JP3529735B2 - Electroluminescent device - Google Patents

Electroluminescent device

Info

Publication number
JP3529735B2
JP3529735B2 JP2001049489A JP2001049489A JP3529735B2 JP 3529735 B2 JP3529735 B2 JP 3529735B2 JP 2001049489 A JP2001049489 A JP 2001049489A JP 2001049489 A JP2001049489 A JP 2001049489A JP 3529735 B2 JP3529735 B2 JP 3529735B2
Authority
JP
Japan
Prior art keywords
group
transport layer
electroluminescent device
hole transport
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001049489A
Other languages
Japanese (ja)
Other versions
JP2001273978A (en
Inventor
睦美 鈴木
正雄 福山
睦明 村上
太郎 南部
裕光 富山
雅彦 押野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Hodogaya Chemical Co Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18910585&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3529735(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hodogaya Chemical Co Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2001049489A priority Critical patent/JP3529735B2/en
Publication of JP2001273978A publication Critical patent/JP2001273978A/en
Application granted granted Critical
Publication of JP3529735B2 publication Critical patent/JP3529735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正孔輸送層、発光層
子輸送層を有し、各種の表示装置として広範囲に利用
される発光素子であって、低い印加電圧、高輝度、かつ
安定性にも優れた有機電界発光素子(EL素子)に関す
る。
The present invention relates to a hole transport layer, luminescent layer,
It has electron transport layer, a light-emitting element that is utilized extensively as various display devices, about the low applied voltage, high luminance, and an organic electroluminescent device excellent in stability (EL device) <br />

【0002】[0002]

【従来の技術】EL素子は自己発光のために液晶素子に
くらべて明るく、鮮明な表示が可能であるため、古くか
ら多くの研究者によって研究されてきた。現在実用レベ
ルに達した発光素子としては、無機蛍光体であるZnS
を用いた素子がある。しかし、このような無機のEL素
子は、発光のための印加電圧として200V以上が必要
であるため、広く使用されるには至ってない。
2. Description of the Related Art EL devices have been researched by many researchers for a long time because they are self-luminous and thus are brighter and more vivid than liquid crystal devices. ZnS, which is an inorganic phosphor, is currently used as a light-emitting element that has reached a practical level.
There is an element using. However, since such an inorganic EL element requires an applied voltage of 200 V or more for light emission, it has not been widely used.

【0003】これに対して有機材料を用いた発光素子
は、従来実用的なレベルからは遠いものであったが、1
987年にコダック社のC.W.Tangらによって開
発された積層構造素子によりその特性が飛躍的に進歩し
た。彼らは蒸着膜の構造が安定で電子を輸送することの
できる蛍光体と、正孔を輸送することのできる有機物と
を積層し、両方のキャリヤーを蛍光体中に注入して発光
させることに成功した。これによって有機電界発光素子
の発光効率が向上し、10V以下の電圧で1000cd
/m2 以上の発光が得られるようになった。その後多く
の研究者によってその特性向上のための研究が行なわ
れ、現在では短時間の発光では10000cd/m2
上の発光特性が得られている。
On the other hand, a light emitting element using an organic material is far from a practical level, but
In 987, the C.I. W. The laminated structure element developed by Tang et al. Has dramatically improved its characteristics. They succeeded in stacking a phosphor with a stable structure of vapor-deposited film that can transport electrons and an organic substance that can transport holes, and injecting both carriers into the phosphor to emit light. did. As a result, the luminous efficiency of the organic electroluminescent device is improved, and 1000 cd at a voltage of 10 V or less
A light emission of / m 2 or more can be obtained. Since then, many researchers have conducted researches to improve the characteristics, and at present, light emission characteristics of 10,000 cd / m 2 or more are obtained in short-time light emission.

【0004】このような有機発光素子の基本的な発光特
性はすでに十分実用範囲にあり、現在その実用化を妨げ
ている最も大きな原因は、第1にその駆動時の発光安定
性の不足であり、第2に保存安定性の不足である。ここ
で言う駆動時の発光安定性の不足とは、素子電流を印加
して駆動した時に発光輝度が低下し、ダークスポットと
呼ばれる発光しない領域が発生したり、素子の短絡によ
り破壊が起こる現象を言い、保存安定性の不足とは、製
作した素子を保存しているだけでも発光特性が低下する
現象を言う。
The basic light-emitting characteristics of such an organic light-emitting device are already in a practical range, and the most important factor that hinders its practical use is the lack of light-emission stability during driving. Second, there is a lack of storage stability. Insufficient light emission stability at the time of driving here means that the light emission luminance is lowered when an element current is applied to drive, and a region called a dark spot which does not emit light is generated, or destruction occurs due to a short circuit of the element. That is, the lack of storage stability refers to a phenomenon in which the light emitting characteristics deteriorate even when the manufactured device is stored.

【0005】本発明者らはこのようなEL素子の発光の
安定性、保存安定性に関する問題点を解決するためその
劣化の機構を検討した。その結果、特性劣化の大きな原
因の一つがその正孔輸送層にあることが分かった。即
ち、正孔輸送層として一般に利用される(化4:略称T
PD)、(化5:略称TPAC)のような正孔輸送材料
は、(1)湿度、温度、電流により結晶化して薄膜形状
が一様でなくなる。(・・2)正孔輸送層が通電により分
解する、などの変化を起こし、それによって発光性が著
しく劣化することが分かった。
The present inventors have examined the mechanism of deterioration in order to solve the problems concerning the emission stability and storage stability of such EL devices. As a result, it was found that one of the major causes of the characteristic deterioration was the hole transport layer. That is, it is generally used as a hole transport layer ( Chemical formula 4 : abbreviation T
A hole-transporting material such as PD) or ( Chemical formula 5 : abbreviated TPAC) is (1) crystallized by humidity, temperature, and current, and the shape of the thin film becomes uneven. (..2) It was found that the hole transport layer undergoes changes such as decomposition upon application of electric current, which significantly deteriorates the light emitting property.

