JP2004183581A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2004183581A
JP2004183581A JP2002352952A JP2002352952A JP2004183581A JP 2004183581 A JP2004183581 A JP 2004183581A JP 2002352952 A JP2002352952 A JP 2002352952A JP 2002352952 A JP2002352952 A JP 2002352952A JP 2004183581 A JP2004183581 A JP 2004183581A
Authority
JP
Japan
Prior art keywords
exhaust
fuel
pressure
correlation value
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002352952A
Other languages
Japanese (ja)
Inventor
Yasuki Tamura
保樹 田村
Masashi Igarashi
正志 五十嵐
Toshihiro Takeuchi
敏広 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2002352952A priority Critical patent/JP2004183581A/en
Publication of JP2004183581A publication Critical patent/JP2004183581A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of realizing a decrease in the discharge of toxic substance and early activity of a catalyst by efficiently and appropriately carrying out fuel increase correction at the low temperature of the internal combustion engine. <P>SOLUTION: This exhaust emission control device for the internal combustion engine is provided with a fuel increase correction means for making an increase correction of a fuel injection quantity according to the low temperature degree of the internal combustion engine (S24); an exhaust flow control means for suppressing exhaust flow in an exhaust system (S12); an internal EGR quantity correlation value detecting means for detecting the internal EGR quantity correlation value of the internal combustion engine varied by suppressing exhaust flow by the exhaust flow control means (S14); and a fuel increase quantity reducing means for reducing the increase correction quantity of the fuel injection quantity by the fuel increase correction means, in proportion to the increase degree of the internal EGR quantity correlation value detected by the internal EGR quantity correlation value. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に係り、詳しくは、内燃機関の低温時において効率よく適正に燃料増量補正を実施して有害物質の排出量の低減及び触媒早期活性を実現する技術に関する。
【0002】
【関連する背景技術】
排気系(燃焼室から排気管まで)内の排気流動を抑制(排気圧上昇、排気密度上昇、排気滞留時間延長、筒内への逆流等)することにより、排気系内において未燃物(HC、CO等)と酸素との反応が促進され、冷態始動時における有害物質の排出量の低減及び触媒早期活性を実現可能であることが知られている(例えば、特許文献1参照)。
【0003】
一方、吸気管噴射型内燃機関において、冷態始動時等には、吸気ポート壁面の温度が低いために吸気ポート壁面に付着した燃料が気化し難く、筒内に供給される燃料が減少することから、吸気ポート壁面温度ひいては内燃機関の温度の低温度合いに応じて燃料を増量する低温増量補正を行うことが一般に知られている。
【0004】
【特許文献1】
特開2001−27145号公報
【0005】
【発明が解決しようとする課題】
ところで、上記のように排気流動の抑制を行うと、排気圧が上昇して排気圧と吸気圧との圧力差が大きくなるため、内部EGRが増大するとともに吸気弁が開弁すると高温のEGRガスが吸気ポートに強く戻されることとなる。
このように、高温のEGRガスが吸気ポートに多量に吹き戻されることになると、冷態始動時等であっても吸気ポート壁面に付着した燃料の気化が促進され、上記のように低温増量補正を行っているような場合にあっては、当該気化した燃料分だけ余分に燃料が供給されて空燃比がリッチ化されされることになり、燃焼空燃比及び排気空燃比がオーバリッチとなって排ガスの悪化を招くという問題がある。
【0006】
そこで、このようなオーバリッチを防止すべく、排気流動の抑制中には燃料の低温増量補正を制限し、増量補正量を減少させることが考えられる。
しかしながら、例えば排気流動の抑制を行う排気流動制御弁に固着等のなんらかの故障が生じたような場合には、排気流動の抑制指令があっても実際には排気流動制御弁による排気流動の抑制が行われず、このような状況下で排気流動の抑制中と判断して増量補正量を減少させてしまうと、吸気ポートに吹き戻されるEGRガスが少ないために吸気ポート壁面に付着した燃料の気化が促進されず、逆に燃料が不足して空燃比がオーバリーンとなり、燃焼が悪化するという問題がある。このように燃焼が悪化することになるとエンジンストールを引き起こすおそれもあり好ましいことではない。
【0007】
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、内燃機関の低温時において効率よく適正に燃料増量補正を実施して有害物質の排出量の低減及び触媒早期活性を実現可能な内燃機関の排気浄化装置を提供することにある。
【0008】
【課題を解決するための手段】
上記した目的を達成するために、請求項1の発明では、内燃機関の温度の低温度合いに応じて燃料噴射量を増量補正する燃料増量補正手段と、内燃機関の排気系に設けられ、該排気系内の排気流動を抑制する排気流動制御手段と、前記排気流動制御手段により排気流動が抑制されることによって変化する内燃機関の内部EGR量相関値を検出する内部EGR量相関値検出手段と、前記内部EGR量相関値検出手段により検出された内部EGR量相関値が大きいほど前記燃料増量補正手段による燃料噴射量の増量補正量を減少させる燃料増量減少手段とを備えることを特徴としている。
【0009】
従って、排気流動制御手段により排気流動の抑制を行うことで、有害物質の排出量の低減及び触媒早期活性が実現されることになるが、内燃機関の温度の低温度合いに応じ、内部EGR量相関値が大きいほど、即ち排気流動の抑制により吸気ポートに吹き戻される高温のEGRガスが増大して吸気ポート壁面に付着した燃料の気化が促進されるほど燃料の増量補正量を減少させるので、燃焼空燃比及び排気空燃比がオーバリッチになってしまうことがなく、排ガスの悪化が防止される。また、排気流動制御手段、例えば排気流動制御弁に固着等の故障があり、排気流動の抑制指令に対して実際には排気流動が抑制されておらず内部EGR量相関値が小さいとき、即ち吸気ポートに吹き戻される高温のEGRガスが少なく吸気ポート壁面に付着した燃料の気化が促進されないような状況においては、燃料の増量補正量を内部EGR量相関値に応じた適正量として増量補正量の減少を抑えるので、逆に燃焼空燃比及び排気空燃比がオーバリーンになってしまうこともなく、燃焼の悪化、ひいてはエンジンストールが防止される。
【0010】
また、請求項2の発明では、前記内部EGR量相関値は前記排気系内の排気圧であって、前記内部EGR量相関値検出手段は、前記排気系内の排気圧を検出する排気圧検出手段からなることを特徴としている。
つまり、排気流動の抑制を行った場合、内部EGRと排気圧との相関が高く、故に排気系内の排気圧を内部EGR量相関値として検出することにより、内部EGR量ひいては吸気ポート壁面に付着した燃料の気化量を容易にして的確に把握することが可能である。これにより、燃焼空燃比及び排気空燃比がオーバリッチやオーバリーンになってしまうことが防止され、排ガスの悪化や燃焼の悪化が的確に防止される。
【0011】
また、請求項3の発明では、前記内部EGR量相関値は前記排気系内の排気圧と吸気系内の吸気圧の差であって、前記内部EGR量相関値検出手段は、前記排気系内の排気圧を検出する排気圧検出手段と前記吸気系内の吸気圧を検出する吸気圧検出手段とを有し、前記排気系内の排気圧と前記吸気系内の吸気圧との差を検出することを特徴としている。
