JP2004183580A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2004183580A
JP2004183580A JP2002352951A JP2002352951A JP2004183580A JP 2004183580 A JP2004183580 A JP 2004183580A JP 2002352951 A JP2002352951 A JP 2002352951A JP 2002352951 A JP2002352951 A JP 2002352951A JP 2004183580 A JP2004183580 A JP 2004183580A
Authority
JP
Japan
Prior art keywords
exhaust flow
internal combustion
combustion engine
exhaust
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002352951A
Other languages
Japanese (ja)
Inventor
Yasuki Tamura
保樹 田村
Masashi Igarashi
正志 五十嵐
Toshihiro Takeuchi
敏広 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2002352951A priority Critical patent/JP2004183580A/en
Priority to US10/726,559 priority patent/US20040187478A1/en
Priority to DE10356667A priority patent/DE10356667A1/en
Publication of JP2004183580A publication Critical patent/JP2004183580A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/14Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of securing combustion stability in low-speed high-load operation and efficiently realizing a decrease in the discharge of toxic substance and the early activity of a catalyst. <P>SOLUTION: This exhaust emission control device for the internal combustion engine is provided with an exhaust flow control means for suppressing exhaust flow within an exhaust system at the start of the internal combustion engine; a starting acceleration initial state detecting means for detecting a vehicle to be within a prescribed period after starting acceleration based on the operating state of the internal combustion engine (S14); and exhaust flow control limiting means for suspending or reducing suppression of exhaust flow by the exhaust flow control means (S16, S18, S30) while the vehicle is detected to be within the prescribed period after starting acceleration by the starting acceleration initial state detecting means. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に係り、詳しくは、内燃機関の始動時において燃焼安定性を確保しながら効率的に有害物質の排出量の低減及び触媒早期活性を実現する技術に関する。
【0002】
【関連する背景技術】
排気系(燃焼室から排気管まで)内の排気流動を抑制(排気圧上昇、排気密度上昇、排気滞留時間延長、筒内への逆流等)することにより、排気系内において未燃物(HC、CO等)と酸素との反応が促進され、冷態始動時における有害物質の排出量の低減及び触媒早期活性を実現可能であることが知られている。
【0003】
しかしながら、このように排気流動を抑制(排気圧上昇)するようにすると、内部EGRが増大し、燃焼が悪化を引き起こす場合がある。
特に、低速高負荷運転状態となる発進加速時には、低速運転であるが故に筒内の燃焼ガス流動が弱いこと、通常は高負荷時においてノック回避等の理由から点火時期をリタード(遅角)させていること、さらに冷態時にあっては排ガス対策を目的としてやはり点火時期をリタードさせていることから、上記内部EGRの増加による燃焼の悪化が顕著となり、燃焼安定性を確保し難いという問題が生じる。このように燃焼安定性を確保できなくなると、発進直後にエンジンストールを引き起こすおそれもあり好ましいことではない。
【0004】
また、排気流動を抑制しながらのアイドル運転時には、スロットル弁の開度が小さいために吸気マニホールド内の負圧が大きく、吸気マニホールド内圧と排気圧との差圧が大きいことから燃焼ガスが吸気系に戻されて特に内部EGRが増大し易く、当該アイドル運転後に発進加速が行われると、アイドル運転時に吸気系内に残った残留EGRガスのために結果的に内部EGRが増大してしまうという問題もある。
【0005】
このようなことから、排気圧上昇時に吸排気バルブのバルブオーバラップ量を減少させて内部EGRを抑制する技術が開発されている(例えば、特許文献1参照)。
また、高負荷運転状態で排気抵抗を減少させる技術が開発されている(例えば、特許文献2参照)。
【0006】
【特許文献1】
特開平8−158897号公報(段落0032等)
【特許文献2】
特開平3−117611号(特許第2817852号)公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載の技術では、バルブオーバラップ量を減少させるために可変バルブタイミング機構を設けることが必要であり、コストの増大を伴い好ましいものではない。
また、上記特許文献2に記載の技術は、負荷運転状態にのみ着目したものであって燃焼安定性を考慮したものではなく、それ故、当該技術では、高負荷運転状態を検出すると一律に排気抵抗を減少させ、その後に燃焼安定性が確保されるとしても当該排気抵抗の減少状態を維持するようにしている。従って、このような構成では、始動時における有害物質の排出量の低減及び触媒早期活性を十分に実現させることができず、やはり好ましいものではない。
【0008】
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、低速高負荷運転時における燃焼安定性を確保し、効率的に有害物質の排出量の低減及び触媒早期活性を実現可能な内燃機関の排気浄化装置を提供することにある。
【0009】
【課題を解決するための手段】
上記した目的を達成するために、請求項1の発明では、車両に搭載された内燃機関の排気系に設けられ、内燃機関の始動時に前記排気系内の排気流動を抑制する排気流動制御手段と、内燃機関の運転状態に基づき、車両が発進加速後所定期間内であることを検出する発進加速初期状態検出手段と、前記発進加速初期状態検出手段により車両が発進加速後所定期間内であることが検出されている間、前記排気流動制御手段による排気流動の抑制を中止或いは減少する排気流動制御制限手段とを備えることを特徴としている。
【0010】
即ち、内燃機関の始動時、排気流動制御手段により排気流動の抑制が行われているとき、発進加速初期状態検出手段により車両が発進加速後所定期間内であることが検出されると、排気流動制御制限手段により発進加速後所定期間内である間に亘って排気流動の抑制が中止或いは減少され、その後発進加速後所定期間を外れたときには、排気流動の抑制が再開される。
【0011】
従って、内燃機関の始動時、車両が発進加速初期状態、即ち低速高負荷運転状態にある間は排気流動の抑制が中止或いは減少されるため、発進加速時、即ち低速高負荷運転時において内部EGRの増大による燃焼悪化が防止されて燃焼安定性が確保される。その後、発進加速後所定期間を外れ、排気流動の抑制を実施しても燃焼安定性が確保されるような状況下になると、排気流動の抑制が再開され、排気流動の抑制を中止或いは減少する期間が最小限に抑えられて有害物質の排出量の低減及び触媒早期活性が良好に継続される。
【0012】
また、請求項2の発明では、さらに、内燃機関の負荷を検出する負荷検出手段と、内燃機関の機関回転速度を検出する機関回転速度検出手段とを備え、前記発進加速初期状態検出手段は、前記負荷検出手段により負荷が所定負荷以上であることを検出し且つ前記機関回転速度検出手段により機関回転速度が所定回転速度以下であることを検出することで車両が発進加速後所定期間内であることを検出することを特徴としている。
【0013】
従って、負荷検出手段により負荷が所定負荷以上であることが検出され且つ機関回転速度検出手段により機関回転速度が所定回転速度以下であることが検出されると、これら負荷及び機関回転速度の検出値から車両が発進加速後所定期間内であることが容易に検出される。
また、請求項3の発明では、さらに、内燃機関の負荷を検出する負荷検出手段と、車速を検出する車速検出手段とを備え、前記発進加速初期状態検出手段は、前記負荷検出手段により負荷が所定負荷以上であることを検出し且つ前記車速検出手段により車速が所定車速以下であることを検出することで車両が発進加速後所定期間内であることを検出することを特徴としている。
【0014】
従って、負荷検出手段により負荷が所定負荷以上であることが検出され且つ車速検出手段により車速が所定車速以下であることが検出されると、これら負荷及び車速の検出値から車両が発進加速後所定期間内であることが容易に検出される。
また、請求項4の発明では、車両に搭載された内燃機関の排気系に設けられ、内燃機関の始動時に前記排気系内の排気流動を抑制する排気流動制御手段と、前記排気流動制御手段により排気流動が抑制され且つ内燃機関のアイドル運転が所定期間継続したことを検出するアイドル期間検出手段と、前記アイドル期間検出手段により排気流動が抑制され且つアイドル運転期間が所定期間継続したことが検出されると、前記排気流動制御手段による排気流動の抑制を中止或いは減少する排気流動制御制限手段とを備えることを特徴としている。
【0015】
即ち、内燃機関の始動時、排気流動制御手段により排気流動の抑制が行われ且つアイドル運転が実施されているときに、アイドル運転期間が所定期間継続したことが検出されると、その後は排気流動の抑制が中止或いは減少される。
従って、排気流動を抑制しながらのアイドル運転時には、上述したように、スロットル弁の開度が小さく吸気マニホールド内の負圧が大きく、吸気マニホールド内圧と排気圧との差圧が大きいことから燃焼ガスが吸気系に戻されて特に内部EGRが増大し易く、当該アイドル運転後に発進加速が行われると、アイドル運転時に吸気系内に残った残留EGRガスのために結果的に内部EGRが増大してしまうことになるのであるが、排気流動の抑制が中止或いは減少されることにより、発進加速時、即ち低速高負荷運転時において燃焼悪化が防止されて燃焼安定性が確保される。
【0016】
なお、一旦発進加速が所定期間(発進加速後所定期間)行われた後は、再びアイドル運転が実施されてアイドル運転期間が所定期間継続するまでの間、排気流動制御手段により排気流動の抑制を実施するようにすることが好ましい。これにより、排気流動の抑制を中止或いは減少する期間が最小限に抑えられて有害物質の排出量の低減及び触媒早期活性が良好に実現される。