【化4】 [Chemical 4]

【化5】 [Chemical 5]

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、この
ような知見に基づき、発光安定性、保存安定性に優れた
正孔輸送層を有する有機EL素子を提供することにあ
。このような正孔輸送材料の具備しなければならない
条件としては、(1)優れた正孔輸送能力を持つこと、
(2)熱的に安定で、ガラス状態が安定であること、
(3)薄膜を形成できること、(4)電気的、化学的に
安定であること、等を挙げることができる。
An object of the present invention is to provide an organic EL device having a hole transport layer which is excellent in light emission stability and storage stability based on such findings . The conditions that must be provided in the hole transport material, such as this, (1) to have excellent hole transport capability,
(2) It is thermally stable and the glass state is stable,
(3) A thin film can be formed, (4) Electrical and chemical stability, etc. can be mentioned.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、ITO電極、正孔輸送層、発光層、
電子輸送層およびマグネシウム/銀電極からなるEL素
子を試作し、新たに合成した数多くの正孔輸送材料の評
価を行なった。発光層としては主に電子輸送層を兼ねる
アルミキノリン3量体を用いた。上記正孔輸送層の材料
として、少なくとも(化6)で記述されるテトラフェニ
ルベンジジン化合物、または(化6)で記述されるテト
ラフェニルベンジジン化合物と(化7)で記述されるト
リフェニルアミン3量体のうちのいずれかを使用した。
In order to achieve the above object, the present inventors have made an ITO electrode, a hole transport layer, a light emitting layer,
An EL device consisting of an electron transport layer and a magnesium / silver electrode was prototyped and a number of newly synthesized hole transport materials were evaluated. As the light emitting layer, an aluminum quinoline trimer mainly serving also as an electron transport layer was used. As the material of the hole transport layer, at least a tetraphenylbenzidine compound described in ( Chemical Formula 6 ), or a tetraphenylbenzidine compound described in ( Chemical Formula 6 ) and triphenylamine 3 amount described in ( Chemical Formula 7 ) Used one of the body.

【0008】[0008]

【化6】 [Chemical 6]

【0009】ただし、R1 、R2 は水素原子、ターシ
ャリーブチル基、フェニル基、低級アルキル基もしくは
低級アルコキシ基を置換基として有するフェニル基、R
3は水素原子、メチル基またはメトキシ基を表す。ま
た、R1 とR2 が同時に水素原子であることは無い。
[0009] However, R1, R2 is hydrogen atom, te sheet <br/> Yaribuchiru group, a phenyl group, a phenyl group having as a substituent a lower alkyl group or lower alkoxy radical, R
3 represents a hydrogen atom, a methyl group or a methoxy group. Further, R1 and R2 are not hydrogen atoms at the same time.

【0010】[0010]

【化7】 [Chemical 7]

【0011】ただし、R1 、R2 、R3 は水素原子、低
級アルキル基、または低級アルコキシ基、R4 は水素原
子、メチル基、メトキシ基、またはクロル原子を表す。
However, R 1 , R 2 and R 3 represent a hydrogen atom, a lower alkyl group or a lower alkoxy group, and R 4 represents a hydrogen atom, a methyl group, a methoxy group or a chloro atom.

【0012】[0012]

【作用】本発明は、上記のような正孔輸送材料を使用し
た結果、それらが優れた正孔輸送能力を有しているばか
りでなく、良好な薄膜を形成し、さらに熱的にも安定で
あることが分かった。この結果、優れた発光安定性、保
存安定性を有するEL素子が実現できることが明らかに
なり、表示素子として広範囲に利用することができた。
As a result of using the above hole transporting material, the present invention not only has excellent hole transporting ability but also forms a good thin film and is thermally stable. It turned out that As a result, it became clear that an EL device having excellent light emission stability and storage stability could be realized, and it could be widely used as a display device.

【0013】[0013]

【実施例1】本発明の正孔輸送材料の一つであるテトラ
フェニルベンジジン化合物は、相当する4,4’−ジハ
ロゲン化ビフェニルと相当するジフェニルアミン化合物
との縮合反応、または相当するベンジジン化合物と相当
するハロゲン化アリールとの縮合反応により合成するこ
とができる。これら縮合反応はウルマン反応として知ら
れる方法である。
Example 1 A tetraphenylbenzidine compound, which is one of the hole transport materials of the present invention, corresponds to a condensation reaction between a corresponding 4,4′-dihalogenated biphenyl and a corresponding diphenylamine compound, or a corresponding benzidine compound. It can be synthesized by a condensation reaction with an aryl halide. These condensation reactions are methods known as the Ullmann reaction.

【0014】また、本発明の別の正孔輸送材料であるト
リフェニルアミン3量体は、相当するアニリン化合物と
相当する4’−ハロゲン化ビフェニルアセトアニリド化
合物との縮合反応、そしてその加水分解により得られる
トリアミン化合物とハロゲン化アリールとの縮合反応に
より得られる。これら縮合反応はウルマン反応として知
られる方法である。
The triphenylamine trimer which is another hole transporting material of the present invention is obtained by a condensation reaction between a corresponding aniline compound and a corresponding 4'-halogenated biphenylacetanilide compound, and hydrolysis thereof. It is obtained by a condensation reaction of the obtained triamine compound and an aryl halide. These condensation reactions are methods known as the Ullmann reaction.

【0015】これらの化合物の同定は、元素分析、IR
測定により行ない、さらに溶媒による再結晶法、真空昇
華法により精製し、純度を99.8%以上とした。純度
の確認はTLCスキャナー、TG−DTA、融点測定に
より行なった。融点、分解点は正孔輸送層の熱安定性の
目安となり、ガラス転移点はガラス状態の安定性の目安
となる。発明者らは上記の化合物の置換基を種々に変え
て材料を合成した。その結果、融点、分解点の大きさが
置換基により変化し、いくつかの置換基の場合には、融
点、分解点が高い材料を得ることができた。以下にいく
つかの代表的な合成実施例を示す。
Identification of these compounds was carried out by elemental analysis, IR
The purity was set to 99.8% or more by performing the measurement and further purifying by the recrystallization method using a solvent and the vacuum sublimation method. The purity was confirmed by TLC scanner, TG-DTA and melting point measurement. The melting point and the decomposition point serve as a measure of the thermal stability of the hole transport layer, and the glass transition point serves as a measure of the stability of the glass state. Inventors synthesized material by changing the substituents on Symbol compound in various ways. As a result, the sizes of the melting point and the decomposition point changed depending on the substituents, and in the case of some substituents, a material having a high melting point and a high decomposition point could be obtained. Below are some representative synthetic examples.

