JP2004180369A - Battery charger - Google Patents

Battery charger Download PDF

Info

Publication number
JP2004180369A
JP2004180369A JP2002340996A JP2002340996A JP2004180369A JP 2004180369 A JP2004180369 A JP 2004180369A JP 2002340996 A JP2002340996 A JP 2002340996A JP 2002340996 A JP2002340996 A JP 2002340996A JP 2004180369 A JP2004180369 A JP 2004180369A
Authority
JP
Japan
Prior art keywords
charging
battery
battery pack
voltage
battery temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002340996A
Other languages
Japanese (ja)
Other versions
JP2004180369A5 (en
JP4127031B2 (en
Inventor
Takahisa Aradate
卓央 荒舘
Nobuhiro Takano
信宏 高野
Eiji Nakayama
栄二 中山
Toshio Mizoguchi
利夫 溝口
Kazuhiko Funabashi
一彦 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2002340996A priority Critical patent/JP4127031B2/en
Publication of JP2004180369A publication Critical patent/JP2004180369A/en
Publication of JP2004180369A5 publication Critical patent/JP2004180369A5/ja
Application granted granted Critical
Publication of JP4127031B2 publication Critical patent/JP4127031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To implement a function of displaying how long a charger takes to complete charging when charging is started. <P>SOLUTION: The charger comprises a battery voltage detecting means 40 which detects the battery voltage of a battery pack 2; a battery temperature judging means 8 which judges the battery temperature of the battery pack from a temperature sensing element 2b added to the battery pack; a controlling means 50 which judges the no-load voltage per cell at the battery temperature before start of charging of the battery pack based on the outputs of the battery voltage detecting means 40 and the battery temperature judging means 8, and judges in several steps the charging time it will take charging of the battery pack to be completed according to the battery temperature before start of charging, the no-load voltage per cell at the battery temperature, and the battery voltage at the battery temperature after the battery pack is charged for a predetermined time with a predetermined current in the initial stage of charging; and a displaying means 90 which displays the charging time it will take charging of the battery pack to be completed in several steps. The controlling means 50 outputs to the displaying means 90 the result of judgment of the charging time it will take charging of the battery pack to be completed in several steps. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明はニッケルカドミウム電池やニッケル水素電池等の2次電池を充電する充電装置に関するものである。
【0002】
【従来の技術】
一般に充電可能な電池は、携帯用機器の電源として使用され、携帯用機器から取り外されて充電装置で充電された後、再び携帯用機器に装着され使用されるという作業を繰り返す。この作業の時使用者には、「充電開始時にどの位の時間で充電を完了するかを知りたい。」という要求がある。
【0003】
近年、この要求に対応するため、電池パックにマイコンを内蔵し、負荷電流と使用時間を積算し、その積算量と電池パックの定格容量とを比較演算することで電池パックの充電量(残容量)をLED等で表示する充電量表示付電池パックが提案されている(特許文献1参照)。
【0004】
【特許文献1】
特開2001−116812号(請求項1)
【0005】
【発明が解決しようとする課題】
しかしながら、上記の充電量表示付電池パックは、電流積算や演算をするマイコン等から構成する表示手段が電池パックに内蔵されているから可能であり、全ての電池パックがそのような手段を内蔵しているわけではなく、ほとんどの電池パックは上記の使用者の要求を満足させるものではない。