【0012】
つまり、排気流動の抑制を行った場合、内部EGRと排気圧及び吸気圧の圧力差との相関が極めて高く、故に当該排気圧及び吸気圧の圧力差を内部EGR量相関値として検出することにより、内部EGR量ひいては吸気ポート壁面に付着した燃料の気化量を容易にしてより一層的確に把握することが可能である。これにより、燃焼空燃比及び排気空燃比がオーバリッチやオーバリーンになってしまうことがより一層良好に防止され、排ガスの悪化や燃焼の悪化が的確に防止される。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づいて説明する。
図1を参照すると、車両に搭載された本発明に係る内燃機関の排気浄化装置の概略構成図が示されており、以下、当該排気浄化装置の構成を説明する。
同図に示すように、内燃機関であるエンジン本体(以下、単にエンジンという)1としては、吸気管噴射型(Multi Port Injection:MPI)ガソリンエンジンが採用される。
【0014】
エンジン1のシリンダヘッド2には、各気筒毎に点火プラグ4が取り付けられており、点火プラグ4には高電圧を出力する点火コイル8が接続されている。
シリンダヘッド2には、各気筒毎に吸気ポート9が形成されており、各吸気ポート9の燃焼室5側には、エンジン回転に応じて回転するカムシャフト12のカムに倣って開閉作動し、各吸気ポート9と燃焼室5との連通と遮断とを行う吸気弁11がそれぞれ設けられている。そして、各吸気ポート9には吸気マニホールド10の一端がそれぞれ接続されている。吸気マニホールド10には、電磁式の燃料噴射弁6が取り付けられており、燃料噴射弁6には、燃料パイプ7を介して燃料タンクを擁した燃料供給装置(図示せず)が接続されている。
【0015】
吸気マニホールド10の燃料噴射弁6よりも上流側には、吸入空気量を調節する電磁式のスロットル弁17が設けられており、併せてスロットル弁17の弁開度を検出するスロットルポジションセンサ(TPS)18が設けられている。そして、吸気マニホールド10のスロットル弁17よりも下流側、即ち吸気ポート側には、吸気マニホールド10内の吸気の圧力、即ち吸気圧を検出する吸気圧センサ19が設けられている。
【0016】
また、シリンダヘッド2には、各気筒毎に略水平方向に排気ポート13が形成されており、各排気ポート13の燃焼室5側には、エンジン回転に応じて回転するカムシャフト16のカムに倣って開閉作動し、各排気ポート13と燃焼室5との連通と遮断とを行う排気弁15がそれぞれ設けられている。そして、各排気ポート13には排気マニホールド14の一端がそれぞれ接続されている。
【0017】
なお、当該MPIエンジンは公知のものであるため、その構成の詳細については説明を省略する。
排気マニホールド14の他端には排気管20が接続されており、当該排気管20には、排気浄化触媒装置として三元触媒コンバータ30が介装されている。また、排気管20の三元触媒コンバータ30よりも上流側には、Oセンサ22及び排気管20内の排気の圧力、即ち排気圧を検出する排気圧センサ24が配設されている。
【0018】
さらに、排気管20の三元触媒コンバータ30よりも下流側には、排気流動制御装置(排気流動制御手段)40が介装されている。
排気流動制御装置40は、主として排ガス中の有害物質(HC、CO等の未燃物の他、NOx、スモーク、H等を含む)の低減を促進させることを目的とする装置であり、排気圧、排気密度及び排気流速の少なくともいずれか一つを変更することが可能に構成されている。具体的には、排気流動制御装置40は排気管20の流路面積を調節可能な密閉型開閉弁42によって構成されている。
【0019】
密閉型開閉弁42としては種々の方式が考えられるが、ここでは、例えばバタフライ弁が採用される。バタフライ弁にはアクチュエータ44が設けられており、バタフライ弁は当該アクチュエータ44によって開閉作動する。
ECU50は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えており、当該ECU50により、エンジン1を含めた排気浄化装置の総合的な制御が行われる。
【0020】
ECU50の入力側には、上述したTPS18、吸気圧センサ19、Oセンサ22、排気圧センサ24の他、エンジン1のクランク角を検出するクランク角センサ52、エンジン1の冷却水温度Twを検出する水温センサ54等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力される。なお、クランク角センサ52からのクランク角情報に基づいてエンジン回転速度Neが検出される。
【0021】
一方、ECU50の出力側には、上述の燃料噴射弁6、点火コイル8、スロットル弁17、アクチュエータ44等の各種出力デバイスが接続されており、これら各種出力デバイスには各種センサ類からの検出情報に基づき演算された燃料噴射量、燃料噴射時期、点火時期、排気流動制御量等がそれぞれ出力され、これにより、空燃比が適正な目標空燃比に制御されて燃料噴射弁6から適正量の燃料が適正なタイミングで噴射され、点火プラグ4により適正なタイミングで火花点火が実施され、所望の排気流動制御量(例えば、目標排気圧)となるよう適正なタイミングで開閉弁42が開閉操作される。
【0022】
詳しくは、本発明に係る排気浄化装置では、エンジン1が冷態状態にあるときには、三元触媒コンバータ30を早期に活性化させるべく排気流動制御を行い、開閉弁42を閉弁操作して排気流動を抑制するようにしている。これにより、排気系内の排気圧或いは排気密度が上昇して排気系内のHC、CO等の未燃物と酸素或いはNOxとの関わりが強化されて反応が促進され、有害物質の排出が良好に防止されるとともに排気温度が上昇して三元触媒コンバータ30が早期に活性化される。
【0023】
しかしながら、通常エンジン1の冷態始動時には、吸気ポート壁面の温度も低く、吸気ポート壁面に付着した燃料が気化し難いため、始動直後増量(始動中からエンジン1が自力運転を開始した直後までの燃料増量をいう)や暖機増量(始動直後増量後からエンジン1の冷却水温が所定温度に達するまでの燃料増量をいう)、即ち燃料の低温増量補正を実施して燃焼悪化を防止するようにしており(燃料増量補正手段)、排気流動の抑制を行うと排気圧が上昇して内部EGRが増大するため、排気流動の抑制と同時に燃料の低温増量補正を行うようにすると、排気圧と吸気圧との大きな圧力差によって高温のEGRガスが吸気ポートに強く戻され、吸気ポート壁面に付着した燃料の気化が促進されて燃焼空燃比及び排気空燃比がオーバリッチになるという現象が起こる。
【0024】
そこで、本発明に係る排気浄化装置では、さらに、排気流動の抑制により変化する内部EGRと相関の高い値(内部EGR相関値)に応じて燃料の低温増量補正を制限するようにしており、以下説明する。
先ず第1実施例について説明する。
図2を参照すると、本発明の第1実施例に係る低温増量補正制御の制御ルーチンがフローチャートで示されており、以下当該フローチャートに沿い説明する。
【0025】
ステップS10では、排気流動制御の作動条件が成立したか否かを判別する。
具体的には、冷態始動時であるか否か、即ちエンジン1の冷却水温度Twが所定温度範囲内(例えば、50℃>Tw>−10℃)であり、且つ、エンジン1の始動後所定時間範囲内(例えば、始動〜100秒)であるか否かを判別する。例えば、冷却水温度Twが−7℃の場合には、始動後30秒〜90秒の範囲内であるか否か、冷却水温度Twが25℃の場合には、始動直後〜90秒の範囲内であるか否かを判別する。
【0026】
ステップS10の判別結果が偽(No)で上記条件を満たさないと判定された場合には、ステップS22に進み、排気流動制御、即ち排気流動の抑制を実施せず、ステップS24において、通常通りエンジン1の温度、即ち冷却水温度Twに応じて低温増量補正の増量補正量を設定する。なお、ここでは冷却水温度Twに応じて低温増量補正の増量補正量を設定するようにしているが、エンジン1の潤滑油温度や吸入空気温度応じて増量補正量を設定するようにしてもよく、可能であれば吸気ポート壁面への燃料の付着割合を検出し、当該付着割合に応じて設定するようにしてもよい。
【0027】
そして、ステップS18において、当該増量補正量に基づいて燃料噴射量を設定し、当該設定した燃料噴射量に基づき、ステップS20において、燃料噴射を行う。一方、ステップS10の判別結果が真(Yes)で上記条件が成立したと判定された場合には、次にステップS12に進む。
ステップS12では、排気流動制御を作動させて排気流動の抑制を実施する。これにより、排気中の有害物質の排出が良好に防止されるとともに排気温度が上昇して三元触媒コンバータ30の早期活性化が図られる。
【0028】
ステップS14では、排気圧センサ24によって内部EGRと相関の高い排気圧Pex(内部EGR相関値)を検出する(内部EGR量相関値検出手段)。即ち、内部EGR量と吸気ポート壁面に付着した燃料の気化量との間には相関があり、内部EGR量を検出できれば燃料の気化量を直接知ることができるのであるが、内部EGR量を直接検出することは困難であるため、内部EGRと相関の高い排気圧Pexを内部EGR相関値として検出し、内部EGR量ひいては吸気ポート壁面に付着した燃料の気化量を推定する。これにより、内部EGR量ひいては吸気ポート壁面に付着した燃料の気化量が容易にして的確に把握される。
【0029】
そして、ステップS16では、検出された排気圧Pexが大きいほど低温増量補正の増量補正量を冷却水温度Twに応じて設定される上記通常の増量補正量よりも減少側に設定する(燃料増量減少手段)。つまり、図3を参照すると排気圧Pexと増量補正量との関係の一例が示されているが、このように、排気圧Pexが大きいほど低温増量補正の増量補正量を減少させる。なお、同図に示すように増量補正量はエンジン1の冷却水温度Twに応じて変化するが、増量補正量の減少の傾向は冷却水温度Twに依らず同様である。
