WO2003050201A1 - Organic electroluminescent materials - Google Patents

Organic electroluminescent materials Download PDF

Info

Publication number
WO2003050201A1
WO2003050201A1 PCT/JP2002/012821 JP0212821W WO03050201A1 WO 2003050201 A1 WO2003050201 A1 WO 2003050201A1 JP 0212821 W JP0212821 W JP 0212821W WO 03050201 A1 WO03050201 A1 WO 03050201A1
Authority
WO
WIPO (PCT)
Prior art keywords
derivative
group
organic
organic group
luminescent
Prior art date
Application number
PCT/JP2002/012821
Other languages
French (fr)
Japanese (ja)
Inventor
Junji Momoda
Yuichiro Kawabata
Toshiaki Otani
Original Assignee
Tokuyama Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corporation filed Critical Tokuyama Corporation
Priority to AU2002354442A priority Critical patent/AU2002354442A1/en
Priority to KR10-2004-7007715A priority patent/KR20040077660A/en
Priority to JP2003551223A priority patent/JPWO2003050201A1/en
Publication of WO2003050201A1 publication Critical patent/WO2003050201A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes

Definitions

  • the present invention relates to a novel organic electroluminescent device material (hereinafter, also referred to as “organic EL device material”).
  • organic EL device material also referred to as “organic EL device material”.
  • Organic EL devices are expected to be used as inexpensive large-area solid-state color display devices of the solid-state emission type, and are being actively developed.
  • an organic EL device is composed of a light emitting layer and a pair of opposed electrodes sandwiching the light emitting layer.
  • light emission when an electric field is applied between both electrodes, electrons are injected from the cathode and holes are injected from the anode. Further, the electrons and holes are recombined in the light emitting layer, and the energy is emitted as light when the energy level returns from the conduction band to valence electrons.
  • the organic EL element material used for the light emitting layer and the charge transport layer of the organic EL element is required to have characteristics such as high luminance, low driving voltage, and emission of various colors, depending on the application. Therefore, it is necessary to develop materials that meet the requirements.
  • low molecular weight materials such as copper phthalocyanine (CuPC), star-burst molecules, poly (p-phenylenevinylene) (PPV), polyaniline (PANI), etc. Polymer materials have been developed.
  • a vacuum evaporation method is used to form an organic thin film using a low molecular material such as CuPc and a star-past molecule, but this method has a problem that it takes time and costs.
  • the organic thin film formed by the vacuum evaporation method is easily crystallized, which leads to deterioration of the device.
  • a fluorescent calix [4] arene derivative represented by the formula: This compound has both a luminescent group and a quenching group, and has a void for a metal ion to be captured. If no metal ion is present in the voids of this compound, no light will be emitted due to the short distance between the luminous group and the quenching atomic group. Utilizing the fact that light is emitted due to the distance from the quenching group, this compound is used for the analysis of metal ions.
  • the above publication does not disclose at all whether or not this compound is used for an organic electorophore chromic element material. Disclosure of the invention
  • an object of the present invention is to solve the above-mentioned problems of the prior art, that is, to provide a high-purity organic EL device material that can be spin-coated.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, as a organic EL device material, a group consisting of a phyllixarene derivative and a phyxic resorciarene derivative in a molecular skeleton of a light emitting substance or a charge transporting substance. Combines compounds selected from As a result, it has been found that all of the above objects can be achieved, and the present invention has been provided.
  • the present invention is an organic electroluminescent device material comprising a calix squalene derivative or a physolic resorciarene derivative having at least one of a luminescent organic group and a charge transporting organic group.
  • the present invention also relates to certain compounds among the above derivatives.
  • FIG. 1 is a 1 H-nuclear magnetic resonance spectrum of a calixarene derivative according to the present invention, which can be included in the organic electroluminescence device material obtained in Production Example 1.
  • a calixarene derivative or a carrick resorciarene derivative having at least one of a light-emitting organic group and a charge-transporting organic group used as an organic EL device material (hereinafter, also simply referred to as a force-ricks derivative)
  • a known light emitting substance and a charge transporting substance as an organic EL device material, and a conventionally known calixarene derivative and a calixresorcialane derivative are directly or covalently bonded with or without a divalent organic group. Any compound can be used as long as it is bound.
  • n is an integer of 3 to 20, and A, B, D, the same or different atoms or groups, such as a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group or the following general formula ( The group represented by 3), wherein a plurality of A, B and D may be different from each other, and at least one of them is a group represented by the general formula (3); When there are a plurality of groups represented by, these may be different from each other
  • L is a divalent organic group
  • Z is a luminescent organic group or a charge transporting organic group
  • m is 0 or 1).
  • examples of the halogen atom represented by A, B and D include a chlorine atom, a bromine atom and an iodine atom.
  • the alkyl group a group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group is preferable.
  • aryl group a phenyl group, a tolyl group, a xylyl group, A group having 6 to 10 carbon atoms such as a naphthyl group is preferable, and an alkoxy group is a group having 1 to 8 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group and a 2-ethylhexyloxy group. It can be suitably used.
  • A, B and D When a plurality of A, B and D are present in a molecule, they may be the same or different, provided that a plurality of A, B and D exist in a molecule. In this case, at least one of them is a group represented by the following formula (3). When a plurality of groups represented by the formula (3) are present in one molecule, they may be the same or different.
  • the divalent organic group represented by L a luminescent organic group or a charge transporting organic group and a liques arene derivative or a calixresorcinalene
  • a linkable group includes, but is not limited to, a group represented by the following formula (wherein, R represents a carbon number of 1 to 12) And n is an integer of 0 to 20.)).
  • the light-emitting organic group and the charge-transporting organic group represented by Z are a residue having a known light-emitting substance or a charge-transporting substance as a skeleton used in a conventional organic EL device.
  • the groups can be used without any restrictions.
  • Both the luminescent organic group and the charge transporting organic group are groups derived from a low molecular weight organic compound or a medium molecular weight organic compound.
  • the molecular weight of the group derived from a medium molecular organic compound is preferably 200 to 400,000 in terms of number average molecular weight, from the viewpoint of purification.
  • the luminescent organic group is a group having a structure capable of emitting fluorescence from an excited singlet or phosphorescence from an excited triplet.
  • the charge transporting organic group is a group having a structure capable of exhibiting hole transporting ability or electron transporting ability, and is classified into a hole transporting organic group and an electron transporting organic group, respectively. These are groups derived from hole and electron transporters, respectively. Some luminescent organic groups exhibit charge transport properties. In that case, there is no particular rule as to which organic group is to be categorized. No gender is observed.
  • the luminescent organic group is linked such that at least four unsaturated bonds constituting the luminescent organic group form a conjugated system, and forms a residue having a luminescent structure.
  • the charge transporting organic group has at least two unsaturated bonds constituting the charge transporting organic group connected to form a conjugated system, and forms a charge transporting residue.
  • two or more of these conjugated systems may be present in a single molecule.
  • the structure having a light-emitting property means a structure capable of showing fluorescence emission from an excited singlet or phosphorescence from an excited triplet as described above. The meaning will be clear by referring to organic compounds. In the case where "the four unsaturated bonds form a conjugated system", for example, a benzene ring is recognized as having three unsaturated bonds.
  • the position of the bond between the light emitting organic group or the charge transporting organic group is not particularly limited as long as the above conjugated system is not adversely affected.
  • Examples of such a luminescent organic group and a charge transporting organic group include the residues shown in the following i), ii) and iii).
  • At least two unsaturated ring systems where unsaturated ring systems are nitrogen, oxygen, sulfur or calcium atoms as 5- or 6-membered hydrocarbon rings or ring members;
  • a 5- or 6-membered heterocyclic ring having 1 to 3 carbon atoms, or 2 to 30 of these hydrocarbon rings and / or heterocyclic rings may be condensed;
  • the ring system may be substituted with a substituent, or a saturated ring may be condensed.
  • Residues which may be one or more side chains (or pendant groups) of the polymer backbone, and which confer luminescence or charge transport properties to the elixir derivative molecule.
  • At least two unsaturated ring systems (where the unsaturated ring system is a 5- or 6-membered hydrocarbon ring or a ring-constituting atom containing 1 to 3 nitrogen, oxygen, sulfur, or silicon atoms).
  • a 5- or 6-membered heterocyclic ring, or 2 to 30 of these hydrocarbon rings and / or heterocyclic rings may be condensed, and these unsaturated ring systems are substituted with substituents. Or a saturated ring may be condensed.
  • To form a ligand, or to form a conjugated system through a direct bond or one C group or a nitrogen atom.
  • a ligand such as beryllium, aluminum, copper, zinc, ruthenium, europium, and rhodium.
  • a ligand such as beryllium, aluminum, copper, zinc, ruthenium, europium, and rhodium.
  • Platinum or silicon A residue derived from a coordination compound having a genus, which imparts luminescence or charge transport properties to a elixir derivative molecule.
  • unsaturated ring systems where the unsaturated ring system is a 5- or 6-membered hydrocarbon ring or ring-constituting atom containing 1 to 3 nitrogen, oxygen, sulfur, or silicon atoms).
  • a 5- or 6-membered heterocyclic ring, or 2 to 30 of these hydrocarbon rings and / or heterocyclic rings may be condensed, and these unsaturated ring systems are substituted with substituents.
  • a saturated ring may be condensed.
  • examples of the 5- or 6-membered hydrocarbon ring constituting the unsaturated ring system include a benzene ring, and a nitrogen atom, an oxygen atom, a sulfur atom or a nitrogen atom as a ring-constituting atom.
  • a 5-membered or 6-membered heterocyclic ring with 1 to 3 atoms examples thereof include a pyrroyl ring, a furan ring, a thiophene ring, a pyridine ring, a pyran ring, a thiazole ring, a triazine ring, an oxaziazole ring and the like.
  • examples of the substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; an oxo group; a methyl group, an ethyl group and a t-butyl group.
  • C1-8 alkyl groups such as groups; C1-8 alkoxy groups such as methoxy, ethoxy and propoxy groups; C1-4 halogenated alkyl groups such as chloromethyl and trifluoromethyl
  • These may have a plurality of the same or different substituents as long as they do not adversely affect the conjugated system.
  • “has no adverse effect on the conjugated system” means, for example, that the emission wavelength and intensity (or luminance) originally possessed by the corresponding conjugated system are not substantially changed.
  • the saturated ring fused to the above unsaturated ring includes a saturated hydrocarbon ring having 5 to 6 carbon atoms such as a cyclohexane ring, a piperidine ring, a pyrazoline ring, or a nitrogen atom as a ring-constituting atom.
  • Saturated heterocycles can be mentioned. Two or more of these saturated rings may be fused to the above-mentioned unsaturated rings.
  • p and q are each an integer of 1 to 10 and an integer such that the number average molecular weight of each group takes a value in the range of 20 to 400.
  • naphthylene derivatives In addition to the above-mentioned residues, naphthylene derivatives; anthracene derivatives; xanthones, cyanines, and other dyes; derivatives in which aromatic groups are polysubstituted, such as tetraphenylcyclopentene and tetraphenylbutadiene; Residues derived from ⁇ -conjugated middle molecular compounds such as polythiophene derivatives; sigma-conjugated middle molecular compounds such as polysilane; and pendant middle molecular compounds such as poly (meth) acrylylarylamine derivatives.
  • aromatic groups such as tetraphenylcyclopentene and tetraphenylbutadiene
  • Residues derived from ⁇ -conjugated middle molecular compounds such as polythiophene derivatives
  • sigma-conjugated middle molecular compounds such as polysilane
  • pendant middle molecular compounds
  • residues derived from pyrazoline derivatives; stilbene derivatives there can be exemplified residues derived from pyrazoline derivatives; stilbene derivatives.
  • residues derived from anthraquinone dimethane or a derivative thereof there can be exemplified residues derived from anthraquinone dimethane or a derivative thereof; tetracyano anthraquinodimethane or a derivative thereof; a fluorenone derivative; and a diphenoquinone derivative.
  • preferred groups in the present invention include distyrylarylene derivatives, styrylamine derivatives, imidazole derivatives, naphthylene derivatives, anthracene or its derivatives, perylene or its derivatives, and 8-hydroxy Examples thereof include a metal complex of quinoline or a derivative thereof, and a residue derived from a poly (9,9-dialkylfluorene) derivative.
  • an arylamine derivative is used as the hole-transporting organic group
  • an oxadiazole derivative, a triazole derivative, a silole derivative, and a metal complex of 8-hydroxyquinoline or a derivative thereof are used as the electron-transporting organic group.
  • a triazole derivative a triazole derivative
  • a silole derivative a metal complex of 8-hydroxyquinoline or a derivative thereof
  • a metal complex of 8-hydroxyquinoline or a derivative thereof are used as the electron-transporting organic group.
  • the calixarene structure portion includes a cyclic oligomer formed by condensation of phenol and formaldehyde, a crosslink lixisarean cross-linked through an alkoxy group, thiacalixarene, oxacalixarene, and the like.
  • Any residue that can be derived from a known compound having a pseudocalixcyclooligomer such as calixspirol or calixsilole in its skeleton can be used without any limitation.
  • “Calixarenes” (edited by CD Getti, Royal Society of Chemistry, 1989), "Calixarenes” (J.
  • a residue derived from a cyclic oligomer formed by condensation of a resorcinol derivative and formaldehyde can be used without any limitation for the ricris resorciarene structure portion.
  • a plurality of light emitting organic groups or charge transporting organic groups may be present in a molecule.
  • the types of the luminescent organic group and the charge transporting organic group may be the same or different.
  • a calix derivative having both a light-emitting organic group and a charge-transporting organic group in one molecule is a preferable compound in the present invention because of its high emission luminance as an organic EL device material. .
  • a liquix derivative (X) having a luminescent organic group It is preferable to use the mixture with a force lix derivative (Y) having a charge-transporting organic group as an organic EL element material because a higher emission luminance can be obtained.
  • the mixing ratio of the elixir derivative (X) having a luminescent organic group and the elixir derivative (Y) having a charge-transporting organic group is not particularly limited, but is generally less than 100 parts by weight of (X).
  • (Y) is preferably blended in the range of 0.1 to 99.9 parts by weight, and more preferably in the range of 1 to 99 parts by weight.
  • the compound in which the luminescent organic group and the charge transporting organic group are the groups represented by i) and ii) is a novel compound It is.
  • calix derivative suitably used in the present invention are as follows.
  • the relix derivative used in the present invention has a relatively high glass transition temperature and high thermal stability.
  • the glass transition temperature varies, but is generally around 10 o ° c.
  • the amount of heat generated when a driving voltage is applied can be suppressed.
  • Such thermal stability is considered to be due to the fact that the elixir has a cyclic structure.
  • calix derivatives have no absorption in the visible region. For this reason, the organic EL device material using the force lix derivative can effectively suppress a decrease in luminous efficiency due to energy transfer or the like.
  • the method for producing the calix derivative is not particularly limited, and the calix derivative can be produced by appropriately combining commonly used synthesis methods.
  • the synthesis method shown in the following scheme can be exemplified.
  • a elixir structure or a lexical resorciarene structure is directly bonded to the luminescent organic group and the charge transporting organic group without using a linking group.
  • useful reactions that include
  • reaction to be bonded via a linking group for example,
  • the synthesized lelix derivative is purified by recrystallization or column chromatography.
  • a solvent used for recrystallization a known organic solvent and a mixed solvent thereof are used, and preferably, ethanol, isopropyl alcohol, acetone, ethyl acetate, acetonenitrile, hexane and heptane are used.
  • the elixir can be easily purified and isolated. Therefore, as compared with a normal polymer material having a relatively high impurity concentration and a molecular weight distribution, the elixir has a higher utility value as an organic EL device material.
  • the force lix derivative having a luminescent organic group in the present invention is a luminescent material forming a light emitting layer
  • the calix derivative having a charge transporting organic group is a charge transporting material forming a charge transport layer. Is extremely useful.
  • a light emitting layer or a charge containing the organic EL device material of the present invention is provided between a pair of electrodes, at least one of which is transparent or translucent.
  • a transport layer is formed, and a known structure can be employed.
  • a structure having at least one of a pair of transparent or translucent electrodes on both surfaces of a light-emitting layer composed of only a light-emitting body, or a light-emitting layer composed of a mixture of a light-emitting body and a charge transporter, And a layer in which a hole transport layer containing a hole transporter is provided between the cathode and the light emitting layer, and an electron transport layer containing an electron transporter is provided between the cathode and the light emitting layer.
  • each of the light emitting layer and the charge transport layer may be composed of a plurality of compounds.
  • the light-emitting layer by mixing one light-emitting body with another light-emitting body, energy transfer from one light-emitting body to another light-emitting body can be performed, and the other light-emitting bodies can emit light efficiently.
  • the number of compounds to be mixed at this time is not particularly limited, and the compounds may be combined so as to be optimal in terms of the energy relationship between one luminous body and another luminous body to emit light.
  • the concentration of the other luminous body is selected in the range of 0.1 to 50% by weight / 0 in the total amount with one luminous body.
  • a plurality of compounds can be mixed for the purpose of maintaining a charge injection barrier from the electrode or a charge injection balance of the device.
  • the number of compounds to be mixed is not particularly limited, and the addition concentration can be 0.1 to 50% by weight of other compounds in the proportion of the total amount as in the case of the above-mentioned luminescent material.
  • the light emitting layer may be a mixture of a load transporter.