【0006】
本発明の目的は、かかる課題を解決するために、充電開始時にどの位の時間で充電を完了するかを表示する機能を充電装置で実現することである。
【0007】
【発明を解決するための手段】
上記目的を達成するためになされた請求項1記載の発明は、複数の電池セルを直列に接続した電池パックの充電を制御すると共に充電状態を検出してその状態を表示する充電装置であって、電池パックの電池電圧を検出する電池電圧検出手段と、電池パックに付加された温度検出素子から電池パックの電池温度を判別する電池温度検出手段と、前記電池温度検出手段又は前記電池電圧検出手段の出力に基づき電池パックの充電完了までの充電時間を数段階に分けて判別する制御手段と、充電完了までの充電時間を数段階で表示する表示手段とを備え、前記制御手段は電池パックの充電完了までの充電時間を数段階に判別した結果を前記表示手段に出力することを特徴とする。
【0008】
上記目的を達成するためになされた請求項2記載の発明は、請求項1において、電池パックを充電する充電電流を設定する充電電流設定手段と、充電電流設定手段に基づいて所定の充電電流に制御する充電電流制御手段と、前記電池温度検出手段の出力に基づいて充電開始前の電池温度に応じて充電電流を設定し、前記充電電流設定手段に出力することを特徴とする。
【0009】
上記目的を達成するためになされた請求項3記載の発明は、請求項1又は請求項2において電池パックの充電完了までの数段階の充電時間を、前記電池温度検出手段の出力に基づく充電開始前の電池温度に基づいて検出することを特徴とする。
【0010】
上記目的を達成するためになされた請求項4記載の発明は、請求項1又は請求項2において、電池パックの充電完了までの数段階の充電時間を、充電開始前の電池温度におけるセル当たりの電池電圧検出手段により出力される無負荷電圧に基づいて判別することを特徴とする。
【0011】
上記目的を達成するためになされた請求項5記載の発明は、請求項1又は請求項2において、電池パックの充電完了までの数段階の充電時間を、充電初期に所定時間所定電流で充電した後の電池温度における電池電圧に基づいて判別することを特徴とする。
【0012】
上記目的を達成するためになされた請求項6記載の発明は、請求項4又は請求項5において、電池パックのセル数の判別を、充電初期に所定時間所定電流で充電した後の電池温度における電池電圧に基づいて判別することを特徴とする。
【0013】
【発明の実施の形態】
図1は本発明の一実施形態を示す回路図である。図において、1は交流電源、2は複数の電池セルを直列に接続した電池組2aと電池セルに接触または近接して電池温度を検出する例えばサーミスタ等からなる温度検出素子2bを内蔵する電池パック。3は電池パック2に流れる充電電流を検出する電流検出抵抗、4は抵抗4a、4bからなる出力電圧検出回路で、電源回路の2次側整流平滑回路30の出力電圧を抵抗4a、4bで分圧し、出力電圧制御回路80に入力する。5は2次側整流平滑回路30の出力電圧制御信号及び充電電流制御信号をSW制御IC23に帰還する信号伝達手段で、ホトカプラ等から構成される。6は抵抗6a、6bからなる出力電圧設定回路で、抵抗6a、6bの分圧比で設定された電圧値が基準電圧になり、2次側整流平滑回路30の出力電圧に相当する。
【0014】
7は抵抗7a〜7eからなる充電電流設定回路で、抵抗7a、7bの分圧比で設定された電圧値を、抵抗7c、抵抗7d、抵抗7eに連なる夫々の出力ポートをハイ又はローレベルに選択することで8種の充電電流値に相当する電圧値を選択できる。
【0015】
8は抵抗8a、8bからなる電池温度検出手段で、抵抗8aと抵抗8b及び温度検出素子2との分圧比によって決定される分圧電圧がマイコン50のA/Dコンバータ55に入力され、電池温度に応じて温度検出素子2bの抵抗値が変化することで、電池温度に応じて分圧電圧がマイコン50のA/Dコンバータ55に入力される。
【0016】
10は全波整流回路11と平滑用コンデンサ12からなる1次側整流平滑回路、20は高周波トランス21、MOSFET22とSW制御IC23、SW制御IC用定電圧回路24、起動抵抗25からなるスイッチング回路であり、高周波トランス21は1次巻線21a、2次巻線21b、3次巻線21c、4次巻線21dからなり、直流の入力電圧が印加される1次巻線21aに対し、2次巻線21bはSW制御IC23用の出力巻線、3次巻線21cは電池パック2を充電するための出力巻線、4次巻線21dはマイコン50、充電電流制御手段60等の電源用の出力巻線である。なお1次巻線21aに対し、2次巻線21b、4次巻線21dは同極性で、3次巻線21cは逆極性である。SW制御IC23はMOSFET22の駆動パルス幅を変えて出力電圧を調整するスイッチング電源ICである。また、SW制御IC用定電圧回路24はダイオード24a、3端子レギュレータ24b、コンデンサ24c、24dから構成されており、2次巻線21bからの出力電圧を定電圧化する。
【0017】
30はダイオード31、平滑用コンデンサ32、抵抗33からなる2次側整流平滑回路、40は抵抗41、42からなる電池電圧検出回路で、電池パック2の端子電圧を分圧する。50は演算手段(CPU)51、ROM52、RAM53、タイマ54、A/Dコンバータ55、出力ポート56、リセット入力ポート57からなる制御手段であるマイコンである。CPU51は、A/Dコンバータ55の入力データに基づいて、所定のサンプリングごとに最新の電池電圧及び電池温度と複数サンプリング前の電池電圧及び電池温度とを比較し、その結果に基づいて電池パック2の充電状態が、満充電間際又は満充電であるか否かを判別する。RAM53はサンプリングした最新の電池電圧までの所定数のサンプリングした電池電圧及び電池温度を記憶する。
【0018】
60は演算増幅器61、62、抵抗63〜67、ダイオード68からなる充電電流制御回路で、充電電流検出抵抗3に流れる充電電流を検出し、充電電流に対応する電圧を反転増幅させた出力電圧と充電電流設定回路7で設定された充電電流設定基準電圧との差を増幅し、信号伝達手段5を介してSW制御IC23に帰還をかけ制御する。すなわち、充電電流が大きい場合はパルス幅を狭めたパルスを、逆の場合はパルス幅を広げたパルスを高周波トランス21に与え整流平滑回路30で直流に平滑し、充電電流を一定に保つ。すなわち電流検出抵抗3、充電電流制御回路60、信号伝達手段5、スイッチング回路20、整流平滑回路30を介して充電電流を設定電流値となるように制御する。
【0019】
70はダイオード71、コンデンサ72、平滑コンデンサ73、3端子レギュレータ74、リセットIC75からなる定電圧回路で、マイコン50、充電電流制御手段60等の電源となる。リセットIC75はマイコン50を初期状態にするためにリセット入力ポート57にリセット信号を出力する。