【0016】(合成参考例1) p−イソブチルアニリン、70.0g(0.47モル)
を氷酢酸126mlに溶解して、30°Cで無水酢酸5
9.9g(0.58モル)を滴下し、滴下終了後40°
Cで1時間反応させた。反応液を水300ml中へ注加
し、析出した結晶をろ過、水洗、乾燥した。この結晶を
トルエン140mlとn−ヘキサン、700mlの混合
溶液で再結晶し、p−イソブチルアセトアニリド、6
0.4g(収率67.3%)を得た。融点は124.5
〜125.0°Cであった。
(Synthesis Reference Example 1) p-isobutylaniline, 70.0 g (0.47 mol)
Was dissolved in 126 ml of glacial acetic acid, and acetic anhydride 5 was added at 30 ° C.
9.9 g (0.58 mol) was added dropwise, and after the addition was completed, 40 °
The reaction was carried out at C for 1 hour. The reaction solution was poured into 300 ml of water, and the precipitated crystals were filtered, washed with water and dried. The crystals were recrystallized with a mixed solution of 140 ml of toluene, 700 ml of n-hexane, and p-isobutylacetanilide, 6
0.4 g (yield 67.3%) was obtained. Melting point 124.5
It was ~ 125.0 ° C.

【0017】上記得られた、p−イソブチルアセトアニ
リド、17.9g(0.094モル)とブロムベンゼン
22.1g(0.14モル)、無水炭酸カリウム、1
6.9g(0.12モル)、銅粉、0.89g(0.0
14モル)を混合し、168〜217°Cで14時間反
応させた。反応生成物をトルエン100mlで抽出し、
不溶分を濾別、除去後、濃縮乾固した。これをイソアミ
ルアルコール、30mlで溶解し、水、3.4g、85
%水酸化カリウム、11.8g(0.18モル)を加
え、131°Cで加水分解した。水蒸気蒸留でイソアミ
ルアルコール、過剰のブロムベンゼンを留去後、トルエ
ン、120mlで抽出し、水洗、乾燥して濃縮した。濃
縮物は乾燥し、N−4−イソブチルフェニルアニリン、
17.6g(収率86.8%)を得た。
The above-obtained p-isobutylacetanilide, 17.9 g (0.094 mol), brombenzene 22.1 g (0.14 mol), anhydrous potassium carbonate, 1
6.9 g (0.12 mol), copper powder, 0.89 g (0.0
14 mol) were mixed and reacted at 168 to 217 ° C for 14 hours. The reaction product is extracted with 100 ml of toluene,
The insoluble matter was filtered off, removed, and concentrated to dryness. This was dissolved in 30 ml of isoamyl alcohol, and water, 3.4 g, 85
% Potassium hydroxide (11.8 g, 0.18 mol) was added, and the mixture was hydrolyzed at 131 ° C. After distilling off isoamyl alcohol and excess bromine by steam distillation, the mixture was extracted with 120 ml of toluene, washed with water, dried and concentrated. The concentrate is dried, N-4-isobutylphenylaniline,
17.6 g (yield 86.8%) was obtained.

【0018】さらに、N−4−イソブチルフェニルアニ
リン、17.6g(0.078モル)、4,4’−ジョ
ードビフェニル、12.6g(0.031モル)、無水
炭酸カリウム、12.9g(0.093モル)および銅
粉、0.89g(0.014モル)を混合し、190〜
220°Cで12時間反応させた。反応生成物をトルエ
ン、70mlで抽出し、不溶分を濾別、除去後、濃縮し
てオイル状物とした。得られた粗製物は、カラムクロマ
トにより精製して(担体:シリカゲル、溶離液:トルエ
ン/n−ヘキサン=1/6)、N,N’−ビス(p−イ
ソブチルフェニル)−N,N’−ジフェニルベンジジ
ン、8.5g(収率45.7%)を得た。融点は13
3.8〜135.3°Cであった。元素分析、IR測定
により生成物の同定を行なった。元素分析値は次の通り
である。炭素:測定値87.77%、理論値:87.9
6%、水素:測定値7.43%、理論値7.38%、窒
素:測定値4.51%、理論値4,66%。
Further, N-4-isobutylphenylaniline, 17.6 g (0.078 mol), 4,4'-jodobiphenyl, 12.6 g (0.031 mol), anhydrous potassium carbonate, 12.9 g (0 0.093 mol) and copper powder, 0.89 g (0.014 mol) are mixed,
The reaction was carried out at 220 ° C for 12 hours. The reaction product was extracted with 70 ml of toluene, the insoluble matter was filtered off, removed, and concentrated to give an oily substance. The obtained crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane = 1/6) and N, N′-bis (p-isobutylphenyl) -N, N′- 8.5 g (yield 45.7%) of diphenylbenzidine was obtained. Melting point is 13
The temperature was 3.8 to 135.3 ° C. The product was identified by elemental analysis and IR measurement. The elemental analysis values are as follows. Carbon: measured value 87.77%, theoretical value: 87.9
6%, hydrogen: measured value 7.43%, theoretical value 7.38%, nitrogen: measured value 4.51%, theoretical value 4,66%.

【0019】(合成参考例2) アセトアニリド、23.0g(0.17モル)と4,
4’−ジードビフェニル、85.3g(0.21モ
ル)、無水炭酸カリウム、24.9g(0.18モ
ル)、銅粉、2.48g(0.039モル)、ニトロベ
ンゼン、40mlを混合し、190〜205°Cで10
時間反応させた。反応生成物をトルエン200mlで抽
出し、不溶分を濾別、除去後、濃縮乾固した。これをカ
ラムクロマトにより精製して(担体:シリカゲル、溶離
液:トルエン/n−ヘキサン=1/6)、N−(4’−
ヨード−4−ビフェニリル)アセトアニリド、45.5
g(収率64.8%)を得た。融点は135.0〜13
6.0°Cであった。
(Synthesis Reference Example 2) Acetanilide, 23.0 g (0.17 mol) and 4,
4'-yaw de biphenyl, 85.3 g (0.21 mol), anhydrous potassium carbonate, 24.9 g (0.18 mol), copper powder, 2.48 g (0.039 mol), nitrobenzene, mixing 40ml 10 at 190-205 ° C
Reacted for hours. The reaction product was extracted with 200 ml of toluene, the insoluble matter was filtered off, removed and then concentrated to dryness. This was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane = 1/6) and N- (4'-
Iodo-4-biphenylyl) acetanilide, 45.5
g (yield 64.8%) was obtained. Melting point 135.0-13
It was 6.0 ° C.