  • the light emitting layer and the charge transport layer may be a single layer, or a plurality of layers may be combined.
  • a luminescent material other than the organic EL device material of the present invention can be mixed and used in the light emitting layer
  • a charge transport material other than the organic EL device material of the present invention can be mixed and used in the charge transport layer.
  • the light emitting layer and the charge transport layer may be composed of the organic EL device material of the present invention alone, or may be composed of a medium molecular or high molecular compound dispersed therein.
  • the known luminescent material that can be used together with the organic EL device material of the present invention is not particularly limited, but a compound represented by the above-mentioned luminescent organic group, for example, distyrino arylene derivative, styrylamine derivative, naphthalene derivative, anthracene Or a derivative thereof, perylene or a derivative thereof, a polymethine-based, xanthene-based, coumarin-based, or cyanine-based dye, a metal complex of 8-hydroxyquinoline or a derivative thereof, a triplet containing europium or iridium, or the like.
  • a compound represented by the above-mentioned luminescent organic group for example, distyrino arylene derivative, styrylamine derivative, naphthalene derivative, anthracene Or a derivative thereof, perylene or a derivative thereof, a polymethine-based, xanthene-based, coumarin-based,
  • a metal complex, aromatic amine, tetraphenylcyclopentadiene or a derivative thereof, or tetraphenylbutadiene or a derivative thereof can be used.
  • known materials such as those described in JP-A-57-51781 and JP-A-59-194393 can be used.
  • Examples of known charge transporters that can be used together with the above-described organic EL device material of the present invention include, as hole transporters, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenylenediamine derivatives, and the like.
  • Examples of electron transporters include oxaziazole derivatives, anthraquinodimethane or derivatives thereof, tetracyanoanthraquinodimethane or derivatives thereof, fluorenone derivatives, diphenoquinone derivatives, and metal complexes of 8-hydroxyquinoline or derivatives thereof. Can be mentioned.
  • the hole transporter is preferably a trifendildiamine derivative
  • the electron transporter is preferably an oxadiazole derivative or a metal complex of 8-hydroxyquinoline or a derivative thereof.
  • the hole transporter and the electron transporter can be used simultaneously. Each of these materials may be used alone or in combination of two or more.
  • the charge transport layer may be formed using the charge transporter described above.
  • the amount of the charge transporter varies depending on the kind of the compound to be used and the like. It may be determined appropriately in consideration of the situation. Usually, it is preferably 1 to 40% by weight, more preferably 2 to 30% by weight, based on the luminous body.
  • PV ⁇ polyvinyl carbazole
  • the content ratio of the calix derivative is in the range of 0.1 to 90% by weight so that the calix derivative's luminescence characteristics and the effect of blending PVK can be fully exhibited. Is preferably 99.9 to 10% by weight.
  • an anode is formed on a transparent substrate such as glass or transparent plastic using a transparent or translucent metal oxide or metal thin film.
  • a conductive metal oxide film, a translucent metal thin film, or the like is used.
  • a film (NESA, etc.) made of conductive glass composed of indium tin oxide (ITO), tin oxide, etc., Au, Pt, Ag, Cu, etc. are used.
  • a vacuum evaporation method, a sputtering method, a plating method, or the like is used.
  • a light emitting layer containing the organic EL device material of the present invention is formed on the anode. Way of formation
  • the methods include spin coating, casting, dating, percode, roll coating, gravure coating, flexographic printing, spray coating, and ink jet printing using a melt, solution, or mixture of these materials. It is particularly preferable to form a film by a coating method such as a method.
  • the thickness of the light emitting layer is preferably 1 nm to 1 Aim, and more preferably 2 nm to 500 nm. In order to increase luminous efficiency by increasing current density, the range of 5 to 200 nm is preferable.
  • the solvent is preferably removed under reduced pressure or under an inert atmosphere, preferably at 30 to 300 ° C, more preferably 60 to 200 ° C. It is desirable to heat and dry at a temperature of C.
  • the charge transport layer having the hole transport property of the present invention is formed on the anode by the same film forming method as described above.
  • a known hole transporter is formed by a known method, and then a light emitting layer of the organic EL device material of the present invention is formed by the above-described film forming method, and a charge exhibiting the electron transporting property of the present invention is further formed thereon.
  • the transport layer is formed by the same film forming method as described above, or a known electron transporter is formed by a known method.
  • the method of forming a film of the known charge transporter is not particularly limited, but includes a vacuum deposition method from a powder state, a spin coating method after dissolving in a solution, a casting method, a diving method, a bar code method, and a roll coat method.
  • a coating method such as a coating method can be used.
  • the thickness of the charge transport layer is required to be at least such that pinholes do not occur. However, if the thickness is too large, the resistance of the device increases and a high drive voltage is required, which is not preferable. Therefore, the thickness of the charge transport layer is preferably 1 nm to 1 ⁇ , more preferably 2 nm to 500 nm, and particularly preferably 5 nm to 200 nm.
  • a cathode is provided.
  • This electrode becomes an electron injection cathode.
  • the material is not particularly limited, but a material having a small ionization energy is preferable.
  • A1 In, Mg, Ca, Li, Mg-Ag alloy, In-Ag alloy, Mg-In alloy, Mg-Al alloy, Mg_Li alloy, Al-Li alloy, Al — Ca alloy, graphite thin film, etc. are used.
  • a method for producing the cathode a vacuum evaporation method, a sputtering method, or the like is used.
  • Organic EL element materials CA21 to CA36 were synthesized in the same manner as in Example 9 except that the raw materials shown in Tables 11 to 19 were used. The results are shown in Tables 11 to 19, Table 30 and Table 31.
  • Organic EL device material C was prepared in the same manner as in Production Example 37 except that the raw materials shown in Table 20 were used.
  • the target compound (CA39) was obtained by reacting the charge transporter shown in Table 21 with (Hydroxydipropoxy) calix [4] arene with NaH in dimethylformamide (10% yield). . The results are shown in Table 21 and Table 31. Production 40
  • An organic EL device material CA40 was synthesized in the same manner as in Production Example 39 except that the raw materials shown in Table 21 were used. The results are shown in Table 21 and Table 31.
  • the target substance was obtained by reacting the luminous substance shown in Table 25 with a monochrome mouth carboxyl (octapropoxy) calix [7] arene in a black mouth form (yield 35%). The results are shown in Table 25 and Table 31.
  • the calixresorcialane derivative shown in Table 26 and N, N, N, 1-triphenyl 4,4,1-benzidine were combined with xylene in the presence of palladium acetate, tris (t-butyl) phosphine and sodium 1-butoxide.
  • the reaction was carried out in a solvent to obtain CA48 (yield 21%).
  • the results are shown in Table 26 and Table 31.
  • CA49-52 were obtained in the same manner as in Production Example 48 except that the raw materials shown in Tables 26 to 28 were used. The results are shown in Tables 26 to 28 and Table 31.
  • CA62 to .CA80 were synthesized in the same manner as in Production Example 61 except that the charge transporters shown in Tables 37 to 46 were used. The results are shown in Tables 37 to 46, Table 60, and Table 61.
  • CA82-89 were obtained in the same manner as in Production Example 81 except that the raw materials shown in Tables 47 to 51 were used. The results are shown in Tables 47 to 51 and Table 61.
  • CA90, 92, 94, 96, 97, 99 and 101 were obtained in the same manner as in Production Example 61 except that the raw materials shown in Tables 52 to 58 were used. The results are shown in Tables 52 to 58 and Table 62.
  • CA91, 93, 95, 98, 100 and 102 were obtained in the same manner as in Production Example 81 except that the raw materials shown in Tables 52 to 58 were used. The results are shown in Tables 52 to 58 and Table 62.
  • CA53 obtained in Production Example 53 was dissolved in tetrahydrofuran and reacted with Mg to prepare a Grignard reagent.
  • the promodithienosilole derivative of the charge transporter shown in Table 59 and (1,2-bis (diphenylphosphino) ethane) nickel ( ⁇ ) dichloride were added, and the reaction was carried out at 65 ° C. Obtained (yield 3%).
  • Mw + 4984 was obtained. The results are shown in Table 59 and Table 62.
  • the organic EL device material obtained in Production Example 1 was dissolved in black hole form to obtain a 1% by weight black form solution. Approximately 2 g of this solution was applied to a 2 mm thick glass surface using a MI KASA spin-co 1H-DX2 for 10 seconds at a rotational speed of 4 Or.pm-2 seconds at 500 rpm ⁇ 200 Or.pm Spin coating was performed under the condition of 45 seconds. Further, the spin-coated glass was heated at 8 O: to remove the solvent to form a thin film. When the formed thin film was observed using an optical microscope, no crystals were found. Further, the crystallinity of this thin film was evaluated by an X-ray diffraction method, but no crystal reflection was obtained.
  • Example 1 When the CA 1 spin-coated thin film obtained in Example 1 was irradiated with ultraviolet light having a main maximum at 35 Onm, blue fluorescence was confirmed. It was measured using a spectrophotometer (Instant Multi-Channel Photo Detector MCPD 1000: Otsuka Electronics Co., Ltd.), and a spectrum showing an emission maximum at 460 nm was obtained. ⁇ EL emission characteristics 1>
  • a transparent support substrate was prepared by forming an IT ⁇ film with a thickness of 150 nm on a 2.5 mm ⁇ 2 Omm ⁇ 0.8 mm glass substrate. After etching and washing the transparent support substrate, about 2 g of the above-mentioned 1% by weight solution of CA1 in chloroform was spun onto a 2 mm thick glass surface using MIKASA spino 1H-DX2. Spin coating was performed under the following conditions: 10 seconds at 4 Or.pm ⁇ 2 seconds at 50 Or.pm ⁇ 45 seconds at 2000 rpm. The film was further heated at 80 ° C. under a nitrogen atmosphere to remove the solvent and form a thin film.
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10 phenanthroline
  • 50 nm of tris (8-quinolinol) aluminum is used as an electron transport layer.
  • the deposition was performed at a deposition rate of 0.1 nmZ seconds using a deposition apparatus manufactured by ULVAC (EBV-6DA).
  • the degree of vacuum in vapor deposition were all less than 1 X 10- 5 To rr.
  • a voltage of 12 V was applied to the element and the fluorescence was measured using a spectrophotometer (MCPD 1000: Otsuka Electronics Co., Ltd.), the blue fluorescence having a maximum emission wavelength at 470 nm was measured. Was observed.
  • a coating solution was prepared by dissolving the solution in benzene at a concentration of weight%.
  • a 150 mm thick IT film formed on a 25 mm X 1 O mm X 0.7 mm glass substrate was used as a transparent support base.This transparent support base was etched and washed, and then the coating solution prepared above was adjusted to about 0. 4 g was spin-coated on a glass substrate surface for 60 seconds at 1500 rpm using a MI KASA spin coater 1H-D7. This substrate was heated to 100 ° C.
  • CA61 obtained in Production Example 61 was dissolved in xylene at a concentration of 1% by weight to prepare a coating solution.
  • a transparent support base was prepared by forming an ITO film with a thickness of 150 nm on a 25 mm X 10 mm X 0.7 mm glass substrate.This transparent support base was etched and washed, and then the coating solution prepared above was adjusted to about 0. 4 g was spin-coated on the surface of a glass substrate for 60 seconds at a rotation speed of 1,500 rpm using a MI KAS A spin controller 1H-D7. The substrate was heated to 100 ° C. in a nitrogen atmosphere to remove the solvent and form a thin film.
  • a mixture of CA61 and CA81 (weight ratio 50/50) was dissolved in xylene at a concentration of 1% by weight to prepare a coating solution.
  • a transparent support substrate was prepared by forming an ITO film with a thickness of 150 nm on a 25 mmX 10 mmX 0.7 mm glass substrate, and after etching and washing the transparent support substrate, the coating solution prepared above was adjusted to approximately 0. Using 4 g of MIKAS A spinco 1H-D7 on the glass substrate surface
  • An organic EL device was prepared by vapor deposition at 60 nm. The degree of vacuum in vapor deposition was less than 1 X 10- 6 T orr. When a DC voltage was applied to this device, a blue surface emission with an emission luminance of 1800 cdZm 2 was obtained at 12.5 V. This emission was measured using a spectrophotometer (Instant Multi-Channel Photodetector MCPD 1000: Otsuka Electronics), and the maximum emission wavelength was 460 nm. The results are shown in Table 65.
  • Example 85 The EL characteristics were evaluated in the same manner as in Example 85, except that the organic EL materials were mixed at the composition ratios shown in Table 65. The results are shown in Table 65.
  • a 150-nm-thick ITO film was formed on a glass substrate of 2.5 mm X 2 O mm X 0.8 mm as a transparent support substrate. After etching and washing this transparent support substrate, about 2 g of the above-mentioned 1% by weight solution of CA2 in chloroform was applied to a 2 mm-thick glass surface using a MIKASA spino 1H-DX2 for 4 revolutions or more. Spin coating was performed under the conditions of 10 seconds at .pm ⁇ 2 seconds at 50 Or.pm and 45 seconds at 200 Or.pm. The film was further heated at 80 ° C. under a nitrogen atmosphere to remove the solvent and form a thin film.
  • 1 10 10: 1 was vapor-deposited at 170 nm to produce an organic EL device.
  • the degree of vacuum in vapor deposition was all 1x10- 5 To rr below.
  • a DC voltage was applied to the device, a green surface emission with an emission luminance of 400 cd / m 2 was obtained at 12 V.
  • This emission was measured using a spectrophotometer (MCPD 1000, an instantaneous multi-channel photodetector: manufactured by Otsuka Electronics).
  • the maximum emission wavelength was 52 Onm. The results are shown in Table 67.
  • Example 148 The EL characteristics were evaluated in the same manner as in Example 148 except that the organic EL materials shown in Table 67 were replaced. The results are shown in Table 67.
  • the organic EL device material of the present invention can be spin-coated and can be easily formed. Further, according to the present invention, an organic EL device material can be easily obtained with high purity. Therefore, the organic EL device material of the present invention is extremely useful as a luminous body and a charge transporter constituting the organic EL device.
  • CA 24 obtained in Production Example 24 was dissolved in chlorobenzene at a concentration of 0.5% by weight and PVK at a concentration of 2% by weight to prepare a coating solution.
  • a transparent support substrate was prepared by forming an ITO film with a thickness of 150 nm on a 25 mm X 10 mm X 0.7 mm glass substrate.After etching and washing the transparent support substrate, about 0.4 g of the coating solution prepared above was applied. Using a spinco 1H-D7 manufactured by MI KASA, spin coating was performed on the glass substrate surface at a rotation speed of 1500 rpm for 60 seconds. Place this substrate in a nitrogen atmosphere 1 The solvent was removed by heating to 0 ° C to form a thin film.
  • the content of CA24 in the formed organic thin film was 20% by weight.
  • a vacuum deposition apparatus EBV-6DA manufactured by ULVAC calcium was vapor-deposited as a cathode at 40 nm and then aluminum was vapor-deposited at 60 nm to produce an organic EL device.
  • the degree of vacuum at the time of vapor deposition was 1 ⁇ 10 16 To rr or less.
  • a DC voltage was applied to this device, a blue surface emission with an emission luminance of 5700 cdZm 2 was obtained at 12.5 V. This emission is measured with a spectrophotometer
  • the maximum emission wavelength was 46 Onm when measured using an instantaneous multi-channel photodetector MCPD 1000 (manufactured by Otsuka Electronics).
  • a device was fabricated in the same manner as in Example 152 except that the concentration of CA24 was changed to 0.04% by weight. At this time, the content of CA 24 in the formed organic thin film was 2% by weight.
  • a DC voltage was applied to this device, a blue surface emission with a light emission luminance of 2400 cdZm 2 was obtained at 12.5 V.
  • the maximum emission wavelength of light emission was 460 nm.
  • Example 152 the concentration of octane was 1.5% by weight
  • a device was produced in the same manner as in Example 152 except that the concentration of 1 was changed to 1.5% by weight. At this time, the content of CA24 in the formed organic thin film was 50% by weight.
  • a DC voltage was applied to this device, a blue surface emission with an emission luminance of 4400 cdZm 2 was obtained at 12.5 V.
  • the maximum emission wavelength of light emission was 460 nm.
  • Example 152 the concentration of CA 24 was 2.8% by weight,? Concentration.
  • a device was prepared in the same manner as in Example 152 except that the content was changed to 0.7% by weight. At this time, the content of CA24 in the formed organic thin film was 80% by weight. When a DC voltage was applied to this device, a blue surface emission with an emission luminance of 1800 cdZm 2 was obtained at 12.5 V. The maximum emission wavelength of light emission was 46 Onm.
  • Example 152 A device was produced in the same manner as in Example 152, except that the compounds shown in Table 68 were used instead of C A24 used in Example 152.
  • Table 68 shows the result of applying a DC voltage of 12.5 V to this device.
  • a coating solution was prepared by dissolving 2.7% by weight of CA24 and the charge transporter shown in Table 69 at a concentration of 0.3% by weight in benzene with a black mouth. Thereafter, a device was manufactured in the same manner as in Example 152. Table 69 shows the results of applying a DC voltage of 12.5 V to this device.
  • a transparent support substrate was prepared by forming an ITO film with a thickness of 150 nm on a 25 mm ⁇ 1 Omm ⁇ 0.7 mm glass substrate. After etching and washing the transparent support substrate, a 1.56% aqueous solution of polyethylene dioxythiophene (PEDT) and polystyrene sulfonic acid (PSS), Baytron P (trade name, manufactured by Bayer AG) was added to MIKASA Subinco Evening 1 H—D7 was used for spin coating at a rotation speed of 1000 rpm for 60 seconds. This substrate was heated at 200 ° C. for 1 hour using a hot plate.
  • PEDT polyethylene dioxythiophene
  • PSS polystyrene sulfonic acid
  • Baytron P trade name, manufactured by Bayer AG
  • Approximately 0.4 g of the coating solution prepared above was spin-coated on the substrate at 4000 rpm for 30 seconds, and heated to 10 ot under a nitrogen atmosphere to remove the solvent, thereby forming a thin film. Further, using a vacuum deposition apparatus EBV-6DA manufactured by ULVAC, calcium was deposited as a cathode at 40 nm and then aluminum was deposited at 80 nm to produce an organic EL device. The degree of vacuum deposition vapor is was 1 X 10- 6 To rr below. When a DC voltage was applied to this device, blue light emission with a luminance of 900 cd / m 2 was obtained at 8 V. This emission was measured using a spectrophotometer (Instant Multi-Channel Photo Detector MCPD 1000: Otsuka Electronics), and the maximum emission wavelength was 460 nm.
  • Example 194 instead of CA61 used in Example 194, the compounds shown in Table 70 synthesized in Production Examples 62 to 75 and Production Examples 90, 92, 94, 96, 97, 99, and 101 were used.
  • Example 116 A device was produced in the same manner as in Example 1924 except for the above.
  • Table 70 shows the results of applying a DC voltage of 8 V to this element.
  • the coating solution was prepared by dissolving CA 81 obtained in Production Example 81 at a concentration of 0.9% by weight and polyvinylcarbazole at a concentration of 2.1% by weight in benzene at a concentration of 0.1% by weight. Thereafter, a device was manufactured in the same manner as in Example 194. Table 71 shows the results of applying a DC voltage of 8 V to this device.
  • Example 2 16 instead of CA81, the compound shown in Table 71 synthesized in Production Examples 82 to 89 and 93, 95, 98, 100, 102 was prepared. A device was produced in the same manner as in Example 216 except that the device was used. Table 71 shows the results of applying a DC voltage of 8 V to this device. Table 71