【0020】
80は演算増幅器81、抵抗82〜85、ダイオード86からなる出力電圧制御回路であり、出力電圧検出回路4からの検出出力電圧と出力電圧設定回路6からの設定電圧との差を増幅し、信号伝達手段5を介してSW制御IC23に帰還をかけ出力電圧を設定値に制御する。
【0021】
90はLED91、92、抵抗93〜96からなる表示手段で、LED91、92は、例えば赤色及び緑色からなるLEDで、マイコン50の出力ポート56の出力によって赤色及び緑色が点灯し、また両方の色を同時に発光させることで橙色の発光も可能なタイプである。本実施形態ではLED91は充電開始前及び充電完了を夫々赤色及び緑色で表示し、LED92は充電中にどの位の時間で充電を完了するかを3段階表示するLEDであり、充電時間が長いと判別された段階から赤色、橙色及び緑色と色を変えて表示する。また、電池温度が所定値以上である時は充電を行わず、待機するが、その時は、LED92を0.5秒周期で点滅させる。
【0022】
次に図1の回路図、図2及び図3のフローチャートを参照して本発明充電装置の動作を説明する。
電源を投入すると、マイコン50は電池パック2の接続待機状態となり、電池パック2の接続は電池電圧検出手段40、電池温度検出手段8の信号により判別する(ステップ201)。
【0023】
電池パック2が接続されるとRAM53の記憶データの電池状態を判別するフラグである電池高温Flag、電池低温Flag、電池の放電状態を判別するLED92赤点灯Flag及び電池電圧検出による満充電判別用のΔVFlagをイニシャルセットする(ステップ202)。
【0024】
次いで充電開始前の電池電圧V0を電池電圧検出手段40で分圧した電圧をA/Dコンバータ55に入力しA/D変換し取り込む(ステップ203)。また電池パック2の充電開始前の電池温度T0を、マイコン50のA/Dコンバータ55に入力される電圧をA/Dコンバータ55でA/D変換することにより取り込む(ステップ204)。電池温度検出手段8の出力電圧は、温度検出素子2bとの分圧比によって決定される分圧電圧がマイコン50のA/Dコンバータ55に入力され、電池温度に応じて温度検出素子2bの抵抗値が変化することで、電池温度に応じて分圧電圧は変化する。
【0025】
次にマイコン50は充電開始前の電池温度T0が55℃以上であるか否かの判別を行う(ステップ205)。
ステップ205において、充電開始前の電池温度T0が55℃以上である場合は、充電中の発熱による電池寿命の劣化を考慮すると、充電を行うには適していないので、充電を行わず待機状態とし、出力ポート56を介してLED92を0.5秒周期で点滅させる(ステップ206)。LED92を0.5秒周期で点滅させた後は、ステップ203にジャンプし、再びステップ203においては、充電開始前の電池電圧V0を、ステップ204においては充電開始前の電池温度T0を取込む。この処理は、ステップ205において充電開始前の電池温度T0が55℃以下になるまで行う。尚、高温待機時において取込まれる充電開始前の電池電圧V0、充電開始前の電池温度T0は、電池温度が55℃以下になるまで最新のデータを更新し、電池温度が55℃になる直前の最新のデータをV0及びT0として後の処理に用いる。
【0026】
ステップ205において、充電開始前の電池温度T0が55℃以下の場合は、充電開始前の電池温度T0が50℃以上か否かの判別を行う(ステップ207)。
ステップ207において、充電開始前の電池温度T0が50℃以上の場合は、残容量の少ない電池パック2を高温状態でも対応できる比較的小さい充電電流で充電し、充電時間が長時間かかると仮定して、RAM53の電池高温Flagを1にセットし(ステップ208)、その後出力ポート56を介してLED92を赤点灯させ(ステップ209)、LED92の赤点灯Flagを1にセットする(ステップ210)。ステップ207において、充電開始前の電池温度T0が50℃以上でないと判別した場合は、引き続き充電開始前の電池温度T0が−10℃以下か否かの判別を行う(ステップ211)。充電開始前の電池温度T0が−10℃以下の場合は、残容量の少ない電池パック2を低温状態でも対応できる比較的小さい充電電流で充電し、充電時間が長時間かかると仮定して、RAM53の電池低温Flagを1にセットし(ステップ212)、出力ポート56を介してLED92を赤点灯させ(ステップ209)、LED92の赤点灯Flagを1にセットする(ステップ210)。
【0027】
また、ステップ211において、充電開始前の電池温度T0が−10℃以下でないと判別された場合は、残容量の少ない電池パック2を比較的大きい充電電流で充電し、充電時間が中程度であると仮定し、出力ポート56を介してLED92を橙点灯させる(ステップ213)。
次に、セル数判別用充電電流I0で充電を開始し(ステップ214)、t1時間経過した時点での(ステップ215)電池電圧Voffを検出する(ステップ216)。
次にステップ216において検出した電池電圧Voffを基準電圧Vaで除算することにより電池パック2のセル数nを求める(ステップ217)。なおステップ217においては電池パック2内の電池セル数が2の倍数であると仮定している。
【0028】
次に、ステップ216において検出した電池電圧Voff及びステップ217において求めたセル数nから電池パック2の前記電池電圧Voffのセル電圧を演算する。前記セル電圧は、前記電池電圧Voffをセル数nで除算することで求められる。まず、前記セル電圧Voffが1.45V/セル以上か否かの判別を行う(ステップ218)。セル電圧が1.45V/セル以上の場合は、電池パック2は残容量が多いと判別しすなわち、充電完了までの時間が短いと判別し、出力ポート56を介してLED92を緑点灯させ(ステップ219)、RAM53のLED92赤点灯Flagを0にセットし(ステップ220)た後ステップ224へジャンプする。ステップ218において、前記セル電圧が、1.45V/セル以上でない場合は、充電開始前の電池電圧V0のセル電圧が1.275V/セル以上であるか否かを判別する(ステップ221)。尚、充電開始前の電池電圧V0のセル電圧は、前記電池電圧V0をステップ217において求めたセル数nと除算することで求める。セル電圧が1.275V/セル以上である場合は、電池パック2は残容量が中程度であると判別し、出力ポート56を介してLED92を橙点灯させ(ステップ222)、LED92赤点灯Flagを0にセットする(ステップ223)。
【0029】
ステップ221において、セル電圧が1.275V/セル以上でない場合は、電池残残容量が少ないと判別する。この場合既にステップ209及びステップ213において電池残容量が少ないと仮定してLED92の点灯がなさせているので、LED92の表示は変化させない。