【0020】続いてN−(4’−ヨード−4−ビフェニ
リル)アセトアニリド、18.2g(0.044モ
ル)、アニリン、1.84g(0.020モル)、無水
炭酸カリウム、6.91g(0.050モル)および銅
粉、0.64g(0.010モル)、ニトロベンゼン、
10mlを混合し、190〜215°Cで15時間反応
させた。反応生成物をトルエン100mlで抽出し、不
溶分を濾別、除去後、濃縮してオイル状物とした。オイ
ル状物はイソアミルアルコール、50mlに溶解し、水
1ml、85%水酸化カリウム、2.64g(0.04
0モル)を加え、130°Cで加水分解した。水蒸気蒸
留でイソアミルアルコールを留去後、トルエン250m
lで抽出し、水洗、乾燥して濃縮した。濃縮物はカラム
クロマトにより精製して(担体:シリカゲル、溶離液:
トルエン/n−ヘキサン=3/1)、N,N’−ビス
(4’−フェニルアミノ−4−ビフェニリル)アニリ
ン、8.85g(収率76.3%)を得た。
Subsequently, N- (4'-iodo-4-biphenylyl) acetanilide, 18.2 g (0.044 mol), aniline, 1.84 g (0.020 mol), anhydrous potassium carbonate, 6.91 g (0 0.050 mol) and copper powder, 0.64 g (0.010 mol), nitrobenzene,
10 ml was mixed and reacted at 190 to 215 ° C for 15 hours. The reaction product was extracted with 100 ml of toluene, the insoluble matter was filtered off, removed, and concentrated to give an oily substance. The oily substance was dissolved in 50 ml of isoamyl alcohol, and 1 ml of water, 85% potassium hydroxide, 2.64 g (0.04
0 mol) was added, and the mixture was hydrolyzed at 130 ° C. After distilling off isoamyl alcohol by steam distillation, toluene 250m
It was extracted with 1, washed with water, dried and concentrated. The concentrate was purified by column chromatography (carrier: silica gel, eluent:
Toluene / n-hexane = 3/1) and N, N′-bis (4′-phenylamino-4-biphenylyl) aniline (8.85 g, yield 76.3%) were obtained.

【0021】さらにN,N’−ビス(4’−フェニルア
ミノ−4−ビフェニリル)アニリン、8.70g(0.
015モル)、ヨードベンゼン、6.74g(0.03
3モル)、無水炭酸カリウム、4.56g(0.33モ
ル)、銅粉、0.48g(0.0075モル)、ニトロ
ベンゼン、10mlを混合し、195〜205°Cで1
6時間反応させた。反応生成物をトルエン100mlで
抽出し、不溶分を濾別、濃縮後、n−ヘキサンを加えて
粗結晶を取り出した。粗結晶はカラムクロマトにより精
製し、N,N’−ビス(4’−ジフェニルアミノ−4−
ビフェニリル)アニリン、5.50g(収率:50.1
%)を得た。明瞭な融点は見られなかった。元素分析、
IR測定により生成物の同定を行なった。元素分析値は
以下の通りである。炭素:測定値88.80%、理論
値:88.61%、水素:測定値5.77%、理論値
5.65%、窒素:測定値5.62%、理論値5.74
%。
Further, N, N'-bis (4'-phenylamino-4-biphenylyl) aniline, 8.70 g (0.
015 mol), iodobenzene, 6.74 g (0.03
3 mol), anhydrous potassium carbonate, 4.56 g (0.33 mol), copper powder, 0.48 g (0.0075 mol), nitrobenzene, and 10 ml are mixed, and 1 at 195 to 205 ° C
The reaction was carried out for 6 hours. The reaction product was extracted with 100 ml of toluene, the insoluble matter was filtered off, and after concentration, n-hexane was added to take out crude crystals. The crude crystals were purified by column chromatography, and N, N'-bis (4'-diphenylamino-4-
Biphenylyl) aniline, 5.50 g (yield: 50.1
%) Was obtained. No clear melting point was seen. Elemental analysis,
The product was identified by IR measurement. The elemental analysis values are as follows. Carbon: measured value 88.80%, theoretical value: 88.61%, hydrogen: measured value 5.77%, theoretical value 5.65%, nitrogen: measured value 5.62%, theoretical value 5.74
%.

【0022】[0022]

【実施例2】次に、これらを実際にEL素子として評価
し、その素子の発光特性、発光特性の安定性、保存安定
性を検討した。EL素子は、図1に示すように、ガラス
基板1上に透明電極2としてITO電極をあらかじめ形
成したものの上に、正孔輸送層3、電子輸送層兼発光層
4、Mg/Ag電極5の順に蒸着して作製した。まず、
十分に洗浄したガラス基板(ITO電極は製膜済み)、
正孔輸送材、電子輸送性発光材として精製したアルミキ
ノリン3量体を蒸着装置にセットした。0.1nm/秒
の速度で正孔輸送層を蒸着し、膜厚を変えた試料を作製
して最適の発光が得られる厚さを決定した。膜厚は材料
によって異なるが、最適膜厚は40〜60nmの間の厚
さであった。なお膜厚は水晶振動子によってモニターし
た。アルミキノリン3量体の蒸着は同じく0.1nm/
秒の速度で行ない、その膜厚は50nmとした。Mg/
Ag電極は0.4nm/秒の速度で行ない、その厚さを
100nmとした。これらの蒸着はいずれも真空を破ら
ずに連続して行なった。素子作製後、直ちに乾燥窒素中
で電極の取り出しを行ない、引続き特性測定を行なっ
た。
[Embodiment 2] Next, these were actually evaluated as EL devices, and the emission characteristics of the devices, the stability of the emission characteristics, and the storage stability were examined. As shown in FIG. 1, the EL device comprises a hole transport layer 3, an electron transport layer / light emitting layer 4, and a Mg / Ag electrode 5 on which an ITO electrode is preliminarily formed as a transparent electrode 2 on a glass substrate 1. It vapor-deposited in order and produced. First,
A glass substrate that has been thoroughly washed (ITO electrodes have already been formed into a film),
The purified aluminum quinoline trimer as a hole transport material and an electron transport light emitting material was set in a vapor deposition apparatus. A hole transport layer was vapor-deposited at a rate of 0.1 nm / sec, samples having different film thicknesses were prepared, and the thickness at which optimum light emission was obtained was determined. Although the film thickness depends on the material, the optimum film thickness was between 40 and 60 nm. The film thickness was monitored by a crystal oscillator. The vapor deposition of aluminum quinoline trimer is also 0.1 nm /
The film thickness was set to 50 nm at a speed of 2 seconds. Mg /
The Ag electrode was formed at a speed of 0.4 nm / sec and its thickness was 100 nm. All of these vapor depositions were continuously performed without breaking the vacuum. Immediately after the device was manufactured, the electrode was taken out in dry nitrogen and the characteristics were continuously measured.

