JP2004182740A - Compound for electroluminescent device - Google Patents

Compound for electroluminescent device Download PDF

Info

Publication number
JP2004182740A
JP2004182740A JP2004021884A JP2004021884A JP2004182740A JP 2004182740 A JP2004182740 A JP 2004182740A JP 2004021884 A JP2004021884 A JP 2004021884A JP 2004021884 A JP2004021884 A JP 2004021884A JP 2004182740 A JP2004182740 A JP 2004182740A
Authority
JP
Japan
Prior art keywords
compound
electroluminescent device
group
hole transport
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004021884A
Other languages
Japanese (ja)
Other versions
JP3880967B2 (en
Inventor
Mutsumi Suzuki
睦美 鈴木
Masao Fukuyama
正雄 福山
Mutsuaki Murakami
睦明 村上
Taro Nanbu
太郎 南部
Hiromitsu Tomiyama
裕光 富山
Masahiko Oshino
雅彦 押野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Panasonic Holdings Corp
Original Assignee
Hodogaya Chemical Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2004021884A priority Critical patent/JP3880967B2/en
Publication of JP2004182740A publication Critical patent/JP2004182740A/en
Application granted granted Critical
Publication of JP3880967B2 publication Critical patent/JP3880967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound for an organic electroluminescent device having a hole transporting layer which excels in light-emission stability and storage stability. <P>SOLUTION: A tetraphenylbenzidine compound suited for the electroluminescent device consisting of an ITO electrode, a hole transport layer, an emissive layer, an electron transport layer, and a magnesium/silver electrode is provided. This tetraphenylbenzidine compound is used in the hole transport layer of the electroluminescent device or a heat-stable electroluminescent device or is suitably used in the emissive layer. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、正孔輸送層、発光層、電子輸送層を有し、各種の表示装置として広範囲に利用される発光素子であって、低い印加電圧、高輝度、かつ安定性にも優れた電界発光素子(EL素子)用化合物に関する。   The present invention relates to a light-emitting element having a hole-transporting layer, a light-emitting layer, and an electron-transporting layer, which is widely used as various display devices, and has a low applied voltage, high luminance, and excellent electric field stability. The present invention relates to a compound for a light emitting element (EL element).

EL素子は自己発光のために液晶素子にくらべて明るく、鮮明な表示が可能であるため、古くから多くの研究者によって研究されてきた。現在実用レベルに達した発光素子としては、無機蛍光体であるZnSを用いた素子がある。しかし、このような無機のEL素子は、発光のための印加電圧として200V以上が必要であるため、広く使用されるには至ってない。   EL devices have been studied by many researchers for a long time because they are self-luminous and can display brighter and clearer images than liquid crystal devices. As a light emitting element which has reached a practical level at present, there is an element using ZnS which is an inorganic phosphor. However, such an inorganic EL element has not been widely used because it requires an applied voltage of 200 V or more for light emission.

これに対して有機材料を用いた発光素子は、従来実用的なレベルからは遠いものであったが、1987年にコダック社のC.W.Tangらによって開発された積層構造素子によりその特性が飛躍的に進歩した。彼らは蒸着膜の構造が安定で電子を輸送することのできる蛍光体と、正孔を輸送することのできる有機物とを積層し、両方のキャリヤーを蛍光体中に注入して発光させることに成功した。これによって有機電界発光素子の発光効率が向上し、10V以下の電圧で1000cd/m2 以上の発光が得られるようになった。その後多くの研究者によってその特性向上のための研究が行なわれ、現在では短時間の発光では10000cd/m2 以上の発光特性が得られている。この種の発光素子の従来例としては、例えば特許文献1に記載されたものがある。
特開平4−220995号公報
On the other hand, a light emitting element using an organic material has been far from a practical level in the past, but in 1987 C.D. W. The characteristics have been drastically improved by the laminated structure element developed by Tang et al. They stacked a phosphor that can transport electrons with a stable structure of the deposited film and an organic substance that can transport holes, and succeeded in emitting light by injecting both carriers into the phosphor. did. As a result, the luminous efficiency of the organic electroluminescent device was improved, and luminescence of 1000 cd / m 2 or more was obtained at a voltage of 10 V or less. Since then, many researchers have studied to improve the characteristics, and at present, luminescence characteristics of 10,000 cd / m 2 or more are obtained in short-time light emission. As a conventional example of this type of light emitting element, there is one described in Patent Document 1, for example.
JP-A-4-220995

このような有機発光素子の基本的な発光特性はすでに十分実用範囲にあり、現在その実用化を妨げている最も大きな原因は、第1にその駆動時の発光安定性の不足であり、第2に保存安定性の不足である。ここで言う駆動時の発光安定性の不足とは、素子電流を印加して駆動した時に発光輝度が低下し、ダークスポットと呼ばれる発光しない領域が発生したり、素子の短絡により破壊が起こる現象を言い、保存安定性の不足とは、製作した素子を保存しているだけでも発光特性が低下する現象を言う。   The basic light-emitting characteristics of such an organic light-emitting device are already in a practically usable range, and the biggest cause currently hindering its practical use is firstly the lack of light-emission stability during driving, and Lack of storage stability. Insufficient light emission stability at the time of driving means a phenomenon in which the light emission luminance decreases when driven by applying an element current, a non-light emitting area called a dark spot occurs, or destruction occurs due to a short circuit of the element. In other words, the lack of storage stability refers to a phenomenon in which light emission characteristics are deteriorated only by storing the manufactured device.