【0030】
次に、RAM53の電池高温Flagが1であるか否かを判別する(ステップ224)。電池高温Flagが1である場合は、電池パック2は、高温と判別し、電池パック2の高温状態で対応できる充電電流I3で充電を開始し(ステップ225)、ステップ229へジャンプする。
【0031】
電池高温Flagが1でない場合は次に電池低温Flagが1であるか否かを判別する(ステップ226)。電池低温Flagが1である場合は、電池パック2は、低温と判別し、電池パック2の低温状態で対応できる充電電流I2(I2<I3)で充電を開始し(ステップ227)、ステップ229へジャンプする。
【0032】
電池低温Flagが1でない場合は、電池パック2は常温と判別し、充電電流I1(I2<I3<I1)で充電を開始する(ステップ228)。
【0033】
充電電流の制御は、ステップ228の充電電流I1で充電を開始する時は、マイコン50は出力ポート56を介して、充電電流I1に対応する充電電流設定基準電圧V1を、充電電流設定手段7の抵抗7c、7d、7e端をハイレベルに選択することで設定でき、充電電流設定基準電圧V1を演算増幅器62に印加し、充電電流I1で充電を開始する。充電開始と同時に電池パック2に流れる充電電流を電流検出抵抗3により検出し、検出充電電流に対応する電圧と出力ポート56の出力に対応した充電電流設定手段7からの基準電圧V1との差を充電電流制御手段60より信号伝達手段5を介して、PWM制御IC23に帰還をかける。すなわち、充電電流が大きい場合はパルス幅を狭め、逆の場合はパルス幅を広げ、パルス幅に比例したパルスを高周波トランス21に与え整流平滑回路30で直流に平滑し、充電電流I1を一定に保つ。すなわち電流検出抵抗3、充電電流制御手段60、充電電流信号伝達手段5、スイッチング回路20、整流平滑回路30を介して充電電流を所定電流値I1となるように制御する。
【0034】
また、充電電流I2の制御も同様であり、充電電流I2に対応する充電電流設定基準電圧V2を、充電電流設定手段7の抵抗7c端をローレベル(残りの7d、7e端をハイレベル)に選択することで設定でき、充電電流設定基準電圧V2を演算増幅器62に印加し、充電電流I2で充電を開始し制御する。
【0035】
同様に、充電電流I3は、充電電流I3に対応する充電電流設定基準電圧V3を、充電電流設定手段7の抵抗7d端をローレベル(残りの7c、7e端をハイレベル)に選択することで設定でき、充電電流設定基準電圧V3を演算増幅器62に印加し、充電電流I3で充電を開始し制御する。
【0036】
充電開始後、マイコン50はタイマ54を使用して充電開始からのタイマをスタートし(ステップ229)、引き続き充電開始からのタイマが所定時間経過したか否かの判別を行い(ステップ230)、所定時間経過している時はLED92赤点灯Flagが1であるか否かの判別を行い(ステップ231)、LED92赤点灯Flagが1の場合は、LED92が赤点灯されることにより充電時間が長いと判断した状態から、所定時間経過したので、LED92赤点灯Flagを0にセットしなおし(ステップ232)、出力ポート56を介してLED92を橙色点灯させる(ステップ233)。
【0037】
ステップ230において、充電開始から所定時間経過していない時は、ステップ234までジャンプする。同様にステップ231においてLED92赤点灯Flagが1でない場合は、ステップ234までジャンプする。
【0038】
次いで電池パック2の満充電間際判別及び満充電判別処理に必要なデータ処理を行う。まず、充電中における電池パック2の最新の電池温度Tinを、電池温度検出手段8からの電圧をA/Dコンバータ55に入力し、A/D変換することにより取り込む(ステップ234)。また、サンプリングした充電中の電池温度データを比較することにより、充電中の電池温度の最小値Tminを演算し記憶する(ステップ235)。
【0039】
引き続き、電池パック2の最新の電池電圧Vinを電池電圧検出手段40で分圧した電圧をA/Dコンバータ55に入力しA/D変換し取り込む(ステップ236)。
またサンプリングして記憶した充電中の電池温度データから所定サンプリング幅の最新の電池温度勾配dT/dtを演算する(ステップ237)と共に最新の電池温度勾配dT/dtのデータと記憶してある以前の電池温度勾配dT/dtを比較することにより、所定サンプリング幅の電池温度勾配dT/dtの最小値dT/dt(min)を演算し記憶する(ステップ238)。
【0040】
さらに、マイコン50は電池電圧検出手段40の出力に基づいて、充電中の電池電圧データから所定サンプリング幅の最新の電池電圧勾配ΔVを演算し(ステップ239)、また、演算した電池電圧勾配ΔVのデータを比較することにより、所定サンプリング幅の電池電圧勾配最小値ΔVminを演算し記憶する(ステップ240)。
【0041】
次いで電池パック2の満充電間際判別処理を行う。ステップ234〜240の処理データに基づいて、まず最新の電池電圧勾配ΔVと、充電中にサンプリングし演算した電池電圧勾配最小値ΔVminを比較演算し、最新の電池電圧勾配ΔVが、電池電圧勾配最小値ΔVminから予め設定した所定値R1以上上昇したか否かの判別を行い(ステップ241)、所定値R1以上上昇した場合は、電池パック2は満充電間際と判別し、ΔVFlagを1にセットし(ステップ242)、この場合は充電完了までの時間は短かくなっていると判断し、LED92を緑点灯させ(ステップ243)ステップ246ジャンプする。
【0042】
ステップ241において、最新の電池電圧勾配ΔVが、電池電圧勾配最小値ΔVminより予め設定した所定値R1以上上昇していない場合は、引き続き最新の電池温度勾配dT/dtと電池温度勾配最小値dT/dt(min)を比較演算し、最新の電池温度勾配dT/dtが、電池温度勾配最小値dT/dt(min)から予め設定した所定値Q1以上上昇したか否かの判別を行い(ステップ244)、所定値Q1以上上昇した場合は、電池パック2は満充電間際と判別し、この場合は充電完了までの時間は短かくなっていると判断し、LED92を緑点灯させ(ステップ243)、ステップ246にジャンプする。
【0043】
また、ステップ244において、最新の電池温度勾配dT/dtが、電池温度勾配最小値dT/dt(min)から、予め設定した所定値Q1以上上昇していない場合は、引き続き最新の電池温度Tinと電池温度最小値Tminを比較演算し、最新の電池温度Tinが電池温度最小値Tminから予め設定した所定値P1以上上昇したか否かの判別を行い(ステップ245)、所定値P1以上上昇した場合は電池パック2は満充電間際と判別し、この場合は充電完了までの時間は短かくなっていると判断し、LED92を緑点灯させ(ステップ243)、ステップ246にジャンプする。
【0044】