Abstract

The invention provides high-purity organic electrolumi- nescent materials permitting spin coating, particularly, an organic electroluminescent material containing a calixarene or calixresorciarene derivative bearing a luminescent organic group and/or a charge transport organic group, for example, a calixarene derivative (1) bearing 4-[1-(2,2-diphenylvinyl)- biphenyl-2-phenylvinyl]phenyl as the luminescent organic group.

Description

明細書 有機エレクト口ルミネッセンス素子材料 技術分野  Description Organic electorescence luminescent element material Technical field
本発明は、 新規な有機エレクト口ルミネッセンス素子材料 (以下 「有機 E L素 子材料」 とも称する) に関する。 背景技術  TECHNICAL FIELD The present invention relates to a novel organic electroluminescent device material (hereinafter, also referred to as “organic EL device material”). Background art
有機 E L素子は、 固体発光型の安価な大面積フル力ラー表示素子としての用途 が有望視され、 現在、 盛んに開発が行われている。 一般に有機 E L素子は、 発光 層及び該層を挟んだ一対の対向電極から構成されている。 発光は、 両電極間に電 界が印加されると、陰極から電子が注入され、陽極から正孔が注入される。更に、 この電子と正孔が発光層において再結合し、 エネルギー準位が伝導帯から価電子 に戻る際にエネルギーを光として放出する現象である。  Organic EL devices are expected to be used as inexpensive large-area solid-state color display devices of the solid-state emission type, and are being actively developed. Generally, an organic EL device is composed of a light emitting layer and a pair of opposed electrodes sandwiching the light emitting layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode and holes are injected from the anode. Further, the electrons and holes are recombined in the light emitting layer, and the energy is emitted as light when the energy level returns from the conduction band to valence electrons.
上記有機 E L素子の発光層、 電荷輸送層に使用される有機 E L素子材料には、 その用途に応じて、 高輝度性、 低駆動電圧、 様々な色の発光などの特性を有する ことが要求されており、 その要求に応じた材料を開発することが必要とされてい る。 これまでにも銅フタロシアニン (C u P c ) 、 スターバ一スト (star-burst) 分子などの低分子系材料ゃポリ ( p—フエ二レンビニレン) (P P V) 、 ポリア 二リン (P AN I ) 等の高分子系材料が開発されている。  The organic EL element material used for the light emitting layer and the charge transport layer of the organic EL element is required to have characteristics such as high luminance, low driving voltage, and emission of various colors, depending on the application. Therefore, it is necessary to develop materials that meet the requirements. Until now, low molecular weight materials such as copper phthalocyanine (CuPC), star-burst molecules, poly (p-phenylenevinylene) (PPV), polyaniline (PANI), etc. Polymer materials have been developed.
しかしながら、,これらの材料を薄膜化してデバイスとして用いるには、 幾つか の不便さや問題点がある。 即ち、 C u P cおよびスターパ一スト分子等の低分子 系材料を用いて有機薄膜を作成するには真空蒸着法が用いられるが、 この方法は 時間とコストが掛かるという問題がある。 また、 真空蒸着法により作成された有 機薄膜は結晶化が起こり易く、 デバイスの劣化に繋がる。  However, there are some inconveniences and problems when thinning these materials and using them as devices. That is, a vacuum evaporation method is used to form an organic thin film using a low molecular material such as CuPc and a star-past molecule, but this method has a problem that it takes time and costs. In addition, the organic thin film formed by the vacuum evaporation method is easily crystallized, which leads to deterioration of the device.
一方、 主に高分子系材料においてはスピンコート法による薄膜化が可能である ため、 短時間に大容量の薄膜化を容易且つ安価に行うことができる。 また、 高分 子系材料を用いれば、 結晶化が起こりにくいというメリットもある。 しかしなが ら、 高分子は分子量分布が大きいために、 重合度により発光特性に差異が見られ ることがあり、 個体差が比較的大きいというデメリットがある。 また、 P P Vに おいては、 それ自身が有機溶媒に不溶であるため、 前駆体の薄膜を作成した後に さらに加熱を行わなければならず、 重合率や脱離した塩酸等の影響が問題になつ ている。 P AN Iも単独で有機溶媒に溶解しないため、 カンファースルホン酸を 使用しなければならない。 このように、 スピンコート法により容易に薄膜形成す ることができ、 かつ純度も高い有機 E L素子 ¾"料は、 まだ提供されるに至ってい ない。 On the other hand, mainly for polymer materials, thinning by spin coating is possible, so that large-capacity thinning can be performed easily and inexpensively in a short time. The use of a polymer-based material also has the advantage that crystallization is unlikely to occur. However, since the polymer has a large molecular weight distribution, there are differences in the emission characteristics depending on the degree of polymerization The disadvantage is that the individual differences are relatively large. In addition, since PPV itself is insoluble in organic solvents, it must be further heated after forming a precursor thin film, and the effects of the polymerization rate and desorbed hydrochloric acid pose problems. ing. Since PAN I alone is not soluble in organic solvents, camphorsulfonic acid must be used. As described above, an organic EL device material that can be easily formed into a thin film by spin coating and has high purity has not yet been provided.
また、 特開平 5— 1 7 0 7 0 7号公報には、 下記式  In addition, Japanese Patent Application Laid-Open No. 5-170707 discloses the following formula:
Figure imgf000004_0001
で示される発蛍光性カリックス [4]ァレーン誘導体が開示されている。 この化合 物は、 発光性原子団と消光性原子団を共に有し、 且つ捕捉すべき金属イオンのた めの空隙を有する化合物である。 この化合物の空隙に金属イオンが存在しなけれ ば発光性原子団と消光性原子団との距離が近くなることにより発光せず、 空隙に 金属イオンを捕捉すれば金属イオンの存在により発光原子団と消光原子団との距 離が離れるために発光することを利用し、 この化合物は金属イオンの分析に用い られる。 しかしながら、 上記公開公報には、 この化合物が有機エレクト口クロミ ック素子材料に用いられるか否かについては全く何も記載されていない。 発明の開示
Figure imgf000004_0001
A fluorescent calix [4] arene derivative represented by the formula: This compound has both a luminescent group and a quenching group, and has a void for a metal ion to be captured. If no metal ion is present in the voids of this compound, no light will be emitted due to the short distance between the luminous group and the quenching atomic group. Utilizing the fact that light is emitted due to the distance from the quenching group, this compound is used for the analysis of metal ions. However, the above publication does not disclose at all whether or not this compound is used for an organic electorophore chromic element material. Disclosure of the invention
従って、本発明の目的は、上述の従来技術の問題点を解決すること、すなわち、 スピンコートが可能でかつ高純度の有機 E L素子材料を提供することにある。 本発明者らは上記の課題を解決するために鋭意検討を進めた結果、 有機 E L素 子材料として発光体あるいは電荷輸送体の分子骨格に力リックスアレーン誘導体 および力リックスレゾルシアレーン誘導体からなる群より選ばれる化合物を結合 することにより、 前記目的を全て達成し得ることを見出し、 本発明を提供するに 至った。 Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, that is, to provide a high-purity organic EL device material that can be spin-coated. The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, as a organic EL device material, a group consisting of a phyllixarene derivative and a phyxic resorciarene derivative in a molecular skeleton of a light emitting substance or a charge transporting substance. Combines compounds selected from As a result, it has been found that all of the above objects can be achieved, and the present invention has been provided.
すなわち、 本発明は、 発光性有機基および電荷輸送性有機基の少なくとも 1つ を有するカリックスァレーン誘導体または力リックスレゾルシアレーン誘導体を 含んでなる有機エレクト口ルミネッセンス素子材料である。  That is, the present invention is an organic electroluminescent device material comprising a calix squalene derivative or a physolic resorciarene derivative having at least one of a luminescent organic group and a charge transporting organic group.
また、 本発明は、 上記誘導体の中のある特定の化合物にも関する。 図面の簡単な説明  The present invention also relates to certain compounds among the above derivatives. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 製造例 1で得られた有機エレクトロルミネッセンス素子材料に含める ことのできる本発明に従うカリックスァレーン誘導体の1 H—核磁気共鳴スぺク 卜ラムである。 発明を実施するための最良の形態 FIG. 1 is a 1 H-nuclear magnetic resonance spectrum of a calixarene derivative according to the present invention, which can be included in the organic electroluminescence device material obtained in Production Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において、 有機 E L素子材料として使用される発光性有機基及び電荷輸 送性有機基の少なくとも 1つを有するカリックスァレ一ン誘導体またはカリック スレゾルシアレーン誘導体 (以下、 単に力リックス誘導体ともいう) は、 有機 E L素子材料として公知の発光体および電荷輸送体と、 従来公知のカリックスァレ ーン誘導体およびカリックスレゾルシアレーン誘導体とが、 2価の有機基を介し て、 あるいは介さず直接、 共有結合で結合した化合物であれば、 何ら制限されず 用いることができる。  In the present invention, a calixarene derivative or a carrick resorciarene derivative having at least one of a light-emitting organic group and a charge-transporting organic group used as an organic EL device material (hereinafter, also simply referred to as a force-ricks derivative) A known light emitting substance and a charge transporting substance as an organic EL device material, and a conventionally known calixarene derivative and a calixresorcialane derivative are directly or covalently bonded with or without a divalent organic group. Any compound can be used as long as it is bound.
このような力リックス誘導体としては、 例えば、 下記に示す一般式 (1 ) およ び (2 ) で表す化合物を好適に使用することができる:  As such a force lix derivative, for example, compounds represented by the following general formulas (1) and (2) can be suitably used:
Figure imgf000005_0001
Figure imgf000005_0001
Figure imgf000006_0001
上式中、 nは 3〜2 0の整数であり、 A、 B、 D、 同一または異なる原子または 基であって、 水素原子、 ハロゲン原子、 アルキル基、 ァリール基、 アルコキシ基 または下記一般式(3 )で示される基であり、複数個存在する A、 Bおよび Dは、 それぞれ異なっていても良く、 これらの内の少なくとも 1つが一般式 (3 ) で示 す基であり、 (3 ) 式で示す基が複数個存在する場合、 これらは互に異なってい ても良い
Figure imgf000006_0001
In the above formula, n is an integer of 3 to 20, and A, B, D, the same or different atoms or groups, such as a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group or the following general formula ( The group represented by 3), wherein a plurality of A, B and D may be different from each other, and at least one of them is a group represented by the general formula (3); When there are a plurality of groups represented by, these may be different from each other
- (L ) m- Z ( 3 )  -(L) m- Z (3)
(ここで、 Lは 2価の有機基であり、 Zは発光性有機基または電荷輸送性有機基 であり、 mは 0または 1である) 。  (Where L is a divalent organic group, Z is a luminescent organic group or a charge transporting organic group, and m is 0 or 1).
上記式中、 A、 B、 Dで示されるハロゲン原子としては、塩素原子、臭素原子、 ヨウ素原子を挙げることができる。 また、 アルキル基としては、 メチル基、 ェチ ル基、 プロピル基、 ブチル基等の炭素数 1〜4の基が好適であり、 ァリール基と しては、 フエニル基、 トリル基、 キシリル基、 ナフチル基等の炭素数 6〜 1 0の 基が好適であり、 アルコキシ基としては、 メトキシ基、 エトキシ基、 プロポキシ 基、 ブトキシ基、 2 -ェチルへキシルォキシ基等の炭素数 1〜 8の基を好適に使用 することができる。  In the above formula, examples of the halogen atom represented by A, B and D include a chlorine atom, a bromine atom and an iodine atom. As the alkyl group, a group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group is preferable. As the aryl group, a phenyl group, a tolyl group, a xylyl group, A group having 6 to 10 carbon atoms such as a naphthyl group is preferable, and an alkoxy group is a group having 1 to 8 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group and a 2-ethylhexyloxy group. It can be suitably used.
これら A、 Bおよび Dがー分子中に複数個存在する場合、 それぞれ同一であつ ても良く、 また異なっていても良いが、 但し、, これら A、 Bおよび Dがー分子中 に複数個存在する場合は、 これらの内の少なくとも 1つが下記式 (3 ) で示す基 である。 そして、 (3 ) 式で示す基が一分子中に複数個存在する場合、 これらは 同一であっても良く、 また異なっていても良い。  When a plurality of A, B and D are present in a molecule, they may be the same or different, provided that a plurality of A, B and D exist in a molecule. In this case, at least one of them is a group represented by the following formula (3). When a plurality of groups represented by the formula (3) are present in one molecule, they may be the same or different.
― (L ) m- Z ( 3 )  ― (L) m-Z (3)
上記式 (3 ) 中、 Lで示される 2価の有機基としては、 発光性有機基または電 荷輸送性有機基と力リックスアレーン誘導体またはカリックスレゾルシァレーン 誘導体とを連結しうる基であれば何ら制限されない。 このような連結しうる基と して挙げることができる基には、 制限されるものでないが、 次の式で示される基 が包含される (ただし、 式中、 Rは炭素数 1〜1 2のアルキル基であり、 nは 0 〜2 0の整数である。 ) 。 In the above formula (3), as the divalent organic group represented by L, a luminescent organic group or a charge transporting organic group and a liques arene derivative or a calixresorcinalene There is no particular limitation as long as it is a group that can be linked to a derivative. The group which can be mentioned as such a linkable group includes, but is not limited to, a group represented by the following formula (wherein, R represents a carbon number of 1 to 12) And n is an integer of 0 to 20.)).
Figure imgf000007_0001
Figure imgf000007_0001
Figure imgf000007_0002
さらに、 上記式 (3 ) 中、 Zで示される発光性有機基および電荷輸送性有機基と しては、 従来の有機 E L素子に用いられる公知の発光体、 電荷輸送体を骨格とし て有する残基を何ら制限なく用いることができる。 発光性有機基または電荷輸送 性有機基は、 共に低分子有機化合物または中分子有機化合物から誘導される基で ある。 中分子有機化合物から誘導される基の分子量は、 数平均分子量で 2 0 0〜 4 0 0 0のものが精製のしゃすさから好ましい。 発光性有機基は、 励起一重項か らの蛍光発光または励起三重項からの燐光発光を示すことのできる構造を有する 基である。 電荷輸送性有機基は、 正孔輸送能あるいは電子輸送能を示すことので きる構造を有する基であり、 それぞれ正孔輸送性有機基および電子輸送性有機基 に分類される。 これらはそれぞれ正孔輸送体および電子輸送体から誘導される基 である。 なお、 発光性有機基の中には電荷輸送性を示すものもあり、 その場合ど ちらの有機基に分類されるかは、 特に取り決めがあるわけではなく、 さらにそれ ら化合物間に構造の共通性は認められない。
Figure imgf000007_0002
Further, in the above formula (3), the light-emitting organic group and the charge-transporting organic group represented by Z are a residue having a known light-emitting substance or a charge-transporting substance as a skeleton used in a conventional organic EL device. The groups can be used without any restrictions. Both the luminescent organic group and the charge transporting organic group are groups derived from a low molecular weight organic compound or a medium molecular weight organic compound. The molecular weight of the group derived from a medium molecular organic compound is preferably 200 to 400,000 in terms of number average molecular weight, from the viewpoint of purification. The luminescent organic group is a group having a structure capable of emitting fluorescence from an excited singlet or phosphorescence from an excited triplet. The charge transporting organic group is a group having a structure capable of exhibiting hole transporting ability or electron transporting ability, and is classified into a hole transporting organic group and an electron transporting organic group, respectively. These are groups derived from hole and electron transporters, respectively. Some luminescent organic groups exhibit charge transport properties. In that case, there is no particular rule as to which organic group is to be categorized. No gender is observed.
換言すれば、 発光性有機基は、 それを構成する少なくとも 4つの不飽和結合が 共役系を形成するように連結されており、 かつ、 発光性を示す構造を有する残基 を形成している。 また、 電荷輸送性有機基は、 それを構成する少なくとも 2つの 不飽和結合が共役系を形成するように連結されており、 かつ、 電荷輸送性を有す る残基を形成している。 なお、 これらの共役系は 1分子中に 2つ以上が分断され て存在してもよい。 ここで、 発光性を有する構造とは、 上述の励起一重項からの 蛍光発光または励起三重項からの燐光発光を示すことのできる構造を意味し、 当 業者であれば、 必要により既知の発光性有機化合物を参照することによりその意 味内容は明確であろう。 なお、 「4つの不飽和結合が共役系を形成する」 と称す る場合、 例えば、 ベンゼン環は 3つの不飽和結合を有するものとして認識されて いる。  In other words, the luminescent organic group is linked such that at least four unsaturated bonds constituting the luminescent organic group form a conjugated system, and forms a residue having a luminescent structure. In addition, the charge transporting organic group has at least two unsaturated bonds constituting the charge transporting organic group connected to form a conjugated system, and forms a charge transporting residue. In addition, two or more of these conjugated systems may be present in a single molecule. Here, the structure having a light-emitting property means a structure capable of showing fluorescence emission from an excited singlet or phosphorescence from an excited triplet as described above. The meaning will be clear by referring to organic compounds. In the case where "the four unsaturated bonds form a conjugated system", for example, a benzene ring is recognized as having three unsaturated bonds.
これら発光性有機基または電荷輸送性有機基の結合手の位置は、 上記の共役系 に悪影響を及ぼさない限り、 特に限定されない。  The position of the bond between the light emitting organic group or the charge transporting organic group is not particularly limited as long as the above conjugated system is not adversely affected.
このような発光性有機基および電荷輸送性有機基としては、 下記 i) 、 ii) およ び iii) で示す残基を挙げることができる。  Examples of such a luminescent organic group and a charge transporting organic group include the residues shown in the following i), ii) and iii).
i) 少なくとも 2つの不飽和環系 (ここで、 不飽和環系は、 5員もしくは 6員の 炭化水素環もしくは環構成原子として窒素原子、 酸素原子、 硫黄原子またはケィ 素原子を 1〜 3個有する 5員もしくは 6員の複素環であり、 または、 これらの炭 化水素環および/または複素環の 2〜3 0個が縮合していてもよく、 これらの不 飽和環系は置換基で置換されていてもよく、また、飽和環が縮合していてもよい。) が縮合するか、 または直接結合またはアルケニレン基もしくは窒素原子 (特に、 窒素原子の孤立電子対電子) を介して共役系を形成するように連結されており、 また、 上記の不飽和環系はポリマー主鎖の 1以上の側鎖 (またはペンダント基) であってもよく、 そして、 力リックス誘導体分子に発光性または電荷輸送性を付 与する残基。 i) at least two unsaturated ring systems, where unsaturated ring systems are nitrogen, oxygen, sulfur or calcium atoms as 5- or 6-membered hydrocarbon rings or ring members; A 5- or 6-membered heterocyclic ring having 1 to 3 carbon atoms, or 2 to 30 of these hydrocarbon rings and / or heterocyclic rings may be condensed; The ring system may be substituted with a substituent, or a saturated ring may be condensed. ) Are condensed or linked to form a conjugated system through a direct bond or an alkenylene group or a nitrogen atom (particularly, a lone electron versus electron of the nitrogen atom). Residues which may be one or more side chains (or pendant groups) of the polymer backbone, and which confer luminescence or charge transport properties to the elixir derivative molecule.
ii) 少なくとも 2つの不飽和環系 (ここで、 不飽和環系は、 5員もしくは 6員 の炭化水素環もしくは環構成原子として窒素原子、 酸素原子、 硫黄原子またはケ ィ素原子を 1〜 3個有する 5員もしくは 6員の複素環であり、 または、 これらの 炭化水素環および/または複素環の 2〜 3 0個が縮合していてもよく、 これらの 不飽和環系は置換基で置換されていてもよく、 また、 飽和環が縮合していてもよ い。 ) が縮合して配位子を形成するか、 または直接結合または一 C =基もしくは 窒素原子を介して共役系を形成するように連結されて配位子を形成し、 さらに必 要により該不飽和環系に結合した酸素原子とともに配位子を形成し、ベリリウム、 アルミ二ゥ 、 銅、 亜鉛、 ルテニウム、 ユーロピウム、 ロジウム、 白金またはケ ィ素を中心金属として有する配位化合物から誘導され、 力リックス誘導体分子に 発光性または電荷輸送性を付与する残基。  ii) At least two unsaturated ring systems (where the unsaturated ring system is a 5- or 6-membered hydrocarbon ring or a ring-constituting atom containing 1 to 3 nitrogen, oxygen, sulfur, or silicon atoms). A 5- or 6-membered heterocyclic ring, or 2 to 30 of these hydrocarbon rings and / or heterocyclic rings may be condensed, and these unsaturated ring systems are substituted with substituents. Or a saturated ring may be condensed.) To form a ligand, or to form a conjugated system through a direct bond or one C = group or a nitrogen atom. To form a ligand, and, if necessary, together with an oxygen atom bonded to the unsaturated ring system, to form a ligand such as beryllium, aluminum, copper, zinc, ruthenium, europium, and rhodium. , Platinum or silicon A residue derived from a coordination compound having a genus, which imparts luminescence or charge transport properties to a elixir derivative molecule.