【0017】
また、請求項5の発明では、さらに、内燃機関が冷機状態にあることを検出する冷態検出手段を備え、前記排気流動制御制限手段は、前記冷態検出手段により極低温の所定の冷機状態が検出されているときにのみ排気流動の抑制を中止或いは減少することを特徴としている。
即ち、発進加速初期状態検出手段やアイドル期間検出手段からの情報に基づき、冷態検出手段により極低温の所定の冷機状態、即ち燃焼悪化を引き起こし易い環境が検出されているときにおいてのみ排気流動の抑制が中止或いは減少される。これにより、適切に燃焼悪化が防止されて燃焼安定性が確保されるとともに、排気流動の抑制を中止或いは減少する期間が必要最小限に抑えられる。
【0018】
また、請求項6の発明では、さらに、内燃機関の点火時期を制御する点火時期制御手段を備え、前記排気流動制御制限手段は、前記排気流動制御手段による排気流動の抑制を中止或いは減少するとともに、前記点火時期制御手段により点火時期を進角させることを特徴としている。
即ち、通常は内燃機関の低速高負荷運転時にはノック回避等の理由から点火時期をリタード(遅角)させており、また、内燃機関の冷態時にあっては排ガス対策を目的としてやはり点火時期をリタードさせているのであるが、上述したように点火時期のリタードは燃焼の悪化を助長することから、点火時期をリタードさせている場合には、排気流動の抑制を中止或いは減少することに併せて点火時期を進角させる。これにより、排気流動制御制限手段の応答遅れをも補いながら、より一層燃焼悪化が防止されて燃焼安定性が確保される。
【0019】
また、請求項7の発明では、さらに、内燃機関の空燃比を制御する空燃比制御手段を備え、前記排気流動制御制限手段は、前記排気流動制御手段による排気流動の抑制を中止或いは減少するとともに、前記空燃比制御手段により空燃比をリッチ空燃比となるよう制御することを特徴としている。
従って、排気流動制御制限手段により排気流動の抑制を中止或いは減少する際に併せて空燃比をリッチ空燃比とすることにより、排気流動制御制限手段の応答遅れが良好に補われ、より一層燃焼悪化が防止されて燃焼安定性が確保される。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づいて説明する。
図1を参照すると、車両に搭載された本発明に係る内燃機関の排気浄化装置の概略構成図が示されており、以下、当該排気浄化装置の構成を説明する。
同図に示すように、内燃機関であるエンジン本体(以下、単にエンジンという)1としては、吸気管噴射型(Multi Port Injection:MPI)ガソリンエンジンが採用される。
【0021】
エンジン1のシリンダヘッド2には、各気筒毎に点火プラグ4が取り付けられており、点火プラグ4には高電圧を出力する点火コイル8が接続されている。
シリンダヘッド2には、各気筒毎に吸気ポート9が形成されており、各吸気ポート9の燃焼室5側には、エンジン回転に応じて回転するカムシャフト12のカムに倣って開閉作動し、各吸気ポート9と燃焼室5との連通と遮断とを行う吸気弁11がそれぞれ設けられている。そして、各吸気ポート9には吸気マニホールド10の一端がそれぞれ接続されている。吸気マニホールド10には、電磁式の燃料噴射弁6が取り付けられており、燃料噴射弁6には、燃料パイプ7を介して燃料タンクを擁した燃料供給装置(図示せず)が接続されている。
【0022】
吸気マニホールド10の燃料噴射弁6よりも上流側には、吸入空気量を調節する電磁式のスロットル弁17が設けられており、併せてスロットル弁17の弁開度を検出するスロットルポジションセンサ(TPS)18が設けられている。
また、シリンダヘッド2には、各気筒毎に略水平方向に排気ポート13が形成されており、各排気ポート13の燃焼室5側には、エンジン回転に応じて回転するカムシャフト16のカムに倣って開閉作動し、各排気ポート13と燃焼室5との連通と遮断とを行う排気弁15がそれぞれ設けられている。そして、各排気ポート13には排気マニホールド14の一端がそれぞれ接続されている。
【0023】
なお、当該MPIエンジンは公知のものであるため、その構成の詳細については説明を省略する。
排気マニホールド14の他端には排気管20が接続されており、当該排気管20には、排気浄化触媒装置として三元触媒コンバータ30が介装されている。また、排気管20の三元触媒コンバータ30よりも上流側には、Oセンサ22が配設されている。
【0024】
さらに、排気管20の三元触媒コンバータ30よりも下流側には、排気流動制御装置(排気流動制御手段)40が介装されている。
排気流動制御装置40は、主として排ガス中の有害物質(HC、CO等の未燃物の他、NOx、スモーク、H等を含む)の低減を促進させることを目的とする装置であり、排気圧、排気密度及び排気流速の少なくともいずれか一つを変更することが可能に構成されている。具体的には、排気流動制御装置40は排気管20の流路面積を調節可能な密閉型開閉弁42によって構成されている。
【0025】
密閉型開閉弁42としては種々の方式が考えられるが、ここでは、例えばバタフライ弁が採用される。バタフライ弁にはアクチュエータ44が設けられており、バタフライ弁は当該アクチュエータ44によって開閉作動する。
ECU50は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えており、当該ECU50により、エンジン1を含めた排気浄化装置の総合的な制御が行われる。
【0026】
ECU50の入力側には、上述したTPS18、Oセンサ22の他、エンジン1のクランク角を検出するクランク角センサ52、エンジン1の冷却水温度Twを検出する水温センサ(冷態検出手段)54、アクセルペダル55の操作量、即ちアクセル開度を検出するアクセルポジションセンサ(APS)(負荷検出手段)56、車速Vを検出する車速センサ(車速検出手段)58、アイドル運転状態を検出するアイドルSW59等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力される。なお、クランク角センサ52からのクランク角情報に基づいてエンジン回転速度Neが検出される(機関回転速度検出手段)。
【0027】
一方、ECU50の出力側には、上述の燃料噴射弁6、点火コイル8、スロットル弁17、アクチュエータ44等の各種出力デバイスが接続されており、これら各種出力デバイスには各種センサ類からの検出情報に基づき演算された燃料噴射量、燃料噴射時期、点火時期、排気流動制御量等がそれぞれ出力され、これにより、空燃比が適正な目標空燃比に制御されて燃料噴射弁6から適正量の燃料が適正なタイミングで噴射され(空燃比制御手段)、点火プラグ4により適正なタイミングで火花点火が実施され(点火時期制御手段)、所望の排気流動制御量(例えば、目標排気圧)となるよう適正なタイミングで開閉弁42が開閉操作される。
【0028】
詳しくは、本発明に係る排気浄化装置では、エンジン1が冷態状態にあるときには、三元触媒コンバータ30を早期に活性化させるべく排気流動制御を行い、開閉弁42を閉弁操作して排気流動を抑制するようにしている。
これにより、排気系内の排気圧或いは排気密度が上昇して排気系内のHC、CO等の未燃物と酸素或いはNOxとの関わりが強化されて反応が促進され、有害物質の排出が良好に防止されるとともに排気温度が上昇して三元触媒コンバータ30が早期に活性化される。
【0029】
しかしながら、エンジン1の始動直後(クランキング開始直後)から排気流動を抑制するようにした場合、その後直ぐに発進加速が行われてエンジン1が低速高負荷運転状態になると、上述したように低速運転では筒内の燃焼ガス流動が弱いため、内部EGRが増大して燃焼悪化を招き、燃焼安定性を確保できずに十分な加速性能を発揮できない可能性がある。
【0030】
そこで、本発明の排気浄化装置では、エンジン1の始動直後に低速高負荷運転状態となるようなときには、排気流動の抑制を制限するようにしており、以下、上記のように構成された排気浄化装置の本発明に係る作用について説明する。
先ず第1実施例について説明する。
図2を参照すると、本発明の第1実施例に係る始動時制御の制御ルーチンがフローチャートで示されており、以下当該フローチャートに基づき説明する。
【0031】
ステップS10では、排気流動制御の作動条件が成立したか否かを判別する。
具体的には、冷態始動時であるか否か、即ちエンジン1の冷却水温度Twが所定温度範囲内(例えば、50℃>Tw>−10℃)であり、且つ、エンジン1の始動後所定時間範囲内(例えば、始動後10秒〜100秒)であるか否かを判別する。判別結果が偽(No)で上記条件を満たさないと判定された場合には、ステップS30に進み、排気流動制御、即ち排気流動の抑制を実施することなく当該ルーチンを抜ける。一方、判別結果が真(Yes)で上記条件が成立したと判定された場合には、次にステップS12に進む。
【0032】
ステップS12では、エンジン1の冷却水温度Twが所定温度T0よりも低い(Tw<T0)か否かを判別する。ここに、所定温度T0は、対象とするエンジンに応じて異なるが、例えば0℃である。つまり、当該ステップS12では、エンジン1が極低温の冷機状態にあるか否かを判別する。判別結果が真(Yes)で冷却水温度Twが所定温度T0よりも低い極低温であると判定された場合には、ステップS14に進む。
【0033】
ステップS14では、車両運転者の意思に基づき発進加速が行われた場合において、当該発進加速からの経過期間が所定期間内であるか否かを判別する(発進加速初期状態検出手段)。所定期間は、加速状態が継続されて低速高負荷運転状態を脱すると予測されるまでの発進加速初期に相当する時間に設定され、対象とするエンジンに応じて異なるが、ここでは例えば3secに設定される。
【0034】
また、発進加速からの経過期間が上記所定時間内であるか否かに代えて或いは加えて、低速高負荷運転状態を脱するまでの期間であるか否かについて判別するようにしてもよい。この場合、アイドルSW59がOFFの下、アクセルペダル55が踏込み操作されてAPS56の出力値が所定値以上であり、且つ、エンジン回転速度Neが所定回転速度以下であるか否かで判別する。或いは、アイドルSW59がOFFの下、アクセルペダル55が踏込み操作されてAPS56の出力値が所定値以上であり、且つ、車速Vが所定車速以下であるか否かで判別してもよい。なお、エンジン負荷の検出に関していえば、APS56の出力判別に代えて、アイドルSW59がOFFの下、体積効率が所定値以上であるか否か、或いは、正味平均有効圧が所定値以上であるか否か、或いは、単にアイドルSW59がOFFであるか否かで判別することもできる。
【0035】
これにより、発進加速からの経過期間が所定期間内であるか否かが容易に判別される。
発進加速が行われておらず或いは発進加速から所定期間経過後で、ステップS14の判別結果が偽(No)の場合には、ステップS20に進み、排気流動制御を作動させて排気流動の抑制を実施する。
【0036】
つまり、発進加速が行われていない場合或いは発進加速から所定期間経過後の場合には燃焼安定性は問題ではなく、この場合には排気流動の抑制を実施し、有害物質の排出の防止及び排気昇温による三元触媒コンバータ30の早期活性を実施する。これにより、排気中の有害物質の排出が良好に防止されるとともに排気温度が上昇して三元触媒コンバータ30の早期活性化が図られる。
【0037】
一方、ステップS14の判別結果が真(Yes)で、発進加速からの経過期間が所定期間内であると判定された場合には、ステップS16及びステップS18を経てステップS30に進み、排気流動制御の作動を解除して排気流動の抑制を中止する(排気流動制御制限手段)。つまり、発進加速からの経過期間が所定期間内であって低速高負荷運転状態である場合には、上述したように内部EGRが増大して燃焼悪化を招くおそれがあるため、低速高負荷運転状態である間に亘り排気流動の抑制を中止する。これにより、燃焼安定性が確保され、十分な加速性能を発揮することができる。
【0038】
ところで、通常エンジン1の低速高負荷運転時にはノック回避等の理由から点火時期を基準時期よりもリタード(遅角)させており、また、エンジン1の冷態時にあっては排ガス対策を目的としてやはり点火時期をリタードさせている。しかしながら、上述したように点火時期のリタードは燃焼の悪化を助長するため、このように点火時期をリタードさせている場合には、排気流動の抑制を中止することに併せ、ステップS16において点火時期を進角させる。これにより、より一層燃焼悪化が防止されて燃焼安定性が確保される。