次いで、電池パック2の満充電判別処理を行う。まず最新の電池温度Tinが電池温度最小値Tminから予め設定した所定値P2(P2>P1)以上上昇したか否かの判別を行い(ステップ246)、所定値P2以上上昇した場合、電池パック2は満充電と判別し、充電停止状態と同様な状態であるトリクル充電に移ると共にLED92を消灯する(ステップ250)。トリクル充電は、周知の如く、自然放電によって容量減少するのを防止するために、電池パック2が充電器に挿入されている間、所定時間ごとに非常に小さい充電電流すなわちトリクル充電電流で所定時間充電するもので、トリクル充電電流に対応する充電電流設定基準電圧を、充電電流設定手段7の抵抗7c、7d、7e端をローレベルに選択することで設定し、この充電電流設定基準電圧を演算増幅器62に印加することにより行われる。次いで電池パック2が取り出されたか否かの判別を行い(ステップ251)、電池パック2が取り出されたならステップ201に戻り、次の充電のために待機する。
【0045】
ステップ246において、最新の電池温度Tinが、電池温度最小値Tminから、所定値P2以上上昇していない場合は、引き続き最新の電池温度勾配dT/dtと電池温度勾配最小値dT/dt(min)を比較演算し、最新の電池温度勾配dT/dtが、電池温度勾配最小値dT/dt(min)から予め設定した所定値Q2(Q2>Q1)以上上昇したか否かの判別を行い(ステップ247)、所定値Q2以上上昇した場合は、電池パック2は満充電と判別し、上述したステップ250、251の処理を行う。
ステップ247において、最新の電池温度勾配dT/dtが、電池温度勾配最小値dT/dt(min)から、所定値Q2以上上昇していない場合は、ΔVFlagが1であるか否かの判別を行い(ステップ248)、ΔVFlagが1でない場合は、電池パック2は満充電になっていないと判別し、ステップ230に戻る。
【0046】
ステップ248において、ΔVFlagが1の場合は、引き続き最新の電池電圧勾配ΔVが予め設定された所定値R2以下か否かの判別を行い(ステップ249)、所定値R2以下の場合は、電池パック2は満充電と判別し、上述したステップ250、251の処理を行う。
ステップ249において、最新の電池電圧勾配ΔVが所定値R2以下になっていない場合はステップ230に戻る。
【0047】
上記実施形態において、満充電間際判別及び満充電判別の判別方法を、電池温度、電池温度勾配、電池電圧勾配とも、夫々の充電中の最小値データと比較し、その結果から判別するようにしたが、これに限るものではなく、例えば単純に演算算出した最新のデータと、それに対応する予め設定した所定値との比較によって判別しても構わない。
【0048】
また、上記実施形態では、表示手段90のLED91の動作について言及しなかったが、例えば、LED91を充電待機前の時は赤色点灯、充電終了(トリクル充電に移行)時は、緑色点灯といった使用が可能である。
【0049】
なお、本実施形態において満充電後はトリクル充電(微少電流)に制御するようにしたが、本実施形態の効果には関係なく、例えば制御系の電源を別電源から供給し、充電完了後は主電源を停止して、充電電流を完全に停止させても問題は全くない。
【0050】
【発明の効果】
以上のように本発明によれば、充電開始時にどの位の時間で充電を完了するかを表示する機能を充電装置で実現することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の回路構成を示す回路図。
【図2】本発明の一実施形態の動作説明用フローチャート。
【図3】本発明の一実施形態の動作説明用フローチャート。
【符号の説明】
2は電池パック、7は充電電流設定手段、8は電池温度検出手段、40は電池電圧検出手段、50はマイコン、60は充電電流制御手段、90は表示手段である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a charging device for charging a secondary battery such as a nickel cadmium battery or a nickel hydride battery.
[0002]
[Prior art]
In general, a rechargeable battery is used as a power source of a portable device, and is repeatedly removed from the portable device, charged by a charging device, and then attached to the portable device and used again. At the time of this work, the user has a request that "I want to know how long charging is completed at the start of charging."
[0003]
In recent years, in order to respond to this demand, a microcomputer is built into the battery pack, the load current and the usage time are integrated, and the integrated amount is compared with the rated capacity of the battery pack to calculate the charge amount (remaining capacity) of the battery pack. ) Is indicated by an LED or the like (see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-2001-116812 (Claim 1)
[0005]
[Problems to be solved by the invention]
However, the above-mentioned battery pack with charge amount display is possible because the display means composed of a microcomputer or the like for performing current integration and calculation is built in the battery pack, and all the battery packs have such a built-in means. However, most battery packs do not satisfy the above user demand.