iii) 少なくとも 2つの不飽和環系 (ここで、 不飽和環系は、 5員もしくは 6員 の炭化水素環もしくは環構成原子として窒素原子、 酸素原子、 硫黄原子またはケ ィ素原子を 1〜3個有する 5員もしくは 6員の複素環であり、 または、 これらの 炭化水素環および/または複素環の 2〜 3 0個が縮合していてもよく、 これらの 不飽和環系は置換基で置換されていてもよく、 また、 飽和環が縮合していてもよ い。 ) が縮合または直接結合した分子団の 2個以上とイリジウムとが結合した有 機金属化合物から誘導され、 力リックス誘導体分子に発光性または電荷輸送性を 付与する残基。  iii) at least two unsaturated ring systems (where the unsaturated ring system is a 5- or 6-membered hydrocarbon ring or ring-constituting atom containing 1 to 3 nitrogen, oxygen, sulfur, or silicon atoms). A 5- or 6-membered heterocyclic ring, or 2 to 30 of these hydrocarbon rings and / or heterocyclic rings may be condensed, and these unsaturated ring systems are substituted with substituents. And a saturated ring may be condensed.) Is derived from an organic metal compound in which two or more of the molecular groups to which iridium is condensed or directly bonded to iridium; Residues that impart luminescence or charge transport properties to
上記 i) 〜iii) において、 不飽和環系を構成する 5員もしくは 6員の炭化水素 環としては、 ベンゼン環を挙げることができ、 環構成原子として窒素原子、 酸素 原子、 硫黄原子またはゲイ素原子を 1〜 3個有する 5員もしくは 6貫の複素環と しては、 ピロ一ル環、 フラン環、 チォフェン環、 ピリジン環、 ピラン環、 チアゾ ール環、 トリアジン環、 ォキサジァゾ一ル環等を挙げることができる。 In the above i) to iii), examples of the 5- or 6-membered hydrocarbon ring constituting the unsaturated ring system include a benzene ring, and a nitrogen atom, an oxygen atom, a sulfur atom or a nitrogen atom as a ring-constituting atom. A 5-membered or 6-membered heterocyclic ring with 1 to 3 atoms Examples thereof include a pyrroyl ring, a furan ring, a thiophene ring, a pyridine ring, a pyran ring, a thiazole ring, a triazine ring, an oxaziazole ring and the like.
また、上記の不飽和環系が置換されている場合の置換基としては、フッ素原子、 塩素原子、 臭素原子、 ヨウ素原子等のハロゲン原子;ォキソ基;メチル基、 ェチ ル基、 t一ブチル基等の炭素数 1〜8のアルキル基;メトキシ基、 エトキシ基、 プロポキシ基等の炭素数 1〜8のアルコキシ基;クロロメチル基、 トリフロロメ チル基等の炭素数 1〜4のハロゲン化アルキル基;アミノ基;シァノ基等を挙げ ることができる。 これらは、 上記の共役系に悪影響を及ぼさない限り、 同一もし くは異なる置換基が複数個存在していてもよい。 なお、 「共役系に悪影響を及ぼ さない」 とは、例えば、相当する共役系が本来有している発光波長および強度(ま たは輝度) を実質的に変更しないことをいう。  When the above unsaturated ring system is substituted, examples of the substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; an oxo group; a methyl group, an ethyl group and a t-butyl group. C1-8 alkyl groups such as groups; C1-8 alkoxy groups such as methoxy, ethoxy and propoxy groups; C1-4 halogenated alkyl groups such as chloromethyl and trifluoromethyl An amino group; a cyano group and the like. These may have a plurality of the same or different substituents as long as they do not adversely affect the conjugated system. Here, “has no adverse effect on the conjugated system” means, for example, that the emission wavelength and intensity (or luminance) originally possessed by the corresponding conjugated system are not substantially changed.
さらに、 上記の不飽和環に縮合する飽和環としては、 シクロへキサン環、 ピぺ リジン環、 ピラゾリン環等の炭素数 5〜 6の飽和炭化水素環または環構成原子と して窒素原子を有する飽和複素環を挙げることができる。 これらの飽和環は上記 の不飽和環に 2つ以上縮合していてもよい。  Further, the saturated ring fused to the above unsaturated ring includes a saturated hydrocarbon ring having 5 to 6 carbon atoms such as a cyclohexane ring, a piperidine ring, a pyrazoline ring, or a nitrogen atom as a ring-constituting atom. Saturated heterocycles can be mentioned. Two or more of these saturated rings may be fused to the above-mentioned unsaturated rings.
上記 i) 〜iii) に属する残基を具体的に例示すれば次のとおりである。  Specific examples of the residues belonging to the above i) to iii) are as follows.
a— 1 ) 上記 i) に属する発光性有機基:  a— 1) Luminescent organic group belonging to i) above:
• ジスチリルァリーレン誘導体から誘導される残基  • Residues derived from distyrylarylene derivatives
Figure imgf000010_0001
Figure imgf000010_0001
Figure imgf000011_0001
Figure imgf000011_0001
'スチリルァミン誘導体等のスチリル系誘導体から誘導される残基  'Residues derived from styryl derivatives such as styrylamine derivatives
Figure imgf000011_0002
Figure imgf000011_0002
. ィミダゾ一ル誘導体等の含窒素芳香族複素環誘導体から誘導される残基 . Residues derived from nitrogen-containing aromatic heterocyclic derivatives such as imidazole derivatives
Figure imgf000011_0003
Figure imgf000011_0003
. ペリレン誘導体等の芳香族環が多縮環した炭化水素環誘導体から誘導され る残基
Figure imgf000012_0001
. Residues derived from polycyclic aromatic hydrocarbon derivatives such as perylene derivatives
Figure imgf000012_0001
• ポリメチン系、 クマリン系、キナクリドン系などの色素類から誘導される残 基 • Residues derived from pigments such as polymethine, coumarin, and quinacridone
Figure imgf000012_0002
Figure imgf000012_0002
(式中、 pおよび qはそれぞれ 1〜1 0の整数であり、 各基の数平均分子量が 2 0〜4 0 0 0の範囲の値をとるような整数である。 ) (In the formula, p and q are each an integer of 1 to 10 and an integer such that the number average molecular weight of each group takes a value in the range of 20 to 400.)
• ポリパラフエニレン誘導体等のァリ一レン誘導体の π共役系中分子化合物 力 ^誘導される残基
Figure imgf000012_0003
• Molecular compounds in π-conjugated systems of arylene derivatives such as polyparaphenylene derivatives.
Figure imgf000012_0003
0 ポリパラフエ二レンビニレン誘導体等のァリーレンビニレン誘導体の 役系中分子ィヒ合物から誘導される残基 0 Residues derived from molecular compounds in arylenevinylene derivatives such as polyparaphenylenevinylene derivatives
Figure imgf000013_0001
Figure imgf000013_0001
(式中、 Pおよび Qは上記と同じ) (Where P and Q are the same as above)
上記した残基のほかにも、 ナフ夕レン誘導体;アントラセン誘導体;キサント ン系、 シァニン系などの色素類;テトラフエニルシクロペン夕ジェン、 テトラフ ェニルブタジエン等の芳香族基が多置換した誘導体;ポリチォフェン誘導体等の π共役系中分子化合物;ポリシラン等の σ共役系中分子化合物;ポリ (メタ) ァ クリルァリ一ルァミン誘導体等のペンダント型中分子化合物から誘導される残基 を挙げることができる。  In addition to the above-mentioned residues, naphthylene derivatives; anthracene derivatives; xanthones, cyanines, and other dyes; derivatives in which aromatic groups are polysubstituted, such as tetraphenylcyclopentene and tetraphenylbutadiene; Residues derived from π-conjugated middle molecular compounds such as polythiophene derivatives; sigma-conjugated middle molecular compounds such as polysilane; and pendant middle molecular compounds such as poly (meth) acrylylarylamine derivatives.
a— 2 ) 上記 i) に属する電荷輸送性有機基中の正孔輸送性有機基:  a— 2) Hole transporting organic groups in the charge transporting organic groups belonging to i) above:
• ァリ一ルァミン誘導体から誘導される残基  • Residues derived from arylamine derivatives
Figure imgf000013_0002
Figure imgf000013_0002
Figure imgf000014_0001
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0002
Figure imgf000015_0001
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0002
(式中、 pおよび qは上記と同じ)  (Where p and q are the same as above)
上記した残基のほかにも、 ピラゾリン誘導体;スチルベン誘導体から誘導され る残基を例示することができる。  In addition to the above-mentioned residues, there can be exemplified residues derived from pyrazoline derivatives; stilbene derivatives.
a— 3 ) 上記 i) に属する電荷輸送性有機基中の電子輸送性有機基: • ォキサジァゾール誘導体から誘導される残基 a— 3) Electron transporting organic groups in the charge transporting organic groups belonging to i) above: • Residues derived from oxadiazole derivatives
Figure imgf000016_0001
Figure imgf000016_0001
1 4 • トリァゾール誘導体から誘導される残基
Figure imgf000017_0001
14 • Residues derived from triazole derivatives
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0002
Figure imgf000017_0003
Figure imgf000017_0004
上記した残基のほかにも、 アントラキノンジメタンもしくはその誘導体;テト ラシァノアントラキノジメタンもしくはその誘導体; フルォレノン誘導体;ジフ エノキノン誘導体から誘導される残基を例示することができる。
Figure imgf000017_0003
Figure imgf000017_0004
Other than the above-mentioned residues, there can be exemplified residues derived from anthraquinone dimethane or a derivative thereof; tetracyano anthraquinodimethane or a derivative thereof; a fluorenone derivative; and a diphenoquinone derivative.
b ) 上記 ii) に属する残基:  b) Residues belonging to ii) above:
Figure imgf000018_0001
Figure imgf000018_0001
6 これらの発光性有機基の中でも本発明において好ましい基としては、 ジスチリ ルァリ一レン誘導体、 スチリルアミン誘導体、 イミダゾール誘導体、 ナフ夕レン 誘導体、 アントラセンもしくはその誘導体、 ペリレンもしくはその誘導体、 およ び 8—ヒドロキシキノリンもしくはその誘導体の金属錯体、 ポリ (9, 9ージァ ルキルフルオレン) 誘導体から誘導される残基を挙げることができる。 6 Among these luminescent organic groups, preferred groups in the present invention include distyrylarylene derivatives, styrylamine derivatives, imidazole derivatives, naphthylene derivatives, anthracene or its derivatives, perylene or its derivatives, and 8-hydroxy Examples thereof include a metal complex of quinoline or a derivative thereof, and a residue derived from a poly (9,9-dialkylfluorene) derivative.
また、 電荷輸送性有機基の中でも正孔輸送性有機基としてはァリールアミン誘 導体が、 電子輸送性有機基としてはォキサジァゾール誘導体、 トリァゾール誘導 体、 シロール誘導体および 8—ヒドロキシキノリンもしくはその誘導体の金属錯 体から誘導される残基が好ましい。  Among the charge-transporting organic groups, an arylamine derivative is used as the hole-transporting organic group, and an oxadiazole derivative, a triazole derivative, a silole derivative, and a metal complex of 8-hydroxyquinoline or a derivative thereof are used as the electron-transporting organic group. Are preferred.
本発明で用いる力リックス誘導体中、 カリックスァレーン構造部分は、 フエノ ールとホルムアルデヒドの縮合により生成する環状オリゴマー、 アルコキシ基を 介して架橋した架橋力リックスァレーン、 チアカリックスァレーンやォキサカリ ックスァレーンなどのへテロカリックスァレーン、 または、 カリックスピロール やカリックスシロールなどの擬カリックスシクロオリゴマーを骨格に有する公知 の化合物から誘導し得る残基を何ら制限なく用い得る。 例えば、 「カリックスァ レ一ン (Calixarenes)」 (C.D.ゲツチ ι編、 Royal Society of Chemistry, 1989年) 、 「カリックスァレ一ン(Calixarenes)」 ( J.ゥ'、イショ-ンら編、 Kluwer Academic Publishers, 1991年)、 また、ベ一マ一の総説 (Angew. Chem. Int. Ed, Engl, 34 巻、 p713、 1995年) などに記載されている化合物から誘導し得る残基を挙げるこ とができる。  In the liquix derivative used in the present invention, the calixarene structure portion includes a cyclic oligomer formed by condensation of phenol and formaldehyde, a crosslink lixisarean cross-linked through an alkoxy group, thiacalixarene, oxacalixarene, and the like. Any residue that can be derived from a known compound having a pseudocalixcyclooligomer such as calixspirol or calixsilole in its skeleton can be used without any limitation. For example, "Calixarenes" (edited by CD Getti, Royal Society of Chemistry, 1989), "Calixarenes" (J. ゥ ', edited by Ishon et al., Kluwer Academic Publishers, 1991), and the residues derivable from the compounds described in the review of Bema-I (Angew. Chem. Int. Ed, Engl, 34, p713, 1995). .
本発明で用いるカリックス誘導体中、力リックスレゾルシアレーン構造部分は、 レゾルシノ一ル誘導体とホルムアルデヒドの縮合により生成する環状オリゴマー から誘導し得る残基を何ら制限なく用い得る。  In the calix derivative used in the present invention, a residue derived from a cyclic oligomer formed by condensation of a resorcinol derivative and formaldehyde can be used without any limitation for the ricris resorciarene structure portion.
本発明で用いるカリックス誘導体において、 発光性有機基又は電荷輸送性有機 基それぞれがー分子中に複数個存在していてもよい。 この場合、 発光性有機基及 び電荷輸送性有機基の種類は同一であってもよく、 異なっていても良い。 また、 本発明におけるカリックス誘導体の中でも、 一分子に発光性有機基および電荷輸 送性有機基を共に有するカリックス誘導体は、 有機 E L素子材料として発光輝度 が高いために本発明において好適な化合物である。  In the calix derivative used in the present invention, a plurality of light emitting organic groups or charge transporting organic groups may be present in a molecule. In this case, the types of the luminescent organic group and the charge transporting organic group may be the same or different. Further, among the calix derivatives in the present invention, a calix derivative having both a light-emitting organic group and a charge-transporting organic group in one molecule is a preferable compound in the present invention because of its high emission luminance as an organic EL device material. .
さらに、 本発明においては、 発光性有機基を有する力リックス誘導体 (X) と 電荷輸送性有機基を有する力リックス誘導体 (Y) とを混合して有機 E L素子材 料として用いることが、より高い発光輝度を得ることができるために好適である。 この場合、 発光性有機基を有する力リックス誘導体 (X) と電荷輸送性有機基を 有する力リックス誘導体 (Y)の配合割合は、特に制限されないが、一般には(X) 1 0 0重量部に対して (Y) を 0 . 1〜9 9 . 9重量部の範囲で配合することが 好ましく、 さらに 1〜9 9重量部の範囲とすることがより好ましい。 Further, in the present invention, a liquix derivative (X) having a luminescent organic group It is preferable to use the mixture with a force lix derivative (Y) having a charge-transporting organic group as an organic EL element material because a higher emission luminance can be obtained. In this case, the mixing ratio of the elixir derivative (X) having a luminescent organic group and the elixir derivative (Y) having a charge-transporting organic group is not particularly limited, but is generally less than 100 parts by weight of (X). On the other hand, (Y) is preferably blended in the range of 0.1 to 99.9 parts by weight, and more preferably in the range of 1 to 99 parts by weight.
本発明において、 前記した一般式 (1 ) および (2 ) で示す力リックス誘導体 中、 発光性有機基および電荷輸送性有機基が上記 i)および ii) で示す基である化 合物は新規化合物である。  In the present invention, in the litrix derivatives represented by the general formulas (1) and (2), the compound in which the luminescent organic group and the charge transporting organic group are the groups represented by i) and ii) is a novel compound It is.
本発明において好適に用いられるカリックス誘導体を具体的に例示すれば、 次 のとおりである。  Specific examples of the calix derivative suitably used in the present invention are as follows.
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000021_0001
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000021_0002
Figure imgf000022_0001
Figure imgf000022_0001
差替え用紙, mw Replacement paper, mw
Figure imgf000023_0001
Figure imgf000023_0001
20/1 差替え用紙 ( m) 20/1 Replacement paper (m)
Figure imgf000024_0001
差替え用紙 ( m)
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000024_0001
Replacement paper (m)
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000028_0002
Figure imgf000029_0001
Figure imgf000028_0002
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000032_0001
本発明で用いる力リックス誘導体は、ガラス転移温度が比較的高くて熱的安定性 が高い。 ガラス転移温度は変動するが、 概ね 10 o°c前後である。 このため、 力 リックス誘導体を有機 EL素子材料として利用したとき、 駆動電圧をかけた際に 発生する熱量を抑えることができる。 このような熱的安定性は、 力リックス誘導 体が環状構造を有していることによるものであると考えられる。 また、 カリック ス誘導体は可視領域に吸収を持たない。 このため、 力リックス誘導体を用いた有 機 E L素子材料は、 エネルギー移動等により発光効率が低下することを有効に抑 えることができる。 The relix derivative used in the present invention has a relatively high glass transition temperature and high thermal stability. The glass transition temperature varies, but is generally around 10 o ° c. For this reason, when the liquid crystal derivative is used as an organic EL device material, the amount of heat generated when a driving voltage is applied can be suppressed. Such thermal stability is considered to be due to the fact that the elixir has a cyclic structure. In addition, calix derivatives have no absorption in the visible region. For this reason, the organic EL device material using the force lix derivative can effectively suppress a decrease in luminous efficiency due to energy transfer or the like.
カリックス誘導体の製造方法は特に制限されず、 通常利用される合成法を適宜 組み合わせることによって製造することができる。 好ましい合成法として、 以下 のスキームに示す合成法を例示することができる。  The method for producing the calix derivative is not particularly limited, and the calix derivative can be produced by appropriately combining commonly used synthesis methods. As a preferred synthesis method, the synthesis method shown in the following scheme can be exemplified.
力リックス誘導体の合成においては、 力リックスァレーン構造部分または力リ ックスレゾルシアレーン構造部分と発光性有機基および電荷輸送性有機基とを結 合する際に、 連結基を介さず直接結合する有用な反応例としては、 例えば、  When synthesizing a elixir derivative, a elixir structure or a lexical resorciarene structure is directly bonded to the luminescent organic group and the charge transporting organic group without using a linking group. Examples of useful reactions that include
(1)ハロゲン化ァリールまたはトリフリルァリールとボロン酸を P d (0価)、 炭酸ナトリゥムの触媒存在下で力ップリングさせる Suzu Coupling反応  (1) Suzu Coupling reaction in which aryl or trifurylaryl is boron-acid-coupled with boronic acid in the presence of Pd (zero valence) and sodium carbonate catalysts
(2) ハロゲン化ァリールと塩ィ匕亜鉛ァリールを P d (0価) 、 N i (0価) の 触媒存在下で力ップリングさせる Negishi Coupling反応  (2) Negishi Coupling reaction in which halogenated aryl and zinc chloride zinc aryl are force-coupled in the presence of Pd (zero valence) and Ni (zero valence) catalysts
( 3 )ハロゲン化ァリール同士を C u触媒存在下で力ップリングさせる Ullmann Negism Coupling <DU心  (3) Force coupling between aryl halides in the presence of Cu catalyst Ullmann Negism Coupling <DU
(4) ハロゲン化ァリールとアミノ基を P d (0価) 、 有機リン配位子、 塩基存 在下でカップリングさせる反応  (4) Reaction of coupling aryl halide and amino group in the presence of Pd (0 valence), organophosphorus ligand and base
等がある。 Etc.
また、 連結基を介して結合する反応としては、 例えば、  In addition, as a reaction to be bonded via a linking group, for example,
(1) カルボン酸とアミンを反応させ、 アミド結合を形成する反応  (1) Reaction of carboxylic acid and amine to form amide bond
(2) クロロメチノレ基とァミンとの反応  (2) Reaction of chloromethinole group with amine
(3) リンイリドとカルボニル基を反応させ二重結合を形成する Wittig反応 (3) Wittig reaction to form double bond by reacting phosphorus ylide with carbonyl group
(4) リン酸エステルとカルボ二ル基を反応させ、 二重結合を形成する反応(4) Reaction of phosphoric ester and carbonyl group to form double bond
(5) グリニア試薬とハロゲン化合物を反応させて、 炭素一炭素結合を形成する 反応 (5) Reaction of a Grignard reagent with a halogen compound to form a carbon-carbon bond
30 等がある。 30 Etc.
さらに、 合成した力リックス誘導体は、 再結晶またはカラムクロマトグラフィ 一により精製される。 再結晶に用いる溶媒としては、 公知の有機溶媒、 それらの 混合溶媒が用いられるが、 好ましくはエタノール、 イソプロピルアルコール、 ァ セトン、 酢酸ェチル、 ァセトニトリル、 へキサン、 ヘプタンが使用される。  Further, the synthesized lelix derivative is purified by recrystallization or column chromatography. As a solvent used for recrystallization, a known organic solvent and a mixed solvent thereof are used, and preferably, ethanol, isopropyl alcohol, acetone, ethyl acetate, acetonenitrile, hexane and heptane are used.
上記の製造方法によれば、 力リックス誘導体は容易に精製して単離することが 可能である。 したがって、 不純物の濃度が比較的高くて分子量分布がある通常の ポリマー材料に比べると、 力リックス誘導体は有機 E L素子材料としての利用価 値が高い。 上述のように、 本発明における発光性有機基を有する力リックス誘導 体は発光層を形成する発光体として、 また、 電荷輸送性有機基を有するカリック ス誘導体は電荷輸送層を形成する電荷輸送体として極めて有用である。  According to the above-mentioned production method, the elixir can be easily purified and isolated. Therefore, as compared with a normal polymer material having a relatively high impurity concentration and a molecular weight distribution, the elixir has a higher utility value as an organic EL device material. As described above, the force lix derivative having a luminescent organic group in the present invention is a luminescent material forming a light emitting layer, and the calix derivative having a charge transporting organic group is a charge transporting material forming a charge transport layer. Is extremely useful.
本発明の有機 E L素子材料を用いて作成される有機 E L素子の構造については、 少なくとも一方が透明または半透明である一対の電極間に、 本発明の有機 E L素 子材料を含む発光層もしくは電荷輸送層が形成されておれば特に制限されず、 公 知の構造を採用することができる。 例えば、 発光体のみからなる発光層、 もしく は、 発光体と電荷輸送体との混合物からなる発光層の両面に、 少なくとも一方が 透明または半透明の一対の電極を有する構造のもの、 さらに陽極と発光層の間に 正孔輸送体を含む正孔輸送層および陰極と発光層の間に電子輸送体を含む電子輸 送層を積層したものを挙げることができる。  Regarding the structure of an organic EL device produced using the organic EL device material of the present invention, a light emitting layer or a charge containing the organic EL device material of the present invention is provided between a pair of electrodes, at least one of which is transparent or translucent. There is no particular limitation as long as the transport layer is formed, and a known structure can be employed. For example, a structure having at least one of a pair of transparent or translucent electrodes on both surfaces of a light-emitting layer composed of only a light-emitting body, or a light-emitting layer composed of a mixture of a light-emitting body and a charge transporter, And a layer in which a hole transport layer containing a hole transporter is provided between the cathode and the light emitting layer, and an electron transport layer containing an electron transporter is provided between the cathode and the light emitting layer.