【0039】
また、ECU50から排気流動制御の解除指令を出力しても、実際には開閉弁42には応答遅れがあり、排気流動の抑制は直ぐには中止されない。そこで、排気流動制御制限手段により排気流動の抑制を中止する際には、併せてエンジン1の空燃比をリッチ空燃比とする。これにより、排気流動制御の応答遅れが良好に補われ、上記点火時期を進角させる場合と同様、より一層燃焼悪化が防止されて燃焼安定性が確保される。なお、排気流動制御の応答遅れを補うことができれば目的は達成されるため、リッチ空燃比とした後、空燃比を徐々に理論空燃比或いはリーン空燃比に戻すようにしてもよい。これにより、燃費の悪化が防止される。
【0040】
なお、点火時期をリタードさせている場合にあっては、上記のように点火時期を進角させることでも排気流動制御の応答遅れを補うことが可能である。
その後、発進加速からの経過期間が所定期間を越え、ステップS14の判別結果が偽(No)となった場合には、ステップS20に進み、中止していた排気流動制御を再開して排気流動の抑制を実施する。また、進角していた点火時期を元に戻すとともに、空燃比を理論空燃比或いはリーン空燃比に戻すようにする。
【0041】
つまり、発進加速からの経過期間が所定期間を越えて低速高負荷運転状態を脱しているような中高速速域では、排気流動の抑制が燃焼悪化を招くことは殆どなく、加速性能に与える影響は殆どないと考えられ、排気流動の抑制を再開し、やはり有害物質の排出の防止及び排気昇温による三元触媒コンバータ30の早期活性を実施する。これにより、排気流動の抑制を中止している期間が最小限に抑えられ、効率的に有害物質の排出量の低減及び三元触媒コンバータ30の早期活性が実現される。
【0042】
また、冷却水温度Twが所定温度T0(例えば、0℃)以上となった場合、即ちエンジン1が未だ冷機状態にありながら極低温ではないような状況になり、ステップS12の判別結果が偽(No)となった場合には、やはりステップS20に進み、上記同様、中止していた排気流動制御を再開して排気流動の抑制を実施する。
【0043】
つまり、エンジン1が極低温ではなければ、発進加速が行われても燃焼悪化もなく加速性能が損なわれることは殆どないと考えられ、この場合には、エンジン1が未だ冷機状態にあっても、排気流動の抑制を再開する。このようにすれば、排気流動の抑制を中止する期間を必要最小限に抑えることができ、より一層効率的に有害物質の排出量の低減及び三元触媒コンバータ30の早期活性が実現される。
【0044】
次に第2実施例について説明する。
図3を参照すると、本発明の第2実施例に係る始動時制御の制御ルーチンがフローチャートで示されており、以下当該フローチャートに基づき説明する。なお、図3において上記図2と同一ステップについては同一符号を付して説明を省略し、ここでは上記第1実施例と異なる部分についてのみ説明する。
【0045】
ステップS10を経て、ステップS12の判別結果が真(Yes)で冷却水温度Twが所定温度T0よりも低い極低温であると判定され、ステップS14の判別結果が真(Yes)で発進加速からの経過期間内と判定された場合には、ステップS19に進む。
ステップS19では、排気流動制御の実施中にアイドル運転が所定期間(対象とするエンジンに応じて異なるが、例えば、1sec)継続したか否かを判別する(アイドル期間検出手段)。判別結果が偽(No)でアイドル運転が所定期間継続していないと判定された場合には、ステップS20に進み、排気流動制御を作動させて排気流動の抑制を実施する。一方、判別結果が真(Yes)でアイドル運転が所定期間以上継続したと判定された場合には、ステップS16、S18、S30に進み、排気流動制御の作動を解除して排気流動の抑制を中止する。
【0046】
即ち、排気流動を抑制しながらのアイドル運転時には、上述したように、スロットル弁17の開度が小さく吸気マニホールド10内の負圧が大きく、吸気マニホールド内圧と排気圧との差圧が大きいことから燃焼ガスが吸気系に戻されて特に内部EGRが増大し易く、当該アイドル運転後に発進加速が行われると、アイドル運転時に吸気マニホールド10や吸気ポート等の吸気系内に残った残留EGRガスによって結果的に内部EGRが増大してしまうため、排気流動の抑制を中止し、発進加速時、即ち低速高負荷運転時において内部EGRが増大してしまわないようにする。これにより、その後に発進加速が行われた場合であっても、燃焼悪化が防止されて燃焼安定性が確保される。
【0047】
なお、一旦発進加速が行われ、発進加速からの経過期間が所定期間を越えると、ステップS14の判別結果は偽(No)となり、ステップS20に進み、排気流動制御を作動させて排気流動の抑制を実施する。これにより、排気流動の抑制を中止する期間が最小限に抑えられることになり、有害物質の排出量の低減及び触媒早期活性が良好に実現される。
【0048】
なお、上記各実施例では、排気流動の抑制を中止するよう排気流動制御を解除しているが(ステップS30)、これに代えて、排気流動の抑制を減少するよう排気流動制御を変更するようにしてもよい。この場合、ステップS20では、元の抑制量で排気流動制御を実施するようにする。
以上で実施形態の説明を終えるが、このように、本発明に係る内燃機関の排気浄化装置では、冷態始動時において、エンジン1が極低温にあり且つ発進加速からの経過期間が所定期間内であるときには、排気流動制御による排気流動の抑制を中止或いは減少し、当該所定期間を経過したら排気流動の抑制を再開するようにしている。
【0049】
従って、当該排気浄化装置によれば、冷態始動時において、発進加速が行われた場合であっても、内部EGRの増大による燃焼悪化を防止して燃焼安定性を確保でき、さらに、排気流動の抑制を中止或いは減少する期間を最小限に抑えて効率的に有害物質の排出量の低減及び触媒早期活性を実現することができる。
また、特に、排気流動制御の実施中にアイドル運転が所定期間継続した場合には、排気流動制御を変更して排気流動の抑制を中止或いは減少するようにしている。
【0050】
従って、アイドル運転後、発進加速が行われた場合であっても、吸気系内の残留EGRによって内部EGRが増大してしまわないようにでき、やはり発進加速時において燃焼悪化を防止して燃焼安定性を確保することができる。
【0051】
【発明の効果】
以上詳細に説明したように、本発明の請求項1の内燃機関の排気浄化装置によれば、内燃機関の始動時、排気流動制御手段により排気流動の抑制が行われているとき、車両が発進加速初期状態、即ち低速高負荷運転状態にある間は排気流動の抑制を中止或いは減少するようにしたので、発進加速時、即ち低速高負荷運転時において内部EGRの増大による燃焼悪化を防止して燃焼安定性を確保できる。
【0052】
さらに、その後、発進加速後所定期間を外れ、排気流動の抑制を実施しても燃焼安定性が確保されるような状況下になると、排気流動の抑制を再開するようにしたので、排気流動の抑制を中止或いは減少する期間を最小限に抑えて効率的に有害物質の排出量の低減及び触媒早期活性を実現することができる。
また、請求項2の内燃機関の排気浄化装置によれば、負荷検出手段により負荷が所定負荷以上であることを検出し且つ機関回転速度検出手段により機関回転速度が所定回転速度以下であることを検出することにより、車両が発進加速後所定期間内であることを容易に検出することができる。
【0053】
また、請求項3の内燃機関の排気浄化装置によれば、負荷検出手段により負荷が所定負荷以上であることを検出し且つ車速検出手段により車速が所定車速以下であることを検出することにより、車両が発進加速後所定期間内であることを容易に検出することができる。
また、請求項4の内燃機関の排気浄化装置によれば、内燃機関の始動時、排気流動制御手段により排気流動の抑制が行われ且つアイドル運転が実施されているとき、アイドル運転期間が所定期間継続したことが検出されると、その後は排気流動の抑制を中止或いは減少するので、アイドル運転後に発進加速が行われた場合であっても、吸気系内に残った残留EGRガスによって内部EGRが増大してしまわないようにでき、発進加速時、即ち低速高負荷運転時において燃焼悪化を防止して燃焼安定性を確保することができる。
【0054】
好ましくは、一旦発進加速が所定期間(発進加速後所定期間)行われた後は、再びアイドル運転が実施されてアイドル運転期間が所定期間継続するまでの間、排気流動制御手段により排気流動の抑制を実施するのがよく、これにより、排気流動の抑制を中止或いは減少する期間を最小限に抑えて効率的に有害物質の排出量の低減及び触媒早期活性を実現することができる。
【0055】
また、請求項5の内燃機関の排気浄化装置によれば、発進加速初期状態検出手段やアイドル期間検出手段からの情報に基づき、冷態検出手段により極低温の所定の冷機状態、即ち燃焼悪化を引き起こし易い環境が検出されているときにのみ排気流動の抑制を中止或いは減少するようにしたので、適切に燃焼悪化を防止して燃焼安定性を確保でき、排気流動の抑制を中止或いは減少する期間を必要最小限に抑えることができる。
【0056】
また、請求項6の内燃機関の排気浄化装置によれば、点火時期をリタード(遅角)させている場合には、排気流動の抑制を中止或いは減少することに併せて点火時期を進角させるようにしたので、燃焼の悪化が助長されることもなく、排気流動制御制限手段の応答遅れをも補いながら、より一層燃焼悪化を防止して燃焼安定性を確保することができる。
【0057】
また、請求項7の内燃機関の排気浄化装置によれば、排気流動制御制限手段により排気流動の抑制を中止或いは減少する際に併せて空燃比をリッチ空燃比とするようにしたので、排気流動制御制限手段の応答遅れを良好に補うようにでき、より一層燃焼悪化を防止して燃焼安定性を確保することができる。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の排気浄化装置の概略構成図である。
【図2】本発明の第1実施例に係る始動時制御の制御ルーチンを示すフローチャートである。
【図3】本発明の第2実施例に係る始動時制御の制御ルーチンを示すフローチャートである。
【符号の説明】
1 エンジン
6 燃料噴射弁
10 吸気マニホールド
11 吸気弁
14 排気マニホールド
15 排気弁
20 排気管
30 三元触媒コンバータ
40 排気流動制御装置(排気流動制御手段)
42 密閉型開閉弁
50 ECU(電子コントロールユニット)
52 クランク角センサ(機関回転速度検出手段)
54 水温センサ(冷態検出手段)
56 APS(負荷検出手段)
58 車速センサ(車速検出手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to a technique for efficiently reducing the emission of harmful substances and achieving early catalyst activation while ensuring combustion stability at the start of the internal combustion engine.
[0002]
[Related background art]
By suppressing the exhaust flow in the exhaust system (from the combustion chamber to the exhaust pipe) (exhaust pressure increase, exhaust density increase, exhaust residence time extension, backflow into the cylinder, etc.), unburned matter (HC) , CO, etc.) and oxygen are promoted, and it is known that it is possible to reduce the emission of harmful substances and to activate the catalyst early at the time of cold start.
[0003]