[0006]
An object of the present invention is to provide a charging device with a function of displaying how long charging is completed at the start of charging, in order to solve such a problem.
[0007]
[Means for Solving the Invention]
An invention according to claim 1 for achieving the above object is a charging device that controls charging of a battery pack in which a plurality of battery cells are connected in series, detects a charging state, and displays the state. Battery voltage detecting means for detecting the battery voltage of the battery pack; battery temperature detecting means for determining the battery temperature of the battery pack from a temperature detecting element added to the battery pack; and the battery temperature detecting means or the battery voltage detecting means Control means for determining the charging time until the completion of the charging of the battery pack in several stages based on the output of the battery pack, and display means for displaying the charging time until the completion of the charging in several stages. It is characterized in that the result of discriminating the charging time until the charging is completed in several stages is output to the display means.
[0008]
According to a second aspect of the present invention, there is provided a charge current setting means for setting a charge current for charging a battery pack, and a predetermined charge current based on the charge current setting means. A charging current is set in accordance with a battery temperature before the start of charging based on an output of the charging current control means to be controlled and the output of the battery temperature detecting means, and output to the charging current setting means.
[0009]
According to a third aspect of the present invention, there is provided a method of charging a battery pack according to the first or second aspect, wherein the charging time is set to several stages until completion of charging of the battery pack based on an output of the battery temperature detecting means. The detection is performed based on the previous battery temperature.
[0010]
In order to achieve the above object, the invention according to claim 4 is characterized in that, in claim 1 or claim 2, the charging time in several stages until the completion of charging of the battery pack is reduced per cell at the battery temperature before the start of charging. The determination is made based on the no-load voltage output by the battery voltage detecting means.
[0011]
According to a fifth aspect of the present invention, there is provided a battery according to the first or second aspect, wherein the battery pack is charged with a predetermined current for a predetermined period of time until the completion of charging of the battery pack in the initial stage of the charging. The determination is made based on a battery voltage at a later battery temperature.