また、 発光層や電荷輸送層は各層が複数の化合物からなっても良い。 例えば、 発光層において、 一つの発光体に他の発光体を混ぜることにより、 一つの発光体 から他の発光体へエネルギー移動を生じさせ、 他の発光体から効率よく発光させ ることができる。 この時の混合する化合物数は特に制限はなく、 一つの発光体と 発光させる他の発光体とのエネルギー関係において、 最適になるように化合物を 組み合わせればよい。 また他の発光体の濃度は一つの発光体との合計量中、 0 . 1 〜 5 0重量 °/0の範囲で選択される。 また、 電荷輸送層においては、 電極からの 電荷注入障壁または素子の電荷注入パランスをとることを目的として、 複数の化 合物を混合することもできる。 混合する化合物数は特に制限はなく、 さらに添加 濃度も前述の発光体の場合と同様に合計量中に占める割合で他の化合物を 0 . 1 〜 5 0重量%の範囲で用いることができる。 さらに、 複数の発光体及び複数の電 Further, each of the light emitting layer and the charge transport layer may be composed of a plurality of compounds. For example, in the light-emitting layer, by mixing one light-emitting body with another light-emitting body, energy transfer from one light-emitting body to another light-emitting body can be performed, and the other light-emitting bodies can emit light efficiently. The number of compounds to be mixed at this time is not particularly limited, and the compounds may be combined so as to be optimal in terms of the energy relationship between one luminous body and another luminous body to emit light. The concentration of the other luminous body is selected in the range of 0.1 to 50% by weight / 0 in the total amount with one luminous body. In the charge transport layer, a plurality of compounds can be mixed for the purpose of maintaining a charge injection barrier from the electrode or a charge injection balance of the device. The number of compounds to be mixed is not particularly limited, and the addition concentration can be 0.1 to 50% by weight of other compounds in the proportion of the total amount as in the case of the above-mentioned luminescent material. In addition, multiple light emitters and multiple
3 荷輸送体を混合した発光層とすることもできる。 Three The light emitting layer may be a mixture of a load transporter.
また、 発光層や電荷輸送層は 1層であってもよく、 また、 複数の層を組み合わ せることもできる。 さらに、 発光層に本発明の有機 EL素子材料以外の発光体を 混合使用することもでき、 電荷輸送層に本発明の有機 E L素子材料以外の電荷輸 送体を混合使用することもできる。 また、 発光層および電荷輸送層は、 本発明の 有機 E L素子材料単独で構成されていてもよく、 中分子あるいは高分子化合物に 分散させて構成してもよい。  In addition, the light emitting layer and the charge transport layer may be a single layer, or a plurality of layers may be combined. Further, a luminescent material other than the organic EL device material of the present invention can be mixed and used in the light emitting layer, and a charge transport material other than the organic EL device material of the present invention can be mixed and used in the charge transport layer. Further, the light emitting layer and the charge transport layer may be composed of the organic EL device material of the present invention alone, or may be composed of a medium molecular or high molecular compound dispersed therein.
本発明の有機 E L素子材料と共に使用できる公知の発光体としては特に限定さ れないが、 前述した発光性有機基に表されるような化合物、 例えば、 ジスチリノレ ァリーレン誘導体、 スチリルァミン誘導体、 ナフタレン誘導体、 アントラセンも しくはその誘導体、ペリレンもしくはその誘導体、ポリメチン系、キサンテン系、 クマリン系、 シァニン系などの色素類、 8—ヒドロキシキノリンもしくはその誘 導体の金属錯体、 ユーロピウムあるいはイリジゥムを含む三重項 ¾光性の金属錯 体、 芳香族ァミン、 テトラフエ-ルシクロペンタジェンもしくはその誘導体、 ま たはテトラフエ -ルブタジェンもしくはその誘導体などを用いることができる。 具体的には、 例えば特開昭 57— 51781号、 同 59— 194393号公報に 記載されているもの等、 公知のものが使用可能である。  The known luminescent material that can be used together with the organic EL device material of the present invention is not particularly limited, but a compound represented by the above-mentioned luminescent organic group, for example, distyrino arylene derivative, styrylamine derivative, naphthalene derivative, anthracene Or a derivative thereof, perylene or a derivative thereof, a polymethine-based, xanthene-based, coumarin-based, or cyanine-based dye, a metal complex of 8-hydroxyquinoline or a derivative thereof, a triplet containing europium or iridium, or the like. A metal complex, aromatic amine, tetraphenylcyclopentadiene or a derivative thereof, or tetraphenylbutadiene or a derivative thereof can be used. Specifically, known materials such as those described in JP-A-57-51781 and JP-A-59-194393 can be used.
また、 上記した本発明の有機 E L素子材料と共に使用できる公知の電荷輸送体 を例示すれば、 正孔輸送体としてはピラゾリン誘導体、 ァリールァミン誘導体、 スチルベン誘導体、 トリフエ二ルジァミン誘導体などを挙げることができ、 電子 輸送体としてはォキサジァゾ一ル誘導体、 アントラキノジメタンもしくはその誘 導体、 テトラシァノアンスラキノジメタンもしくはその誘導体、 フルォレノン誘 導体、 ジフエノキノン誘導体、 または 8—ヒドロキシキノリンもしくはその誘導 体の金属錯体などを挙げることができる。  Examples of known charge transporters that can be used together with the above-described organic EL device material of the present invention include, as hole transporters, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenylenediamine derivatives, and the like. Examples of electron transporters include oxaziazole derivatives, anthraquinodimethane or derivatives thereof, tetracyanoanthraquinodimethane or derivatives thereof, fluorenone derivatives, diphenoquinone derivatives, and metal complexes of 8-hydroxyquinoline or derivatives thereof. Can be mentioned.
これらの化合物の具体例は、 特開昭 63— 70257号、 同 63— 17586 0号公報、 特開平 2— 135359号、 同 2— 135361号、 同 2— 2099 88号、 同 3— 37992号、 同 3— 152184号公報に記載されている。 上記した電荷輸送体の中でも正孔輸送体としては、 トリフエ二ルジァミン誘導 体、 電子輸送体としてはォキサジァゾール誘導体、 または 8—ヒドロキシキノリ ンもしくはその誘導体の金属錯体が好ましく、 特に、 正孔輸送体としては、 4,  Specific examples of these compounds are described in JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, JP-A-2-209988, JP-A-3-37992, No. 3-152184. Among the above-described charge transporters, the hole transporter is preferably a trifendildiamine derivative, and the electron transporter is preferably an oxadiazole derivative or a metal complex of 8-hydroxyquinoline or a derivative thereof. As for 4,
32 4 ' —ビス (N (3—メチルフエニル) 一N—フエニルァミノ) ビフエ二ルが、 電子輸送体としては 2— (4一 t一ブチルフエニル) 一 1, 3, 4ーォキサジァ ゾール、 ベンゾキノン、 アントラキノン、 トリス (8—キノリノール) アルミ二 ゥムが好ましい。 32 4'-bis (N (3-methylphenyl) -N-phenylamino) biphenyl is an electron transporter with 2- (4-t-butylphenyl) -1,1,3,4-oxadiazole, benzoquinone, anthraquinone, tris ( 8-quinolinol) aluminum is preferred.
これらのうち、 正孔輸送体と電子輸送体のいずれか一方、 または両方を同時に 使用することができる。 これらの各材料は一種を用いてもよいし、 2種以上を組 み合わせて用いてもよい。 発光層と電極の間に電荷輸送層を設ける場合、 上記で 説明した電荷輸送体を使用して電荷輸送層を形成すればよい。  Of these, one or both of the hole transporter and the electron transporter can be used simultaneously. Each of these materials may be used alone or in combination of two or more. When a charge transport layer is provided between the light emitting layer and the electrode, the charge transport layer may be formed using the charge transporter described above.
また、 電荷輸送体を発光層に混合して使用する場合、 電荷輸送体の使用量は使 用する化合物の種類などによっても異なるので、 十分な成膜性と発光特性を阻害 しない範囲でそれらを考慮して適宜決めればよい。 通常、 発光体に対して 1〜4 0重量%が好ましく、 さらに好ましくは 2〜 30重量%である。  When a charge transporter is used in a mixture with the light-emitting layer, the amount of the charge transporter varies depending on the kind of the compound to be used and the like. It may be determined appropriately in consideration of the situation. Usually, it is preferably 1 to 40% by weight, more preferably 2 to 30% by weight, based on the luminous body.
本発明においては、 力リ ックス誘導体にポリビニルカルバゾール (以下、 PV κともいう) を併用することにより、 発光輝度をより向上させることができるた めに好ましい。 PVKは、 市販品をそのまま使用することができる。  In the present invention, it is preferable to use polyvinyl carbazole (hereinafter, also referred to as PV κ) in combination with the liquid crystalline derivative, since the emission luminance can be further improved. PVK can be used as it is on the market.
PVKを併用する場合、 カリックス誘導体の発光特性と PVKの配合効果を十 分に発揮させるためには、 力リ ックス誘導体の含有率は 0. 1〜90重量%の範 囲であり、 ? の含有率は99. 9〜10重量%であることが好ましい。 カリ ックス誘導体と P VKの配合割合は、発光特性及び成膜時の安定性を勘案すると、 カリックス誘導体が 0. 5〜85重量0 /0、 PVK^^99. 5〜15重量%の範囲 であることが好ましく、 さらには、 力リックス誘導体が 1〜70重量。 /0、 PVK が 99〜30重量%の範囲であることがより好ましい。 When PVK is used in combination, the content ratio of the calix derivative is in the range of 0.1 to 90% by weight so that the calix derivative's luminescence characteristics and the effect of blending PVK can be fully exhibited. Is preferably 99.9 to 10% by weight. The mixing ratio of the potassium box derivative and P VK, when considering the stability during light emission characteristics and film formation, Calix derivative from 0.5 to 85 weight 0/0, PVK ^^ 99. In the range of 5 to 15 wt% More preferably, the weight lix derivative is 1-70 weight. / 0 , PVK is more preferably in the range of 99 to 30% by weight.
次に、 本発明の有機 E L素子材料を用いた有機 E L素子の代表的な作製方法に ついて述べる。 まずは、 ガラス、 透明プラスチック等の透明基板の上に透明また は半透明な金属酸化物あるいは金属薄膜を用いて陽極を形成する。 その材料とし ては、 導電性の金属酸化物膜、 半透明の金属薄膜等が用いられる。 具体的にはィ ンジゥム ·スズ ·ォキサイド ( I TO) 、 酸化スズ等からなる導電性ガラスを用 いて作成された膜 (NESAなど) 、 Au、 P t、 Ag、 Cu等が用いられる。 作製方法としては真空蒸着法、スパッタリング法、メツキ法などが用いられる。 次にこの陽極上に、 本発明の有機 EL素子材料を含む発光層を形成する。 形成方  Next, a typical method for producing an organic EL device using the organic EL device material of the present invention will be described. First, an anode is formed on a transparent substrate such as glass or transparent plastic using a transparent or translucent metal oxide or metal thin film. As the material, a conductive metal oxide film, a translucent metal thin film, or the like is used. Specifically, a film (NESA, etc.) made of conductive glass composed of indium tin oxide (ITO), tin oxide, etc., Au, Pt, Ag, Cu, etc. are used. As a manufacturing method, a vacuum evaporation method, a sputtering method, a plating method, or the like is used. Next, a light emitting layer containing the organic EL device material of the present invention is formed on the anode. Way of formation
33 法としては、 これら材料の溶融液、 溶液または混合液を使用するスピンコーティ ング法、 キャスティング法、 デイツビング法、 パーコード法、 ロールコート法、 グラビアコート法、 フレキソ印刷法、 スプレーコート法、 インクジェット印刷法 などの塗布法により成膜することが特に好ましい。 33 The methods include spin coating, casting, dating, percode, roll coating, gravure coating, flexographic printing, spray coating, and ink jet printing using a melt, solution, or mixture of these materials. It is particularly preferable to form a film by a coating method such as a method.
発光層の膜厚としては、 好ましくは 1 nm〜l Ai m、 さらに好ましくは 2〜5 00 nmである。 電流密度を上げて発光効率を上げるためには 5〜 200 nmの 範囲が好ましい。 なお、 塗布法により薄膜化した場合には、 好ましくは溶媒を除 去するため、 減圧下または不活性雰囲気下、 好ましくは 30〜300°C、 さらに 好ましくは 60〜 200。Cの温度で加熱乾燥することが望ましい。  The thickness of the light emitting layer is preferably 1 nm to 1 Aim, and more preferably 2 nm to 500 nm. In order to increase luminous efficiency by increasing current density, the range of 5 to 200 nm is preferable. When a thin film is formed by a coating method, the solvent is preferably removed under reduced pressure or under an inert atmosphere, preferably at 30 to 300 ° C, more preferably 60 to 200 ° C. It is desirable to heat and dry at a temperature of C.
また、 電荷注入効率を向上させるために発光層と電荷輸送層とを積層する場合 には、 陽極の上に本発明の正孔輸送性を示す電荷輸送層を上述と同様の製膜方法 で形成するかあるいは公知の正孔輸送体を公知の方法で形成し、 その後本発明の 有機 EL素子材料の発光層を上述した製膜方法で形成し、 その上に本発明の電子 輸送性を示す電荷輸送層を上述と同様の製膜方法で形成するかあるいは公知の電 子輸送体を公知の方法で形成する。  When the light emitting layer and the charge transport layer are laminated to improve the charge injection efficiency, the charge transport layer having the hole transport property of the present invention is formed on the anode by the same film forming method as described above. Alternatively, a known hole transporter is formed by a known method, and then a light emitting layer of the organic EL device material of the present invention is formed by the above-described film forming method, and a charge exhibiting the electron transporting property of the present invention is further formed thereon. The transport layer is formed by the same film forming method as described above, or a known electron transporter is formed by a known method.
公知の電荷輸送体の成膜方法としては、 特に限定されないが、 粉末状態からの 真空蒸着法、 または溶液に溶かした後のスピンコーティング法、 キャスティング 法、ディッビング法、バーコ一ド法、ロールコ一ト法などの塗布法を使用できる。 電荷輸送層の厚さについては、 少なくともピンホールが発生しないような厚さ が必要であるが、 あまり厚いと素子の抵抗が増加し、 高い駆動電圧が必要となり 好ましくない。 したがって、 電荷輸送層の厚さは、 好ましくは 1 nm〜 1 μπχ、 さらに好ましくは 2 nm〜500 nm, 特に好ましくは 5 nm〜200 nmであ る。  The method of forming a film of the known charge transporter is not particularly limited, but includes a vacuum deposition method from a powder state, a spin coating method after dissolving in a solution, a casting method, a diving method, a bar code method, and a roll coat method. A coating method such as a coating method can be used. The thickness of the charge transport layer is required to be at least such that pinholes do not occur. However, if the thickness is too large, the resistance of the device increases and a high drive voltage is required, which is not preferable. Therefore, the thickness of the charge transport layer is preferably 1 nm to 1 μπχ, more preferably 2 nm to 500 nm, and particularly preferably 5 nm to 200 nm.
次いで、 陰極を設ける。 この電極は電子注入陰極となる。 その材料としては、 特に限定されないが、 イオン化エネルギーの小さい材料が好ましレ、。 例えば、 A 1、 I n、 Mg、 Ca、 L i、 Mg— Ag合金、 I n— Ag合金、 Mg - I n合 金、 Mg— Al合金、 Mg_L i合金、 A l— L i合金、 Al— Ca合金、 グラ ファイト薄膜等が用いられる。 陰極の作製方法としては真空蒸着法、 スパッタリ ング法等が用いられる。  Next, a cathode is provided. This electrode becomes an electron injection cathode. The material is not particularly limited, but a material having a small ionization energy is preferable. For example, A1, In, Mg, Ca, Li, Mg-Ag alloy, In-Ag alloy, Mg-In alloy, Mg-Al alloy, Mg_Li alloy, Al-Li alloy, Al — Ca alloy, graphite thin film, etc. are used. As a method for producing the cathode, a vacuum evaporation method, a sputtering method, or the like is used.
実施例  Example
34 以下に具体例を掲げて本発明をさらに具体的に説明するが、 本発明はこれらの 例に限定されるものではない。 34 Hereinafter, the present invention will be described more specifically with reference to specific examples, but the present invention is not limited to these examples.
<発光性基または電荷輸送性基を有する EL素子材料の合成 >  <Synthesis of EL device material having luminescent group or charge transporting group>
製造例 1 Production Example 1
ジブロモ (テトラプロポキシ) 力リックス [4] ァレーンと 4一 [2— (4 - ボロン酸フエ二ノレ) _ 2—フエ二ルビニル] —4' 一 (2, 2—ジフエ二ルビ- ル) ビフエ二ルをテトラキストリフエニルホスフィン. P d (0価) 、 炭酸ナトリ ゥムの存在下、 ジメ トキシェタン ZE t OH混合溶媒中で反応させ目的物 (CA 1) を得た (収率 5%) 。 分子量分析 (LC— MS) により M+1610を確認し た。 表 1に結果を示した。 さらに元素分析 (表 29) および1 H—核磁気共鳴ス ベクトル — NMR) 測定を行い、 化合物の構造を確認した。 図 1に1 H— N MRのチヤ一トを示した。 Dibromo (tetrapropoxy) force lix [4] arenes and 4- [2- (4-phenoboronic acid) _ 2-phenylvinyl] —4'-i- (2,2-diphenylvinyl) biphenyl Was reacted in a mixed solvent of dimethoxetane ZEtOH in the presence of tetrakistriphenylphosphine.Pd (0 valence) and sodium carbonate to obtain the desired product (CA1) (yield 5%). M + 1610 was confirmed by molecular weight analysis (LC-MS). Table 1 shows the results. Further, elemental analysis (Table 29) and 1 H-nuclear magnetic resonance spectra—NMR measurements were performed to confirm the structure of the compound. Figure 1 shows the 1 H—N MR chart.
製造例 2〜: 19 Production Example 2-19
表 1〜10に示した原料を用いた他は製造例 1と同様の方法で〇 2〜じ 1 9を合成した。 結果を表 1〜10および表 29、 表 30に示した。  Except that the raw materials shown in Tables 1 to 10 were used, 〇2- と 19 were synthesized in the same manner as in Production Example 1. The results are shown in Tables 1 to 10, 29 and 30.
製造例 20 Production Example 20
表 1 1に示した電荷輸送体とテトラホルミル (テトラプロボキシ) 力リックス [4] アレーンをテトラヒ ドロフラン中、 t—ブトキシカリウムの存在下で反応 させ、 目的物 (CA20) を得た (収率 22%) 。 結果を表 11およぴ表 30に 不しナこ。  The charge transporters listed in Table 11 were reacted with tetraformyl (tetrapropoxy) carboxylic [4] arene in tetrahydrofuran in the presence of potassium t-butoxy to obtain the desired product (CA20). twenty two%) . The results are shown in Table 11 and Table 30.
製造例 21〜 36 Production Examples 21-36
表 1 1〜19に示した原料を用いた他は実施例 9と同様にして有機 EL素子材 料 CA21〜CA36を合成した。 結果を表 11〜19、 表 30およぴ表 31に Organic EL element materials CA21 to CA36 were synthesized in the same manner as in Example 9 except that the raw materials shown in Tables 11 to 19 were used. The results are shown in Tables 11 to 19, Table 30 and Table 31.
T^し/こ。 T ^ shi / ko.
製造例 37 Production Example 37
トリブロモ (へキサプロポキシ) 力リックス [6] ァレーンとカルパゾールを ニトロベンゼン中、銅触媒と反応させ、目的物(C A 37)を得た(収率 19%)。 結果を表 20および表 31に示した。  Tribromo (hexapropoxy) pyrex [6] arene and carpazole were reacted with a copper catalyst in nitrobenzene to obtain the desired product (C A 37) (yield 19%). The results are shown in Table 20 and Table 31.
製造例 38 Production Example 38
表 20に示した原料を用いた他は製造例 37と同様にして有機 EL素子材料 C  Organic EL device material C was prepared in the same manner as in Production Example 37 except that the raw materials shown in Table 20 were used.
35 A38を合成した。 結果を表 20およぴ表 31に示した。 35 A38 was synthesized. The results are shown in Table 20 and Table 31.
製造例 39 Production example 39
表 2 1に示した電荷輸送体と (ジヒドロキシージプロボキシ) カリックス [4] ァレーンをジメチルフオルムアミド中で NaHと共に反応させることにより、 目 的物 (CA39) を得た (収率 10%) 。 結果を表 21および表 31に示した。 製造例 40  The target compound (CA39) was obtained by reacting the charge transporter shown in Table 21 with (Hydroxydipropoxy) calix [4] arene with NaH in dimethylformamide (10% yield). . The results are shown in Table 21 and Table 31. Production 40
表 2 1に示した原料を用いた他は製造例 39と同様にして有機 EL素子材料 C A40を合成した。 結果を表 21および表 31に示した。  An organic EL device material CA40 was synthesized in the same manner as in Production Example 39 except that the raw materials shown in Table 21 were used. The results are shown in Table 21 and Table 31.
製造例 41 Production Example 41
表 22に示した発光体とレゾルシ [4] ァレーンを NaH存在下、 テトラヒド 口フラン (THF) 中で反応させ、 目的物 (CA41) を得た (収率 1%) 。 分 子量の確認に TO F— MAS Sを用い、 M+4568を得た。 結果を表 22およ び表 31に示した。  The phosphor shown in Table 22 and the resorci [4] arene were reacted in the presence of NaH in tetrahydrofuran (THF) to obtain the desired product (CA41) (yield 1%). M + 4568 was obtained by using TOF-MASS to confirm the molecular weight. The results are shown in Tables 22 and 31.
製造例 42〜 46 Production Examples 42 to 46
表 22〜24に示した発光体とレゾルシアレーンに代えた以外は、 製造例 41 と同様に行った。 結果を表 22〜24およぴ表 31に示した。  The procedure was performed in the same manner as in Production Example 41, except that the phosphors and resorcianes shown in Tables 22 to 24 were used instead. The results are shown in Tables 22 to 24 and Table 31.
製造例 47 Production 47
表 25に示した発光体とモノクロ口カルボ-ル (ォクタプロポキシ) カリック ス [7] ァレーンをクロ口ホルム中で反応させることにより目的物を得た (収率 35%) 。 結果を表 25およぴ表 31に示した。  The target substance was obtained by reacting the luminous substance shown in Table 25 with a monochrome mouth carboxyl (octapropoxy) calix [7] arene in a black mouth form (yield 35%). The results are shown in Table 25 and Table 31.