However, when the exhaust gas flow is suppressed (exhaust pressure is increased) in this way, the internal EGR increases, and combustion may be deteriorated.
In particular, at the time of starting acceleration in a low-speed high-load operation state, the ignition timing is retarded (retarded) because the combustion gas flow in the cylinder is weak due to the low-speed operation, and usually, at a high load, for avoiding knocking or the like. In addition, when the engine is cold, the ignition timing is also retarded for the purpose of exhaust gas countermeasures. Therefore, the deterioration of combustion due to the increase in the internal EGR becomes remarkable, and it is difficult to secure combustion stability. Occurs. If the combustion stability cannot be ensured in this way, the engine may be stalled immediately after starting, which is not preferable.
[0004]
Also, during idling operation while suppressing exhaust flow, the negative pressure in the intake manifold is large due to the small opening of the throttle valve, and the difference in pressure between the intake manifold internal pressure and the exhaust pressure is large, so that the combustion gas is supplied to the intake system. And the internal EGR tends to increase particularly, and if the vehicle starts accelerating after the idling operation, the internal EGR gas increases due to residual EGR gas remaining in the intake system during the idling operation. There is also.
[0005]
For this reason, a technique has been developed to reduce the valve overlap amount of the intake and exhaust valves when the exhaust pressure rises to suppress the internal EGR (for example, see Patent Document 1).
Further, a technique for reducing exhaust resistance in a high-load operation state has been developed (for example, see Patent Document 2).
[0006]
[Patent Document 1]
JP-A-8-158897 (paragraph 0032 and the like)
[Patent Document 2]
JP-A-3-117611 (Japanese Patent No. 2881752)
[0007]
[Problems to be solved by the invention]
However, in the technique described in Patent Document 1, it is necessary to provide a variable valve timing mechanism in order to reduce the amount of valve overlap, which is not preferable because the cost increases.
Further, the technique described in Patent Document 2 focuses only on the load operation state and does not consider the combustion stability. Therefore, in the technique, when the high load operation state is detected, the exhaust is uniformly performed. The resistance is reduced, and thereafter, even if the combustion stability is ensured, the reduced state of the exhaust resistance is maintained. Therefore, with such a configuration, it is not possible to sufficiently reduce the amount of emission of harmful substances at the time of starting and to sufficiently activate the catalyst at an early stage.
[0008]
The present invention has been made to solve such problems, and an object of the present invention is to secure combustion stability during low-speed and high-load operation, to efficiently reduce harmful substance emissions, and to reduce the amount of catalyst. An object of the present invention is to provide an exhaust gas purification device for an internal combustion engine capable of realizing early activation.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, there is provided an exhaust flow control means provided in an exhaust system of an internal combustion engine mounted on a vehicle, wherein the exhaust flow control means suppresses exhaust flow in the exhaust system when the internal combustion engine is started. A start acceleration initial state detection means for detecting that the vehicle is within a predetermined period after the start acceleration based on an operation state of the internal combustion engine; and a vehicle being within a predetermined period after the start acceleration by the start acceleration initial state detection means. Exhaust flow control limiting means for stopping or reducing the exhaust flow control by the exhaust flow control means while the exhaust flow is detected.
[0010]
That is, at the time of starting the internal combustion engine, when the exhaust flow is controlled by the exhaust flow control means, when the start acceleration initial state detection means detects that the vehicle is within a predetermined period after the start acceleration, the exhaust flow is controlled. The control restriction means suspends or reduces the suppression of the exhaust flow during a predetermined period after the start acceleration, and thereafter, when the predetermined period has passed after the start acceleration, the suppression of the exhaust flow is restarted.
[0011]
Therefore, when the internal combustion engine is started, the suppression of the exhaust flow is stopped or reduced while the vehicle is in the initial state of start acceleration, that is, in the low-speed high-load operation state. The deterioration of combustion due to the increase in the temperature is prevented, and the combustion stability is ensured. After that, when a predetermined period of time has elapsed after the start acceleration and the combustion stability is ensured even when the exhaust flow is suppressed, the suppression of the exhaust flow is resumed, and the suppression of the exhaust flow is stopped or reduced. The period is minimized, and the reduction of the emission of harmful substances and the early activation of the catalyst are favorably continued.