【0030】
排気圧Pexに応じて低温増量補正の増量補正量が設定されたら、上記同様に、ステップS18において、当該増量補正量に基づいて燃料噴射量を設定し、当該設定した燃料噴射量に基づき、ステップS20において、燃料噴射を行う。
これにより、排気流動の抑制によって排気圧が上昇して内部EGRが増大し、排気圧と吸気圧との大きな圧力差によって高温のEGRガスが吸気ポートに強く戻され、吸気ポート壁面に付着した燃料の気化が促進されても、増量補正量が内部EGRひいては吸気ポート壁面に付着した燃料の気化量と相関の高い排気圧Pexに応じて減少設定されることで燃焼空燃比及び排気空燃比がオーバリッチになってしまうことが良好に防止され、排ガスの悪化が防止される。
【0031】
また、このように排気圧Pexに応じて増量補正量を設定するようにすると、例えば密閉型開閉弁42の固着等により排気流動制御装置40に故障が生じ、排気流動の抑制指令に対して排気流動制御装置40が正常に作動せず、実際には排気圧Pexが高くならない場合、即ち吸気ポートに吹き戻される高温のEGRガスが少なく吸気ポート壁面に付着した燃料の気化が促進されないような場合であっても、燃料の増量補正量が排気圧Pexに応じた適正量とされて増量補正量の減少が抑えられるので、逆に燃焼空燃比及び排気空燃比がオーバリーンになってしまうことも良好に防止され、燃焼の悪化、ひいてはエンジンストールが防止される。
【0032】
次に第2実施例について説明する。
図3を参照すると、本発明の第2実施例に係る低温増量補正制御の制御ルーチンがフローチャートで示されており、以下当該フローチャートに沿い説明する。
なお、図3において上記図2と同一ステップについては同一符号を付して説明を省略し、ここでは上記第1実施例と異なる部分についてのみ説明する。
【0033】
第2実施例では、ステップS10を経てステップS12において排気流動制御を作動させて排気流動の抑制を実施したら、ステップS14’において、排気圧センサ24により検出される排気圧Pexと吸気圧センサ19により検出される吸気圧Pinとに基づき、排気圧Pexと吸気圧Pinとの圧力差ΔP(内部EGR相関値)を検出する(内部EGR量相関値検出手段)。即ち、排気圧Pexのみでも内部EGRひいては吸気ポート壁面に付着した燃料の気化量と相関が高いが、EGRガスは排気圧Pexと吸気圧Pinとの圧力差ΔPによって吸気ポートに吹き戻されるものであるため、圧力差ΔPは、内部EGR、特に吸気ポート壁面に付着した燃料の気化量と極めて相関が高く、ここでは排気圧Pexに代えて圧力差ΔPを内部EGR相関値として検出し、内部EGR量ひいては吸気ポート壁面に付着した燃料の気化量を推定する。これにより、内部EGR量ひいては吸気ポート壁面に付着した燃料の気化量が容易にしてより一層的確に把握される。
【0034】
そして、ステップS16’において、検出された圧力差ΔPが大きいほど低温増量補正の増量補正量を通常の増量補正量よりも減少側に設定し(燃料増量減少手段)、ステップS18において、当該増量補正量に基づいて燃料噴射量を設定し、当該設定した燃料噴射量に基づき、ステップS20において、燃料噴射を行う。なお、圧力差ΔPと増量補正量との関係は、上記図3における排気圧Pexと増量補正量との関係と同様である。
【0035】
これにより、排気流動の抑制によって排気圧が上昇して内部EGRが増大し、排気圧と吸気圧との大きな圧力差によって高温のEGRガスが吸気ポートに強く戻され、吸気ポート壁面に付着した燃料の気化が促進されても、増量補正量が内部EGR、特に吸気ポート壁面に付着した燃料の気化量と相関の高い排気圧Pexと吸気圧Pinとの圧力差ΔPに応じて減少設定されることで燃焼空燃比及び排気空燃比がオーバリッチになってしまうことがより一層良好に防止され、排ガスの悪化が防止される。
【0036】
また、このように排気圧Pexと吸気圧Pinとの圧力差ΔPに応じて増量補正量を設定するようにすると、例えば密閉型開閉弁42の固着等により排気流動制御装置40に故障が生じ、実際には排気圧Pexが高くならない場合、即ち吸気ポートに吹き戻される高温のEGRガスが少なく吸気ポート壁面に付着した燃料の気化が促進されないような場合であっても、燃料の増量補正量が圧力差ΔPに応じた適正量とされて増量補正量の減少が抑えられるので、逆に燃焼空燃比及び排気空燃比がオーバリーンになってしまうこともより一層良好に防止され、燃焼の悪化、ひいてはエンジンストールが防止される。
【0037】
以上で実施形態の説明を終えるが、このように、本発明に係る内燃機関の排気浄化装置では、内部EGRひいては吸気ポート壁面に付着した燃料の気化量と相関の高い排気圧Pex或いは排気圧Pexと吸気圧Pinとの圧力差ΔP(内部EGR量相関値)に応じて低温増量補正の増量補正量を設定し、排気圧Pex或いは圧力差ΔPが大きいほど、即ち排気流動の抑制により吸気ポートに吹き戻される高温のEGRガスが増大して吸気ポート壁面に付着した燃料の気化が促進されるほど燃料の増量補正量を減少させるようにしている。
【0038】
従って、燃焼空燃比及び排気空燃比がオーバリッチになってしまうことが良好に防止され、排ガスの悪化を防止できるとともに、排気流動制御装置40に故障が生じ、実際には排気圧Pexが高くならない場合であっても、燃焼空燃比及び排気空燃比がオーバリーンになってしまうことが良好に防止され、燃焼の悪化、ひいてはエンジンストールを防止することができる。
【0039】
なお、上記実施形態では、排気圧Pex或いは排気圧Pexと吸気圧Pinとの圧力差ΔP(内部EGR量相関値)に応じて燃料の低温増量補正を設定するようにしたが、それぞれ閾値を設け、排気圧Pexや圧力差ΔPが設定した閾値に達したときに一律に増量補正量を一定量減少させるような構成にしてもよい。
また、排気圧Pexと吸気圧Pinとの圧力差ΔPの代わりに、エンジン1の吸気弁11の開時期から所定期間内の吹き返しの圧力波を吸気圧情報に基づき検出し、当該圧力波による圧力上昇量を圧力差ΔPとして使用するようにしてもよい。
この場合、必要となるセンサは単一でよく、つまり、耐熱性を要してコストの高い排気圧センサ24を用いず、耐熱性を要さずによりコストの低い吸気圧センサ19のみでよく、コスト増を抑制することができる。
【0040】
【発明の効果】
以上詳細に説明したように、本発明の請求項1の内燃機関の排気浄化装置によれば、排気流動制御手段により排気流動の抑制を行う際、内燃機関の温度の低温度合いに応じ、内部EGR量相関値が大きいほど、即ち排気流動の抑制により吸気ポートに吹き戻される高温のEGRガスが増大して吸気ポート壁面に付着した燃料の気化が促進されるほど燃料の増量補正量を減少させるので、燃焼空燃比及び排気空燃比がオーバリッチにならないようにして排ガスの悪化を防止できるし、排気流動制御手段、例えば排気流動制御弁に固着等の故障があり、排気流動の抑制指令に対して実際には排気流動が抑制されておらず内部EGR量相関値が小さいとき、即ち吸気ポートに吹き戻される高温のEGRガスが少なく吸気ポート壁面に付着した燃料の気化が促進されないような状況下では、燃料の増量補正量を内部EGR量相関値に応じた適正量として増量補正量の減少を抑えるようにしたので、逆に燃焼空燃比及び排気空燃比がオーバリーンにならないようにして燃焼の悪化、ひいてはエンジンストールを防止することができる。これにより、内燃機関の低温時において、効率よく適正に燃料増量補正を実施して有害物質の排出量の低減及び触媒早期活性を実現できる。
【0041】
また、請求項2の内燃機関の排気浄化装置によれば、排気流動の抑制を行った場合、内部EGRと排気圧との相関が高く、排気系内の排気圧を内部EGR量相関値として検出することにより、内部EGR量ひいては吸気ポート壁面に付着した燃料の気化量を容易にして的確に把握することができる。これにより、燃焼空燃比及び排気空燃比がオーバリッチやオーバリーンになってしまうことを防止でき、排ガスの悪化や燃焼の悪化を的確に防止することができる。
【0042】
また、請求項3の内燃機関の排気浄化装置によれば、排気流動の抑制を行った場合、内部EGRと排気圧及び吸気圧の圧力差との相関が極めて高く、当該排気圧及び吸気圧の圧力差を内部EGR量相関値として検出することにより、内部EGR量ひいては吸気ポート壁面に付着した燃料の気化量を容易にしてより一層的確に把握することができる。これにより、燃焼空燃比及び排気空燃比がオーバリッチやオーバリーンになってしまうことをより一層良好に防止でき、排ガスの悪化や燃焼の悪化を的確に防止することができる。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の排気浄化装置の概略構成図である。
【図2】本発明の第1実施例に係る低温増量補正制御の制御ルーチンを示すフローチャートである。
【図3】排気圧Pexと増量補正量との関係の一例を示す図である。
【図4】本発明の第2実施例に係る低温増量補正制御の制御ルーチンを示すフローチャートである。
【符号の説明】
1 エンジン
6 燃料噴射弁
10 吸気マニホールド
11 吸気弁
14 排気マニホールド
15 排気弁
19 吸気圧センサ
20 排気管
24 排気圧センサ
30 三元触媒コンバータ
40 排気流動制御装置(排気流動制御手段)
42 密閉型開閉弁
50 ECU(電子コントロールユニット)
52 クランク角センサ
54 水温センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly to a technique for efficiently and appropriately performing fuel increase correction at a low temperature of the internal combustion engine to achieve reduction of harmful substance emissions and early catalyst activation.