本発明者らはこのようなEL素子の発光の安定性、保存安定性に関する問題点を解決するためその劣化の機構を検討した。その結果、特性劣化の大きな原因の一つがその正孔輸送層にあることが分かった。即ち、正孔輸送層として一般に利用される(化4:略称TPD)、(化5:略称TPAC)のような正孔輸送材料は、(1)湿度、温度、電流により結晶化して薄膜形状が一様でなくなる。(2)正孔輸送層が通電により分解する、などの変化を起こし、それによって発光性が著しく劣化することが分かった。   The present inventors have studied the mechanism of the deterioration of the EL element in order to solve the problems relating to the stability of light emission and the storage stability. As a result, it was found that one of the major causes of the property deterioration was the hole transport layer. That is, hole transporting materials such as (Chemical Formula 4: TPD) and (Chemical Formula 5: TPAC), which are generally used as a hole transporting layer, are (1) crystallized by humidity, temperature and current to form a thin film. Not uniform. (2) It was found that changes such as decomposition of the hole transport layer due to energization were caused, and the luminous property was significantly deteriorated.

Figure 2004182740
Figure 2004182740

Figure 2004182740
本発明の目的は、このような知見に基づき、発光安定性、保存安定性に優れた正孔輸送層を有する有機EL素子用化合物を提供することにある。また、それらの正孔輸送層、発光層、電子輸送層の材料として有用なテトラフェニルベンジジン化合物を提供することにある。このような正孔輸送材料の具備しなければならない条件としては、(1)優れた正孔輸送能力を持つこと、(2)熱的に安定で、ガラス状態が安定であること、(3)薄膜を形成できること、(4)電気的、化学的に安定であること、等を挙げることができる。
Figure 2004182740
An object of the present invention is to provide a compound for an organic EL device having a hole transport layer having excellent emission stability and storage stability based on such findings. Another object of the present invention is to provide a tetraphenylbenzidine compound useful as a material for the hole transport layer, the light emitting layer, and the electron transport layer. The conditions that such a hole transport material must have are (1) excellent hole transport ability, (2) thermally stable and stable glass state, and (3) A thin film can be formed; and (4) electrical and chemical stability.

上記目的を達成するために、本発明者らは、ITO電極、正孔輸送層、発光層、電子輸送層およびマグネシウム/銀電極からなるEL素子を試作し、新たに合成した数多くの正孔輸送材料の評価を行なった。発光層としては主に電子輸送層を兼ねるアルミキノリン3量体を用いた。上記正孔輸送層の材料として、少なくとも(化6)で記述されるテトラフェニルベンジジン化合物、または(化6)で記述されるテトラフェニルベンジジン化合物と(化7)で記述されるトリフェニルアミン3量体のうちのいずれかを使用した。   In order to achieve the above object, the present inventors prototyped an EL device comprising an ITO electrode, a hole transport layer, a light emitting layer, an electron transport layer, and a magnesium / silver electrode, and produced a large number of newly synthesized hole transports. The material was evaluated. As the light emitting layer, an aluminum quinoline trimer mainly serving also as an electron transport layer was used. As a material of the hole transport layer, at least a tetraphenylbenzidine compound represented by (Chemical Formula 6), or a tetraphenylbenzidine compound represented by (Chemical Formula 6) and triphenylamine trimeric represented by (Chemical Formula 7) Used one of the bodies.

Figure 2004182740
ただし、R1 、R2 はターシャリーブチル基、フェニル基、低級アルキル基もしくは低級アルコキシ基を置換基として有するフェニル基、R3 は水素原子、メチル基またはメトキシ基を表す。
Figure 2004182740
Here, R1 and R2 represent a tertiary butyl group, a phenyl group, a phenyl group having a lower alkyl group or a lower alkoxy group as a substituent, and R3 represents a hydrogen atom, a methyl group or a methoxy group.

Figure 2004182740
ただし、R1 、R2 、R3 は水素原子、低級アルキル基、または低級アルコキシ基、R4 は水素原子、メチル基、メトキシ基、またはクロル原子を表す。
Figure 2004182740
Here, R1, R2 and R3 represent a hydrogen atom, a lower alkyl group or a lower alkoxy group, and R4 represents a hydrogen atom, a methyl group, a methoxy group or a chloro atom.

本発明は、上記のような正孔輸送材料を使用した結果、それらが優れた正孔輸送能力を有しているばかりでなく、良好な薄膜を形成し、さらに熱的にも安定であることが分かった。この結果、優れた発光安定性、保存安定性を有するEL素子が実現できることが明らかになり、表示素子として広範囲に利用することができた。   According to the present invention, as a result of using the above-described hole transport materials, they not only have excellent hole transport ability, but also form a good thin film and are thermally stable. I understood. As a result, it was clarified that an EL device having excellent luminescence stability and storage stability could be realized, and could be widely used as a display device.

以上のように、本発明は、正孔輸送層の材料として、テトラフェニルベンジジン化合物を用いたことを特徴とする電界発光素子であり、本発明の材料を使用することにより、従来の有機電界発光素子の最も大きな問題点であった発光安定性および保存安定性を格段に改良した電界発光素子を実現することができる。   As described above, the present invention is an electroluminescent device characterized by using a tetraphenylbenzidine compound as a material of a hole transport layer. By using the material of the present invention, a conventional organic electroluminescent device is used. It is possible to realize an electroluminescent device in which luminescence stability and storage stability, which are the most serious problems of the device, are remarkably improved.

本発明の電解発光素子用化合物の例を実施例を挙げながら、説明する。   Examples of the compound for an electroluminescent device of the present invention will be described with reference to examples.

本発明の正孔輸送材料の一つであるテトラフェニルベンジジン化合物は、相当する4,4’−ジハロゲン化ビフェニルと相当するジフェニルアミン化合物との縮合反応、または相当するベンジジン化合物と相当するハロゲン化アリールとの縮合反応により合成することができる。これら縮合反応はウルマン反応として知られる方法である。   The tetraphenylbenzidine compound, which is one of the hole transporting materials of the present invention, is a condensation reaction of a corresponding 4,4′-dihalogenated biphenyl with a corresponding diphenylamine compound, or a corresponding benzidine compound and a corresponding aryl halide. Can be synthesized by a condensation reaction of These condensation reactions are methods known as Ullmann reactions.