[0012]
Further, the invention according to claim 2 further includes a load detection unit that detects a load of the internal combustion engine, and an engine rotation speed detection unit that detects an engine rotation speed of the internal combustion engine, wherein the starting acceleration initial state detection unit includes: By detecting that the load is equal to or more than a predetermined load by the load detection means and detecting that the engine rotation speed is equal to or less than the predetermined rotation speed by the engine rotation speed detection means, the vehicle is within a predetermined period after starting acceleration. Is detected.
[0013]
Therefore, when the load detecting means detects that the load is equal to or higher than the predetermined load and the engine speed detecting means detects that the engine speed is equal to or lower than the predetermined speed, the detected values of the load and the engine speed are detected. Thus, it is easily detected that the vehicle is within the predetermined period after the start and acceleration.
Further, the invention according to claim 3 further includes a load detecting means for detecting a load of the internal combustion engine, and a vehicle speed detecting means for detecting a vehicle speed, wherein the starting acceleration initial state detecting means is configured such that a load is detected by the load detecting means. It is characterized by detecting that the vehicle is within a predetermined period after starting acceleration by detecting that the vehicle speed is equal to or higher than a predetermined load and detecting that the vehicle speed is equal to or lower than the predetermined vehicle speed by the vehicle speed detecting means.
[0014]
Accordingly, when the load detecting means detects that the load is equal to or more than the predetermined load and the vehicle speed detecting means detects that the vehicle speed is equal to or less than the predetermined vehicle speed, the detected value of the load and the vehicle speed indicates that the vehicle has started and accelerated. It is easily detected that it is within the period.
According to the invention of claim 4, the exhaust flow control means is provided in an exhaust system of an internal combustion engine mounted on a vehicle, and suppresses exhaust flow in the exhaust system when the internal combustion engine is started. An idle period detecting means for detecting that the exhaust flow has been suppressed and the idle operation of the internal combustion engine has continued for a predetermined period; and detecting that the exhaust flow has been suppressed and the idle operation period has continued for a predetermined period by the idle period detecting means. Then, there is provided an exhaust flow control restricting unit that stops or reduces the suppression of the exhaust flow by the exhaust flow control unit.
[0015]
That is, at the start of the internal combustion engine, when it is detected that the exhaust flow control means suppresses the exhaust flow and the idle operation is performed, and the idle operation period is continued for a predetermined period, thereafter, the exhaust flow is controlled. Is stopped or reduced.
Therefore, during the idling operation while suppressing the exhaust gas flow, as described above, since the opening degree of the throttle valve is small, the negative pressure in the intake manifold is large, and the differential pressure between the intake manifold internal pressure and the exhaust pressure is large, the combustion gas Is returned to the intake system, and the internal EGR is particularly likely to increase. If the starting acceleration is performed after the idle operation, the internal EGR gas increases due to the residual EGR gas remaining in the intake system during the idle operation. However, when the suppression of the exhaust gas flow is stopped or reduced, the combustion deterioration is prevented at the time of starting acceleration, that is, at the time of low-speed high-load operation, and the combustion stability is secured.
[0016]
Note that once the start acceleration is performed for a predetermined period (a predetermined period after the start acceleration), the exhaust flow control unit suppresses the exhaust flow until the idle operation is performed again and the idle operation period continues for the predetermined period. It is preferred that it be implemented. As a result, the period during which the suppression of the exhaust flow is stopped or reduced is minimized, and the reduction of harmful substance emissions and the early activation of the catalyst are favorably realized.
[0017]
Further, the invention according to claim 5 further comprises a cold state detecting means for detecting that the internal combustion engine is in a cold state, wherein the exhaust flow control restricting means is provided with a predetermined cold state at a very low temperature by the cold state detecting means. It is characterized in that the suppression of the exhaust flow is stopped or reduced only when is detected.
That is, based on the information from the starting acceleration initial state detecting means and the idle period detecting means, the exhaust flow is determined only when the cold state detecting means detects a predetermined cold state at an extremely low temperature, that is, an environment in which combustion deterioration is likely to occur. Suppression is discontinued or reduced. As a result, the deterioration of combustion is appropriately prevented, the combustion stability is ensured, and the period during which suppression of exhaust flow is stopped or reduced is minimized.
[0018]
Further, the invention according to claim 6 further comprises an ignition timing control means for controlling an ignition timing of the internal combustion engine, wherein the exhaust flow control restricting means stops or reduces the suppression of the exhaust flow by the exhaust flow control means. The ignition timing is advanced by the ignition timing control means.
That is, the ignition timing is normally retarded (retarded) during low-speed and high-load operation of the internal combustion engine for the purpose of avoiding knocking, and when the internal combustion engine is cold, the ignition timing is also set for the purpose of exhaust gas countermeasures. As described above, retarding the ignition timing promotes deterioration of combustion as described above, so when retarding the ignition timing, the suppression of exhaust flow is stopped or reduced. Advance the ignition timing. As a result, while compensating for the response delay of the exhaust flow control restricting means, combustion deterioration is further prevented, and combustion stability is ensured.
[0019]
Further, the invention according to claim 7 further comprises an air-fuel ratio control means for controlling an air-fuel ratio of the internal combustion engine, wherein the exhaust flow control restricting means stops or reduces the suppression of the exhaust flow by the exhaust flow control means. The air-fuel ratio is controlled to be a rich air-fuel ratio by the air-fuel ratio control means.
Therefore, when the suppression of the exhaust flow is stopped or reduced by the exhaust flow control restricting means, the air-fuel ratio is set to the rich air-fuel ratio, so that the response delay of the exhaust flow control restricting means is satisfactorily compensated, and the combustion is further deteriorated. Is prevented and combustion stability is ensured.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
Referring to FIG. 1, there is shown a schematic configuration diagram of an exhaust gas purification device for an internal combustion engine according to the present invention mounted on a vehicle, and the configuration of the exhaust gas purification device will be described below.
As shown in FIG. 1, an intake pipe injection (Multi Port Injection: MPI) gasoline engine is used as an engine body (hereinafter simply referred to as an engine) 1 which is an internal combustion engine.
[0021]
The cylinder head 2 of the engine 1 is provided with an ignition plug 4 for each cylinder, and the ignition plug 4 is connected to an ignition coil 8 for outputting a high voltage.
An intake port 9 is formed for each cylinder in the cylinder head 2, and an opening / closing operation is performed on the combustion chamber 5 side of each intake port 9 in accordance with a cam of a camshaft 12 that rotates according to engine rotation. An intake valve 11 is provided for communicating and shutting off each intake port 9 with the combustion chamber 5. One end of an intake manifold 10 is connected to each intake port 9. An electromagnetic fuel injection valve 6 is attached to the intake manifold 10, and a fuel supply device (not shown) having a fuel tank is connected to the fuel injection valve 6 via a fuel pipe 7. .
[0022]
An electromagnetic throttle valve 17 for adjusting the amount of intake air is provided upstream of the fuel injection valve 6 of the intake manifold 10, and a throttle position sensor (TPS) for detecting the valve opening of the throttle valve 17. ) 18 are provided.
An exhaust port 13 is formed in the cylinder head 2 in a substantially horizontal direction for each cylinder, and a cam of a camshaft 16 that rotates according to engine rotation is provided on the combustion chamber 5 side of each exhaust port 13. Exhaust valves 15 which open and close in accordance with each other and perform communication and cutoff between each exhaust port 13 and the combustion chamber 5 are provided. One end of an exhaust manifold 14 is connected to each exhaust port 13.
[0023]
Since the MPI engine is a publicly known one, a detailed description of its configuration will be omitted.
An exhaust pipe 20 is connected to the other end of the exhaust manifold 14, and a three-way catalytic converter 30 is interposed in the exhaust pipe 20 as an exhaust purification catalyst device. In addition, upstream of the three-way catalytic converter 30 in the exhaust pipe 20, O 2 A sensor 22 is provided.
[0024]
Further, an exhaust flow control device (exhaust flow control means) 40 is provided downstream of the three-way catalytic converter 30 in the exhaust pipe 20.
The exhaust flow control device 40 mainly includes harmful substances (unburned substances such as HC and CO, NOx, smoke, H 2 Etc.), and is configured to be able to change at least one of the exhaust pressure, the exhaust density, and the exhaust flow rate. Specifically, the exhaust flow control device 40 is configured by a closed-type on-off valve 42 capable of adjusting the flow area of the exhaust pipe 20.
[0025]
Various methods are conceivable as the closed-type on-off valve 42. Here, for example, a butterfly valve is employed. The butterfly valve is provided with an actuator 44, and the butterfly valve is opened and closed by the actuator 44.
The ECU 50 includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, and the like), a central processing unit (CPU), a timer counter, and the like. Control is performed.
[0026]
On the input side of the ECU 50, the above-described TPS 18, O 2 In addition to the sensor 22, a crank angle sensor 52 for detecting a crank angle of the engine 1, a water temperature sensor (cool state detecting means) 54 for detecting a cooling water temperature Tw of the engine 1, and an operation amount of an accelerator pedal 55, that is, an accelerator opening degree. Various sensors such as an accelerator position sensor (APS) (load detecting means) 56 for detecting, a vehicle speed sensor (vehicle speed detecting means) 58 for detecting a vehicle speed V, and an idle SW 59 for detecting an idling operation state are connected. Detection information from the class is input. The engine speed Ne is detected based on the crank angle information from the crank angle sensor 52 (engine speed detecting means).