製造例 48 Production Example 48
表 26に示したカリックスレゾルシアレーン誘導体と N, N, N, 一トリフエ ニル 4, 4, 一ベンジジンとを、 酢酸パラジウム、 トリス (t—プチル) ホスフ イン及びナトリウム一 t—ブトキシド存在下、 キシレン溶媒中で反応を行い、 C A 48を得た (収率 21 %) 。 結果を表 26および表 31に示した。  The calixresorcialane derivative shown in Table 26 and N, N, N, 1-triphenyl 4,4,1-benzidine were combined with xylene in the presence of palladium acetate, tris (t-butyl) phosphine and sodium 1-butoxide. The reaction was carried out in a solvent to obtain CA48 (yield 21%). The results are shown in Table 26 and Table 31.
製造例 49〜52 Production Examples 49-52
表 26〜28に示す原料を用いた以外は製造例 48と同様に行い、 CA49〜 52を得た。 結果を表 26〜 28および表 31に示した。  CA49-52 were obtained in the same manner as in Production Example 48 except that the raw materials shown in Tables 26 to 28 were used. The results are shown in Tables 26 to 28 and Table 31.
36 有材 e 機料 L 36 Material e Equipment L
CA1CA1
00 00
-3 -3
CA2 CA2
有材 E 機料しMaterial E
OA:OA:
00 00
00 00
材有 ε Material ε
機料し  Fee
カリックスァレーン誘導体  Calixarene derivative
又はカリックスレゾルシ 発光体または電荷輸送体 生成物 I収率  Or calix resorci luminescent or charge transporter product I yield
LC-MS ァレーン誘導体 (%) LC-MS arene derivative (%)
表 4 有材 機料 L ο Table 4 Lumber Equipment L ο
材有 F- 機料し カリックスァレーン誘導体 Material F- Mineral calixarene derivative
又はカリックスレゾルシ 発光体または電荷輸送体 生成物 収率(%) MS ァレーン誘導体 Or calix resorsi luminous or charge transporter product yield (%) MS arene derivative
材有表 Ξ 6 Material list Ξ 6
料機し  Machine
カリックスァレーン誘導体  Calixarene derivative
又はカリックスレゾルシ 発光体または電荷輸送体 生成物 収率(%) MS ァレーン誘導体 Or calix resorsi luminous or charge transporter product yield (%) MS arene derivative
7 7
Figure imgf000046_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000048_0001
材有 Lumber
機料し  Fee
表 10 カリックスァレーン誘導体  Table 10 Calixarene derivatives
又はカリックスレゾルシ 発光体または電荷輸送体 生成物  Or calix resorci luminous or charge transporter product
ァレーン誘導体 収率(%) MS  Arene derivative Yield (%) MS
CA19 CA19
表 11 Table 11
Figure imgf000050_0001
Figure imgf000050_0001
表 12 Table 12
Figure imgf000051_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000052_0001
材有 Lumber
表上機料 1 4 カリックスァレーン誘導体 Table equipment 1 4 Calixarene derivative
又はカリックスレゾルシ 発光体または電荷輸送体 生成物 収率(%) MS ァレーン誘導体 Or calix resorsi luminous or charge transporter product yield (%) MS arene derivative
Figure imgf000054_0001
Figure imgf000054_0001
表 16 Table 16
Figure imgf000055_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000056_0001
表" 18 Table "18
Figure imgf000057_0001
Figure imgf000057_0001
表 19 Table 19
Figure imgf000058_0001
Figure imgf000058_0001
表 20 Table 20
W1 カリックスァレーン誘導体  W1 Calixarene derivative
Eし 又はカリックスレゾルシ 発光体または電荷輸送体 生成物  E or Calix resorsi Emitting substance or charge transporter Product
材料 ァレーン誘導体 - LC-MS Materials Arene derivatives-LC-MS
有表材 £ 21 Surface material £ 21
機料し  Fee
カリックスァレーン誘導体  Calixarene derivative
又はカリックスレゾルシ 発光体または電荷輸送体 玍成物 収率(%) MS ァレーン誘導体 Or calix resorci luminous or charge transporter composition yield (%) MS arene derivative
有材 ε Material ε
表機料し 22 Front charges 22
カリックスァレーン誘導体  Calixarene derivative
又はカリックスレゾルシ 発光体または電荷輸送体 S成物 収率 (%) MS ァレーン誘導体 Or calix resorci luminescent or charge transporter S product Yield (%) MS arene derivative
材有表 a- 機料し 23 Material list a- Equipment fee 23
カリックスァレーン誘導体  Calixarene derivative
又はカリックスレゾルシ 発光体または電荷輸送体 生成物 収率(%) MS ァレーン誘導体 Or calix resorsi luminous or charge transporter product yield (%) MS arene derivative
有材 ε Material ε
表機料し 24 Front charges 24
カリックスァレーン誘導体  Calixarene derivative
又はカリックスレゾルシ 発光体または電荷輸送体 生成物 収率(%) MS ァレーン誘導体 Or calix resorsi luminous or charge transporter product yield (%) MS arene derivative
有材曰 Material
機料し  Fee
表 25 カリックスァレーン誘導体 Table 25 Calixarene derivatives
又はカリックスレゾルシ 発光体または電荷輸送体 生成物 収率(%) MS ァレーン誘導体 Or calix resorsi luminous or charge transporter product yield (%) MS arene derivative
Figure imgf000065_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000066_0001
表 28 Table 28
據 カリックスァレーン誘導体 Dependent Calixarene derivative
Eし 又はカリックスレゾルシ 発光体または電荷輸送体 生成物 収率(%) MS 材料 ァレーン誘導体  E- or calix resorsi luminous or charge transporter product yield (%) MS material arene derivative
CA52 Br 8 3418 CA52 Br 8 3418
Figure imgf000067_0001
Figure imgf000067_0001
99 99
Figure imgf000068_0001
Figure imgf000068_0001
lJ8Zl/Z0df/X3d iozoso/εο OAV lJ8Zl / Z0df / X3d iozoso / εο OAV
Figure imgf000069_0001
Figure imgf000069_0001
ΙΖ8ΖΙ/Ζ0άΐ/ L3d T010S0/C0 OAV ΙΖ8ΖΙ / Ζ0άΐ / L3d T010S0 / C0 OAV
Figure imgf000070_0001
Figure imgf000070_0001
<発光性中間体の合成 > <Synthesis of luminescent intermediate>
製造例 53 Production Example 53
下記に示したカリックスレゾルシアレーン誘導体 Calixresorcia lane derivative shown below
Figure imgf000071_0001
及び下記式で示されるリン酸エステル誘導体
Figure imgf000071_0001
And a phosphate derivative represented by the following formula:
Figure imgf000071_0002
とを t一ブトキシカリウム存在下、 THF溶媒中で反応させ、 下記式で得られる 発光性中間体 (CA53) を得た (収率 50%) 。 分子量分析 (TOF— MAS S) により、 M+3424を確認した。 !!ー より <56. 0〜9. O ppm に芳香族炭化水素に由来する 140Η、 δ 3. 0〜5. O p pmにアルコキシ基 及びレゾルシアレーン環を構成するメチレンプロトンとして 24Η、 δ ΐ. 0〜 3. 0 p pmにべンジル及びアルキレン基に由来する 24 Ηが確認された。 よつ て、 本反応により得られた発光性中間体は表 32で示される化合物であることを 確認した。 結果を表 32および表 36に示した。
Figure imgf000071_0002
Was reacted in the presence of potassium t-butoxide in a THF solvent to obtain a luminescent intermediate (CA53) obtained by the following formula (yield: 50%). M + 3424 was confirmed by molecular weight analysis (TOF-MAS S). ! ! From <56.0 to 9.O ppm at 140 ° derived from aromatic hydrocarbons, δ at 3.0 to 5. From 0 to 3.0 ppm, 24 ° derived from benzyl and alkylene groups was confirmed. Therefore, it was confirmed that the luminescent intermediate obtained by this reaction was a compound shown in Table 32. The results are shown in Tables 32 and 36.
Figure imgf000071_0003
製造例 54〜 59
Figure imgf000071_0003
Production Examples 54 to 59
表 32 〜35で示す原料を用いた以外は、製造例 53と同様の方法で CA 54 〜CA59の発光性中間体を得た。 結果を表 32〜35および表 36に示した。 製造例 60  Except for using the raw materials shown in Tables 32 to 35, luminescent intermediates of CA54 to CA59 were obtained in the same manner as in Production Example 53. The results are shown in Tables 32-35 and 36. Production Example 60
表 35に示す力リックスレゾルシアレ一ン誘導体とベンゾィミダゾ一ル誘導体 とを、 銅粉末存在下、 ニトロベンゼン溶媒中で反応させ、 発光性中間体 CA60 を得た (収率 8%) 。 結果を表 35および表 36に示した。  The carboxylic acid resorcinol derivative shown in Table 35 and the benzoimidazole derivative were reacted in a nitrobenzene solvent in the presence of copper powder to obtain a luminescent intermediate CA60 (yield 8%). The results are shown in Tables 35 and 36.
69
Figure imgf000073_0001
69
Figure imgf000073_0001
表 33 Table 33
Figure imgf000074_0001
Figure imgf000074_0001
表 34 Table 34
Figure imgf000075_0001
Figure imgf000075_0001
表 35 Table 35
Figure imgf000076_0001
Figure imgf000076_0001
fL fL
Figure imgf000077_0001
Figure imgf000077_0001
l0I0S0/£0 OAV <発光基と電荷輸送基を有する EL素子材料の合成 > l0I0S0 / £ 0 OAV <Synthesis of EL device material having light emitting group and charge transport group>
製造例 6 1 Production example 6 1
製造例 53で得られた CA 53と N, N, N' —トリフエニル 4, 4' —ベン ジジンとを、 酢酸パラジウム、 トリス (tーブチル) ホスフィン及びナトリウム 一 t一ブトキシド存在下、 キシレン溶媒中で反応を行い、 目的物 CA6 1を得た (収率 24%) 。 分子量分析 (TO F— MAS S) により、 M+4834を確認 した。  CA 53 obtained in Production Example 53 and N, N, N'-triphenyl 4,4'-benzidine were combined with xylene solvent in the presence of palladium acetate, tris (t-butyl) phosphine and sodium 1-butoxide. The reaction was carried out to obtain the desired product CA61 (yield: 24%). M + 4834 was confirmed by molecular weight analysis (TOF-MAS S).
さらに元素分析および1 H—核磁気共鳴スベクトル( 1 H— N M R )測定を行い、 化合物の構造を確認した。 結果を表 37および表 60に示した。 Further, elemental analysis and 1 H-nuclear magnetic resonance spectrum ( 1 H-NMR) measurement were performed to confirm the structure of the compound. The results are shown in Table 37 and Table 60.
製造例 62〜 80 Production Examples 62-80
表 3 7〜46で示した電荷輸送体を用いた以外は、 製造例 6 1と同様の方法で CA62〜.CA80を合成した。 結果を表 37〜46及び表 60、 表 6 1に示し た。  CA62 to .CA80 were synthesized in the same manner as in Production Example 61 except that the charge transporters shown in Tables 37 to 46 were used. The results are shown in Tables 37 to 46, Table 60, and Table 61.
製造例 8 1 Production example 8 1
' 製造例 53で得られた CA 53と、 6— (5— (4一 t—ブチルフエニル) ― 1, 2, 4—ォキサジァゾ一ルー 2—ィル) フエ二ルポロン酸とを、 テトラキス (トリフエニルホスフィン) パラジウム (0価) 、 炭酸ナトリウム存在下、 1, 2—ジメトキシェタン (DME) 及びエタノールの混合溶媒中で反応を行い、 C '' The CA53 obtained in Production Example 53 and 6- (5- (4-t-butylphenyl)-1,2,4-oxaziazol-1-yl) phenylphenolic acid were combined with tetrakis (triphenyl Phosphine) The reaction is carried out in a mixed solvent of 1,2-dimethoxyethane (DME) and ethanol in the presence of palladium (0 value) and sodium carbonate.
A8 1を得た (収率 8%) 。 分子量分析 (TO F— MAS S) を用い、 Mw+4 518を得た。 結果を表 47および表 6 1に示した。 A81 was obtained (8% yield). Using molecular weight analysis (TO F-MAS S), Mw + 4518 was obtained. The results are shown in Table 47 and Table 61.
製造例 82〜 89 Production Examples 82 to 89
表 47〜 51で示す原料を用いた以外は、 製造例 8 1と同様に行い、 CA82 〜89を得た。 結果を表 47〜51および表 61に示した。  CA82-89 were obtained in the same manner as in Production Example 81 except that the raw materials shown in Tables 47 to 51 were used. The results are shown in Tables 47 to 51 and Table 61.
製造例 90、 92、 94、 96、 97、 99、 101 Production examples 90, 92, 94, 96, 97, 99, 101
表 52〜58で示す原料を用いた以外は製造例 6 1と同様に行い、 CA90、 92、 94、 96、 97、 99、 101を得た。 結果を表 52〜 58および表 6 2に示した。  CA90, 92, 94, 96, 97, 99 and 101 were obtained in the same manner as in Production Example 61 except that the raw materials shown in Tables 52 to 58 were used. The results are shown in Tables 52 to 58 and Table 62.
製造例 91、 93, 95、 98、 100、 102 Production Examples 91, 93, 95, 98, 100, 102
表 52〜 58で示す原料を用いた以外は製造例 8 1と同様に行い、 CA9 1、 93, 95、 98、 100、 102を得た。 結果を表 52〜 58および表 62に  CA91, 93, 95, 98, 100 and 102 were obtained in the same manner as in Production Example 81 except that the raw materials shown in Tables 52 to 58 were used. The results are shown in Tables 52 to 58 and Table 62.
7 5 示した。 7 5 Indicated.
製造例 103 Production Example 103
製造例 53で得られた C A 53をテトラヒドロフランに溶解し、 Mgと反応さ せグリニア試薬を調整した。 ここに表 59に示した電荷輸送体のプロモジチエノ シロール誘導体および (1, 2—ビス (ジフエニルホスフイノ) ェタン) ニッケ ル (Π) ジクロリドを添加して、 65 °Cで反応を行い、 CA103を得た (収率 3 %) 。 分子量分析 (TOF— MAS S) を用い、 Mw+4984を得た。 結果 を表 59および表 62に示した。  CA53 obtained in Production Example 53 was dissolved in tetrahydrofuran and reacted with Mg to prepare a Grignard reagent. Here, the promodithienosilole derivative of the charge transporter shown in Table 59 and (1,2-bis (diphenylphosphino) ethane) nickel (Π) dichloride were added, and the reaction was carried out at 65 ° C. Obtained (yield 3%). Using molecular weight analysis (TOF-MAS S), Mw + 4984 was obtained. The results are shown in Table 59 and Table 62.
76 表 37 76 Table 37
Figure imgf000080_0001
Figure imgf000080_0001
表 38 Table 38
有材 E 料 」 Material E fee ''
CA63 CA63
CA64 CA64
表 39 Table 39
発光性中間体 電荷輸送体 生成物 MS 材有J n Luminescent intermediate Charge transporter Product MS Material J n
表 40 Table 40
Figure imgf000083_0001
Figure imgf000083_0001
Figure imgf000084_0001
Figure imgf000084_0001
表 42 発光性中間体 材有 ETable 42 Luminescent intermediate materials E
CA71 CA53CA71 CA53
00 00
05 05
CA72 CA53 CA72 CA53
表 43 Table 43
Figure imgf000086_0001
Figure imgf000086_0001
表 44 Table 44
Figure imgf000087_0001
Figure imgf000087_0001
表 45 Table 45
Figure imgf000088_0001
Figure imgf000088_0001
表 46 発光性中間体 材有 ε Table 46 Luminescent intermediate materials available ε
CA79 CA53 CA79 CA53
00 00
CA80 CA53 CA80 CA53
表 47 Table 47
Figure imgf000090_0001
Figure imgf000090_0001
表 48 Table 48
Figure imgf000091_0001
Figure imgf000091_0001
表 4£ Table 4 £
 Yes
E 発光性中間体 電荷輸送体 材  E Luminescent intermediate Charge transport material
CA85 CA53 CA85 CA53
GO CD GO CD
CA86 CA53 CA86 CA53
表 50 Table 50
Figure imgf000093_0001
Figure imgf000093_0001
表 51 Table 51
Eし 発光性中間体 電荷輸送体 収率  E luminous intermediate charge transporter yield
生成物 MS 材料 (%)  Product MS material (%)
CA89 CA53 2 5095
Figure imgf000094_0001
CA89 CA53 2 5095
Figure imgf000094_0001
表 52 Table 52
Figure imgf000095_0001
Figure imgf000095_0001
Figure imgf000096_0001
Figure imgf000096_0001
表 54 Table 54
Figure imgf000097_0001
Figure imgf000097_0001
表 55 Table 55
Figure imgf000098_0001
Figure imgf000098_0001
表 56 Table 56
Figure imgf000099_0001
Figure imgf000099_0001
表 57 Table 57
Figure imgf000100_0001
Figure imgf000100_0001
表 58 Table 58
Figure imgf000101_0001
Figure imgf000101_0001
表 59 Table 59
Figure imgf000102_0001
Figure imgf000102_0001
οοτ οοτ
Figure imgf000103_0001
Figure imgf000103_0001
09拏  09 Halla
ΐί8Ζΐ/Ζ0<ΙΓ/Χ3<Ι iozoso/εο OA TOT ΐί8Ζΐ / Ζ0 <ΙΓ / Χ3 <Ι iozoso / εο OA TOT
Figure imgf000104_0001
Figure imgf000104_0001
TZ8Zl/r0df/X3d l0Z0S0/£0 OAV
Figure imgf000105_0001
TZ8Zl / r0df / X3d l0Z0S0 / £ 0 OAV
Figure imgf000105_0001
zm  zm
l0Z0S0/£0 OAV 実施例 1 l0Z0S0 / £ 0 OAV Example 1
<製膜特性 >  <Film formation characteristics>
製造例 1で得られた有機 E L素子材料を、 クロ口ホルムに溶解し 1重量%クロ 口ホルム溶液とした。 この溶液約 2 gを MI KASA製スピンコ一夕一 1H— D X 2を用いて、 厚さ 2mmのガラス表面に、 回転数 4 Or.p.m で 10秒— 500 r.p.mで 2秒→200 Or.p.m で 45秒の条件でスピンコートした。 さらにこの スピンコートされたガラスを 8 O :にて加熱し溶媒を除去して薄膜を形成した。 形成された薄膜を光学顕微鏡を用いて観察したが結晶は確認されなかった。 さ らに X線回折法にてこの薄膜の結晶性を評価したが、結晶反射は得られなかった。 以上から、 実施例 1の化合物を薄膜化したものはアモルファス性を示し良好な 製膜性を与えることがわかった。 同様にして製造例 2〜103の化合物の製膜性 を評価したところ、 いずれも良好なアモルファス性を示す薄膜が得られた。  The organic EL device material obtained in Production Example 1 was dissolved in black hole form to obtain a 1% by weight black form solution. Approximately 2 g of this solution was applied to a 2 mm thick glass surface using a MI KASA spin-co 1H-DX2 for 10 seconds at a rotational speed of 4 Or.pm-2 seconds at 500 rpm → 200 Or.pm Spin coating was performed under the condition of 45 seconds. Further, the spin-coated glass was heated at 8 O: to remove the solvent to form a thin film. When the formed thin film was observed using an optical microscope, no crystals were found. Further, the crystallinity of this thin film was evaluated by an X-ray diffraction method, but no crystal reflection was obtained. From the above, it was found that a thinner version of the compound of Example 1 exhibited amorphous properties and gave good film forming properties. When the film forming properties of the compounds of Production Examples 2 to 103 were evaluated in the same manner, thin films showing good amorphous properties were obtained in all cases.
実施例 2 ' Example 2 '
ぐ蛍光発光特性 > Fluorescent characteristics>
実施例 1で得られた C A 1のスピンコートした薄膜について、 35 Onmに主 極大を有する紫外線を照射したところ、 青色の蛍光を確認した。 それを分光光度 計 (瞬間マルチチャンネルフォトディテクター MCPD 1000 :大塚電子製) を用いて測定したところ、 460 nmに発光極大を示すスぺクトルが得られた。 <EL発光特性一 1>  When the CA 1 spin-coated thin film obtained in Example 1 was irradiated with ultraviolet light having a main maximum at 35 Onm, blue fluorescence was confirmed. It was measured using a spectrophotometer (Instant Multi-Channel Photo Detector MCPD 1000: Otsuka Electronics Co., Ltd.), and a spectrum showing an emission maximum at 460 nm was obtained. <EL emission characteristics 1>
2. 5mmX 2 OmmX 0. 8 mmのガラス基板上に I T〇膜を 150 nmの 厚さで製膜したものを透明支持基盤とした。 この透明支持基盤をエッチング、 洗 浄後、 前述した CA1の 1重量%クロロホルム溶液約 2 gを MI K AS A製スピ ンコ一夕一 1H— DX2を用いて、厚さ 2mmのガラス表面に、回転数 4 Or.p.m で 10秒→50 Or.p.m で 2秒→2000 r.p.m で 45秒の条件でスピンコート した。 さらに 80°Cにて窒素雰囲気下で加熱し溶媒を除去して薄膜を形成した。 その上に、 ホールブロック層として B CP (2, 9ージメチル— 4, 7—ジフ ェニル— 1, 10フエナント口リン) を 20 nm、 電子輸送層としてトリス (8 一キノリノ一ル) アルミニウム 50nmを、 ULVAC製 (EBV— 6DA) の 蒸着装置を用いて 0. 1 nmZ秒の蒸着速度で蒸着した。 最後に、 その上に陰極 として、 ァグネシゥム:銀 = 10 : 1を 100 nm蒸着し、 有機 EL素子を作成  A transparent support substrate was prepared by forming an IT〇 film with a thickness of 150 nm on a 2.5 mm × 2 Omm × 0.8 mm glass substrate. After etching and washing the transparent support substrate, about 2 g of the above-mentioned 1% by weight solution of CA1 in chloroform was spun onto a 2 mm thick glass surface using MIKASA spino 1H-DX2. Spin coating was performed under the following conditions: 10 seconds at 4 Or.pm → 2 seconds at 50 Or.pm → 45 seconds at 2000 rpm. The film was further heated at 80 ° C. under a nitrogen atmosphere to remove the solvent and form a thin film. On top of this, 20 nm of BCP (2,9-dimethyl-4,7-diphenyl-1,10 phenanthroline) is used as a hole blocking layer, and 50 nm of tris (8-quinolinol) aluminum is used as an electron transport layer. The deposition was performed at a deposition rate of 0.1 nmZ seconds using a deposition apparatus manufactured by ULVAC (EBV-6DA). Finally, an organic EL device is formed by depositing 100 nm of Ag: Silver = 10: 1 as a cathode on it.
03 した。 蒸着のときの真空度は、 すべて 1 X 10-5To r r以下であった。 この素 子に 12Vの電圧を印加し、 分光光度計 (瞬間マルチチャンネルフォトディテク ター MCPD 1000 :大塚電子製) を用いて蛍光発光を測定したところ、 47 0 nmに最大発光波長を有する青色の蛍光が観察された。 03 did. The degree of vacuum in vapor deposition were all less than 1 X 10- 5 To rr. When a voltage of 12 V was applied to the element and the fluorescence was measured using a spectrophotometer (MCPD 1000: Otsuka Electronics Co., Ltd.), the blue fluorescence having a maximum emission wavelength at 470 nm was measured. Was observed.
実施例 3 Example 3
<EL発光特性_2>  <EL emission characteristics_2>
製造例 24で得られた CA24を 1重量%および N, N' —ビス (3—メチル フエニル) 一 N, N, ージフエ二ルー [1, 1 ' ービフエニル] —4, 4, 一ジ アミンを 0.5重量%の濃度でクロ口ベンゼンに溶解させコ一ト溶液を調整した。 25mmX 1 OmmX 0. 7mmのガラス基板上に I T〇膜を 150 nmの厚さ で製膜したものを透明支持基盤とし、 この透明支持基盤をエッチング、 洗浄後、 上記で調整したコート溶液約 0. 4gを MI KASA製スピンコータ一 1H— D 7を用いて、 ガラス基板表面に回転数 1500 r pmで 60秒間スピンコートし た。 この基板を窒素雰囲気下で 100°Cに加熱して溶媒を除去し、 薄膜を形成し た。 更に、 アルバック製真空蒸着装置 EBV— 6DAを用い、 陰極としてカルシ ゥムを 40 nm、次いでアルミニウムを 60 n m蒸着し有機 E L素子を作成した。 蒸着のときの真空度は、 1 X 10—6To r r以下であった。 この素子に直流電圧 を印加したところ、 12. 5 Vにおいて発光輝度 600 c dZm2の青色の面発 光を得た。 この発光を分光光度計 (瞬間マルチチャンネルフォトディテクター M CPD 1000 :大塚電子製) を用いて測定したところ、 最大発光波長は 460 nmであった。 結果を表 63に示した。 1% by weight of CA24 obtained in Production Example 24 and 0.5% of N, N′-bis (3-methylphenyl) -1-N, N, diphenyl [1,1′-biphenyl] —4,4,1-diamine A coating solution was prepared by dissolving the solution in benzene at a concentration of weight%. A 150 mm thick IT film formed on a 25 mm X 1 O mm X 0.7 mm glass substrate was used as a transparent support base.This transparent support base was etched and washed, and then the coating solution prepared above was adjusted to about 0. 4 g was spin-coated on a glass substrate surface for 60 seconds at 1500 rpm using a MI KASA spin coater 1H-D7. This substrate was heated to 100 ° C. in a nitrogen atmosphere to remove the solvent, and a thin film was formed. Further, using a vacuum deposition apparatus EBV-6DA manufactured by ULVAC, an organic EL element was prepared by depositing 40 nm of calcium and then 60 nm of aluminum as a cathode. The degree of vacuum in vapor deposition was 1 X 10- 6 To rr below. When a DC voltage was applied to this device, a blue surface emission with an emission luminance of 600 cdZm 2 was obtained at 12.5 V. This emission was measured using a spectrophotometer (Instant Multi-Channel Photodetector M CPD 1000: Otsuka Electronics), and the maximum emission wavelength was 460 nm. The results are shown in Table 63.