また、本発明の別の正孔輸送材料であるトリフェニルアミン3量体は、相当するアニリン化合物と相当する4’−ハロゲン化ビフェニルアセトアニリド化合物との縮合反応、そしてその加水分解により得られるトリアミン化合物とハロゲン化アリールとの縮合反応により得られる。これら縮合反応はウルマン反応として知られる方法である。   Further, a triphenylamine trimer, which is another hole transporting material of the present invention, is a triamine compound obtained by a condensation reaction of a corresponding aniline compound with a corresponding 4′-halogenated biphenylacetanilide compound and hydrolysis thereof. And an aryl halide. These condensation reactions are methods known as Ullmann reactions.

これらの化合物の同定は、元素分析、IR測定により行ない、さらに溶媒による再結晶法、真空昇華法により精製し、純度を99.8%以上とした。純度の確認はTLCスキャナー、TG−DTA、融点測定により行なった。融点、分解点は正孔輸送層の熱安定性の目安となり、ガラス転移点はガラス状態の安定性の目安となる。発明者らは上記の化合物の置換基を種々に変えて材料を合成した。その結果、融点、分解点の大きさが置換基により変化し、いくつかの置換基の場合には、融点、分解点が高い材料を得ることができた。以下にいくつかの代表的な合成実施例を示す。   These compounds were identified by elemental analysis and IR measurement, and further purified by a recrystallization method using a solvent and a vacuum sublimation method to have a purity of 99.8% or more. The purity was confirmed by TLC scanner, TG-DTA, and melting point measurement. The melting point and decomposition point serve as a measure of the thermal stability of the hole transport layer, and the glass transition point serves as a measure of the stability of the glassy state. The inventors have synthesized materials by changing the substituents of the above compounds in various ways. As a result, the melting point and the size of the decomposition point varied depending on the substituent, and in the case of some substituents, a material having a high melting point and a high decomposition point could be obtained. The following are some representative synthetic examples.

(合成参考例1)
p−イソブチルアニリン、70.0g(0.47モル)を氷酢酸126mlに溶解して、30°Cで無水酢酸59.9g(0.58モル)を滴下し、滴下終了後40°Cで1時間反応させた。反応液を水300ml中へ注加し、析出した結晶をろ過、水洗、乾燥した。この結晶をトルエン140mlとn−ヘキサン、700mlの混合溶液で再結晶し、p−イソブチルアセトアニリド、60.4g(収率67.3%)を得た。融点は124.5〜125.0°Cであった。
(Synthesis Reference Example 1)
60.0 g (0.47 mol) of p-isobutylaniline was dissolved in 126 ml of glacial acetic acid, and 59.9 g (0.58 mol) of acetic anhydride was added dropwise at 30 ° C. Allowed to react for hours. The reaction solution was poured into 300 ml of water, and the precipitated crystals were filtered, washed with water, and dried. The crystals were recrystallized from a mixed solution of 140 ml of toluene, 700 ml of n-hexane and 60.4 g of p-isobutylacetanilide (yield 67.3%). Melting point was 124.5-125.0 ° C.

上記得られた、p−イソブチルアセトアニリド、17.9g(0.094モル)とブロムベンゼン22.1g(0.14モル)、無水炭酸カリウム、16.9g(0.12モ・・ル)、銅粉、0.89g(0.014モル)を混合し、168〜217°Cで14時間反応させた。反応生成物をトルエン100mlで抽出し、不溶分を濾別、除去後、濃縮乾固した。これをイソアミルアルコール、30mlで溶解し、水、3.4g、85%水酸化カリウム、11.8g(0.18モル)を加え、131°Cで加水分解した。水蒸気蒸留でイソアミルアルコール、過剰のブロムベンゼンを留去後、トルエン、120mlで抽出し、水洗、乾燥して濃縮した。濃縮物は乾燥し、N−4−イソブチルフェニルアニリン、17.6g(収率86.8%)を得た。   The above obtained p-isobutylacetanilide, 17.9 g (0.094 mol), bromobenzene 22.1 g (0.14 mol), anhydrous potassium carbonate, 16.9 g (0.12 mol), copper 0.89 g (0.014 mol) of the powder was mixed and reacted at 168 to 217 ° C for 14 hours. The reaction product was extracted with 100 ml of toluene, and the insolubles were removed by filtration, removed, and then concentrated to dryness. This was dissolved in 30 ml of isoamyl alcohol, 3.4 g of water, 11.8 g (0.18 mol) of 85% potassium hydroxide and hydrolyzed at 131 ° C. After isoamyl alcohol and excess bromobenzene were distilled off by steam distillation, the mixture was extracted with toluene (120 ml), washed with water, dried and concentrated. The concentrate was dried to obtain 17.6 g (86.8% yield) of N-4-isobutylphenylaniline.