[0002]
[Related background art]
By suppressing the exhaust flow in the exhaust system (from the combustion chamber to the exhaust pipe) (exhaust pressure increase, exhaust density increase, exhaust residence time extension, backflow into the cylinder, etc.), unburned matter (HC) , CO, etc.) and oxygen are promoted, and it is known that the emission of harmful substances and the early activation of the catalyst at the time of cold start can be realized (for example, see Patent Document 1).
[0003]
On the other hand, in the intake pipe injection type internal combustion engine, at the time of a cold start or the like, fuel attached to the intake port wall surface is unlikely to evaporate due to the low temperature of the intake port wall surface, and the fuel supplied to the cylinder decreases. Therefore, it is generally known to perform low-temperature increase correction for increasing the amount of fuel in accordance with the intake port wall surface temperature and, in turn, the degree of low temperature of the internal combustion engine.
[0004]
[Patent Document 1]
JP 2001-27145 A [0005]
[Problems to be solved by the invention]
By the way, when the exhaust gas flow is suppressed as described above, the exhaust pressure rises and the pressure difference between the exhaust pressure and the intake pressure increases. Therefore, when the internal EGR increases and the intake valve opens, high-temperature EGR gas Is strongly returned to the intake port.
As described above, when a large amount of high-temperature EGR gas is blown back to the intake port, vaporization of fuel attached to the intake port wall is promoted even during a cold start or the like, and the low-temperature increase correction is performed as described above. In such a case, the excess fuel is supplied by the amount of the vaporized fuel to enrich the air-fuel ratio, and the combustion air-fuel ratio and the exhaust air-fuel ratio become over-rich. There is a problem that the exhaust gas deteriorates.
[0006]
Therefore, in order to prevent such over-rich, it is conceivable to limit the low-temperature fuel increase correction and reduce the fuel increase correction amount during the suppression of the exhaust flow.
However, for example, when any failure such as sticking occurs in the exhaust flow control valve for suppressing the exhaust flow, the exhaust flow control valve does not actually suppress the exhaust flow even if the exhaust flow control command is issued. In this situation, if it is determined that the exhaust gas flow is being suppressed in such a situation and the increase correction amount is reduced, the amount of the EGR gas blown back to the intake port is small, and the vaporization of the fuel adhering to the intake port wall surface is reduced. On the contrary, there is a problem that the fuel is insufficient, the air-fuel ratio becomes over lean, and the combustion deteriorates. If the combustion deteriorates in this way, the engine may be stalled, which is not preferable.
[0007]
The present invention has been made to solve such a problem, and an object of the present invention is to efficiently and appropriately perform fuel increase correction at a low temperature of an internal combustion engine to reduce the emission of harmful substances and An object of the present invention is to provide an exhaust gas purification device for an internal combustion engine that can realize early catalyst activation.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a fuel increase correction means for increasing and correcting a fuel injection amount in accordance with a degree of low temperature of an internal combustion engine is provided in an exhaust system of the internal combustion engine. Exhaust flow control means for suppressing exhaust flow in the system; internal EGR amount correlation value detection means for detecting an internal EGR amount correlation value of the internal combustion engine that changes as exhaust flow is suppressed by the exhaust flow control means; The fuel injection system further comprises a fuel increase decreasing means for decreasing the fuel injection amount increase correction amount by the fuel increase correction means as the internal EGR amount correlation value detected by the internal EGR amount correlation value detection means increases.