[0027]
On the other hand, various output devices such as the above-described fuel injection valve 6, ignition coil 8, throttle valve 17, and actuator 44 are connected to the output side of the ECU 50. These various output devices are connected to detection information from various sensors. The fuel injection amount, the fuel injection timing, the ignition timing, the exhaust flow control amount, and the like calculated based on the above are output, whereby the air-fuel ratio is controlled to an appropriate target air-fuel ratio, and the appropriate amount of fuel is supplied from the fuel injection valve 6. Is injected at an appropriate timing (air-fuel ratio control means), spark ignition is performed at an appropriate timing by the spark plug 4 (ignition timing control means), and a desired exhaust flow control amount (for example, a target exhaust pressure) is obtained. The on-off valve 42 is opened and closed at an appropriate timing.
[0028]
Specifically, in the exhaust gas purifying apparatus according to the present invention, when the engine 1 is in a cold state, the exhaust gas flow control is performed so as to activate the three-way catalytic converter 30 at an early stage, and the on-off valve 42 is closed to operate the exhaust gas. The flow is controlled.
As a result, the exhaust pressure or exhaust density in the exhaust system increases, and the relationship between unburned substances such as HC and CO and oxygen or NOx in the exhaust system is strengthened, the reaction is promoted, and emission of harmful substances is improved. And the exhaust gas temperature rises to activate the three-way catalytic converter 30 early.
[0029]
However, if the exhaust flow is suppressed immediately after the start of the engine 1 (immediately after the start of cranking), the start acceleration is performed immediately after that, and the engine 1 enters the low-speed high-load operation state. Since the flow of the combustion gas in the cylinder is weak, the internal EGR increases to cause deterioration of combustion, and there is a possibility that sufficient acceleration performance cannot be exhibited without securing combustion stability.
[0030]
Therefore, in the exhaust gas purifying apparatus of the present invention, when the low-speed high-load operation state occurs immediately after the start of the engine 1, the suppression of the exhaust flow is limited. The operation of the device according to the present invention will be described.
First, a first embodiment will be described.
Referring to FIG. 2, a control routine of the start-time control according to the first embodiment of the present invention is shown in a flowchart, and will be described below with reference to the flowchart.
[0031]
In step S10, it is determined whether the operating condition of the exhaust flow control is satisfied.
Specifically, whether the engine is in a cold start state, that is, the cooling water temperature Tw of the engine 1 is within a predetermined temperature range (for example, 50 ° C.>Tw> −10 ° C.), and after the engine 1 starts It is determined whether or not the time is within a predetermined time range (for example, 10 seconds to 100 seconds after starting). If the determination result is false (No) and it is determined that the above condition is not satisfied, the process proceeds to step S30 to exit the routine without performing exhaust flow control, that is, suppressing exhaust flow. On the other hand, when the result of the determination is true (Yes), and it is determined that the above condition is satisfied, the process proceeds to step S12.
[0032]
In step S12, it is determined whether or not the cooling water temperature Tw of the engine 1 is lower than a predetermined temperature T0 (Tw <T0). Here, the predetermined temperature T0 differs depending on the target engine, but is, for example, 0 ° C. That is, in step S12, it is determined whether or not the engine 1 is in a cold state at an extremely low temperature. If the determination result is true (Yes) and it is determined that the cooling water temperature Tw is extremely low, which is lower than the predetermined temperature T0, the process proceeds to step S14.
[0033]
In step S14, when the starting acceleration is performed based on the intention of the vehicle driver, it is determined whether or not the elapsed time from the starting acceleration is within a predetermined period (starting acceleration initial state detecting means). The predetermined period is set to a time corresponding to the initial stage of the starting acceleration until it is predicted that the acceleration state will be continued and the vehicle will escape from the low-speed / high-load operation state. The predetermined period differs depending on the target engine. Is done.
[0034]
Alternatively, instead of or in addition to whether or not the elapsed time from the start acceleration is within the above-mentioned predetermined time, it may be determined whether or not the time until the vehicle exits the low-speed / high-load operation state. In this case, it is determined whether the output value of the APS 56 is equal to or higher than the predetermined value and the engine speed Ne is equal to or lower than the predetermined speed when the accelerator pedal 55 is depressed while the idle SW 59 is OFF. Alternatively, the determination may be made based on whether or not the output value of the APS 56 is equal to or higher than the predetermined value and the vehicle speed V is equal to or lower than the predetermined vehicle speed when the accelerator pedal 55 is depressed while the idle SW 59 is OFF. As for the detection of the engine load, whether the volume efficiency is equal to or more than a predetermined value or the net average effective pressure is equal to or more than a predetermined value when the idle SW 59 is OFF, instead of determining the output of the APS 56, No, or it can be determined simply by whether the idle SW 59 is OFF.
[0035]
Thus, it is easy to determine whether or not the elapsed period from the start acceleration is within the predetermined period.
If the start acceleration is not performed or after a predetermined period has elapsed from the start acceleration, if the determination result of step S14 is false (No), the process proceeds to step S20, and the exhaust flow control is activated to suppress the exhaust flow. carry out.
[0036]
In other words, when the starting acceleration is not performed or when a predetermined period has elapsed after the starting acceleration, the combustion stability is not a problem. In this case, the exhaust flow is suppressed to prevent the emission of harmful substances and the emission of the exhaust gas. The early activation of the three-way catalytic converter 30 is performed by raising the temperature. As a result, the emission of harmful substances in the exhaust gas is properly prevented, and the exhaust gas temperature rises, whereby early activation of the three-way catalytic converter 30 is achieved.
[0037]
On the other hand, if the determination result of step S14 is true (Yes) and it is determined that the elapsed period from the start acceleration is within the predetermined period, the process proceeds to step S30 via steps S16 and S18, and the exhaust flow control is performed. The operation is canceled to stop the suppression of the exhaust flow (exhaust flow control restricting means). In other words, if the elapsed period from the start acceleration is within the predetermined period and the vehicle is in the low-speed high-load operation state, the internal EGR may increase as described above, which may cause deterioration of the combustion. During this time, the suppression of the exhaust flow is stopped. Thereby, combustion stability is ensured, and sufficient acceleration performance can be exhibited.
[0038]
By the way, the ignition timing is retarded (retarded) from the reference timing during the low-speed high-load operation of the engine 1 in order to avoid knocking and the like. The ignition timing is retarded. However, as described above, the retard of the ignition timing promotes the deterioration of the combustion. Therefore, when the ignition timing is retarded in this way, the suppression of the exhaust flow is stopped, and the ignition timing is reduced in step S16. Advance. Thereby, combustion deterioration is further prevented, and combustion stability is ensured.
[0039]
Further, even if the ECU 50 outputs an exhaust flow control release command, the on-off valve 42 actually has a response delay, and the suppression of the exhaust flow is not immediately stopped. Therefore, when the suppression of the exhaust flow is stopped by the exhaust flow control restricting means, the air-fuel ratio of the engine 1 is also set to the rich air-fuel ratio. Thereby, the response delay of the exhaust flow control is satisfactorily compensated, and as in the case where the ignition timing is advanced, the deterioration of combustion is further prevented and the combustion stability is ensured. The object is achieved if the response delay of the exhaust flow control can be compensated. Therefore, after the rich air-fuel ratio is set, the air-fuel ratio may be gradually returned to the stoichiometric air-fuel ratio or the lean air-fuel ratio. Thereby, deterioration of fuel efficiency is prevented.
[0040]
When the ignition timing is retarded, the response delay of the exhaust flow control can be compensated by advancing the ignition timing as described above.
Thereafter, if the elapsed period from the start acceleration exceeds the predetermined period and the determination result of step S14 is false (No), the process proceeds to step S20, and the suspended exhaust flow control is restarted to resume the exhaust flow. Implement suppression. In addition, the advanced ignition timing is restored, and the air-fuel ratio is returned to the stoichiometric air-fuel ratio or the lean air-fuel ratio.
[0041]
In other words, in the middle and high speed range where the elapsed period from the start acceleration exceeds the predetermined period and the vehicle exits the low-speed and high-load operation state, the suppression of the exhaust flow hardly causes the combustion deterioration, and the influence on the acceleration performance. It is considered that there is almost no exhaust gas flow, and the suppression of the exhaust flow is restarted, and the activation of the three-way catalytic converter 30 by the prevention of the emission of the harmful substances and the temperature rise of the exhaust gas is also implemented. As a result, the period during which the suppression of the exhaust gas flow is stopped is minimized, and the emission of harmful substances is reduced efficiently and the three-way catalytic converter 30 is quickly activated.
[0042]
Further, when the cooling water temperature Tw becomes equal to or higher than the predetermined temperature T0 (for example, 0 ° C.), that is, the engine 1 is still in a cold state but not at an extremely low temperature, and the determination result in step S12 is false ( If No), the process also proceeds to step S20, and the suspended exhaust flow control is restarted and the exhaust flow is suppressed as described above.