さらに、N−4−イソブチルフェニルアニリン、17.6g(0.078モル)、4,4’−ジョードビフェニル、12.6g(0.031モル)、無水炭酸カリウム、12.9g(0.093モル)および銅粉、0.89g(0.014モル)を混合し、190〜220°Cで12時間反応させた。反応生成物をトルエン、70mlで抽出し、不溶分を濾別、除去後、濃縮してオイル状物とした。得られた粗製物は、カラムクロマトにより精製して(担体:シリカゲル、溶離液:トルエン/n−ヘキサン=1/6)、N,N’−ビス(p−イソブチルフェニル)−N,N’−ジフェニルベンジジン、8.5g(収率45.7%)を得た。融点は133.8〜135.3°Cであった。元素分析、IR測定により生成物の同定を行なった。元素分析値は次の通りである。炭素:測定値87.77%、理論値:87.96%、水素:測定値7.43%、理論値7.38%、窒素:測定値4.51%、理論値4,66%。   Further, N-4-isobutylphenylaniline, 17.6 g (0.078 mol), 4,4′-jodobiphenyl, 12.6 g (0.031 mol), anhydrous potassium carbonate, 12.9 g (0.093 mol) ) And 0.89 g (0.014 mol) of copper powder were mixed and reacted at 190 to 220 ° C. for 12 hours. The reaction product was extracted with 70 ml of toluene, the insolubles were removed by filtration, removed, and then concentrated to an oil. The obtained crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane = 1/6) to give N, N′-bis (p-isobutylphenyl) -N, N′-. 8.5 g (yield 45.7%) of diphenylbenzidine was obtained. Melting point was 133.8-135.3 ° C. The product was identified by elemental analysis and IR measurement. The elemental analysis values are as follows. Carbon: measured 87.77%, theoretical: 87.96%, hydrogen: measured 7.43%, theoretical 7.38%, nitrogen: measured 4.51%, theoretical 4,66%.

(合成参考例2)
アセトアニリド、23.0g(0.17モル)と4,4’−ジヨードビフェニル、85.3g(0.21モル)、無水炭酸カリウム、24.9g(0.18モル)、銅粉、2.48g(0.039モル)、ニトロベンゼン、40mlを混合し、190〜205°Cで10時間反応させた。反応生成物をトルエン200mlで抽出し、不溶分を濾別、除去後、濃縮乾固した。これをカラムクロマトにより精製して(担体:シリカゲル、溶離液:トルエン/n−ヘキサン=1/6)、N−(4’−ヨード−4−ビフェニリル)アセトアニリド、45.5g(収率64.8%)を得た。融点は135.0〜136.0°Cであった。
(Synthesis Reference Example 2)
2. Acetanilide, 23.0 g (0.17 mol), 4,4'-diiodobiphenyl, 85.3 g (0.21 mol), anhydrous potassium carbonate, 24.9 g (0.18 mol), copper powder, 48 g (0.039 mol), nitrobenzene and 40 ml were mixed and reacted at 190 to 205 ° C. for 10 hours. The reaction product was extracted with 200 ml of toluene, the insoluble matter was separated by filtration, removed, and then concentrated to dryness. This was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane = 1/6), N- (4′-iodo-4-biphenylyl) acetanilide, 45.5 g (yield 64.8). %). The melting point was 135.0-136.0 ° C.

続いてN−(4’−ヨード−4−ビフェニリル)アセトアニリド、18.2g(0.044モル)、アニリン、1.84g(0.020モル)、無水炭酸カリウム、6.91g(0.050モル)および銅粉、0.64g(0.010モル)、ニトロベンゼン、10mlを混合し、190〜215°Cで15時間反応させた。反応生成物をトルエン100mlで抽出し、不溶分を濾別、除去後、濃縮してオイル状物とした。オイル状物はイソアミルアルコール、50mlに溶解し、水1ml、85%水酸化カリウム、2.64g(0.040モル)を加え、130°Cで加水分解した。水蒸気蒸留でイソアミルアルコールを留去後、トルエン250mlで抽出し、水洗、乾燥して濃縮した。濃縮物はカラムクロマトにより精製して(担体:シリカゲル、溶離液:トルエン/n−ヘキサン=3/1)、N,N’−ビス(4’−フェニルアミノ−4−ビフェニリル)アニリン、8.85g(収率76.3%)を得た。   Subsequently, N- (4′-iodo-4-biphenylyl) acetanilide, 18.2 g (0.044 mol), aniline, 1.84 g (0.020 mol), anhydrous potassium carbonate, 6.91 g (0.050 mol) ) And copper powder, 0.64 g (0.010 mol), nitrobenzene, and 10 ml were mixed and reacted at 190 to 215 ° C. for 15 hours. The reaction product was extracted with 100 ml of toluene, and the insolubles were removed by filtration, removed, and concentrated to an oil. The oily substance was dissolved in 50 ml of isoamyl alcohol, 1 ml of water, 2.64 g (0.040 mol) of 85% potassium hydroxide was added, and the mixture was hydrolyzed at 130 ° C. After isoamyl alcohol was distilled off by steam distillation, the mixture was extracted with 250 ml of toluene, washed with water, dried and concentrated. The concentrate was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane = 3/1), and N, N′-bis (4′-phenylamino-4-biphenylyl) aniline, 8.85 g (Yield: 76.3%).

さらにN,N’−ビス(4’−フェニルアミノ−4−ビフェニリル)アニリン、8.70g(0.015モル)、ヨードベンゼン、6.74g(0.033モル)、無水炭酸カリウム、4.56g(0.33モル)、銅粉、0.48g(0.0075モル)、ニトロベンゼン、10mlを混合し、195〜205°Cで16時間反応させた。反応生成物をトルエン100mlで抽出し、不溶分を濾別、濃縮後、n−ヘキサンを加えて粗結晶を取り出した。粗結晶はカラムクロマトにより精製し、N,N’−ビス(4’−ジフェニルアミノ−4−ビフェニリル)アニリン、5.50g(収率:50.1%)を得た。明瞭な融点は見られなかった。元素分析、IR測定により生成物の同定を行なった。元素分析値は以下の通りである。炭素:測定値88.80%、理論値:88.61%、水素:測定値5.77%、理論値5.65%、窒素:測定値5.62%、理論値5.74%。   Further, N, N'-bis (4'-phenylamino-4-biphenylyl) aniline, 8.70 g (0.015 mol), iodobenzene, 6.74 g (0.033 mol), anhydrous potassium carbonate, 4.56 g (0.33 mol), copper powder, 0.48 g (0.0075 mol), nitrobenzene and 10 ml were mixed and reacted at 195 to 205 ° C for 16 hours. The reaction product was extracted with 100 ml of toluene, the insoluble matter was separated by filtration, and after concentration, n-hexane was added to take out crude crystals. The crude crystals were purified by column chromatography to obtain 5.50 g (yield: 50.1%) of N, N'-bis (4'-diphenylamino-4-biphenylyl) aniline. No clear melting point was found. The product was identified by elemental analysis and IR measurement. Elemental analysis values are as follows. Carbon: measured 88.80%, theoretical: 88.61%, hydrogen: measured 5.77%, theoretical 5.65%, nitrogen: measured 5.62%, theoretical 5.74%.