[0009]
Therefore, by controlling the exhaust gas flow by the exhaust gas flow control means, the emission of harmful substances and the early activation of the catalyst can be realized. However, the internal EGR amount correlation is reduced according to the low temperature of the internal combustion engine. The larger the value, that is, the higher the amount of high-temperature EGR gas blown back to the intake port due to the suppression of the exhaust flow, and the more the vaporization of the fuel attached to the intake port wall surface is promoted, the more the fuel increase correction amount is reduced. The air-fuel ratio and the exhaust air-fuel ratio do not become overrich, and deterioration of the exhaust gas is prevented. Further, when there is a failure such as sticking in the exhaust flow control means, for example, the exhaust flow control valve, and the exhaust flow is not actually suppressed in response to the exhaust flow suppression command and the internal EGR amount correlation value is small, In a situation in which the amount of high-temperature EGR gas blown back to the port is small and the vaporization of the fuel attached to the intake port wall surface is not promoted, the fuel increase correction amount is determined as an appropriate amount corresponding to the internal EGR amount correlation value. Since the decrease is suppressed, the combustion air-fuel ratio and the exhaust air-fuel ratio do not become excessively lean, and the deterioration of the combustion and the engine stall are prevented.
[0010]
In the invention according to claim 2, the internal EGR amount correlation value is an exhaust pressure in the exhaust system, and the internal EGR amount correlation value detecting means detects an exhaust pressure in the exhaust system. It is characterized by comprising means.
In other words, when the exhaust gas flow is suppressed, the correlation between the internal EGR and the exhaust pressure is high. Therefore, the exhaust pressure in the exhaust system is detected as the internal EGR amount correlation value, so that the internal EGR amount and, consequently, the exhaust gas adhering to the intake port wall surface are detected. It is possible to easily understand the amount of fuel vaporized easily and accurately. As a result, the combustion air-fuel ratio and the exhaust air-fuel ratio are prevented from becoming over-rich or over-lean, and deterioration of exhaust gas and combustion are accurately prevented.
[0011]
Further, in the invention according to claim 3, the internal EGR amount correlation value is a difference between the exhaust pressure in the exhaust system and the intake pressure in the intake system, and the internal EGR amount correlation value detecting means is provided in the exhaust system. Exhaust pressure detecting means for detecting the exhaust pressure of the exhaust system and intake pressure detecting means for detecting the intake pressure in the intake system for detecting a difference between the exhaust pressure in the exhaust system and the intake pressure in the intake system. It is characterized by doing.
[0012]
That is, when the exhaust flow is suppressed, the correlation between the internal EGR and the pressure difference between the exhaust pressure and the intake pressure is extremely high, and therefore, the pressure difference between the exhaust pressure and the intake pressure is detected as the internal EGR amount correlation value. In addition, the amount of internal EGR, that is, the amount of fuel adhering to the wall surface of the intake port, can be easily determined, and the amount can be more accurately grasped. As a result, the combustion air-fuel ratio and the exhaust air-fuel ratio are prevented from becoming over-rich or over-lean more satisfactorily, and the deterioration of exhaust gas and the deterioration of combustion are properly prevented.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
Referring to FIG. 1, there is shown a schematic configuration diagram of an exhaust gas purification device for an internal combustion engine according to the present invention mounted on a vehicle, and the configuration of the exhaust gas purification device will be described below.
As shown in FIG. 1, an intake pipe injection (Multi Port Injection: MPI) gasoline engine is used as an engine body (hereinafter simply referred to as an engine) 1 which is an internal combustion engine.
[0014]
The cylinder head 2 of the engine 1 is provided with an ignition plug 4 for each cylinder, and the ignition plug 4 is connected to an ignition coil 8 for outputting a high voltage.
An intake port 9 is formed for each cylinder in the cylinder head 2, and an opening / closing operation is performed on the combustion chamber 5 side of each intake port 9 in accordance with a cam of a camshaft 12 that rotates according to engine rotation. An intake valve 11 is provided for communicating and shutting off each intake port 9 with the combustion chamber 5. One end of an intake manifold 10 is connected to each intake port 9. An electromagnetic fuel injection valve 6 is attached to the intake manifold 10, and a fuel supply device (not shown) having a fuel tank is connected to the fuel injection valve 6 via a fuel pipe 7. .
[0015]
An electromagnetic throttle valve 17 for adjusting the amount of intake air is provided upstream of the fuel injection valve 6 of the intake manifold 10, and a throttle position sensor (TPS) for detecting the valve opening of the throttle valve 17. ) 18 are provided. An intake pressure sensor 19 for detecting the pressure of intake air in the intake manifold 10, that is, the intake pressure, is provided downstream of the throttle valve 17 of the intake manifold 10, that is, on the intake port side.
[0016]
An exhaust port 13 is formed in the cylinder head 2 in a substantially horizontal direction for each cylinder, and a cam of a camshaft 16 that rotates according to engine rotation is provided on the combustion chamber 5 side of each exhaust port 13. Exhaust valves 15 which open and close in accordance with each other and perform communication and cutoff between each exhaust port 13 and the combustion chamber 5 are provided. One end of an exhaust manifold 14 is connected to each exhaust port 13.
[0017]
Since the MPI engine is a publicly known one, a detailed description of its configuration will be omitted.
An exhaust pipe 20 is connected to the other end of the exhaust manifold 14, and a three-way catalytic converter 30 is interposed in the exhaust pipe 20 as an exhaust purification catalyst device. An O 2 sensor 22 and an exhaust pressure sensor 24 for detecting the pressure of exhaust gas in the exhaust pipe 20, that is, an exhaust pressure, are disposed upstream of the three-way catalytic converter 30 in the exhaust pipe 20.
[0018]
Further, an exhaust flow control device (exhaust flow control means) 40 is provided downstream of the three-way catalytic converter 30 in the exhaust pipe 20.
Exhaust flow control device 40 is a device intended primarily harmful substances in exhaust gas (HC, other unburned substances such as CO, NOx, smoke, containing H 2 or the like) that promote the reduction of exhaust At least one of the atmospheric pressure, the exhaust density, and the exhaust flow speed can be changed. Specifically, the exhaust flow control device 40 is configured by a closed-type on-off valve 42 capable of adjusting the flow area of the exhaust pipe 20.
[0019]
Various methods are conceivable as the closed-type on-off valve 42. Here, for example, a butterfly valve is employed. The butterfly valve is provided with an actuator 44, and the butterfly valve is opened and closed by the actuator 44.
The ECU 50 includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, and the like), a central processing unit (CPU), a timer counter, and the like. Control is performed.
[0020]
The input side of the ECU 50, TPS18 described above, the intake pressure sensor 19, O 2 sensor 22, other exhaust pressure sensor 24, a crank angle sensor 52 for detecting the crank angle of the engine 1, detects the cooling water temperature Tw of the engine 1 Various sensors such as a water temperature sensor 54 are connected, and detection information from these sensors is input. The engine speed Ne is detected based on the crank angle information from the crank angle sensor 52.