【0023】得られた素子の発光特性は100mA/c
2 の電流を印加した場合の発光輝度で定義した。ま
た、発光の安定性は200cd/m2 の発光が得られる
電流を連続で印加し、その時の発光輝度の変化を測定し
た。発光の寿命は輝度が半分の100cd/m2 になる
までの時間と定義した。保存安定性は室温、乾燥空気中
に一定時間素子を放置後、20mA/cm2 の電流を印
加し、輝度が初期発光特性の半分になるまでの時間で定
義した。
The emission characteristics of the obtained device is 100 mA / c
It was defined by the emission brightness when a current of m 2 was applied. The stability of light emission was measured by continuously applying a current capable of obtaining a light emission of 200 cd / m 2 and measuring the change in the light emission luminance at that time. The lifetime of light emission was defined as the time until the luminance reached to half, 100 cd / m 2 . The storage stability was defined as the time until the luminance became half of the initial emission characteristics after applying a current of 20 mA / cm 2 after leaving the device in room temperature and dry air for a certain period of time.

【0024】本発明の正孔輸送材料の評価のために、電
子輸送層兼発光層4としてアルミキノリン3量体を用い
たが、もちろん本発明では発光層の材料として各種の希
土類錯体、オキサゾール誘導体、ポリパラフェニレンビ
ニレンなどの各種の材料を用いることができる。また、
発光層にキナクリドンやクマリンなどのドーパントを添
加することにより、さらに高性能のELを作製すること
ができる。さらにまた、電子輸送層、発光層、正孔輸送
層の3層からなる電界発光素子とすることもできる。ま
た、本発明の正孔輸送材料と適性な電子輸送材料とを組
み合わせることにより、正孔輸送層を発光層として用い
ることもできる。
In order to evaluate the hole transporting material of the present invention, aluminum quinoline trimer was used as the electron transporting layer / light emitting layer 4. Of course, in the present invention, various rare earth complexes and oxazole derivatives are used as the material of the light emitting layer. Various materials such as polyparaphenylene vinylene can be used. Also,
By adding a dopant such as quinacridone or coumarin to the light emitting layer, a higher performance EL can be manufactured. Furthermore, an electroluminescent device having three layers of an electron transport layer, a light emitting layer, and a hole transport layer can be used. Further, by combining the hole transport material of the present invention with a suitable electron transport material, the hole transport layer can be used as a light emitting layer.

【0025】このような検討の結果、正孔輸送材料が1
30°C以上の融点、300°C以上の分解点を有する
場合には優れた発光の安定性、保存安定性が得られるこ
とが分かった。したがって、上記化合物の置換基は、本
発明の置換基に限らず、上記以上の融点、分解点を持つ
ものであれば使用できる。
As a result of such a study, the hole transport material is 1
It was found that excellent emission stability and storage stability can be obtained when the melting point is 30 ° C. or higher and the decomposition point is 300 ° C. or higher. Therefore, the substituent of the above compound is not limited to the substituent of the present invention, and any compound having a melting point and a decomposition point above the above can be used.

【0026】また、本発明による正孔輸送材料は、単独
で用いることもできるが、2種類以上を共蒸着などで製
膜して混合状態で用いることができる。さらに、本発明
の正孔輸送材料を従来の正孔輸送材料であるTPACや
TPDとの共蒸着によって使用することができる。2種
類以上を同時蒸着して用いることにより、その結晶化を
起こし難くする効果をしばしば呈する。
The hole transporting material according to the present invention can be used alone, but two or more kinds can be formed into a film by co-evaporation or the like and used in a mixed state. Furthermore, the hole transport material of the present invention can be used by co-evaporation with conventional hole transport materials TPAC and TPD. When two or more kinds are simultaneously vapor-deposited and used, the effect of making it difficult to cause crystallization is often exhibited.

【0027】(素子参考例1) 十分に洗浄したITO電極、正孔輸送材としてテトラフ
ェニルベンジジン化合物(1)(R1 =p−n−B
u、R2 =H、R3 =H、mp=132.9°C)、
電子輸送性発光材として精製したアルミキノリン3量体
を蒸着装置にセットした。0.1nm/秒の速度で化合
物(1)を50nmの厚さで蒸着した。なお膜厚は水晶
振動子によってモニターした。アルキミノリンの蒸着は
同じく0.1nm/秒の速度で行ない、その膜厚は50
nmとした。Mg/Ag電極は0.4nm/秒の速度で
行ない、その厚さを100nmとした。これらの蒸着は
いずれも真空を破らずに連続して行なった。素子作製
後、直ちに乾燥窒素中で電極の取り出しを行ない、引続
き特性測定を行なった。発光特性は2500cd/m
2 、発光の寿命は620Hr、保存安定性は2200H
rであった。
(Element Reference Example 1) A thoroughly washed ITO electrode and a tetraphenylbenzidine compound (1) as a hole transport material (R1 = pnB)
u, R2 = H, R3 = H, mp = 132.9 ° C),
The purified aluminum quinoline trimer as an electron-transporting luminescent material was set in the vapor deposition apparatus. Compound (1) was vapor-deposited with a thickness of 50 nm at a rate of 0.1 nm / sec. The film thickness was monitored by a crystal oscillator. Alkyminoline is also vapor-deposited at a rate of 0.1 nm / sec and its film thickness is 50
nm. The Mg / Ag electrode was formed at a speed of 0.4 nm / sec and its thickness was 100 nm. All of these vapor depositions were continuously performed without breaking the vacuum. Immediately after the device was manufactured, the electrode was taken out in dry nitrogen and the characteristics were continuously measured. Luminous property is 2500 cd / m
2 , emission life is 620Hr, storage stability is 2200H
It was r.