次に、これらを実際にEL素子として評価し、その素子の発光特性、発光特性の安定性、保存安定性を検討した。EL素子は、図1に示すように、ガラス基板1上に透明電極2としてITO電極をあらかじめ形成したものの上に、正孔輸送層3、電子輸送層兼発光層4、Mg/Ag電極5の順に蒸着して作製した。まず、十分に洗浄したガラス基板(ITO電極は製膜済み)、正孔輸送材、電子輸送性発光材として精製したアルミキノリン3量体を蒸着装置にセットした。0.1nm/秒の速度で正孔輸送層を蒸着し、膜厚を変えた試料を作製して最適の発光が得られる厚さを決定した。膜厚は材料によって異なるが、最適膜厚は40〜60nmの間の厚さであった。なお膜厚は水晶振動子によってモニターした。アルミキノリン3量体の蒸着は同じく0.1nm/秒の速度で行ない、その膜厚は50nmとした。Mg/Ag電極は0.4nm/秒の速度で行ない、その厚さを100nmとした。これらの蒸着はいずれも真空を破らずに連続して行なった。素子作製後、直ちに乾燥窒素中で電極の取り出しを行ない、引続き特性測定を行なった。   Next, these were actually evaluated as EL elements, and the emission characteristics, stability of the emission characteristics, and storage stability of the elements were examined. As shown in FIG. 1, the EL element has a structure in which an ITO electrode is formed in advance as a transparent electrode 2 on a glass substrate 1, and a hole transport layer 3, an electron transport layer / light emitting layer 4, and a Mg / Ag electrode 5 are formed on the glass substrate 1. It was prepared by vapor deposition in order. First, a sufficiently washed glass substrate (the ITO electrode was formed into a film), a hole transporting material, and an aluminum quinoline trimer purified as an electron transporting luminescent material were set in a vapor deposition apparatus. A hole transport layer was deposited at a rate of 0.1 nm / sec, and a sample having a different film thickness was prepared to determine a thickness at which optimal light emission was obtained. Although the film thickness varies depending on the material, the optimum film thickness was between 40 and 60 nm. The film thickness was monitored using a quartz oscillator. The deposition of the aluminum quinoline trimer was also performed at a rate of 0.1 nm / sec, and the film thickness was 50 nm. The Mg / Ag electrode was operated at a speed of 0.4 nm / sec, and the thickness was set to 100 nm. All of these depositions were performed continuously without breaking vacuum. Immediately after the device was manufactured, the electrode was taken out in dry nitrogen, and the characteristics were measured.

得られた素子の発光特性は100mA/cm2 の電流を印加した場合の発光輝度で定義した。また、発光の安定性は200cd/m2 の発光が得られる電流を連続で印加し、その時の発光輝度の変化を測定した。発光の寿命は輝度が半分の100cd/m2 になるまでの時間と定義した。保存安定性は室温、乾燥空気中に一定時間素子を放置後、20mA/cm2 の電流を印加し、輝度が初期発光特性の半分になるまでの時間で定義した。 The light emission characteristics of the obtained device were defined as the light emission luminance when a current of 100 mA / cm 2 was applied. As for the stability of light emission, a change in light emission luminance at that time was measured by continuously applying a current at which light emission of 200 cd / m 2 was obtained. The lifetime of light emission was defined as the time until the luminance was reduced to half, that is, 100 cd / m 2 . The storage stability was defined as the time required for the device to stand at room temperature in dry air for a certain period of time, then applying a current of 20 mA / cm 2 until the luminance became half of the initial light emission characteristics.

本発明の正孔輸送材料の評価のために、電子輸送層兼発光層4としてアルミキノリン3量体を用いたが、もちろん本発明では発光層の材料として各種の希土類錯体、オキサゾール誘導体、ポリパラフェニレンビニレンなどの各種の材料を用いることができる。また、発光層にキナクリドンやクマリンなどのドーパントを添加することにより、さらに高性能のELを作製することができる。さらにまた、電子輸送層、発光層、正孔輸送層の3層からなる電界発光素子とすることもできる。また、本発明の正孔輸送材料と適性な電子輸送材料とを組み合わせることにより、正孔輸送層を発光層として用いることもできる。   In order to evaluate the hole transporting material of the present invention, an aluminum quinoline trimer was used as the electron transporting layer and the light emitting layer 4. Of course, in the present invention, various rare earth complexes, oxazole derivatives, polyparaffins, etc. Various materials such as phenylene vinylene can be used. Further, by adding a dopant such as quinacridone or coumarin to the light emitting layer, a higher performance EL can be manufactured. Furthermore, an electroluminescent element including three layers of an electron transport layer, a light emitting layer, and a hole transport layer can be provided. Further, by combining the hole transporting material of the present invention with a suitable electron transporting material, the hole transporting layer can be used as a light emitting layer.