[0021]
On the other hand, various output devices such as the above-described fuel injection valve 6, ignition coil 8, throttle valve 17, and actuator 44 are connected to the output side of the ECU 50. These various output devices are connected to detection information from various sensors. The fuel injection amount, the fuel injection timing, the ignition timing, the exhaust flow control amount, and the like calculated based on the above are output, whereby the air-fuel ratio is controlled to an appropriate target air-fuel ratio, and the appropriate amount of fuel is supplied from the fuel injection valve 6. Is injected at an appropriate timing, spark ignition is performed at an appropriate timing by the spark plug 4, and the on-off valve 42 is opened and closed at an appropriate timing so as to attain a desired exhaust flow control amount (for example, a target exhaust pressure). .
[0022]
Specifically, in the exhaust gas purifying apparatus according to the present invention, when the engine 1 is in a cold state, the exhaust gas flow control is performed so as to activate the three-way catalytic converter 30 at an early stage, and the on-off valve 42 is closed to operate the exhaust gas. The flow is controlled. As a result, the exhaust pressure or exhaust density in the exhaust system increases, and the relationship between unburned substances such as HC and CO and oxygen or NOx in the exhaust system is strengthened, the reaction is promoted, and emission of harmful substances is improved. And the exhaust gas temperature rises to activate the three-way catalytic converter 30 early.
[0023]
However, when the engine 1 is cold started, the temperature of the intake port wall surface is low, and the fuel adhering to the intake port wall surface is unlikely to evaporate. Therefore, the amount is increased immediately after the start (from the start to immediately after the engine 1 starts its own operation). Fuel increase) or warm-up increase (meaning fuel increase from the time immediately after start-up until the coolant temperature of the engine 1 reaches a predetermined temperature), that is, low temperature fuel increase correction is performed to prevent deterioration of combustion. When the exhaust flow is suppressed, the exhaust pressure rises and the internal EGR increases. Therefore, if the low-temperature increase correction of the fuel is performed simultaneously with the suppression of the exhaust flow, the exhaust pressure and the suction pressure are reduced. Due to a large pressure difference from the atmospheric pressure, the high-temperature EGR gas is strongly returned to the intake port, and the vaporization of the fuel attached to the intake port wall surface is promoted, so that the combustion air-fuel ratio and the exhaust air-fuel ratio are over-rich. Phenomenon of becoming occurs.
[0024]
Therefore, the exhaust gas purifying apparatus according to the present invention further limits the low-temperature fuel increase correction in accordance with a value (internal EGR correlation value) having a high correlation with the internal EGR that changes due to suppression of the exhaust flow. explain.
First, a first embodiment will be described.
Referring to FIG. 2, a control routine of the low-temperature increase correction control according to the first embodiment of the present invention is shown in a flowchart, and will be described below with reference to the flowchart.
[0025]
In step S10, it is determined whether the operating condition of the exhaust flow control is satisfied.
Specifically, whether the engine is in a cold start state, that is, the cooling water temperature Tw of the engine 1 is within a predetermined temperature range (for example, 50 ° C.>Tw> −10 ° C.), and after the engine 1 starts It is determined whether or not it is within a predetermined time range (for example, starting to 100 seconds). For example, when the cooling water temperature Tw is −7 ° C., it is determined whether the temperature is within a range of 30 seconds to 90 seconds after the start. When the cooling water temperature Tw is 25 ° C., it is within a range of immediately after the startup to 90 seconds. It is determined whether it is within.
[0026]
If the result of the determination in step S10 is false (No) and it is determined that the above condition is not satisfied, the process proceeds to step S22, and the exhaust flow control, that is, the suppression of the exhaust flow is not performed. An increase correction amount of the low temperature increase correction is set according to the temperature of 1, that is, the cooling water temperature Tw. Although the increase correction amount of the low temperature increase correction is set here according to the cooling water temperature Tw, the increase correction amount may be set according to the lubricating oil temperature of the engine 1 or the intake air temperature. Alternatively, if possible, the fuel adhesion ratio to the intake port wall surface may be detected and set according to the fuel adhesion ratio.
[0027]
Then, in step S18, the fuel injection amount is set based on the increase correction amount, and the fuel injection is performed in step S20 based on the set fuel injection amount. On the other hand, if the result of the determination in step S10 is true (Yes) and it is determined that the above condition is satisfied, then the flow proceeds to step S12.
In step S12, the exhaust flow control is activated to suppress the exhaust flow. As a result, the emission of harmful substances in the exhaust gas is properly prevented, and the exhaust gas temperature rises, whereby early activation of the three-way catalytic converter 30 is achieved.
[0028]
In step S14, the exhaust pressure sensor 24 detects an exhaust pressure Pex (internal EGR correlation value) having a high correlation with the internal EGR (internal EGR amount correlation value detecting means). That is, there is a correlation between the internal EGR amount and the amount of fuel vaporized on the intake port wall surface. If the internal EGR amount can be detected, the fuel vaporization amount can be directly known. Since it is difficult to detect, the exhaust pressure Pex having a high correlation with the internal EGR is detected as the internal EGR correlation value, and the internal EGR amount, and hence the amount of fuel vaporized on the intake port wall surface, are estimated. As a result, the amount of internal EGR, and hence the amount of fuel vaporized on the intake port wall surface, can be easily and accurately grasped.
[0029]
In step S16, the larger the detected exhaust pressure Pex is, the lower the increase correction amount of the low-temperature increase correction is set to be on the lower side than the above-described normal increase correction amount set according to the cooling water temperature Tw (fuel increase decrease). means). That is, FIG. 3 shows an example of the relationship between the exhaust pressure Pex and the increase correction amount. In this way, the increase correction amount of the low-temperature increase correction decreases as the exhaust pressure Pex increases. As shown in the figure, the increase correction amount changes according to the cooling water temperature Tw of the engine 1, but the decreasing tendency of the increase correction amount is the same regardless of the cooling water temperature Tw.
[0030]
After the increase correction amount of the low-temperature increase correction is set in accordance with the exhaust pressure Pex, in the same manner as described above, in step S18, the fuel injection amount is set based on the increase correction amount, and based on the set fuel injection amount, In S20, fuel injection is performed.
As a result, the exhaust pressure rises due to the suppression of the exhaust flow and the internal EGR increases, and the high temperature EGR gas is strongly returned to the intake port due to a large pressure difference between the exhaust pressure and the intake pressure, and the fuel adhered to the intake port wall surface Even if the gasification of the fuel gas is promoted, the increased air-fuel ratio and the air-fuel ratio of the exhaust gas are increased because the increase correction amount is set to be reduced in accordance with the internal EGR and the exhaust pressure Pex which is highly correlated with the vaporized amount of the fuel attached to the intake port wall surface. Enrichment is prevented well, and deterioration of exhaust gas is prevented.
[0031]
If the increase correction amount is set in accordance with the exhaust pressure Pex in this manner, the exhaust flow control device 40 will fail due to, for example, the sticking of the closed-type on-off valve 42, and the exhaust flow control command will be issued in response to the exhaust flow control command. When the flow control device 40 does not operate normally and the exhaust pressure Pex does not actually increase, that is, when the amount of the high-temperature EGR gas blown back to the intake port is small and the vaporization of the fuel attached to the intake port wall surface is not promoted. Even in this case, the fuel increase correction amount is set to an appropriate amount according to the exhaust pressure Pex, and the decrease in the fuel increase correction amount is suppressed, so that the combustion air-fuel ratio and the exhaust air-fuel ratio may also be overlean. This prevents deterioration of combustion and, consequently, engine stall.
[0032]
Next, a second embodiment will be described.
Referring to FIG. 3, a control routine of the low-temperature increase correction control according to the second embodiment of the present invention is shown in a flowchart, and will be described below with reference to the flowchart.
In FIG. 3, the same steps as those in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted. Here, only the portions different from the first embodiment will be described.