[0012]
According to a sixth aspect of the present invention, there is provided a battery pack according to the fourth or fifth aspect, wherein the determination of the number of cells of the battery pack is performed based on a battery temperature after charging with a predetermined current for a predetermined time at an initial stage of charging. The determination is made based on the battery voltage.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a circuit diagram showing one embodiment of the present invention. In the figure, 1 is an AC power supply, 2 is a battery pack including a battery set 2a in which a plurality of battery cells are connected in series, and a temperature detecting element 2b including a thermistor or the like for detecting the battery temperature in contact with or close to the battery cells. . Reference numeral 3 denotes a current detection resistor for detecting a charging current flowing through the battery pack 2. Reference numeral 4 denotes an output voltage detection circuit including resistors 4a and 4b. The output voltage of the secondary rectifying and smoothing circuit 30 of the power supply circuit is divided by the resistors 4a and 4b. And input to the output voltage control circuit 80. Reference numeral 5 denotes a signal transmission unit that feeds back the output voltage control signal and the charging current control signal of the secondary-side rectifying / smoothing circuit 30 to the SW control IC 23, and includes a photocoupler or the like. Reference numeral 6 denotes an output voltage setting circuit composed of resistors 6a and 6b. A voltage value set by a voltage dividing ratio of the resistors 6a and 6b becomes a reference voltage, and corresponds to an output voltage of the secondary-side rectifying / smoothing circuit 30.
[0014]
Reference numeral 7 denotes a charging current setting circuit including resistors 7a to 7e, which selects a voltage value set by a voltage dividing ratio of the resistors 7a and 7b to a high or low level for each output port connected to the resistors 7c, 7d, and 7e. By doing so, a voltage value corresponding to eight kinds of charging current values can be selected.
[0015]
Reference numeral 8 denotes a battery temperature detecting means including resistors 8a and 8b. A divided voltage determined by a voltage dividing ratio between the resistors 8a and 8b and the temperature detecting element 2 is input to the A / D converter 55 of the microcomputer 50, and the battery temperature is detected. The divided voltage is input to the A / D converter 55 of the microcomputer 50 according to the battery temperature by changing the resistance value of the temperature detecting element 2b according to the above.
[0016]
Reference numeral 10 denotes a primary-side rectifying / smoothing circuit including a full-wave rectifying circuit 11 and a smoothing capacitor 12. Reference numeral 20 denotes a switching circuit including a high-frequency transformer 21, a MOSFET 22, a SW control IC 23, a SW control IC constant voltage circuit 24, and a starting resistor 25. The high-frequency transformer 21 includes a primary winding 21a, a secondary winding 21b, a tertiary winding 21c, and a quaternary winding 21d. The winding 21b is an output winding for the SW control IC 23, the tertiary winding 21c is an output winding for charging the battery pack 2, and the tertiary winding 21d is for a power supply such as the microcomputer 50 and the charging current control means 60. Output winding. The secondary winding 21b and the quaternary winding 21d have the same polarity and the tertiary winding 21c has the opposite polarity to the primary winding 21a. The SW control IC 23 is a switching power supply IC for adjusting the output voltage by changing the drive pulse width of the MOSFET 22. The SW control IC constant voltage circuit 24 includes a diode 24a, a three-terminal regulator 24b, and capacitors 24c and 24d, and makes the output voltage from the secondary winding 21b a constant voltage.
[0017]
Reference numeral 30 denotes a secondary-side rectifying / smoothing circuit including a diode 31, a smoothing capacitor 32, and a resistor 33. Reference numeral 40 denotes a battery voltage detection circuit including resistors 41 and 42, which divides a terminal voltage of the battery pack 2. Reference numeral 50 denotes a microcomputer which is a control unit including an arithmetic unit (CPU) 51, a ROM 52, a RAM 53, a timer 54, an A / D converter 55, an output port 56, and a reset input port 57. The CPU 51 compares the latest battery voltage and battery temperature with the battery voltage and battery temperature before a plurality of samplings for each predetermined sampling based on the input data of the A / D converter 55, and based on the result, the battery pack 2 It is determined whether or not the state of charge is just before full charge or full charge. The RAM 53 stores a predetermined number of sampled battery voltages and battery temperatures up to the latest sampled battery voltage.
[0018]
Reference numeral 60 denotes a charging current control circuit including operational amplifiers 61 and 62, resistors 63 to 67, and a diode 68. The charging current control circuit 60 detects a charging current flowing through the charging current detection resistor 3, and inverts and amplifies a voltage corresponding to the charging current. The difference from the charging current setting reference voltage set by the charging current setting circuit 7 is amplified, and the signal is fed back to the SW control IC 23 via the signal transmission means 5 for control. That is, when the charging current is large, a pulse with a reduced pulse width is supplied to the high-frequency transformer 21 when the charging current is large. That is, the charging current is controlled to be the set current value via the current detection resistor 3, the charging current control circuit 60, the signal transmission means 5, the switching circuit 20, and the rectifying / smoothing circuit 30.
[0019]
Reference numeral 70 denotes a constant voltage circuit including a diode 71, a capacitor 72, a smoothing capacitor 73, a three-terminal regulator 74, and a reset IC 75, and serves as a power source for the microcomputer 50, the charging current control unit 60, and the like. The reset IC 75 outputs a reset signal to the reset input port 57 to bring the microcomputer 50 into an initial state.
