする請求項に記載の動圧軸受装置の製造方法。Means for pressing the center of the shaft, placing the ball ahead of the push pin, pressing the ball to the shaft, the dynamic pressure 受装 location according to claim 5, characterized in that the welded thereafter Production method.
JP2002352387A 2002-12-04 2002-12-04 Dynamic pressure bearing device and manufacturing method thereof Expired - Lifetime JP4265207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352387A JP4265207B2 (en) 2002-12-04 2002-12-04 Dynamic pressure bearing device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352387A JP4265207B2 (en) 2002-12-04 2002-12-04 Dynamic pressure bearing device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004183809A JP2004183809A (en) 2004-07-02
JP4265207B2 true JP4265207B2 (en) 2009-05-20

Family

ID=32754020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352387A Expired - Lifetime JP4265207B2 (en) 2002-12-04 2002-12-04 Dynamic pressure bearing device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4265207B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800047B2 (en) * 2006-01-31 2011-10-26 パナソニック株式会社 Hydrodynamic bearing device and manufacturing method thereof, spindle motor and recording / reproducing device
KR101077427B1 (en) 2009-01-28 2011-10-26 삼성전기주식회사 Spindle motor
JP5967889B2 (en) * 2011-09-30 2016-08-10 セイコーインスツル株式会社 Method and apparatus for manufacturing rolling bearing device

Also Published As

Publication number Publication date
JP2004183809A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
US7341379B2 (en) Pivot assembly for hard disk drive use
JP2618781B2 (en) Rim-disk friction welding method for disk wheel and its apparatus
JP4756544B2 (en) Double row bearing and manufacturing method of double row bearing
KR20010021213A (en) Method for coupling shaft and hub in disk apparatus, and the coupled body thereby
US7072148B2 (en) Apparatus for the sealing of a pivot assembly used in a hard disk drive
JP4265207B2 (en) Dynamic pressure bearing device and manufacturing method thereof
JP5967889B2 (en) Method and apparatus for manufacturing rolling bearing device
JP5234505B2 (en) Method and apparatus for joining metal members
US20040111890A1 (en) Method of manufacture and apparatus for a pivot assembly
US20040213489A1 (en) Hydrodynamic bearing, method of manufacturing the same, method of manufacturing shaft member for hydrodynamic bearing, spindle motor, and recording disk driving apparatus
JP2004340368A5 (en)
JPH028838B2 (en)
JP5606116B2 (en) Rolling bearing device and pivot device
JP5570308B2 (en) Method for manufacturing rolling bearing device
JP2571996B2 (en) Rim-disk friction welding method for disk wheel and its apparatus
JPH0399788A (en) Gear and its manufacture
JP4132749B2 (en) Manufacturing method of shaft portion of hydrodynamic bearing motor
KR101965734B1 (en) METHOD FOR PRODUCING METAL MEMBER
JPH07238943A (en) Connection method for shaft and bearing of small-sized motor
US5431325A (en) Method and apparatus for producing hermetic torque converter seam
JP4800047B2 (en) Hydrodynamic bearing device and manufacturing method thereof, spindle motor and recording / reproducing device
US20080078084A1 (en) Hydrodynamic bearing assembly and method of manufacturing the same
JP2003094190A (en) Method for jointing rotary member
JP3899923B2 (en) Hydrodynamic bearing device
JPH10213134A (en) Semispherical bearing device to prevent deformation of semisphere

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R151 Written notification of patent or utility model registration

Ref document number: 4265207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term