【0028】(比較例) 比較のために正孔輸送材として(化4:略称TPD)、
(化5:略称TPAC)を用いて同じ条件でEL素子を
作製し、その特性を調べた。TPDでの発光特性、発光
の寿命性、保存安定性はそれぞれ、2200cd/m
2 、220Hr、460Hrであった。一方、TPAC
での発光性、発光の寿命性、保存安定性はそれぞれ、2
500cd/m2 、280Hr、560Hrであった
( Comparative Example ) As a hole transport material for comparison (Chemical 4: TPD),
(Chemical formula 5: Abbreviation TPAC) was used to fabricate an EL element under the same conditions, and its characteristics were examined. The emission characteristics, emission lifetime, and storage stability of TPD are 2200 cd / m, respectively.
2 , 220 Hr and 460 Hr. On the other hand, TPAC
In terms of luminescence, longevity of luminescence, and storage stability,
It was 500 cd / m 2 , 280 Hr, and 560 Hr .

【0029】(素子実施例) 素子参考例1と同様の方法でそれぞれ、テトラフェニル
ベンジジン化合物(4)(R1=tBu、R2 =H、
R3 =H)、(5)(R1 =tBu、R2 =tB
u、R3 =H)、(6)(R1=C6 H5 、R2 =
H、R3 =H)、(7)(R1 =C6 H5、R2 =
C6 H5 、R3 =H)、(8)(R1 =C6 H5
、R2 =C6 H5 、R3 =CH3 )、(9)(R
1 =p−CH3 −C6 H4 、R2 =H、R3 =O
CH3 )、(10)(R1 =p−CH3 −C6 H4
、R2 =p−CH3 −C6 H4 、R3 =H)を正
孔輸送材として使用したEL素子を作製し、その特性を
評価した。 (素子参考例2素子参考例1と同様の方法でそれぞれ、テトラフェニル
ベンジジン化合物(・・2)(R1 =iBu、R2
H、R3 =H)、(3)(R1 =iBu、R2
H、R3 =CH3 )を正孔輸送材として使用したEL
素子を作製し、その特性を評価した。 その結果を図2に
示す。なお、上記テトラフェニルベンジジン化合物
(2)〜(10)のR1 およびR2 の置換位置はすべ
てp−位を示す。このことから本発明によるテトラフェ
ニルベンジジン化合物()〜(10)は、発光寿命、
保存安定性に優れていることが分かった。
[0029] (devices Example 1) element respectively in Reference Example 1 and the same method, tetraphenyl benzidine compound (4) (R1 = tBu, R2 = H,
R3 = H), (5) (R1 = tBu, R2 = tB
u, R3 = H), (6) (R1 = C6 H5, R2 =
H, R3 = H), (7) (R1 = C6 H5, R2 =
C6 H5, R3 = H), (8) (R1 = C6 H5
, R2 = C6H5, R3 = CH3), (9) (R
1 = p-CH3-C6H4, R2 = H, R3 = O
CH3), (10) (R1 = p-CH3 -C6 H4
, R2 = p-CH3-C6H4, R3 = H) was used as a hole transport material, and the characteristics thereof were evaluated. ( Element reference example 2 ) Tetraphenyl was prepared in the same manner as in element reference example 1.
Benzidine compound (・ ・ 2) (R1 = IBu, R2 =
H, R3 = H), (3) (R1 = IBu, R2 =
H, R3 = CH3 ) Used as a hole transport material
A device was prepared and its characteristics were evaluated. The result is shown in FIG. The substitution positions of R1 and R2 in the tetraphenylbenzidine compounds (2) to (10) all represent p-position. Therefore, the tetraphenylbenzidine compounds ( 4 ) to (10) according to the present invention have
It was found that the storage stability was excellent.

【0030】(素子参考例3)正孔輸送材に使用可能なトリフェニルアミン3量体化合
物としては、次の化合物があげられる。 トリフェニルア
ミン3量体化合物(11)(R1 =H、R2 =H、R
3 =H、R4 =H)、(12)(R1 =H、R2 =
H、R3 =H、R4 =CH3 )、(13)(R1 =
tBu、R2 =p−CH3 、R3 =p−CH3 、R
4 =H)、(14)(R1 =H、R2 =H、R3 =
H、R4 =OCH3 )、(15)(R1 =H、R2
=m−CH3 、R3 =m−CH3 、R4 =H)、
(16)(R1 =H、R2 =p−OCH3 、R3 =
p−OCH3 、R4 =H)、(17)(R1 =p−
CH3 、R2 =H、R3 =H、R4 =CH3・
)、(18)(R1 =p−CH3 、R2 =p−iB
u、R3 =p−iBu、R4 =H)、(19)(R1
=p−nBu、R2 =m−CH3 、R3 =H、R4
=Cl)(20)(R1 =p−OC2 H5 、R2
=p−CH3 、R3 =p−CH3 、R4 =H)。
Element Reference Example 3 Triphenylamine Trimer Compound Usable as Hole Transport Material
Examples of the product include the following compounds. Triphenylamine trimer compound (11) (R1 = H, R2 = H, R
3 = H, R4 = H), (12) (R1 = H, R2 =
H, R3 = H, R4 = CH3), (13) (R1 =
tBu, R2 = p-CH3, R3 = p-CH3, R
4 = H), (14) (R1 = H, R2 = H, R3 =
H, R4 = OCH3), (15) (R1 = H, R2
= M-CH3, R3 = m-CH3, R4 = H),
(16) (R1 = H, R2 = p-OCH3, R3 =
p-OCH3, R4 = H), (17) (R1 = p-
CH3, R2 = H, R3 = H, R4 = CH3.
), (18) (R1 = p-CH3, R2 = p-iB
u, R3 = p-iBu, R4 = H), (19) (R1
= P-nBu, R2 = m-CH3, R3 = H, R4
= Cl) (20) (R1 = p-OC2 H5, R2
= P-CH3, R3 = p-CH3, R4 = H ).