このような検討の結果、正孔輸送材料が130°C以上の融点、300°C以上の分解点を有する場合には優れた発光の安定性、保存安定性が得られることが分かった。したがって、上記化合物の置換基は、本発明の置換基に限らず、上記以上の融点、分解点を持つものであれば使用できる。   As a result of such studies, it has been found that when the hole transporting material has a melting point of 130 ° C. or higher and a decomposition point of 300 ° C. or higher, excellent luminescence stability and storage stability can be obtained. Therefore, the substituent of the above compound is not limited to the substituent of the present invention, and any compound having the above melting point and decomposition point can be used.

また、本発明による正孔輸送材料は、単独で用いることもできるが、2種類以上を共蒸着などで製膜して混合状態で用いることができる。さらに、本発明の正孔輸送材料を従来の正孔輸送材料であるTPACやTPDとの共蒸着によって使用することができる。2種類以上を同時蒸着して用いることにより、その結晶化を起こし難くする効果をしばしば呈する。   The hole transporting material according to the present invention can be used alone, but two or more types can be used in a mixed state by forming a film by co-evaporation or the like. Further, the hole transport material of the present invention can be used by co-evaporation with a conventional hole transport material such as TPAC or TPD. By using two or more kinds by simultaneous vapor deposition, an effect of making crystallization hardly occurs is often exhibited.

(素子参考例1)
十分に洗浄したITO電極、正孔輸送材としてテトラフェニルベンジジン化合物(1)(R1 =p−n−Bu、R2 =H、R3 =H、mp=132.9°C)、電子輸送性発光材として精製したアルミキノリン3量体を蒸着装置にセットした。0.1nm/秒の速度で化合物(1)を50nmの厚さで蒸着した。なお膜厚は水晶振動子によってモニターした。アルキミノリンの蒸着は同じく0.1nm/秒の速度で行ない、その膜厚は50nmとした。Mg/Ag電極は0.4nm/秒の速度で行ない、その厚さを100nmとした。これらの蒸着はいずれも真空を破らずに連続して行なった。素子作製後、直ちに乾燥窒素中で電極の取り出しを行ない、引続き特性測定を行なった。発光特性は2500cd/m2 、発光の寿命は620Hr、保存安定性は2200Hrであった。
(Reference Example 1)
A well-washed ITO electrode, a tetraphenylbenzidine compound (1) (R1 = pn-Bu, R2 = H, R3 = H, mp = 132.9 ° C.) as a hole transporting material, an electron transporting luminescent material The purified aluminum quinoline trimer was set in a vapor deposition apparatus. Compound (1) was deposited at a rate of 0.1 nm / sec to a thickness of 50 nm. The film thickness was monitored using a quartz oscillator. Alkyminoline was also deposited at a rate of 0.1 nm / sec, and the film thickness was 50 nm. The Mg / Ag electrode was operated at a speed of 0.4 nm / sec, and the thickness was set to 100 nm. All of these depositions were performed continuously without breaking vacuum. Immediately after the device was manufactured, the electrode was taken out in dry nitrogen, and the characteristics were measured. The light emission characteristics were 2500 cd / m 2 , the light emission life was 620 hr, and the storage stability was 2200 hr.

(比較例)
比較のために正孔輸送材として(化4:略称TPD)、(化5:略称TPAC)を用いて同じ条件でEL素子を作製し、その特性を調べた。TPDでの発光特性、発光の寿命性、保存安定性はそれぞれ、2200cd/m2 、220Hr、460Hrであった。一方、TPACでの発光性、発光の寿命性、保存安定性はそれぞれ、2500cd/m2 、280Hr、560Hrであった。
(Comparative example)
For comparison, an EL element was manufactured under the same conditions using (Chemical Formula 4: TPD for short) and (Chemical formula 5: TPAC for short) as a hole transport material, and the characteristics thereof were examined. The light emission characteristics, light emission lifetime, and storage stability of the TPD were 2200 cd / m 2 , 220 Hr, and 460 Hr, respectively. On the other hand, the light emission property, lifespan of light emission, and storage stability in TPAC were 2500 cd / m 2 , 280 Hr, and 560 Hr, respectively.

(素子実施例1)
素子参考例1と同様の方法でそれぞれ、テトラフェニルベンジジン化合物(5)(R1 =tBu、R2 =tBu、R3 =H)、(7)(R1 =C6 H5 、R2 =C6 H5 、R3 =H)、(8)(R1 =C6 H5 、R2 =C6 H5 、R3 =CH3 )、(10)(R1 =p−CH3 −C6 H4 、R2 =p−CH3 −C6 H4 、R3 =H)を正孔輸送材として使用したEL素子を作製し、その特性を評価した。
(Element Example 1)
Tetraphenylbenzidine compound (5) (R1 = tBu, R2 = tBu, R3 = H), (7) (R1 = C6H5, R2 = C6H5, R3 = H) in the same manner as in Reference Example 1. , (8) (R1 = C6H5, R2 = C6H5, R3 = CH3), (10) (R1 = p-CH3-C6H4, R2 = p-CH3-C6H4, R3 = H) An EL element used as a material was produced, and its characteristics were evaluated.

(素子参考例2)
素子参考例1と同様の方法でそれぞれ、テトラフェニルベンジジン化合物(2)(R1 =iBu、R2 =H、R3 =H)、(3)(R1 =iBu、R2 =H、R3 =CH3 )、(4)(R1 =tBu、R2 =H、R3 =H)、(6)(R1=C6 H5 、R2 =H、R3 =H)、(9)(R1 =p−CH3 −C6 H4 、R2 =H、R3 =OCH3 )を正孔輸送材として使用したEL素子を作製し、その特性を評価した。その結果を図2に示す。なお、上記テトラフェニルベンジジン化合物(2)〜(10)のR1 およびR2 の置換位置はすべてp−位を示す。このことから本発明によるテトラフェニルベンジジン化合物(・・5)、(7)、(8)、(10)は、発光寿命、保存安定性に優れていることが分かった。
(Element Reference Example 2)
The tetraphenylbenzidine compound (2) (R1 = iBu, R2 = H, R3 = H), (3) (R1 = iBu, R2 = H, R3 = CH3), (3) 4) (R1 = tBu, R2 = H, R3 = H), (6) (R1 = C6H5, R2 = H, R3 = H), (9) (R1 = p-CH3-C6H4, R2 = H) , R3 = OCH3) as a hole transport material, and the characteristics thereof were evaluated. The result is shown in FIG. The substitution positions of R1 and R2 in the above tetraphenylbenzidine compounds (2) to (10) all indicate the p-position. From this, it was found that the tetraphenylbenzidine compounds (..5), (7), (8), and (10) according to the present invention were excellent in luminescence life and storage stability.