実施例 4〜 36 Examples 4 to 36
表 63に示した有機 EL材料に代えた以外は、 実施例 3と同様にして EL特性 を評価した。 結果を表 63に示した。  The EL characteristics were evaluated in the same manner as in Example 3, except that the organic EL materials shown in Table 63 were used. The results are shown in Table 63.
104 表 63 104 Table 63
Figure imgf000108_0001
Figure imgf000108_0001
105 実施例 37 105 Example 37
<EL発光特性一 3>  <EL emission characteristics 1>
製造例 61で得られた C A 61を 1重量%の濃度でキシレンに溶解させコート 溶液を調整した。 25mmX 10mmX0. 7 mmのガラス基板上に I TO膜を 150 nmの厚さで製膜したものを透明支持基盤とし、 この透明支持基盤をエツ チング、 洗浄後、 上記で調整したコート溶液約 0. 4 gを M I KAS A製スピン コ一夕一 1H— D 7を用いて、 ガラス基板表面に回転数 1 500 r pmで 60秒 間スピンコートした。 この基板を窒素雰囲気下で 100°Cに加熱して溶媒を除去 し、 薄膜を形成した。 更に、 アルバック製真空蒸着装置 EBV— 6DAを用い、 陰極としてカルシウムを 40 nm、 次いでアルミニウムを 60 nm蒸着し有機 E L素子を作成した。 蒸着のときの真空度は、 1 X 10_6To r r以下であった。 この素子に直流電圧を印加したところ、 12. 5 Vにおいて発光輝度 800 c d/m2の青色の面発光を得た。 この発光を分光光度計 (瞬間マルチチャンネル フォトディテクタ一 MCPD 1000 :大塚電子製) を用いて測定したところ、 最大発光波長は 460 nmであった。 結果を表 64に示した。 CA61 obtained in Production Example 61 was dissolved in xylene at a concentration of 1% by weight to prepare a coating solution. A transparent support base was prepared by forming an ITO film with a thickness of 150 nm on a 25 mm X 10 mm X 0.7 mm glass substrate.This transparent support base was etched and washed, and then the coating solution prepared above was adjusted to about 0. 4 g was spin-coated on the surface of a glass substrate for 60 seconds at a rotation speed of 1,500 rpm using a MI KAS A spin controller 1H-D7. The substrate was heated to 100 ° C. in a nitrogen atmosphere to remove the solvent and form a thin film. Further, using a vacuum deposition apparatus EBV-6DA manufactured by ULVAC, calcium was deposited as a cathode at 40 nm and then aluminum was deposited at 60 nm to produce an organic EL device. The degree of vacuum at the time of vapor deposition was 1 × 10 6 To rr or less. When a DC voltage was applied to this device, a blue surface emission with an emission luminance of 800 cd / m 2 was obtained at 12.5 V. This emission was measured using a spectrophotometer (Instant Multi-Channel Photodetector MCPD 1000: Otsuka Electronics), and the maximum emission wavelength was 460 nm. The results are shown in Table 64.
実施例 38〜 84 Examples 38 to 84
表 64に示した有機 EL材料に代えた以外は、 実施例 37と同様にして EL特 性を評価した。 結果を表 64に示した。  The EL characteristics were evaluated in the same manner as in Example 37 except that the organic EL materials shown in Table 64 were used. The results are shown in Table 64.
06 表 64 06 Table 64
Figure imgf000110_0001
Figure imgf000110_0001
107 実施例 85 107 Example 85
CA61と CA81との混合物 (重量比 50/50) を 1重量%の濃度でキシ レンに溶解させコート溶液を調整した。 25mmX 10mmX 0. 7mmのガラ ス基板上に I TO膜を 150 nmの厚さで製膜したものを透明支持基盤とし、 こ の透明支持基盤をエッチング、 洗浄後、 上記で調整したコート溶液約 0. 4 gを M I KAS A製スピンコ一夕一 1H— D 7を用いて、 ガラス基板表面に回転数 1 A mixture of CA61 and CA81 (weight ratio 50/50) was dissolved in xylene at a concentration of 1% by weight to prepare a coating solution. A transparent support substrate was prepared by forming an ITO film with a thickness of 150 nm on a 25 mmX 10 mmX 0.7 mm glass substrate, and after etching and washing the transparent support substrate, the coating solution prepared above was adjusted to approximately 0. Using 4 g of MIKAS A spinco 1H-D7 on the glass substrate surface
500 r pmで 60秒間スピンコートした。 この基板を窒素雰囲気下で 100°C に加熱して溶媒を除去し、 薄膜を形成した。 更に、 アルバック製真空蒸着装置 E BV— 6DAを用い、 陰極としてカルシウムを 40 nm、 次いでアルミニウムをSpin coating was performed at 500 rpm for 60 seconds. The substrate was heated to 100 ° C. in a nitrogen atmosphere to remove the solvent and form a thin film. Furthermore, using a ULVAC vacuum evaporation system E BV-6DA, 40 nm of calcium was used as the cathode, followed by aluminum.
60 nm蒸着し有機 EL素子を作成した。 蒸着のときの真空度は、 1 X 10— 6T o r r以下であった。 この素子に直流電圧を印加したところ、 12. 5Vにおい て発光輝度 1800 c dZm2の青色の面発光を得た。この発光を分光光度計(瞬 間マルチチャンネルフォトディテクタ一 MCPD 1000 :大塚電子製) を用い て測定したところ、最大発光波長は 460 nmであった。結果を表 65に示した。 実施例 86〜: L 25 An organic EL device was prepared by vapor deposition at 60 nm. The degree of vacuum in vapor deposition was less than 1 X 10- 6 T orr. When a DC voltage was applied to this device, a blue surface emission with an emission luminance of 1800 cdZm 2 was obtained at 12.5 V. This emission was measured using a spectrophotometer (Instant Multi-Channel Photodetector MCPD 1000: Otsuka Electronics), and the maximum emission wavelength was 460 nm. The results are shown in Table 65. Example 86-: L 25
表 65に示す組成比で各有機 EL材料を混合した以外は、 実施例 85と同様に して EL特性を評価した。 結果を表 65に示した。  The EL characteristics were evaluated in the same manner as in Example 85, except that the organic EL materials were mixed at the composition ratios shown in Table 65. The results are shown in Table 65.
108
Figure imgf000112_0001
108
Figure imgf000112_0001
^ 実施例 126〜 147 ^ Examples 126 to 147
表 66に示す組成比で各有機 EL材料を混合した以外は、 実施例 85と同様に して EL特性を評価した。 結果を表 66に示した。 表 66  The EL characteristics were evaluated in the same manner as in Example 85, except that the organic EL materials were mixed at the composition ratios shown in Table 66. The results are shown in Table 66. Table 66
Figure imgf000113_0001
実施例 148
Figure imgf000113_0001
Example 148
<EL発光特性一 4>  <EL emission characteristics 1>
2. 5mmX 2 OmmX 0. 8 mmのガラス基板上に I TO膜を 150 nmの 厚さで製膜したものを透明支持基盤とした。 この透明支持基盤をエッチング、 洗 浄後、 前述した CA2の 1重量%クロロホルム溶液約 2 gを MI KASA製スピ ンコ一夕一 1H— DX2を用いて、 厚さ 2mmのガラス表面に回転数 4 Or.p.m で 1 0秒→50 Or.p.m で 2秒 200 Or.p.m で 45秒の条件でスピンコート した。 さらに 80°Cにて窒素雰囲気下で加熱し溶媒を除去して薄膜を形成した。 その上に発光層および電子輸送層としてトリス (8—キノリノール) アルミニゥ ム 60 nmを、 ULVAC製 (EBV—6DA) の蒸着装置を用いて 0. : nm /秒の蒸着速度で蒸着した。 最後に、 その上に陰極として、 マグネシウム:銀 =  A 150-nm-thick ITO film was formed on a glass substrate of 2.5 mm X 2 O mm X 0.8 mm as a transparent support substrate. After etching and washing this transparent support substrate, about 2 g of the above-mentioned 1% by weight solution of CA2 in chloroform was applied to a 2 mm-thick glass surface using a MIKASA spino 1H-DX2 for 4 revolutions or more. Spin coating was performed under the conditions of 10 seconds at .pm → 2 seconds at 50 Or.pm and 45 seconds at 200 Or.pm. The film was further heated at 80 ° C. under a nitrogen atmosphere to remove the solvent and form a thin film. Tris (8-quinolinol) aluminum 60 nm was deposited thereon as a light emitting layer and an electron transporting layer at a deposition rate of 0: nm / sec using a ULVAC (EBV-6DA) deposition apparatus. Finally, on top of that, as a cathode, magnesium: silver =
1 10 10 : 1を 170 nm蒸着し、有機 EL素子を作成した。蒸着のときの真空度は、 すべて 1x10— 5To r r以下であった。 この素子に直流電圧を印加したとこ.ろ、 12 Vにおいて発光輝度 400 c d/m2の綠色の面発光を得た。 この発光を分 光光度計 (瞬間マルチチャンネルフォトディテクター MCPD 1000 :大塚電 子製) を用いて測定したところ、 最大発光波長は 52 Onmであった。 結果を表 67に示した。 1 10 10: 1 was vapor-deposited at 170 nm to produce an organic EL device. The degree of vacuum in vapor deposition was all 1x10- 5 To rr below. When a DC voltage was applied to the device, a green surface emission with an emission luminance of 400 cd / m 2 was obtained at 12 V. This emission was measured using a spectrophotometer (MCPD 1000, an instantaneous multi-channel photodetector: manufactured by Otsuka Electronics). The maximum emission wavelength was 52 Onm. The results are shown in Table 67.
実施例 149〜: L 51、 比較例 1  Example 149 ~: L 51, Comparative Example 1
表 67に示した有機 EL材料に代えた以外は、 実施例 148と同様にして EL 特性を評価した。 結果を表 67に示した。  The EL characteristics were evaluated in the same manner as in Example 148 except that the organic EL materials shown in Table 67 were replaced. The results are shown in Table 67.
表 67 Table 67
Figure imgf000114_0001
Figure imgf000114_0001
本発明の有機 E L素子材料は、 スピンコートが可能であり容易に成膜できる。 また、 本発明によれば、 有機 EL素子材料を容易に高純度で得ることができる。 したがって、 本発明の有機 EL素子材料は、 有機 EL素子を構成する発光体およ び電荷輸送体として極めて有用である。 The organic EL device material of the present invention can be spin-coated and can be easily formed. Further, according to the present invention, an organic EL device material can be easily obtained with high purity. Therefore, the organic EL device material of the present invention is extremely useful as a luminous body and a charge transporter constituting the organic EL device.
実施例 152 Example 152
く EL発光特性一 5> EL EL characteristics 5>
製造例 24で得られた C A 24を 0..5重量%、 P VKを 2重量%の濃度でク ロロベンゼンに溶解させコート溶液を調整した。 25mmX10mmX0. 7m mのガラス基板上に I TO膜を 150 nmの厚さで製膜したものを透明支持基盤 とし、この透明支持基盤をエッチング、洗浄後、上記で調整したコート溶液約 0. 4gを M I KASA製スピンコ一夕一 1H— D 7を用いて、 ガラス基板表面に回 転数 1500 r pmで 60秒間スピンコートした。 この基板を窒素雰囲気下で 1 0 o°cに加熱して溶媒を除去し、 薄膜を形成した。 このとき、 形成された有機薄 膜中の CA24の含有率は 20重量%である。 更に、 アルバック製真空蒸着装置 EBV— 6DAを用い、 陰極としてカルシウムを 40 nm、 次いでアルミニウム を 60 nm蒸着し有機 EL素子を作成した。 蒸着のときの真空度は、 1 X 10一6 To r r以下であった。 この素子に直流電圧を印加したところ、 12. 5Vにお いて発光輝度 5700 c dZm2の青色の面発光を得た。 この発光を分光光度計CA 24 obtained in Production Example 24 was dissolved in chlorobenzene at a concentration of 0.5% by weight and PVK at a concentration of 2% by weight to prepare a coating solution. A transparent support substrate was prepared by forming an ITO film with a thickness of 150 nm on a 25 mm X 10 mm X 0.7 mm glass substrate.After etching and washing the transparent support substrate, about 0.4 g of the coating solution prepared above was applied. Using a spinco 1H-D7 manufactured by MI KASA, spin coating was performed on the glass substrate surface at a rotation speed of 1500 rpm for 60 seconds. Place this substrate in a nitrogen atmosphere 1 The solvent was removed by heating to 0 ° C to form a thin film. At this time, the content of CA24 in the formed organic thin film was 20% by weight. Further, using a vacuum deposition apparatus EBV-6DA manufactured by ULVAC, calcium was vapor-deposited as a cathode at 40 nm and then aluminum was vapor-deposited at 60 nm to produce an organic EL device. The degree of vacuum at the time of vapor deposition was 1 × 10 16 To rr or less. When a DC voltage was applied to this device, a blue surface emission with an emission luminance of 5700 cdZm 2 was obtained at 12.5 V. This emission is measured with a spectrophotometer
(瞬間マルチチャンネルフォトディテクター MCPD 1000 :大塚電子製) を 用いて測定したところ、 最大発光波長は 46 Onmであった。 The maximum emission wavelength was 46 Onm when measured using an instantaneous multi-channel photodetector MCPD 1000 (manufactured by Otsuka Electronics).
実施例 153  Example 153
実施例 1 52において、 CA24の濃度を 0. 04重量%とした以外は実施例 152と同様にして素子を作製した。 このとき、 形成された有機薄膜中の C A 2 4の含有率は 2重量%である。 この素子に直流電圧を印加したところ 12. 5 V において発光輝度 2400 c dZm2の青色の面発光を得た。 また、 発光の最大 発光波長は 460 nmであった。 A device was fabricated in the same manner as in Example 152 except that the concentration of CA24 was changed to 0.04% by weight. At this time, the content of CA 24 in the formed organic thin film was 2% by weight. When a DC voltage was applied to this device, a blue surface emission with a light emission luminance of 2400 cdZm 2 was obtained at 12.5 V. The maximum emission wavelength of light emission was 460 nm.
実施例 154  Example 154
実施例 152において、 八24の濃度を1. 5重量%、 ? 1 の濃度を1. 5重量%とした以外は実施例 152と同様にして素子を作製した。 このとき、 形 成された有機薄膜中の CA24の含有率は 50重量%である。 この素子に直流電 圧を印加したところ 12. 5 Vにおいて発光輝度 4400 c dZm2の青色の面 発光を得た。 また、 発光の最大発光波長は 460 nmであった。 In Example 152, the concentration of octane was 1.5% by weight, A device was produced in the same manner as in Example 152 except that the concentration of 1 was changed to 1.5% by weight. At this time, the content of CA24 in the formed organic thin film was 50% by weight. When a DC voltage was applied to this device, a blue surface emission with an emission luminance of 4400 cdZm 2 was obtained at 12.5 V. The maximum emission wavelength of light emission was 460 nm.
実施例 155  Example 155
実施例 152において、 · CA 24の濃度を 2. 8重量%、 ? の濃度を。. 7重量%とした以外は実施例 152と同様にして素子を作製した。 このとき、 形 成された有機薄膜中の CA24の含有率は 80重量%である。 この素子に直流電 圧を印加したところ 12. 5 Vにおいて発光輝度 1800 c dZm2の青色の面 発光を得た。 また、 発光の最大発光波長は 46 Onmであった。 In Example 152, the concentration of CA 24 was 2.8% by weight,? Concentration. A device was prepared in the same manner as in Example 152 except that the content was changed to 0.7% by weight. At this time, the content of CA24 in the formed organic thin film was 80% by weight. When a DC voltage was applied to this device, a blue surface emission with an emission luminance of 1800 cdZm 2 was obtained at 12.5 V. The maximum emission wavelength of light emission was 46 Onm.
実施例 156〜 187  Examples 156 to 187
実施例 152で用いた C A 24の代わりに表 68に示した化合物を用いた以外 は実施例 152と同様にして素子を作製した。 この素子に 12. 5Vの直流電圧 を印加した結果を表 68に示した。  A device was produced in the same manner as in Example 152, except that the compounds shown in Table 68 were used instead of C A24 used in Example 152. Table 68 shows the result of applying a DC voltage of 12.5 V to this device.
112 表 68 112 Table 68
Figure imgf000116_0001
Figure imgf000116_0001
113 実施例 188〜 193 113 Examples 188 to 193
CA24を 2. 7重量%及び表 69に示した電荷輸送体を 0. 3重量%の濃度 でクロ口ベンゼンに溶解させコート溶液を調整した。 以後は実施例 152と同様 にして素子を作製した。 この素子に 12. 5 Vの直流電圧を印加した結果を表 6 9に示した。  A coating solution was prepared by dissolving 2.7% by weight of CA24 and the charge transporter shown in Table 69 at a concentration of 0.3% by weight in benzene with a black mouth. Thereafter, a device was manufactured in the same manner as in Example 152. Table 69 shows the results of applying a DC voltage of 12.5 V to this device.
14 表 6 9 14 Table 6 9
Figure imgf000118_0001
Figure imgf000118_0001
115 塞替え用紙(規則 26》 表 69続き 115 Replacement Form (Rule 26) Table 69 continued
Figure imgf000119_0001
Figure imgf000119_0001
115/1 差替え 釵 (ailJ26) 実施例 194 115/1 Replacement sai (ailJ26) Example 194
<EL発光特性一 6>  <EL emission characteristics 1>
製造例 61で得られた CA61を 3·  CA61 obtained in Production Example 61
ァゾール誘導体 Azole derivatives
Figure imgf000120_0001
Figure imgf000120_0001
を 0. 8重量%の濃度でキシレンに溶解させコート溶液を調整した。 25mmX 1 OmmX 0. 7mmのガラス基板上に I TO膜を 150 nmの厚さで製膜した ものを透明支持基盤とした。 この透明支持基盤をエッチング、 洗浄後、 ポリェチ レンジォキシチォフェン (PEDT) とポリスチレンスルホン酸 (P S S)の 1. 56%水溶液であるバイトロン P (商品名:バイエル社製) を MIKASA製ス ビンコ一夕一 1 H— D 7を用いて回転数 1000 r pmで 60秒間スピンコート した。 この基板をホットプレート用い 200°Cで 1時間加熱した。 この基板上に 上記で調整したコート溶液約 0. 4 gを回転数 4000 r pmで 30秒間スピン コートし、 窒素雰囲気下で 10 otに加熱して溶媒を除去し、 薄膜を形成した。 更に、 アルバック製真空蒸着装置 EBV— 6 DAを用い、 陰極としてカルシウム を 40 nm、 次いでアルミニウムを 80 nm蒸着し有機 E L素子を作成した。 蒸 着のときの真空度は、 1 X 10—6To r r以下であった。 この素子に直流電圧を 印加したところ、 8 Vにおいて発光輝度 900 c d/m2の青色の面発光を得た。 この発光を分光光度計 (瞬間マルチチャンネルフォトディテクター MCPD 10 00 :大塚電子製) を用いて測定したところ、 最大発光波長は 460 nmであつ た。 Was dissolved in xylene at a concentration of 0.8% by weight to prepare a coating solution. A transparent support substrate was prepared by forming an ITO film with a thickness of 150 nm on a 25 mm × 1 Omm × 0.7 mm glass substrate. After etching and washing the transparent support substrate, a 1.56% aqueous solution of polyethylene dioxythiophene (PEDT) and polystyrene sulfonic acid (PSS), Baytron P (trade name, manufactured by Bayer AG) was added to MIKASA Subinco Evening 1 H—D7 was used for spin coating at a rotation speed of 1000 rpm for 60 seconds. This substrate was heated at 200 ° C. for 1 hour using a hot plate. Approximately 0.4 g of the coating solution prepared above was spin-coated on the substrate at 4000 rpm for 30 seconds, and heated to 10 ot under a nitrogen atmosphere to remove the solvent, thereby forming a thin film. Further, using a vacuum deposition apparatus EBV-6DA manufactured by ULVAC, calcium was deposited as a cathode at 40 nm and then aluminum was deposited at 80 nm to produce an organic EL device. The degree of vacuum deposition vapor is was 1 X 10- 6 To rr below. When a DC voltage was applied to this device, blue light emission with a luminance of 900 cd / m 2 was obtained at 8 V. This emission was measured using a spectrophotometer (Instant Multi-Channel Photo Detector MCPD 1000: Otsuka Electronics), and the maximum emission wavelength was 460 nm.
実施例 195〜215  Examples 195 to 215
実施例 194で用いた CA61の代わりに、製造例 62〜75及び製造例 90、 92、 94、 96、 97、 99、 101で合成した表 70に示した化合物を用い  Instead of CA61 used in Example 194, the compounds shown in Table 70 synthesized in Production Examples 62 to 75 and Production Examples 90, 92, 94, 96, 97, 99, and 101 were used.
116 た以外は実施例 1 9 4と同様にして素子を作製した。 この素子に 8 Vの直流電圧 を印加した結果を表 7 0に示した。 116 A device was produced in the same manner as in Example 1924 except for the above. Table 70 shows the results of applying a DC voltage of 8 V to this element.
表 70 Table 70
Figure imgf000121_0001
Figure imgf000121_0001
1 1 7 実施例 2 1 6 1 1 7 Example 2 1 6
製造例 8 1で得られた C A 8 1を 0 . 9重量%及びポリビニルカルバゾールを 2 . 1重量%の濃度でクロ口ベンゼンに溶解させコート溶液を調整した。 以後は 実施例 1 9 4と同様にして素子を作製した。 この素子に 8 Vの直流電圧を印加し た結果を表 7 1に示した。  The coating solution was prepared by dissolving CA 81 obtained in Production Example 81 at a concentration of 0.9% by weight and polyvinylcarbazole at a concentration of 2.1% by weight in benzene at a concentration of 0.1% by weight. Thereafter, a device was manufactured in the same manner as in Example 194. Table 71 shows the results of applying a DC voltage of 8 V to this device.
'実施例 2 Γ 7〜 2 2 9  'Example 2 Γ 7 ~ 2 2 9
実施例 2 1 6において C A 8 1の代わりに、製造例 8 2〜8 9及び製造例 9 3、 9 5、 9 8、 1 0 0、 1 0 2で合成した表 7 1に示した化合物を用いた以外は実 施例 2 1 6と同様にして素子を作製した。 この素子に 8 Vの直流電圧を印加した 結果を表 7 1に示した。 表 71  In Example 2 16 instead of CA81, the compound shown in Table 71 synthesized in Production Examples 82 to 89 and 93, 95, 98, 100, 102 was prepared. A device was produced in the same manner as in Example 216 except that the device was used. Table 71 shows the results of applying a DC voltage of 8 V to this device. Table 71
Figure imgf000122_0001
Figure imgf000122_0001
118 118