【0031】(素子実施例) 素子参考例1と同様の方法でそれぞれ、トリフェニルア
ミン3量体化合物(11)(R1 =H、R2 =H、R
3 =H、R4 =H)とテトラフェニルベンジジン化合
物(4)(R1 =p−tBu、R2 =H、R3 =
H)を共蒸着し、正孔輸送材として使用したEL素子を
作製し、その特性を評価した。発光特性は3300cd
/m2 、発光の寿命は720Hr、保存安定性は290
0Hrであった。その結果から本発明によるトリフェニ
ルアミン3量体化合物(11)とテトラフェニルベンジ
ジン化合物(4)の共蒸着によって形成された正孔輸送
層は、発光寿命、保存安定性に優れていることが分かっ
た。
(Device Example 2 ) In the same manner as in Device Reference Example 1, triphenylamine trimer compound (11) (R1 = H, R2 = H, R) was used.
3 = H, R4 = H) and the tetraphenylbenzidine compound (4) (R1 = p-tBu, R2 = H, R3 =
H) was co-evaporated to prepare an EL device used as a hole transport material, and its characteristics were evaluated. Luminous properties are 3300 cd
/ M 2 , emission life is 720 hours, storage stability is 290
It was 0 Hr. From the results, it was found that the hole transport layer formed by co-evaporation of the triphenylamine trimer compound (11) and the tetraphenylbenzidine compound (4) according to the present invention has excellent emission life and storage stability. It was

【0032】[0032]

【発明の効果】以上のように、本発明は、正孔輸送層の
材料として、テトラフェニルベンジジン化合物、トリフ
ェニルアミン3量体を用いたことを特徴とする電界発光
素子であり、本発明の材料を用いることにより、従来の
有機電界発光素子の最も大きな問題点であった発光安定
性および保存安定性を格段に改良した電界発光素子を実
現することができる。
As described above, the present invention is an electroluminescent device characterized by using a tetraphenylbenzidine compound or a triphenylamine trimer as a material for a hole transport layer. By using the material, it is possible to realize an electroluminescent device having significantly improved emission stability and storage stability, which are the most serious problems of the conventional organic electroluminescent device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における電界発光素子の構成
を示す部分断面拡大斜視図
FIG. 1 is a partially enlarged cross-sectional perspective view showing a configuration of an electroluminescent device according to an embodiment of the present invention.

【図2】本発明の一実施例における正孔輸送層としてテ
トラフェニルベンジジン化合物を用いた電界発光素子の
特性を示す一覧
FIG. 2 is a list view showing characteristics of an electroluminescence device using a tetraphenylbenzidine compound as a hole transport layer in one example of the present invention .

フロントページの続き (72)発明者 福山 正雄 神奈川県川崎市多摩区東三田3丁目10番 1号 松下技研株式会社内 (72)発明者 村上 睦明 神奈川県川崎市多摩区東三田3丁目10番 1号 松下技研株式会社内 (72)発明者 南部 太郎 神奈川県川崎市多摩区東三田3丁目10番 1号 松下技研株式会社内 (72)発明者 富山 裕光 茨城県つくば市御幸が丘45番地 保土谷 化学工業株式会社 筑波研究所内 (72)発明者 押野 雅彦 茨城県つくば市御幸が丘45番地 保土谷 化学工業株式会社 筑波研究所内 (56)参考文献 特開 平4−220995(JP,A) 特開 昭63−295695(JP,A) 特開 平4−161480(JP,A) 特開 平5−239455(JP,A) 特開 平2−277071(JP,A) 特開 平5−165239(JP,A) 特開 平4−181258(JP,A)Continued front page    (72) Inventor Masao Fukuyama               3-10 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Prefecture               No. 1 Matsushita Giken Co., Ltd. (72) Inventor Mutsumi Murakami               3-10 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Prefecture               No. 1 Matsushita Giken Co., Ltd. (72) Inventor Taro Nanbu               3-10 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Prefecture               No. 1 Matsushita Giken Co., Ltd. (72) Inventor Hiromitsu Toyama               Hodogaya, 45 Miyukigaoka, Tsukuba City, Ibaraki Prefecture               Chemical Industry Co., Ltd. Tsukuba Research Center (72) Inventor Masahiko Oshino               Hodogaya, 45 Miyukigaoka, Tsukuba City, Ibaraki Prefecture               Chemical Industry Co., Ltd. Tsukuba Research Center                (56) Reference JP-A-4-220995 (JP, A)                 JP 63-295695 (JP, A)                 JP-A-4-161480 (JP, A)                 JP-A-5-239455 (JP, A)                 JP-A-2-277071 (JP, A)                 Japanese Patent Laid-Open No. 5-165239 (JP, A)                 JP-A-4-181258 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記一般式で記述されるテトラフェニル
ベンジジン化合物を用い、蒸着法により成長した膜を正
孔輸送層として有することを特徴とする電界発光素子。 【化1】 ただし、R1 、R2 は水素原子、ターシャリーブチル
基、フェニル基、低級アルキル基もしくは低級アルコキ
シ基を置換基として有するフェニル基、R3 は水素原
子、メチル基またはメトキシ基を表す。また、R1 と
R2 が同時に水素原子であることは無い。
1. A film grown by an evaporation method using a tetraphenylbenzidine compound represented by the following general formula:
An electroluminescent device having a hole transport layer. [Chemical 1] However, R1 and R2 represent a hydrogen atom, a tert-butyl group, a phenyl group, a phenyl group having a lower alkyl group or a lower alkoxy group as a substituent, and R3 represents a hydrogen atom, a methyl group or a methoxy group. Further, R1 and R2 are not hydrogen atoms at the same time.
【請求項2】 下記一般式で記述されるテトラフェニル
ベンジジン化合物を用い、蒸着法により成長した膜を
孔輸送層として有することを特徴とする熱安定性電界発
光素子。 【化2】 ただし、R1 、R2 は水素原子、ターシャリーブチル
基、フェニル基、低級アルキル基もしくは低級アルコキ
シ基を置換基として有するフェニル基、R3 は水素原
子、メチル基またはメトキシ基を表す。また、R1 と
R2 が同時に水素原子であることは無い。
2. Using the tetraphenyl benzidine compounds described by the following formula, a film grown by evaporation positive
A thermostable electroluminescent device having a hole transport layer . [Chemical 2] However, R1 and R2 represent a hydrogen atom, a tert-butyl group, a phenyl group, a phenyl group having a lower alkyl group or a lower alkoxy group as a substituent, and R3 represents a hydrogen atom, a methyl group or a methoxy group. Further, R1 and R2 are not hydrogen atoms at the same time.
【請求項3】 電極、正孔輸送層、発光層、電子輸送層
および電極を有し、正孔輸送層として蒸着法により成長
させて得た膜を備えていることを特徴とする請求項1ま
たは2記載の電界発光素子。
3. A electrodes, a hole transport layer, luminescent layer, claim 1 comprising an electron transport layer and the electrode, characterized in that it comprises a film obtained by growing by vapor deposition as a hole transporting layer Well
Electroluminescent device of the other two described.
【請求項4】 電極、正孔輸送層、発光層、電子輸送層
および電極を有し、上記正孔輸送層として、請求項
載のテトラフェニルベンジジン化合物の内から選定され
た少なくとも2種類の化合物を含む材料、または請求項
記載のテトラフェニルベンジジン化合物の内から選定
された1種類もしくは2種類以上と下記一般式で記述さ
れるトリフェニルアミン3量体から選定された1種類も
しくは2種類以上の化合物を用い、蒸着法により成長し
た膜を用いたことを特徴とする請求項記載の電界発光
素子。 【化3】 ただし、R1 、R2 、R3 は水素原子、低級アルキ
ル基、または低級アルコキシ基、R4 は水素原子、メ
チル基、メトキシ基、またはクロル原子を表す。
4. An electrode, a hole-transporting layer, a light-emitting layer, an electron-transporting layer and an electrode, wherein the hole-transporting layer is at least two kinds selected from the tetraphenylbenzidine compounds according to claim 1 . Material containing compound, or claim
A vapor deposition method using one or more compounds selected from the tetraphenylbenzidine compounds described in 1 and one or more compounds selected from the triphenylamine trimer described by the following general formula. electroluminescent device according to claim 1, characterized by using the grown film by. [Chemical 3] However, R1, R2, and R3 represent a hydrogen atom, a lower alkyl group, or a lower alkoxy group, and R4 represents a hydrogen atom, a methyl group, a methoxy group, or a chloro atom.
【請求項5】 電子輸送層が発光層を兼ねていることを
特徴とする請求項3または4記載の電界発光素子。
5. The electroluminescent device according to claim 3, wherein the electron transport layer also serves as a light emitting layer.
【請求項6】 正孔輸送層が発光層を兼ねていることを
特徴とする請求項3または4記載の電界発光素子。
6. The electroluminescent device according to claim 3, wherein the hole transport layer also serves as a light emitting layer.
JP2001049489A 2001-02-23 2001-02-23 Electroluminescent device Expired - Lifetime JP3529735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001049489A JP3529735B2 (en) 2001-02-23 2001-02-23 Electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001049489A JP3529735B2 (en) 2001-02-23 2001-02-23 Electroluminescent device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27388393A Division JP3194657B2 (en) 1993-11-01 1993-11-01 EL device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004021884A Division JP3880967B2 (en) 2004-01-29 2004-01-29 Compound for electroluminescent device