[0043]
That is, if the engine 1 is not at a very low temperature, it is considered that the acceleration performance is hardly impaired even if the start acceleration is performed and the combustion is not deteriorated. In this case, even if the engine 1 is still in the cold state, Then, the suppression of the exhaust flow is resumed. In this manner, the period during which the suppression of the exhaust gas flow is stopped can be minimized, and the emission of harmful substances can be reduced and the three-way catalytic converter 30 can be activated more efficiently.
[0044]
Next, a second embodiment will be described.
Referring to FIG. 3, a control routine of the start-time control according to the second embodiment of the present invention is shown by a flowchart, and will be described below based on the flowchart. In FIG. 3, the same steps as those in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted. Here, only the portions different from the first embodiment will be described.
[0045]
After step S10, the result of the determination in step S12 is true (Yes), and it is determined that the cooling water temperature Tw is extremely low, which is lower than the predetermined temperature T0. The result of the determination in step S14 is true (Yes), and If it is determined that it is within the elapsed period, the process proceeds to step S19.
In step S19, it is determined whether or not the idle operation has continued for a predetermined period (depending on the target engine, for example, 1 second) during the execution of the exhaust flow control (idle period detecting means). If the determination result is false (No) and it is determined that the idle operation has not been continued for the predetermined period, the process proceeds to step S20, and the exhaust flow control is activated to suppress the exhaust flow. On the other hand, if the result of the determination is true (Yes) and it is determined that the idling operation has continued for a predetermined period or longer, the process proceeds to steps S16, S18, and S30, and the exhaust flow control operation is canceled to stop suppressing the exhaust flow. I do.
[0046]
That is, during the idling operation while suppressing the exhaust flow, as described above, the opening of the throttle valve 17 is small, the negative pressure in the intake manifold 10 is large, and the differential pressure between the intake manifold internal pressure and the exhaust pressure is large. The combustion gas is returned to the intake system, and the internal EGR is particularly likely to increase. If the starting acceleration is performed after the idle operation, the result is caused by the residual EGR gas remaining in the intake system such as the intake manifold 10 and the intake port during the idle operation. Since the internal EGR increases, the suppression of the exhaust flow is stopped, and the internal EGR is prevented from increasing at the time of starting acceleration, that is, at the time of low-speed high-load operation. Thereby, even when the starting acceleration is performed thereafter, deterioration of combustion is prevented and combustion stability is ensured.
[0047]
Once the start acceleration is performed and the elapsed time from the start acceleration exceeds a predetermined period, the determination result of step S14 becomes false (No), and the process proceeds to step S20, in which the exhaust flow control is activated to suppress the exhaust flow. Is carried out. As a result, the period during which the suppression of the exhaust gas flow is stopped can be minimized, and the emission of harmful substances can be reduced and the catalyst can be quickly activated.
[0048]
In each of the above embodiments, the exhaust flow control is canceled to stop the suppression of the exhaust flow (step S30). Instead, the exhaust flow control may be changed to reduce the suppression of the exhaust flow. It may be. In this case, in step S20, the exhaust flow control is performed with the original suppression amount.
As described above, the description of the embodiment is finished. As described above, in the exhaust gas purification apparatus for the internal combustion engine according to the present invention, at the time of the cold start, the engine 1 is at an extremely low temperature and the elapsed time from the start acceleration is within the predetermined time. In the case of, the suppression of the exhaust flow by the exhaust flow control is stopped or reduced, and the suppression of the exhaust flow is restarted after the predetermined period has elapsed.
[0049]
Therefore, according to the exhaust gas purifying apparatus, even when the vehicle is accelerated during a cold start, it is possible to prevent combustion deterioration due to an increase in the internal EGR and to secure combustion stability. It is possible to efficiently reduce the emission of harmful substances and achieve early catalyst activation by minimizing the period during which suppression or reduction of the catalyst is suppressed.
In particular, when the idle operation continues for a predetermined period during the execution of the exhaust flow control, the exhaust flow control is changed to stop or reduce the suppression of the exhaust flow.
[0050]
Therefore, even if the start acceleration is performed after the idling operation, the internal EGR can be prevented from increasing due to the residual EGR in the intake system. Property can be ensured.
[0051]
【The invention's effect】
As described above in detail, according to the exhaust gas purifying apparatus for an internal combustion engine of the first aspect of the present invention, when the internal combustion engine is started, when the exhaust flow control means suppresses the exhaust flow, the vehicle starts. During the initial acceleration state, that is, during the low-speed high-load operation state, the suppression of the exhaust flow is stopped or reduced, so that during start acceleration, that is, during the low-speed high-load operation, deterioration of combustion due to an increase in internal EGR is prevented. Combustion stability can be ensured.
[0052]
Further, after that, when the combustion stability is ensured even if the exhaust flow is suppressed outside the predetermined period after the start acceleration and the exhaust flow is suppressed, the exhaust flow control is restarted. It is possible to efficiently reduce the emission of harmful substances and achieve early catalyst activation by minimizing the period during which the suppression is stopped or reduced.
Further, according to the exhaust gas purifying apparatus for an internal combustion engine, the load detecting means detects that the load is equal to or higher than the predetermined load, and the engine speed detecting means determines that the engine rotational speed is equal to or lower than the predetermined rotational speed. By detecting, it is possible to easily detect that the vehicle is within a predetermined period after the start and acceleration.
[0053]
According to the exhaust gas purifying apparatus for an internal combustion engine of the third aspect, the load detecting means detects that the load is equal to or higher than the predetermined load, and the vehicle speed detecting means detects that the vehicle speed is equal to or lower than the predetermined vehicle speed. It is possible to easily detect that the vehicle is within the predetermined period after the start acceleration.
According to the exhaust gas purifying apparatus for an internal combustion engine of claim 4, when the internal combustion engine is started, when the exhaust flow control means suppresses the exhaust flow and performs the idle operation, the idle operation period is set to the predetermined period. When it is detected that the continuation is continued, the suppression of the exhaust flow is stopped or reduced thereafter. Therefore, even when the starting acceleration is performed after the idling operation, the internal EGR gas remains due to the residual EGR gas remaining in the intake system. It can be prevented from increasing, and at the time of start acceleration, that is, at the time of low-speed high-load operation, deterioration of combustion can be prevented and combustion stability can be ensured.
[0054]
Preferably, once the start acceleration is performed for a predetermined period (a predetermined period after the start acceleration), the exhaust flow control means suppresses the exhaust flow until the idle operation is performed again and the idle operation period continues for a predetermined period. Therefore, it is possible to efficiently reduce the emission amount of harmful substances and achieve early catalyst activation by minimizing the period in which the suppression of the exhaust flow is stopped or reduced.
[0055]
Further, according to the exhaust gas purifying apparatus for an internal combustion engine of the fifth aspect, based on the information from the starting acceleration initial state detecting means and the idle period detecting means, the cold state detecting means determines the extremely low temperature predetermined cold state, that is, deterioration of combustion. Since the suppression of exhaust flow is stopped or reduced only when an environment that is likely to cause is detected, it is possible to appropriately prevent deterioration of combustion and secure combustion stability, and to stop or reduce the suppression of exhaust flow. Can be minimized.
[0056]
According to the exhaust gas purifying apparatus for an internal combustion engine of the sixth aspect, when the ignition timing is retarded (retarded), the ignition timing is advanced in conjunction with stopping or reducing the suppression of the exhaust flow. As a result, the deterioration of combustion is not promoted, and the deterioration of combustion can be further prevented and the combustion stability can be ensured while compensating for the response delay of the exhaust flow control restricting means.
[0057]
According to the exhaust gas purifying apparatus for an internal combustion engine of the present invention, the air-fuel ratio is set to the rich air-fuel ratio when the suppression of the exhaust flow is stopped or reduced by the exhaust flow control restricting means. The response delay of the control limiting means can be satisfactorily compensated, and the combustion deterioration can be further prevented, and the combustion stability can be ensured.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an exhaust gas purification device for an internal combustion engine according to the present invention.
FIG. 2 is a flowchart showing a control routine of start-time control according to the first embodiment of the present invention.
FIG. 3 is a flowchart illustrating a control routine of start-time control according to a second embodiment of the present invention.