(素子参考例3)
正孔輸送材に使用可能なトリフェニルアミン3量体化合物としては、次の化合物があげられる。トリフェニルアミン3量体化合物(11)(R1 =H、R2 =H、R3 =H、R4 =H)、(12)(R1 =H、R2 =H、R3 =H、R4 =CH3 )、(13)(R1 =tBu、R2 =p−CH3 、R3 =p−CH3 、R4 =H)、(14)(R1 =H、R2 =H、R3 =H、R4 =OCH3 )、(15)(R1 =H、R2 =m−CH3 、R3 =m−CH3 、R4 =H)、(16)(R1 =H、R2 =p−OCH3 、R3 =p−OCH3 、R4 =H)、(17)(R1 =p−CH3 、R2 =H、R3 =H、R4 =CH3・)、(18)(R1 =p−CH3 、R2 =p−iBu、R3 =p−iBu、R4 =H)、(19)(R1 =p−nBu、R2 =m−CH3 、R3 =H、R4 =Cl)(20)(R1 =p−OC2 H5 、R2 =p−CH3 、R3 =p−CH3 、R4 =H)。
(Element Reference Example 3)
As the triphenylamine trimer compound usable for the hole transport material, the following compounds can be mentioned. Triphenylamine trimer compound (11) (R1 = H, R2 = H, R3 = H, R4 = H), (12) (R1 = H, R2 = H, R3 = H, R4 = CH3), ( 13) (R1 = tBu, R2 = p-CH3, R3 = p-CH3, R4 = H), (14) (R1 = H, R2 = H, R3 = H, R4 = OCH3), (15) (R1 = H, R2 = m-CH3, R3 = m-CH3, R4 = H), (16) (R1 = H, R2 = p-OCH3, R3 = p-OCH3, R4 = H), (17) (R1 = P-CH3, R2 = H, R3 = H, R4 = CH3.), (18) (R1 = p-CH3, R2 = p-iBu, R3 = p-iBu, R4 = H), (19) ( R1 = p-nBu, R2 = m-CH3, R3 = H, R4 = Cl) (20) (R1 = -OC2 H5, R2 = p-CH3, R3 = p-CH3, R4 = H).

(素子参考例4)
素子参考例1と同様の方法でそれぞれ、トリフェニルアミン3量体化合物(11)(R1 =H、R2 =H、R3 =H、R4 =H)とテトラフェニルベンジジン化合物(4)(R1 =p−tBu、R2 =H、R3 =H)を共蒸着し、正孔輸送材として使用したEL素子を作製し、その特性を評価した。発光特性は3300cd/m2 、発光の寿命は720Hr、保存安定性は2900Hrであった。
(Reference Example 4)
The triphenylamine trimer compound (11) (R1 = H, R2 = H, R3 = H, R4 = H) and the tetraphenylbenzidine compound (4) (R1 = p −tBu, R2 = H, R3 = H) were co-evaporated to produce an EL element used as a hole transport material, and its characteristics were evaluated. The light emission characteristics were 3300 cd / m 2 , the light emission life was 720 hr, and the storage stability was 2900 hr.

本発明は、有機電界発光素子の正孔輸送層や発光層の材料として適したテトラフェニルベンジジン化合物を提供するものであり、本発明の材料を使用することにより、従来の有機電界発光素子の最も大きな問題点であった発光安定性および保存安定性を格段に改良した電界発光素子を実現することができる。   The present invention provides a tetraphenylbenzidine compound suitable as a material for a hole transport layer or a light-emitting layer of an organic electroluminescent device. It is possible to realize an electroluminescent device in which luminescence stability and storage stability, which have been major problems, are significantly improved.

本発明の一実施例における電界発光素子の構成を示す部分断面拡大斜視図FIG. 1 is an enlarged perspective view of a partial cross section showing the configuration of an electroluminescent device according to an embodiment of the present invention. 本発明の一実施例における正孔輸送層としてテトラフェニルベンジジン化合物を用いた電界発光素子の特性を示す一覧図List showing characteristics of an electroluminescent device using a tetraphenylbenzidine compound as a hole transport layer in one embodiment of the present invention.

符号の説明Explanation of reference numerals

1 ガラス基板
2 透明電極
3 正孔輸送層
4 電子輸送層兼発光層
5 Mg/Ag電極
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Transparent electrode 3 Hole transport layer 4 Electron transport layer and light emitting layer 5 Mg / Ag electrode

Claims (7)