Publications (2)

Publication Number Publication Date
JP2001273978A JP2001273978A (en) 2001-10-05
JP3529735B2 true JP3529735B2 (en) 2004-05-24

Family

ID=18910585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001049489A Expired - Lifetime JP3529735B2 (en) 2001-02-23 2001-02-23 Electroluminescent device

Country Status (1)

Country Link
JP (1) JP3529735B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081857A1 (en) 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2009139475A1 (en) 2008-05-16 2009-11-19 保土谷化学工業株式会社 Organic electroluminescent device
WO2009151039A1 (en) 2008-06-11 2009-12-17 保土谷化学工業株式会社 Organic electroluminescent element
WO2012117973A1 (en) 2011-02-28 2012-09-07 保土谷化学工業株式会社 Organic electroluminescent element
WO2012147568A1 (en) 2011-04-25 2012-11-01 保土谷化学工業株式会社 Organic electroluminescent element

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031670B1 (en) 2006-06-22 2013-11-27 Idemitsu Kosan Co., Ltd. Organic electroluminescent device employing heterocycle-containing arylamine derivative
KR20090010883A (en) 2007-07-23 2009-01-30 소니 가부시끼가이샤 Organic electroluminescent device and display device
KR20140133121A (en) 2013-05-09 2014-11-19 삼성디스플레이 주식회사 Magnetic reluctance element, display device including the same, digitizer sensing panel including the same, and manufacturing method for the magnetic reluctance element
KR20230103320A (en) * 2021-12-31 2023-07-07 엘지디스플레이 주식회사 Electroluminescent Display Device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081857A1 (en) 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2009139475A1 (en) 2008-05-16 2009-11-19 保土谷化学工業株式会社 Organic electroluminescent device
EP2677562A2 (en) 2008-05-16 2013-12-25 Hodogaya Chemical Co., Ltd. Arylamines for organic electroluminescent devices
US8771841B2 (en) 2008-05-16 2014-07-08 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
US9525140B2 (en) 2008-05-16 2016-12-20 Hodogaya Chemical Co., Ltd. Arylamine compound useful in an organic electroluminescent device
WO2009151039A1 (en) 2008-06-11 2009-12-17 保土谷化学工業株式会社 Organic electroluminescent element
WO2012117973A1 (en) 2011-02-28 2012-09-07 保土谷化学工業株式会社 Organic electroluminescent element
WO2012147568A1 (en) 2011-04-25 2012-11-01 保土谷化学工業株式会社 Organic electroluminescent element
US9553272B2 (en) 2011-04-25 2017-01-24 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
EP3133665A1 (en) 2011-04-25 2017-02-22 Hodogaya Chemical Co., Ltd. Organic electroluminescent device

Also Published As

Publication number Publication date
JP2001273978A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
JP3194657B2 (en) EL device
JP4407102B2 (en) Anthracene compound, method for producing the same, and organic electroluminescent device
JP3965063B2 (en) Organic electroluminescence device
JP2003040873A (en) New quinoxaline derivative and organic electroluminescent element utilizing the same
JPH11176578A (en) Electroluminescent device using indolo carbazole
WO2005063684A1 (en) Tetramine compound and organic el device
JP3274939B2 (en) EL device
JP3529735B2 (en) Electroluminescent device
KR20060121288A (en) Stable organic light-emitting devices using aminoanthracenes
JPH07331238A (en) Electroluminescent element
WO2003050201A1 (en) Organic electroluminescent materials
JP2004292766A (en) Organic electroluminescent element material
JP2007308376A (en) Fluorene compound and organic el element
JP3880967B2 (en) Compound for electroluminescent device
JP3745296B2 (en) Electroluminescent device
Fu et al. Red fluorescent materials based on naphthylamine for non-doping OLEDs
JPH10101625A (en) Electroluminescent device
US20020102433A1 (en) Oxadizaole tetramers
JP4576141B2 (en) Carbazole derivatives containing fluorene groups
JPH10231476A (en) Organic el element
JPH10231479A (en) Red-luminescent organic el element
JP4491264B2 (en) Arylamine compounds
JP2008166538A (en) Organic electroluminescent element
JP2005139390A (en) Light-emitting, coumarin-containing organic material and organic el element
JP3742095B2 (en) Electroluminescent device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

EXPY Cancellation because of completion of term