[Explanation of symbols]
1 engine
6 Fuel injection valve
10 Intake manifold
11 Intake valve
14 Exhaust manifold
15 Exhaust valve
20 exhaust pipe
30 Three-way catalytic converter
40 Exhaust flow control device (Exhaust flow control means)
42 Sealed on-off valve
50 ECU (electronic control unit)
52 Crank angle sensor (engine speed detection means)
54 Water temperature sensor (Cold detection means)
56 APS (load detection means)
58 Vehicle speed sensor (vehicle speed detecting means)

Claims (7)

車両に搭載された内燃機関の排気系に設けられ、内燃機関の始動時に前記排気系内の排気流動を抑制する排気流動制御手段と、
内燃機関の運転状態に基づき、車両が発進加速後所定期間内であることを検出する発進加速初期状態検出手段と、
前記発進加速初期状態検出手段により車両が発進加速後所定期間内であることが検出されている間、前記排気流動制御手段による排気流動の抑制を中止或いは減少する排気流動制御制限手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
Exhaust flow control means provided in an exhaust system of an internal combustion engine mounted on a vehicle to suppress exhaust flow in the exhaust system at the time of starting the internal combustion engine,
Start acceleration initial state detection means for detecting that the vehicle is within a predetermined period after the start acceleration based on the operation state of the internal combustion engine,
Exhaust flow control limiting means for stopping or reducing the exhaust flow control by the exhaust flow control means while the vehicle is detected within a predetermined period after the start acceleration by the start acceleration initial state detection means,
An exhaust gas purifying apparatus for an internal combustion engine, comprising:
さらに、内燃機関の負荷を検出する負荷検出手段と、内燃機関の機関回転速度を検出する機関回転速度検出手段とを備え、
前記発進加速初期状態検出手段は、前記負荷検出手段により負荷が所定負荷以上であることを検出し且つ前記機関回転速度検出手段により機関回転速度が所定回転速度以下であることを検出することで車両が発進加速後所定期間内であることを検出することを特徴とする、請求項1記載の内燃機関の排気浄化装置。
Further, a load detecting means for detecting a load of the internal combustion engine, and an engine speed detecting means for detecting the engine speed of the internal combustion engine,
The starting acceleration initial state detecting means detects that the load is equal to or higher than a predetermined load by the load detecting means, and detects that the engine rotational speed is equal to or less than the predetermined rotational speed by the engine rotational speed detecting means. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein it is detected that the engine is within a predetermined period after the start acceleration.
さらに、内燃機関の負荷を検出する負荷検出手段と、車速を検出する車速検出手段とを備え、
前記発進加速初期状態検出手段は、前記負荷検出手段により負荷が所定負荷以上であることを検出し且つ前記車速検出手段により車速が所定車速以下であることを検出することで車両が発進加速後所定期間内であることを検出することを特徴とする、請求項1記載の内燃機関の排気浄化装置。
Further, a load detecting means for detecting a load of the internal combustion engine, and a vehicle speed detecting means for detecting a vehicle speed,
The starting acceleration initial state detecting means detects that the load is equal to or more than a predetermined load by the load detecting means, and detects that the vehicle speed is equal to or less than the predetermined vehicle speed by the vehicle speed detecting means. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein it is detected that the period is within a period.
車両に搭載された内燃機関の排気系に設けられ、内燃機関の始動時に前記排気系内の排気流動を抑制する排気流動制御手段と、
前記排気流動制御手段により排気流動が抑制され且つ内燃機関のアイドル運転が所定期間継続したことを検出するアイドル期間検出手段と、
前記アイドル期間検出手段により排気流動が抑制され且つアイドル運転期間が所定期間継続したことが検出されると、前記排気流動制御手段による排気流動の抑制を中止或いは減少する排気流動制御制限手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
Exhaust flow control means provided in an exhaust system of an internal combustion engine mounted on a vehicle to suppress exhaust flow in the exhaust system at the time of starting the internal combustion engine,
An idle period detecting unit that detects that the exhaust flow is suppressed by the exhaust flow control unit and that the idle operation of the internal combustion engine has continued for a predetermined period;
An exhaust flow control restricting unit that stops or reduces the exhaust flow control by the exhaust flow control unit when the exhaust flow is suppressed by the idle period detection unit and the idle operation period is detected to have continued for a predetermined period;
An exhaust gas purifying apparatus for an internal combustion engine, comprising:
さらに、内燃機関が冷機状態にあることを検出する冷態検出手段を備え、
前記排気流動制御制限手段は、前記冷態検出手段により極低温の所定の冷機状態が検出されているときにのみ排気流動の抑制を中止或いは減少することを特徴とする、請求項1乃至4記載の内燃機関の排気浄化装置。
Further, a cold state detecting means for detecting that the internal combustion engine is in a cold state,
The exhaust flow control restricting means stops or reduces the suppression of the exhaust flow only when a predetermined cold state at an extremely low temperature is detected by the cold state detecting means. Exhaust purification device for internal combustion engine.
さらに、内燃機関の点火時期を制御する点火時期制御手段を備え、
前記排気流動制御制限手段は、前記排気流動制御手段による排気流動の抑制を中止或いは減少するとともに、前記点火時期制御手段により点火時期を進角させることを特徴とする、請求項1乃至5記載の内燃機関の排気浄化装置。
Further, an ignition timing control means for controlling the ignition timing of the internal combustion engine is provided,
6. The exhaust flow control restricting means according to claim 1, wherein the control of the exhaust flow by the exhaust flow control means is stopped or reduced, and the ignition timing is advanced by the ignition timing control means. An exhaust gas purification device for an internal combustion engine.
さらに、内燃機関の空燃比を制御する空燃比制御手段を備え、
前記排気流動制御制限手段は、前記排気流動制御手段による排気流動の抑制を中止或いは減少するとともに、前記空燃比制御手段により空燃比をリッチ空燃比となるよう制御することを特徴とする、請求項1乃至5記載の内燃機関の排気浄化装置。
Further, an air-fuel ratio control means for controlling an air-fuel ratio of the internal combustion engine is provided,
The exhaust flow control restricting means stops or reduces suppression of exhaust flow by the exhaust flow control means, and controls the air-fuel ratio to be a rich air-fuel ratio by the air-fuel ratio control means. An exhaust gas purifying apparatus for an internal combustion engine according to any one of claims 1 to 5.
JP2002352951A 2002-12-04 2002-12-04 Exhaust emission control device for internal combustion engine Pending JP2004183580A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002352951A JP2004183580A (en) 2002-12-04 2002-12-04 Exhaust emission control device for internal combustion engine
US10/726,559 US20040187478A1 (en) 2002-12-04 2003-12-04 Exhaust emission control apparatus for internal combustion engine
DE10356667A DE10356667A1 (en) 2002-12-04 2003-12-04 Exhaust gas emissions control for internal combustion engine has electronic control of throttle valve angle and system throttling flow of exhaust gases through catalytic converter on starting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352951A JP2004183580A (en) 2002-12-04 2002-12-04 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004183580A true JP2004183580A (en) 2004-07-02

Family

ID=32463255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352951A Pending JP2004183580A (en) 2002-12-04 2002-12-04 Exhaust emission control device for internal combustion engine

Country Status (3)

Country Link
US (1) US20040187478A1 (en)
JP (1) JP2004183580A (en)
DE (1) DE10356667A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004058714B4 (en) * 2004-12-06 2006-08-31 Siemens Ag Method and device for checking temperature values of a temperature sensor of an internal combustion engine
US7380396B2 (en) * 2005-05-25 2008-06-03 General Motors Corporation Method for protecting an exhaust aftertreatment system
EP4163485A4 (en) * 2020-06-04 2023-08-16 Nissan Motor Co., Ltd. Control method and control device for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8425657D0 (en) * 1984-10-10 1984-11-14 Austin Rover Group Exhaust system
JPH0949422A (en) * 1995-08-09 1997-02-18 Denso Corp Exhaust emission control device for internal combustion engine
US6481200B1 (en) * 1999-10-22 2002-11-19 Toyota Jidosha Kabushiki Kaisha Catalyst warming apparatus of internal combustion engine
EP1347156B1 (en) * 2000-12-28 2006-03-01 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust purification device for intracylindrical injection-type spark-ignition internal combustion engine
DE60210054T2 (en) * 2001-01-29 2007-04-12 Mitsubishi Jidosha Kogyo K.K. EXHAUST EMISSION CONTROL DEVICE OF AN INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
US20040187478A1 (en) 2004-09-30
DE10356667A1 (en) 2004-07-01

Similar Documents

Publication Publication Date Title
JP2007218143A (en) Control device for internal combustion engine with supercharger
JP2010019178A (en) Engine control device
JP3939079B2 (en) Variable valve timing control device for internal combustion engine
JP2002161770A (en) Variable valve timing control device for internal combustion engine
JP2002327639A (en) Warm-up control device of internal combustion engine
CN111577474B (en) Control device and method for vehicle-mounted internal combustion engine
JP2004270603A (en) Internal combustion engine and controlling method of the engine
JP2004251157A (en) Valve timing control device for engine
JP7207268B2 (en) Vehicle internal combustion engine controller
JP2004183580A (en) Exhaust emission control device for internal combustion engine
JP2000087736A (en) Internal combustion engine
JP2008267294A (en) Control system of internal combustion engine
JP2004340065A (en) Control device for hydrogen engine
JP2004183581A (en) Exhaust emission control device for internal combustion engine
JPH0411741B2 (en)
JP2007077842A (en) Control device for internal combustion engine
JP4697473B2 (en) Control device for internal combustion engine
JP5556387B2 (en) Control device for variable valve system
JP2004324533A (en) Exhaust emission control device for internal combustion engine
JP2004360569A (en) Exhaust gas purification control system of internal combustion engine
JP2009264118A (en) Control device for internal combustion engine
JP2002122018A (en) Catalyst-temperature estimating device
JP2007077857A (en) Operation mode control device for internal combustion engine
JP4483776B2 (en) Ignition timing control device for internal combustion engine
JP2001098964A (en) Controller for spark ignition type direct injection engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060719