下記一般式で記述されるテトラフェニルベンジジン化合物。
Figure 2004182740
ただし、R1 、R2 はターシャリーブチル基、フェニル基、低級アルキル基もしくは低級アルコキシ基を置換基として有するフェニル基、R3 は水素原子、メチル基またはメトキシ基を表す。
A tetraphenylbenzidine compound represented by the following general formula.
Figure 2004182740
Here, R1 and R2 represent a tertiary butyl group, a phenyl group, a phenyl group having a lower alkyl group or a lower alkoxy group as a substituent, and R3 represents a hydrogen atom, a methyl group or a methoxy group.
下記一般式で記述されるテトラフェニルベンジジン化合物である、電界発光素子用化合物。
Figure 2004182740
ただし、R1 、R2 はターシャリーブチル基、フェニル基、低級アルキル基もしくは低級アルコキシ基を置換基として有するフェニル基、R3 は水素原子、メチル基またはメトキシ基を表す。
A compound for an electroluminescent device, which is a tetraphenylbenzidine compound represented by the following general formula.
Figure 2004182740
Here, R1 and R2 represent a tertiary butyl group, a phenyl group, a phenyl group having a lower alkyl group or a lower alkoxy group as a substituent, and R3 represents a hydrogen atom, a methyl group or a methoxy group.
下記一般式で記述されるテトラフェニルベンジジン化合物である、熱安定性電界発光素子用化合物。
Figure 2004182740
ただし、R1 、R2 はターシャリーブチル基、フェニル基、低級アルキル基もしくは低級アルコキシ基を置換基として有するフェニル基、R3 は水素原子、メチル基またはメトキシ基を表す。
A compound for a thermostable electroluminescent device, which is a tetraphenylbenzidine compound represented by the following general formula.
Figure 2004182740
Here, R1 and R2 represent a tertiary butyl group, a phenyl group, a phenyl group having a lower alkyl group or a lower alkoxy group as a substituent, and R3 represents a hydrogen atom, a methyl group or a methoxy group.
前記した電界発光素子用化合物が、正孔輸送層に使用されることを特徴とする請求項2記載の電界発光素子用化合物。 The compound for an electroluminescent device according to claim 2, wherein the compound for an electroluminescent device is used for a hole transport layer. 前記した熱安定性電界発光素子用化合物が、正孔輸送層に使用されることを特徴とする請求項3記載の熱安定性電界発光素子用化合物。 The compound for a thermostable electroluminescent device according to claim 3, wherein the compound for a thermostable electroluminescent device is used for a hole transport layer. 前記した電界発光素子用化合物が、発光層に使用されることを特徴とする請求項2記載の電界発光素子用化合物。 The compound for an electroluminescent device according to claim 2, wherein the compound for an electroluminescent device is used for a light emitting layer. 前記した熱安定性電界発光素子用化合物が、発光層に使用されることを特徴とする請求項3記載の熱安定性電界発光素子用化合物。 The compound for a thermostable electroluminescent device according to claim 3, wherein the compound for a thermostable electroluminescent device is used for a light emitting layer.
JP2004021884A 2004-01-29 2004-01-29 Compound for electroluminescent device Expired - Lifetime JP3880967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021884A JP3880967B2 (en) 2004-01-29 2004-01-29 Compound for electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021884A JP3880967B2 (en) 2004-01-29 2004-01-29 Compound for electroluminescent device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001049489A Division JP3529735B2 (en) 2001-02-23 2001-02-23 Electroluminescent device

Publications (2)

Publication Number Publication Date
JP2004182740A true JP2004182740A (en) 2004-07-02
JP3880967B2 JP3880967B2 (en) 2007-02-14

Family

ID=32768139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021884A Expired - Lifetime JP3880967B2 (en) 2004-01-29 2004-01-29 Compound for electroluminescent device

Country Status (1)

Country Link
JP (1) JP3880967B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258237A (en) * 2006-03-20 2007-10-04 Univ Nagoya Structure stabilization method of organic laminated structure material and its use
JP2011088928A (en) * 2003-12-26 2011-05-06 Hodogaya Chem Co Ltd Tetramine compound and organic el element
US8334060B2 (en) 2005-07-22 2012-12-18 Samsung Display Co., Ltd. Triarylamine-based compound, method of preparing the same, and organic light emitting device using the triarylamine-based compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088928A (en) * 2003-12-26 2011-05-06 Hodogaya Chem Co Ltd Tetramine compound and organic el element
US8334060B2 (en) 2005-07-22 2012-12-18 Samsung Display Co., Ltd. Triarylamine-based compound, method of preparing the same, and organic light emitting device using the triarylamine-based compound
JP2007258237A (en) * 2006-03-20 2007-10-04 Univ Nagoya Structure stabilization method of organic laminated structure material and its use

Also Published As

Publication number Publication date
JP3880967B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
JPH07126615A (en) Electroluminescence device
JP5823679B2 (en) Tetramine compound and organic EL device
US7255938B2 (en) Organic electroluminescent device and organic compound for use in organic electroluminescent device
JP2003040873A (en) New quinoxaline derivative and organic electroluminescent element utilizing the same
JP2010021561A (en) New blue illuminator used for organic electroluminescent element
JP2005276832A (en) Organic electroluminescent element
JP2006151866A (en) Phenanthroline compound and light-emitting element
JP3594642B2 (en) Diaminodiphenyl compound and organic electroluminescent device using the compound
JP3274939B2 (en) EL device
KR20060121288A (en) Stable organic light-emitting devices using aminoanthracenes
JP3529735B2 (en) Electroluminescent device
JPH07331238A (en) Electroluminescent element
JP2000178548A (en) Luminescent material
KR100798817B1 (en) Spiro-compound for electroluminescent display device and electroluminescent display device comprising the same
JP2007308376A (en) Fluorene compound and organic el element
JP3880967B2 (en) Compound for electroluminescent device
JP3745296B2 (en) Electroluminescent device
JP2004059556A (en) Tetraarylmethane derivative and method for producing the same
JP4491264B2 (en) Arylamine compounds
JP2007299825A (en) Organic el device
JP3742095B2 (en) Electroluminescent device
JPWO2005094133A1 (en) Arylamine compound and organic electroluminescence device
JP2004059555A (en) Tetraarylmethane derivative and method for producing the same
JP2004284986A (en) Organic metal complex, its ligand, its production method, and organic el element
KR100471365B1 (en) Blue color emitting compounds for organic electroluminescent device and organic electroluminescent device using them

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term