Claims

請求の範囲 The scope of the claims
1 . 発光性有機基および電荷輸送性有機基の少なくとも 1つを有する力リックス ァレーン誘導体またはカリックスレゾルシアレーン誘導体を含んでなる有機エレ クトロルミネッセンス素子材料。 1. An organic electroluminescent device material comprising a dexararene derivative or a calixresorcialane derivative having at least one of a luminescent organic group and a charge transporting organic group.
2 . 発光性有機基および電荷輸送性有機基の少なくとも 1つを有する力リックス ァレーン誘導体またはカリックスレゾルシアレーン誘導体が、 下記一般式 (1 ) または (2 ) で示される化合物である請求項 1記載の有機エレクト口ルミネッセ ンス素子材料。 2. The compound according to claim 1, wherein the liquisqualene derivative or the calixresorcialane derivative having at least one of a luminescent organic group and a charge transporting organic group is a compound represented by the following general formula (1) or (2). Organic electorescence luminescence element material.
Figure imgf000123_0001
Figure imgf000123_0001
上式中、 nは 3〜2 0の整数であり、 A、 B、 Dは、 同一または異なる原子また は基であって、 水素原子、 ハロゲン原子、 アルキル基、 ァリール基、 アルコキシ 基または下記一般式 (3 ) で示される基であり、 複数個存在する A、 Bおよび D は、 それぞれ異なっていても良く、 これらの内の少なくとも 1つが一般式 (3 ) で示す基であり、 (3 ) 式で示す基が複数個存在する場合、 これらは互に異なつ ていても良い: In the above formula, n is an integer of 3 to 20, and A, B, and D are the same or different atoms or groups, and are a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group, or A group represented by the formula (3), a plurality of A, B and D may be different from each other, and at least one of them is a group represented by the general formula (3); When there are a plurality of groups represented by the formulas, these may be different from each other:
- (L) m- Z ( 3 )  -(L) m- Z (3)
(ここで、 Lは 2価の有機基であり、 Zは発光性有機基または電荷輸送性有機基 であり、 mは 0または 1である) 。  (Where L is a divalent organic group, Z is a luminescent organic group or a charge transporting organic group, and m is 0 or 1).
1 1 9 1 1 9
3 . 発光性有機基は、 それを構成する少なくとも 4つの不飽和結合が共役系を形 成するように連結されており、 発光性を有する残基を形成している請求項 1記載 の有機エレクトロルミネッセンス素子材料。 3. The organic electroluminescent device according to claim 1, wherein the luminescent organic group is linked so that at least four unsaturated bonds constituting the luminescent organic group form a conjugated system, and forms a luminescent residue. Luminescent device material.
4 . 電荷輸送性有機基は、 それを構成する少なくとも 2つの不飽和結合が共役系 を形成するように連結されており、 電荷輸送性を有する残基を形成している請求 項 1記載の有機ェレク トロルミネッセンス素子材料。 4. The organic charge-transporting organic group according to claim 1, wherein the at least two unsaturated bonds constituting the charge-transporting organic group are linked so as to form a conjugated system, and form a residue having a charge-transporting property. Electroluminescent device materials.
5 . 発光性有機基および電荷輸送性有機基が、 下記 i) 、 ϋ) および iii) で示され る残基からなる群より選ばれる請求項 1記載の有機エレクトロルミネッセンス素 子材料: 5. The organic electroluminescent element material according to claim 1, wherein the luminescent organic group and the charge transporting organic group are selected from the group consisting of residues represented by the following i), ϋ) and iii):
i) 少なくとも 2つの不飽和環系 (ここで、 不飽和環系は、 5員もしくは 6員の 炭化水素環もしくは環構成原子として窒素原子、 酸素原子、 硫黄原子またはケィ 素原子を 1〜 3個有する 5員もしくは 6員の複素環であり、 または、 これらの炭 化水素環および/または複素環の 2〜 3 0個が縮合していてもよく、 これらの不 飽和環系は置換基で置換'されていてもよく、また、飽和環力縮合していてもよレ、) が縮合する力、、 または、 直接結合またはアルケニレン基もしくは窒素原子を介し て共役系を形成するように連結されており、 また、 上記の不飽和環系はポリマー 主鎖の 1以上の側鎖 (またはペンダント基) であってもよく、 そして、 カリック ス誘導体分子に発光性または電荷輸送性を付与する残基; '  i) at least two unsaturated ring systems (where the unsaturated ring system is a 5- or 6-membered hydrocarbon ring or 1-3 membered nitrogen, oxygen, sulfur or silicon atoms) A 5- or 6-membered heterocyclic ring, or 2 to 30 of these hydrocarbon rings and / or heterocyclic rings may be condensed, and these unsaturated ring systems are substituted with substituents. , Or may be condensed with a saturated ring force, or is connected to form a conjugated system through a direct bond or an alkenylene group or a nitrogen atom. And the unsaturated ring system may be one or more side chains (or pendant groups) of a polymer main chain, and a residue that imparts luminescence or charge transport to a calix derivative molecule; '
ϋ) 少なくとも 2つの不飽和環系 (ここで、 不飽和環系は、 5員もしくは 6員 の炭化水素環もしくは環構成原子として窒素原子、 酸素原子、 硫黄原子またはケ ィ素原子を 1〜 3個有する 5員もしくは 6員の複素環であり、 または、 これらの 炭化水素環おょぴ Ζまたは複素環の 2〜 3 0個が縮合していてもよく、 これらの 不飽和環系は置換基で置換されていてもよく、 また、 飽和環が縮合していてもよ い) がそれぞれ配位子を形成するか、 または少なくとも 2つの上記不飽和環系が 直接結合または一 C -基もしくは窒素原子を介して共役系を形成するように連結 されて酉己位子を形成し、 さらに必要により該不飽和環系に結合した酸素原子とと もに配位子を形成し、 ベリリウム、 アルミニウム、 銅、 亜鉛、 ルテニウム、 ユー  ii) at least two unsaturated ring systems (where the unsaturated ring system is a 5- or 6-membered hydrocarbon ring or a ring-constituting atom containing 1 to 3 nitrogen, oxygen, sulfur, or silicon atoms). A 5- or 6-membered heterocyclic ring, or 2 to 30 of these hydrocarbon rings or heterocyclic rings may be condensed, and these unsaturated ring systems may have a substituent May form a ligand, or at least two of the above unsaturated ring systems may be a direct bond or a C-group or nitrogen. Are linked to form a conjugated system via an atom to form a ligand, and, if necessary, to form a ligand together with an oxygen atom bonded to the unsaturated ring system; beryllium, aluminum, copper , Zinc, ruthenium, you
1 2 0 口ピウム、 ロジウム、 白金またはケィ素を中心金属として有する配位化合物から 誘導され、 力リックス誘導体分子に発光性または電荷輸送性を付与する残基; および 1 2 0 A residue derived from a coordination compound having palladium, rhodium, platinum or silicon as a central metal and imparting luminous or charge transporting properties to the elixir derivative molecule; and
iii) 少なくとも 2つの不飽和環系 (ここで、 不飽和環系は、 5員もしくは 6員 の炭化水素環もしくは環構成原子として窒素原子、 酸素原子、 硫黄原子またはケ ィ素原子を 1〜3個有する 5員もしくは 6員の複素環であり、 または、 これらの 炭化水素環およびノまたは複素環の 2〜 3 0個が縮合していてもよく、 これらの 不飽和環系は置換基で置換されていてもよく、 また、 飽和環が縮合していてもよ い) が直接結合した分子団の 2個以上とィリジゥムとが結合した有機金属化合物 から誘導され、力リックス誘導体分子に発光性または電荷輸送性を付与する残基。  iii) at least two unsaturated ring systems (where the unsaturated ring system is a 5- or 6-membered hydrocarbon ring or ring-constituting atom containing 1 to 3 nitrogen, oxygen, sulfur, or silicon atoms). A 5- or 6-membered heterocyclic ring, or two to thirty of these hydrocarbon rings and heterocyclic rings may be condensed, and these unsaturated ring systems are substituted with substituents. Or a saturated ring may be condensed), and is derived from an organometallic compound in which two or more of the molecular groups directly bonded to the compound and iridium are bonded, and the luminescent or derivative molecule has a luminescent or Residues that impart charge transport properties.
6 . 発光性有機基が、 ジスチリルァリーレン誘導体、 スチリルァミン誘導体、 ィ ミダゾール誘導体、 ナフタレン誘導体,アントラセン誘導体、 ペリレン誘導体、 ポ リメチン系、 キサントン系、 クマリン系、 シァニン系、 キナタリ ドン系色素類、 ベリ リウム、 アルミニウム、 銅、 亜鉛、 ルテニウム、 ユーロピウム、 ロジウムを 中心金属とした配位錯体、 イリジウム等を含有した有機金属化合物、 テトラフエ 二ルシク口ペンタジェン、 テトラフユ二ルブタジェン、 ポリ (9, 9ジァノレキノレ プノレオレン) 誘導体、 ポリバラフヱ二レン誘導体、 ポリチォフェン誘導体、 ポリ パラフヱニレンビニレン誘導体、 ァリーレンビニレン誘導体、 ポリビニルカルバ ゾール誘導体、 ポリ (メタ) アクリルァリールァミン誘導体およぴポリシランか らなる群より選ばれる化合物から誘導される残基であり、 電荷輸送性有機基が、 ビラゾリン誘導体、 ァリールァミン誘導体、 スチルベン誘導体、 トリフ; Πニルジ ァミン誘導体、 ォキサジァゾ一ル誘導体、 トリァゾール誘導体、 アントラキノン ジメタンもしくはその誘導体、 テトラシァノアントラキノジメタンもしくはその 誘導体、 フルォレノン誘導体、 ジフヱノキノン誘導体、 シロール誘導体おょぴ 8 —ヒ ドロキシキノリンもしくはその誘導体の金属錯体からなる群より選ばれる化 合物から誘導される残基である請求項 1記載の有機ェレク ト口ルミネッセンス素 子材料。 6. The luminescent organic group is a distyryl arylene derivative, a styryl amine derivative, an imidazole derivative, a naphthalene derivative, an anthracene derivative, a perylene derivative, a polymethine derivative, a xanthone derivative, a coumarin derivative, a cyanine derivative, a quinatalidone derivative, or a bery. Lithium, aluminum, copper, zinc, ruthenium, europium, rhodium as the central metal, coordination complexes, organometallic compounds containing iridium, etc., pentaphenyltetracyclyl pentagen, tetrafuylbutadiene, poly (9,9 dianolequinole phenololenolene) derivatives , Polyparaphenylene derivatives, polythiophene derivatives, polyparaffinylene vinylene derivatives, arylene vinylene derivatives, polyvinylcarbazole derivatives, poly (meth) acrylarylamine derivatives and A residue derived from a compound selected from the group consisting of silanes, wherein the charge-transporting organic group is a bilazoline derivative, an arylamine derivative, a stilbene derivative, or a trif; a phenyldiamine derivative; Derived from a compound selected from the group consisting of dimethane or its derivative, tetracyanoanthraquinodimethane or its derivative, fluorenone derivative, diphenoquinone derivative, silole derivative 8-hydroxyquinoline or its metal complex 2. The organic electroluminescent element material according to claim 1, which is a residue to be obtained.
7 . —分子中に発光性有機基および電荷輸送性有機基を共に有するカリックスァ 7. — Calixa with both luminescent and charge-transporting organic groups in the molecule
2 レーン誘導体またはカリックスレゾルシアレーン誘導体からなることを特徴とす る請求項 1記載の有機エレクト口ルミネッセンス素子材料。 Two 2. The organic electroluminescent device material according to claim 1, comprising a lane derivative or a calixresorcialane derivative.
8. 発光性有機基を有する力リックスァレーン誘導体または力リックスレゾルシ ァレーン誘導体 (X) および電荷輸送性有機基を有するカリックスァレーン誘導 体またはカリックスレゾルシアレーン誘導体 (Y) を、 (X) 100重量部に対 して (Y) を 0. 1〜99. 9重量部の範囲で配合した組成物を含んでなる有機 エレクトロルミネッセンス素子材料。 8. A compound represented by the formula (X), wherein a dicarboxylic acid derivative having a luminescent organic group or a dicarboxylic resin derivative (X) and a calixarene derivative or a calixresorcialane derivative having a charge-transporting organic group are represented by (X) An organic electroluminescent device material comprising a composition containing (Y) in a range of 0.1 to 99.9 parts by weight per 100 parts by weight.
9. 発光性有機基及び電荷輸送性有機基の少なくとも 1つを有するカリックスァ レーン誘導体またはカリックスレゾルシアレーン誘導体とポリビニルカルバゾー ルとを含んでなる有機エレクト口ルミネッセンス素子材料。 9. An organic electroluminescent device material containing a calixarene derivative or a calixresorcialane derivative having at least one of a luminescent organic group and a charge transporting organic group, and polyvinyl carbazole.
10. 発光性有機基を有する力リックスアレーン誘導体またはカリックスレゾル シアレーン誘導体と電荷輸送性化合物とを含んでなる有機ェレクト口ルミネッセ ンス素子材料。 10. An organic electorescent luminescent device material comprising a elixirene derivative or a calixresorsialene derivative having a luminescent organic group and a charge transporting compound.
11. 陽極および陰極の間に、 クレーム 1記載の有機エレクト口ルミネッセンス 素子材料を含んだ発光層または電荷輸送層が形成されてなる有機エレクト口ルミ ネッセンス素子。 11. An organic electroluminescent device comprising a light emitting layer or a charge transport layer containing the organic electroluminescent device material according to claim 1 between an anode and a cathode.
12. 下記一般式 (1) および (2) で示される化合物: 12. Compounds represented by the following general formulas (1) and (2):
Figure imgf000126_0001
Figure imgf000126_0001
122 122
Figure imgf000127_0001
上式中、 nは 3〜20の整数であり、 A、 B、 Dは、 同一または異なる原子また は基であって、 水素原子、 ハロゲン原子、 アルキル基、 ァリ一ル基、 アルコキシ 基または下記一般式 (3) で示される基であり、 複数個存在する A、 Bおよび D は、 それぞれ異なっていても良く、 これらの内の少なくとも 1つが一般式 (3) で示す基であり、 (3) 式で示す基が複数個存在する場合、 これらは互に異なつ ていても良い
Figure imgf000127_0001
In the above formula, n is an integer of 3 to 20, and A, B, and D are the same or different atoms or groups, and are a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group or A group represented by the following general formula (3), and a plurality of A, B and D may be different from each other, and at least one of them is a group represented by the general formula (3); 3) When there are a plurality of groups represented by the formula, these may be different from each other
- (L) m-Z (3)  -(L) m-Z (3)
ここで、 Lは 2価の有機基であり、 Zは下記式で表される残基からなる群より選 ばれる発光性有機基または電荷輸送性有機基であり、 そして mは 0または 1であ る: Here, L is a divalent organic group, Z is a luminescent organic group or a charge transporting organic group selected from the group consisting of residues represented by the following formulas, and m is 0 or 1. RU:
Figure imgf000127_0002
Figure imgf000127_0002
Figure imgf000127_0003
Figure imgf000128_0001
Figure imgf000127_0003
Figure imgf000128_0001
Figure imgf000129_0001
Figure imgf000129_0002
Figure imgf000129_0001
Figure imgf000129_0002
(ここで、 pおよび qはそれぞれ 1〜1 0の整数であり、 各基の数平均分子量が 0 0〜4 0 0 0の範囲の値をとるような整数である) ; (Where p and q are each an integer of 1 to 10 and are integers such that the number average molecular weight of each group takes a value in the range of 00 to 400);
Figure imgf000129_0003
Figure imgf000129_0003
(ここで、 T)および qは上記と同じ) ;  (Where T) and q are the same as above);
2 5 twenty five
Figure imgf000130_0001
Figure imgf000130_0001
Figure imgf000130_0002
Figure imgf000130_0002
Figure imgf000130_0003
Figure imgf000130_0003
26 26
Figure imgf000131_0001
Figure imgf000131_0001
Figure imgf000131_0002
Figure imgf000131_0002
Figure imgf000131_0003
Figure imgf000131_0003
2 7
Figure imgf000132_0001
2 7
Figure imgf000132_0001
Figure imgf000133_0001
Figure imgf000133_0001
Figure imgf000133_0002
Figure imgf000133_0002
Figure imgf000133_0003
Figure imgf000133_0003
129 129
Figure imgf000134_0001
Figure imgf000134_0002
Figure imgf000134_0001
Figure imgf000134_0002
Figure imgf000134_0003
Figure imgf000134_0003
130 130
PCT/JP2002/012821 2001-12-12 2002-12-06 Organic electroluminescent materials WO2003050201A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002354442A AU2002354442A1 (en) 2001-12-12 2002-12-06 Organic electroluminescent materials
KR10-2004-7007715A KR20040077660A (en) 2001-12-12 2002-12-06 Organic electroluminescent materials
JP2003551223A JPWO2003050201A1 (en) 2001-12-12 2002-12-06 Organic electroluminescence element material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001378448 2001-12-12
JP2001-378448 2001-12-12
JP2002120827 2002-04-23
JP2002-120827 2002-04-23
JP2002-208112 2002-07-17
JP2002208112 2002-07-17

Publications (1)

Publication Number Publication Date
WO2003050201A1 true WO2003050201A1 (en) 2003-06-19

Family

ID=27347939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012821 WO2003050201A1 (en) 2001-12-12 2002-12-06 Organic electroluminescent materials

Country Status (5)

Country Link
JP (1) JPWO2003050201A1 (en)
KR (1) KR20040077660A (en)
AU (1) AU2002354442A1 (en)
TW (1) TW200304939A (en)
WO (1) WO2003050201A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007885A1 (en) * 2005-07-14 2007-01-18 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light emitting element material, light emitting element, and electronic appliance obtained using the same
WO2007015414A1 (en) * 2005-08-01 2007-02-08 Ihara Chemical Industry Co., Ltd. OXADIAZOLE-SUBSTITUTED Sym-TRIINDOLE DERIVATIVE AND ORGANIC EL ELEMENT EMPLOYING THE SAME
JP2007110097A (en) * 2005-09-14 2007-04-26 Konica Minolta Holdings Inc Organic electroluminescence element, method of manufacturing same, display, and lighting fixture
JP2007536753A (en) * 2004-05-04 2007-12-13 メルク パテント ゲーエムベーハー Organic electronic devices
WO2008032617A1 (en) * 2006-09-13 2008-03-20 Nissan Chemical Industries, Ltd. Oligoaniline compound and use thereof
JP2009260286A (en) * 2008-03-21 2009-11-05 Fujifilm Corp Organic electroluminescent element
US7879464B2 (en) 2005-07-27 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, material for light emitting element, light emitting element, light emitting device, and electronic appliance
JP2011516564A (en) * 2008-04-09 2011-05-26 インフィニティー ファーマシューティカルズ, インコーポレイテッド Inhibitors of fatty acid amide hydrolase
JP2012505829A (en) * 2008-10-14 2012-03-08 チェイル インダストリーズ インコーポレイテッド Benzimidazole compound and organic photoelectric device including the same
JP2013028597A (en) * 2011-06-24 2013-02-07 Semiconductor Energy Lab Co Ltd Triarylamine compound, light-emitting element, light-emitting device, electronic equipment and lighting device
CN110270378A (en) * 2019-07-09 2019-09-24 上海应用技术大学 The immobilized palladium catalyst CaPOP3@Pd of porous polymer and preparation method and application of triazine radical connection cup [4] aromatic hydrocarbons

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100787451B1 (en) * 2006-06-21 2007-12-26 삼성에스디아이 주식회사 Calixarene-based compound and an organic light emitting device employing the same
KR101319275B1 (en) * 2006-06-30 2013-10-16 엘지디스플레이 주식회사 Composition for Organic Light Emitting Device and Organic Light Emitting Device using the same
KR101319274B1 (en) * 2006-06-30 2013-10-16 엘지디스플레이 주식회사 Composition for Organic Light Emitting Device and Organic Light Emitting Device using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339826A2 (en) * 1988-04-26 1989-11-02 Imperial Chemical Industries Plc Redox-active centres
JPH05323632A (en) * 1992-05-26 1993-12-07 Mitsubishi Kasei Corp Electrophotographic sensitive body
EP0628805A1 (en) * 1993-06-09 1994-12-14 AVL Medical Instruments AG Luminescent optical indicator for measuring the activity of alkali metal ions in a sample solution
US5935752A (en) * 1996-11-22 1999-08-10 Minolta Co., Ltd. Toner for developing electrostatic latent images
WO2001066667A1 (en) * 2000-03-09 2001-09-13 Cosmo Oil Co., Ltd. Fluorescent material of cyclic phenol sulfide associated with metal and composition thereof
JP2001278888A (en) * 2000-03-27 2001-10-10 Natl Inst Of Advanced Industrial Science & Technology Meti Aggregate comprising benzoquinone and calixarene substituted by zinc (ii) porphyrin complex and non- covalent bond type electron transfer element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339826A2 (en) * 1988-04-26 1989-11-02 Imperial Chemical Industries Plc Redox-active centres
JPH05323632A (en) * 1992-05-26 1993-12-07 Mitsubishi Kasei Corp Electrophotographic sensitive body
EP0628805A1 (en) * 1993-06-09 1994-12-14 AVL Medical Instruments AG Luminescent optical indicator for measuring the activity of alkali metal ions in a sample solution
US5935752A (en) * 1996-11-22 1999-08-10 Minolta Co., Ltd. Toner for developing electrostatic latent images
WO2001066667A1 (en) * 2000-03-09 2001-09-13 Cosmo Oil Co., Ltd. Fluorescent material of cyclic phenol sulfide associated with metal and composition thereof
JP2001278888A (en) * 2000-03-27 2001-10-10 Natl Inst Of Advanced Industrial Science & Technology Meti Aggregate comprising benzoquinone and calixarene substituted by zinc (ii) porphyrin complex and non- covalent bond type electron transfer element

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536753A (en) * 2004-05-04 2007-12-13 メルク パテント ゲーエムベーハー Organic electronic devices
US7989071B2 (en) 2004-05-04 2011-08-02 Merck Patent Gmbh Organic electronic devices
US7838128B2 (en) 2005-07-14 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light emitting element material, light emitting element, and electronic appliance obtained using the same
CN102127422B (en) * 2005-07-14 2013-01-02 株式会社半导体能源研究所 Carbazole derivative, and light emitting element material, light emitting element, and electronic appliance obtained using the same
WO2007007885A1 (en) * 2005-07-14 2007-01-18 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light emitting element material, light emitting element, and electronic appliance obtained using the same
JP2009246396A (en) * 2005-07-14 2009-10-22 Semiconductor Energy Lab Co Ltd Light emitting element and light emitting device
US7879464B2 (en) 2005-07-27 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, material for light emitting element, light emitting element, light emitting device, and electronic appliance
WO2007015414A1 (en) * 2005-08-01 2007-02-08 Ihara Chemical Industry Co., Ltd. OXADIAZOLE-SUBSTITUTED Sym-TRIINDOLE DERIVATIVE AND ORGANIC EL ELEMENT EMPLOYING THE SAME
JP2007110097A (en) * 2005-09-14 2007-04-26 Konica Minolta Holdings Inc Organic electroluminescence element, method of manufacturing same, display, and lighting fixture
EP2062871A1 (en) * 2006-09-13 2009-05-27 Nissan Chemical Industries, Ltd. Oligoaniline compound and use thereof
EP2062871A4 (en) * 2006-09-13 2010-02-10 Nissan Chemical Ind Ltd Oligoaniline compound and use thereof
WO2008032617A1 (en) * 2006-09-13 2008-03-20 Nissan Chemical Industries, Ltd. Oligoaniline compound and use thereof
US8357770B2 (en) 2006-09-13 2013-01-22 Nissan Chemical Industries, Ltd. Oligoaniline compound and use thereof
JP5446267B2 (en) * 2006-09-13 2014-03-19 日産化学工業株式会社 Oligoaniline compounds and uses thereof
JP2009260286A (en) * 2008-03-21 2009-11-05 Fujifilm Corp Organic electroluminescent element
JP2011516564A (en) * 2008-04-09 2011-05-26 インフィニティー ファーマシューティカルズ, インコーポレイテッド Inhibitors of fatty acid amide hydrolase
JP2012505829A (en) * 2008-10-14 2012-03-08 チェイル インダストリーズ インコーポレイテッド Benzimidazole compound and organic photoelectric device including the same
US9530970B2 (en) 2008-10-14 2016-12-27 Cheil Industries, Inc. Benzimidazole compound, organic photoelectric device including the same, and display element including the same
JP2013028597A (en) * 2011-06-24 2013-02-07 Semiconductor Energy Lab Co Ltd Triarylamine compound, light-emitting element, light-emitting device, electronic equipment and lighting device
US9525143B2 (en) 2011-06-24 2016-12-20 Semiconductor Energy Laboratory Co., Ltd. Triarylamine compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN110270378A (en) * 2019-07-09 2019-09-24 上海应用技术大学 The immobilized palladium catalyst CaPOP3@Pd of porous polymer and preparation method and application of triazine radical connection cup [4] aromatic hydrocarbons

Also Published As

Publication number Publication date
JPWO2003050201A1 (en) 2005-04-21
AU2002354442A1 (en) 2003-06-23
KR20040077660A (en) 2004-09-06
TW200304939A (en) 2003-10-16

Similar Documents

Publication Publication Date Title
JP4407102B2 (en) Anthracene compound, method for producing the same, and organic electroluminescent device
JP2974070B2 (en) Organic electroluminescent polymer for light emitting diode
KR101434632B1 (en) Arylamine compounds and electronic devices
TWI357404B (en)
JP3965063B2 (en) Organic electroluminescence device
WO2002043449A1 (en) Luminescent element material and luminescent element comprising the same
WO2007004364A1 (en) Pyrene derivative and organic electroluminescence device making use of the same
WO1994006157A1 (en) Charge injection assistant and organic electroluminescence device containing the same
JP4786917B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
JPH0812600A (en) Phenylanthracene derivative and organic el element
WO2004020549A1 (en) Organometallic complexes, organic el devices, and organic el displays
WO2002020459A1 (en) Novel styryl compounds and organic electroluminescent devices
KR20120006549A (en) Arylamine compound and organic electroluminescent device
WO2003050201A1 (en) Organic electroluminescent materials
JP4880450B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
JP2003221579A (en) Organic luminescent material
JP2004292766A (en) Organic electroluminescent element material
JP4918810B2 (en) Substituted phenylethynylcopper-nitrogen-containing heterocyclic carbene complex and organic electroluminescence device using the same
JP2003313546A (en) Luminescent composition
US20020102433A1 (en) Oxadizaole tetramers
JPH10231476A (en) Organic el element
JPH10231479A (en) Red-luminescent organic el element
KR100841417B1 (en) Electroluminescent compounds and organic electroluminescent device using the same
JP3707081B2 (en) Polymer fluorescent substance and organic electroluminescence device
JP4308560B2 (en) Organometallic complex, its ligand, and organic EL device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003551223

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047007715

Country of ref document: KR

122 Ep: pct application non-entry in european phase