[0033]
In the second embodiment, after the exhaust flow control is activated in step S12 after step S10 to suppress the exhaust flow, in step S14 ', the exhaust pressure Pex detected by the exhaust pressure sensor 24 and the intake pressure sensor 19 are used. A pressure difference ΔP (internal EGR correlation value) between the exhaust pressure Pex and the intake pressure Pin is detected based on the detected intake pressure Pin (internal EGR amount correlation value detecting means). That is, although only the exhaust pressure Pex has a high correlation with the internal EGR and thus the amount of fuel adhering to the intake port wall surface, the EGR gas is blown back to the intake port by the pressure difference ΔP between the exhaust pressure Pex and the intake pressure Pin. Therefore, the pressure difference ΔP has a very high correlation with the internal EGR, particularly the amount of fuel vaporized on the intake port wall surface. In this case, the pressure difference ΔP is detected as the internal EGR correlation value instead of the exhaust pressure Pex, and the internal EGR is detected. Estimate the amount and thus the amount of fuel vaporized on the intake port wall. As a result, the amount of internal EGR, and thus the amount of fuel adhering to the intake port wall surface, can be easily and more accurately grasped.
[0034]
Then, in step S16 ', the larger the detected pressure difference .DELTA.P, the smaller the amount of increase in the low-temperature increase correction is set to a side smaller than the normal amount of increase correction (fuel increase decrease means), and in step S18, the increase correction is performed. The fuel injection amount is set based on the amount, and the fuel injection is performed in step S20 based on the set fuel injection amount. Note that the relationship between the pressure difference ΔP and the increase correction amount is the same as the relationship between the exhaust pressure Pex and the increase correction amount in FIG.
[0035]
As a result, the exhaust pressure rises due to the suppression of the exhaust flow and the internal EGR increases, and the high temperature EGR gas is strongly returned to the intake port due to a large pressure difference between the exhaust pressure and the intake pressure, and the fuel adhered to the intake port wall surface Even if the vaporization is promoted, the increase correction amount is set to be reduced according to the internal EGR, particularly the pressure difference ΔP between the exhaust pressure Pex and the intake pressure Pin, which is highly correlated with the vaporization amount of the fuel attached to the intake port wall surface. Thus, the combustion air-fuel ratio and the exhaust air-fuel ratio are prevented from becoming over-rich, whereby the deterioration of exhaust gas is prevented.
[0036]
Further, if the increase correction amount is set in accordance with the pressure difference ΔP between the exhaust pressure Pex and the intake pressure Pin in this way, a failure occurs in the exhaust flow control device 40 due to, for example, sticking of the closed-type on-off valve 42 and the like, Actually, even when the exhaust pressure Pex does not increase, that is, when the amount of the high-temperature EGR gas blown back to the intake port is small and the vaporization of the fuel attached to the intake port wall surface is not promoted, the increase correction amount of the fuel is not increased. Since the reduction amount of the increase correction amount is suppressed by setting the appropriate amount in accordance with the pressure difference ΔP, the combustion air-fuel ratio and the exhaust air-fuel ratio are prevented from becoming overlean more conversely. Engine stall is prevented.
[0037]
As described above, the description of the embodiment is finished. As described above, in the exhaust gas purifying apparatus for an internal combustion engine according to the present invention, the exhaust pressure Pex or the exhaust pressure Pex having a high correlation with the internal EGR and, consequently, the vaporization amount of the fuel attached to the intake port wall surface. Is set in accordance with the pressure difference ΔP (internal EGR amount correlation value) between the intake pressure Pin and the intake pressure Pin, and the larger the exhaust pressure Pex or the pressure difference ΔP is, that is, the more the exhaust gas flow is reduced, the more the exhaust flow is suppressed. The correction amount for increasing the fuel is decreased as the amount of the hot EGR gas blown back increases and the vaporization of the fuel attached to the intake port wall surface is promoted.
[0038]
Therefore, it is possible to prevent the combustion air-fuel ratio and the exhaust air-fuel ratio from becoming over-rich, thereby preventing deterioration of the exhaust gas, and causing a failure in the exhaust flow control device 40, so that the exhaust pressure Pex does not actually increase. Even in this case, it is possible to prevent the combustion air-fuel ratio and the exhaust air-fuel ratio from becoming overlean well, and to prevent deterioration of combustion and eventually engine stall.
[0039]
In the above embodiment, the low-temperature fuel increase correction is set in accordance with the exhaust pressure Pex or the pressure difference ΔP between the exhaust pressure Pex and the intake pressure Pin (correlation value of the internal EGR amount). When the exhaust pressure Pex or the pressure difference ΔP reaches the set threshold, the increase correction amount may be uniformly reduced by a fixed amount.
Further, instead of the pressure difference ΔP between the exhaust pressure Pex and the intake pressure Pin, a pressure wave that is blown back within a predetermined period from the opening timing of the intake valve 11 of the engine 1 is detected based on the intake pressure information, and the pressure due to the pressure wave is detected. The rising amount may be used as the pressure difference ΔP.
In this case, a single sensor is required, that is, the exhaust pressure sensor 24 which requires heat resistance and is expensive is not used, and only the intake pressure sensor 19 which does not require heat and is lower in cost may be used. Cost increase can be suppressed.
[0040]
【The invention's effect】
As described above in detail, according to the exhaust gas purifying apparatus for an internal combustion engine of the first aspect of the present invention, when suppressing the exhaust flow by the exhaust flow control means, the internal EGR is controlled according to the low temperature degree of the internal combustion engine. Since the larger the amount correlation value is, that is, the higher the amount of high-temperature EGR gas blown back to the intake port due to the suppression of the exhaust flow and the more the vaporization of the fuel attached to the intake port wall surface is promoted, the more the fuel increase correction amount is reduced. It is possible to prevent the exhaust air from deteriorating by preventing the combustion air-fuel ratio and the exhaust air-fuel ratio from becoming over-rich, and the exhaust flow control means, for example, the exhaust flow control valve has a failure such as sticking. Actually, when the exhaust gas flow is not suppressed and the internal EGR amount correlation value is small, that is, the amount of high-temperature EGR gas blown back to the intake port is small, and the amount of fuel adhering to the intake port wall surface is small. Under such a situation that the fuel consumption is not promoted, the fuel increase correction amount is set to an appropriate amount according to the internal EGR amount correlation value so as to suppress the decrease of the increase correction amount, and conversely, the combustion air-fuel ratio and the exhaust air-fuel ratio become over-lean. This prevents deterioration of combustion and, consequently, engine stall. As a result, when the internal combustion engine is at a low temperature, the fuel increase correction can be efficiently and appropriately performed to reduce the emission of harmful substances and achieve early catalyst activation.
[0041]
Further, according to the exhaust gas purifying apparatus for an internal combustion engine, when the exhaust gas flow is suppressed, the correlation between the internal EGR and the exhaust pressure is high, and the exhaust pressure in the exhaust system is detected as the internal EGR amount correlation value. By doing so, it is possible to easily and accurately grasp the internal EGR amount, and hence the amount of fuel vaporized on the intake port wall surface. As a result, it is possible to prevent the combustion air-fuel ratio and the exhaust air-fuel ratio from becoming over-rich or over-lean, and it is possible to accurately prevent deterioration of exhaust gas and combustion.
[0042]
According to the exhaust gas purifying apparatus for an internal combustion engine of the third aspect, when the exhaust gas flow is suppressed, the correlation between the internal EGR and the pressure difference between the exhaust pressure and the intake pressure is extremely high, and By detecting the pressure difference as the internal EGR amount correlation value, the internal EGR amount, and hence the amount of fuel vaporized on the intake port wall surface, can be easily and more accurately grasped. As a result, the combustion air-fuel ratio and the exhaust air-fuel ratio are prevented from becoming over-rich or over-lean, and the deterioration of the exhaust gas and the deterioration of the combustion can be accurately prevented.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an exhaust gas purification device for an internal combustion engine according to the present invention.
FIG. 2 is a flowchart illustrating a control routine of low-temperature increase correction control according to the first embodiment of the present invention.
FIG. 3 is a diagram illustrating an example of a relationship between an exhaust pressure Pex and an increase correction amount.
FIG. 4 is a flowchart showing a control routine of low-temperature increase correction control according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Engine 6 Fuel injection valve 10 Intake manifold 11 Intake valve 14 Exhaust manifold 15 Exhaust valve 19 Intake pressure sensor 20 Exhaust pipe 24 Exhaust pressure sensor 30 Three-way catalytic converter 40 Exhaust flow control device (exhaust flow control means)
42 Sealed on-off valve 50 ECU (Electronic control unit)
52 Crank angle sensor 54 Water temperature sensor

Claims (3)

内燃機関の温度の低温度合いに応じて燃料噴射量を増量補正する燃料増量補正手段と、
内燃機関の排気系に設けられ、該排気系内の排気流動を抑制する排気流動制御手段と、
前記排気流動制御手段により排気流動が抑制されることによって変化する内燃機関の内部EGR量相関値を検出する内部EGR量相関値検出手段と、
前記内部EGR量相関値検出手段により検出された内部EGR量相関値が大きいほど前記燃料増量補正手段による燃料噴射量の増量補正量を減少させる燃料増量減少手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
Fuel increase correction means for increasing the fuel injection amount in accordance with the degree of low temperature of the internal combustion engine;
Exhaust flow control means provided in an exhaust system of the internal combustion engine, for suppressing exhaust flow in the exhaust system;
An internal EGR amount correlation value detection unit that detects an internal EGR amount correlation value of the internal combustion engine that changes as the exhaust flow is suppressed by the exhaust flow control unit;
Fuel increase decreasing means for decreasing the fuel injection amount increase correction amount by the fuel increase amount correction means as the internal EGR amount correlation value detected by the internal EGR amount correlation value detection means increases;
An exhaust gas purifying apparatus for an internal combustion engine, comprising:
前記内部EGR量相関値は前記排気系内の排気圧であって、
前記内部EGR量相関値検出手段は、前記排気系内の排気圧を検出する排気圧検出手段からなることを特徴とする、請求項1記載の内燃機関の排気浄化装置。
The internal EGR amount correlation value is an exhaust pressure in the exhaust system,
2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein said internal EGR amount correlation value detecting means comprises exhaust pressure detecting means for detecting an exhaust pressure in said exhaust system.
前記内部EGR量相関値は前記排気系内の排気圧と吸気系内の吸気圧の差であって、
前記内部EGR量相関値検出手段は、前記排気系内の排気圧を検出する排気圧検出手段と前記吸気系内の吸気圧を検出する吸気圧検出手段とを有し、前記排気系内の排気圧と前記吸気系内の吸気圧との差を検出することを特徴とする、請求項1記載の内燃機関の排気浄化装置。
The internal EGR amount correlation value is a difference between the exhaust pressure in the exhaust system and the intake pressure in the intake system,
The internal EGR amount correlation value detection means includes exhaust pressure detection means for detecting exhaust pressure in the exhaust system and intake pressure detection means for detecting intake pressure in the intake system. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein a difference between an atmospheric pressure and an intake pressure in the intake system is detected.
JP2002352952A 2002-12-04 2002-12-04 Exhaust emission control device for internal combustion engine Pending JP2004183581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352952A JP2004183581A (en) 2002-12-04 2002-12-04 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352952A JP2004183581A (en) 2002-12-04 2002-12-04 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004183581A true JP2004183581A (en) 2004-07-02

Family

ID=32754405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352952A Pending JP2004183581A (en) 2002-12-04 2002-12-04 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004183581A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169712A (en) * 2007-01-09 2008-07-24 Mitsubishi Heavy Ind Ltd Engine with egr system
JP5126554B2 (en) * 2008-05-16 2013-01-23 トヨタ自動車株式会社 Soot emission estimation device for internal combustion engine
US9008949B2 (en) 2009-06-03 2015-04-14 Toyota Jidosha Kabushiki Kaisha Soot discharge estimating device for internal combustion engines
JP2018084202A (en) * 2016-11-24 2018-05-31 株式会社デンソー Control device for internal combustion engine
JP2019035358A (en) * 2017-08-14 2019-03-07 いすゞ自動車株式会社 Internal combustion engine and control method of the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169712A (en) * 2007-01-09 2008-07-24 Mitsubishi Heavy Ind Ltd Engine with egr system
JP5126554B2 (en) * 2008-05-16 2013-01-23 トヨタ自動車株式会社 Soot emission estimation device for internal combustion engine
US8457905B2 (en) 2008-05-16 2013-06-04 Toyota Jidosha Kabushiki Kaisha Soot discharge estimating device for internal combustion engines
US9008949B2 (en) 2009-06-03 2015-04-14 Toyota Jidosha Kabushiki Kaisha Soot discharge estimating device for internal combustion engines
JP2018084202A (en) * 2016-11-24 2018-05-31 株式会社デンソー Control device for internal combustion engine
WO2018096986A1 (en) * 2016-11-24 2018-05-31 株式会社デンソー Control device for internal combustion engine
US10907566B2 (en) 2016-11-24 2021-02-02 Denso Corporation Control device for internal combustion engine
JP2019035358A (en) * 2017-08-14 2019-03-07 いすゞ自動車株式会社 Internal combustion engine and control method of the same
JP7013713B2 (en) 2017-08-14 2022-02-01 いすゞ自動車株式会社 Internal combustion engine

Similar Documents

Publication Publication Date Title
JP3788424B2 (en) Engine failure diagnosis device
JP2002130015A (en) Fuel injection controller for cylinder injection type internal combustion engine
JP2010019178A (en) Engine control device
JP3933386B2 (en) Variable valve timing control device for internal combustion engine
US8474310B2 (en) Valve freeze control apparatus and sensor element breakage control apparatus for internal combustion engine
JP2008208741A (en) Control device for internal combustion engine
JP2008208784A (en) Control system for internal combustion engine
JP2004270603A (en) Internal combustion engine and controlling method of the engine
US20100242445A1 (en) Control apparatus and method for air-fuel ratio sensor
JP2004183581A (en) Exhaust emission control device for internal combustion engine
JP2001263050A (en) Control device for internal combustion engine
JP2004340065A (en) Control device for hydrogen engine
JP4331972B2 (en) Exhaust gas purification device for internal combustion engine
US20040187478A1 (en) Exhaust emission control apparatus for internal combustion engine
JP4415803B2 (en) Control device for internal combustion engine
JP2005016396A (en) Catalyst warming-up system of internal combustion engine
JP2004176607A (en) Engine
JP5556387B2 (en) Control device for variable valve system
JP2004197693A (en) Air/fuel ratio control system of internal combustion engine
JP2005214072A (en) Controller of internal combustion engine
JP4872793B2 (en) Control device for internal combustion engine
JP2008057403A (en) Control device for internal combustion engine
JP2007262919A (en) Control device of internal combustion engine
JP2002122018A (en) Catalyst-temperature estimating device
JP2004060553A (en) Intake air volume control device of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050518