[0020]
Reference numeral 80 denotes an output voltage control circuit including an operational amplifier 81, resistors 82 to 85, and a diode 86. The output voltage control circuit 80 amplifies a difference between a detection output voltage from the output voltage detection circuit 4 and a set voltage from the output voltage setting circuit 6, and outputs a signal. Feedback is made to the SW control IC 23 via the transmission means 5 to control the output voltage to a set value.
[0021]
Reference numeral 90 denotes display means comprising LEDs 91 and 92 and resistors 93 to 96. The LEDs 91 and 92 are, for example, red and green LEDs, which emit red and green light by the output of the output port 56 of the microcomputer 50, and both colors. Are also capable of emitting orange light by emitting light simultaneously. In the present embodiment, the LED 91 displays before and after the start of charging and the completion of charging in red and green, respectively. The LED 92 is an LED that indicates how long charging is completed during charging in three stages. From the discrimination stage, the color is displayed in red, orange, and green. When the battery temperature is equal to or higher than the predetermined value, the battery is not charged and the apparatus stands by. At that time, the LED 92 is blinked at a 0.5 second cycle.
[0022]
Next, the operation of the charging device of the present invention will be described with reference to the circuit diagram of FIG. 1 and the flowcharts of FIGS.
When the power is turned on, the microcomputer 50 enters a connection standby state of the battery pack 2, and the connection of the battery pack 2 is determined based on signals from the battery voltage detecting means 40 and the battery temperature detecting means 8 (step 201).
[0023]
When the battery pack 2 is connected, a battery high temperature flag, a battery low temperature flag, which is a flag for determining a battery state of data stored in the RAM 53, an LED 92 red lighting flag for determining a battery discharge state, and a full charge determination by battery voltage detection are provided. ΔVFlag is initially set (step 202).
[0024]
Next, a voltage obtained by dividing the battery voltage V0 before the start of charging by the battery voltage detecting means 40 is input to the A / D converter 55, A / D converted and taken in (step 203). Also, the battery temperature T0 before the charging of the battery pack 2 is started by A / D conversion of the voltage input to the A / D converter 55 of the microcomputer 50 by the A / D converter 55 (Step 204). As for the output voltage of the battery temperature detecting means 8, a divided voltage determined by the voltage dividing ratio with the temperature detecting element 2b is input to the A / D converter 55 of the microcomputer 50, and the resistance value of the temperature detecting element 2b according to the battery temperature. Changes, the divided voltage changes according to the battery temperature.
[0025]
Next, the microcomputer 50 determines whether or not the battery temperature T0 before the start of charging is 55 ° C. or higher (step 205).
In step 205, when the battery temperature T0 before the start of charging is 55 ° C. or higher, the battery is not suitable for charging in consideration of the deterioration of the battery life due to heat generation during charging. The LED 92 is turned on and off at a cycle of 0.5 seconds via the output port 56 (step 206). After blinking the LED 92 at a cycle of 0.5 seconds, the process jumps to step 203, where the battery voltage V0 before the start of charging is again taken in step 203, and the battery temperature T0 before the start of charging is taken in step 204. This process is performed until the battery temperature T0 before the start of charging becomes 55 ° C. or lower in step 205. In addition, the battery voltage V0 before the start of charging and the battery temperature T0 before the start of charging, which are taken in the high-temperature standby state, are updated with the latest data until the battery temperature becomes 55 ° C. or lower, and immediately before the battery temperature becomes 55 ° C. Are used as V0 and T0 in the subsequent processing.
[0026]
In step 205, when the battery temperature T0 before the start of charging is 55 ° C. or lower, it is determined whether the battery temperature T0 before the start of charging is 50 ° C. or higher (step 207).
In step 207, if the battery temperature T0 before the start of charging is equal to or higher than 50 ° C., it is assumed that the battery pack 2 having a small remaining capacity is charged with a relatively small charging current that can cope with a high temperature state, and that charging takes a long time. Then, the battery high temperature flag of the RAM 53 is set to 1 (step 208), and then the LED 92 is lit red via the output port 56 (step 209), and the red lit flag of the LED 92 is set to 1 (step 210). If it is determined in step 207 that the battery temperature T0 before the start of charging is not higher than 50 ° C., it is determined whether the battery temperature T0 before the start of charging is lower than −10 ° C. (step 211). When the battery temperature T0 before the start of the charging is −10 ° C. or less, the battery 53 with a small remaining capacity is charged with a relatively small charging current that can cope with a low temperature state, and it is assumed that the charging time is long, and the RAM 53 is charged. Is set to 1 (step 212), the LED 92 is lit red via the output port 56 (step 209), and the red lit Flag of the LED 92 is set to 1 (step 210).
[0027]
When it is determined in step 211 that the battery temperature T0 before the start of charging is not lower than −10 ° C., the battery pack 2 having a small remaining capacity is charged with a relatively large charging current, and the charging time is medium. The LED 92 is lit orange via the output port 56 (step 213).
Next, charging is started with the charging current I0 for determining the number of cells (step 214), and the battery voltage Voff at the time when the time t1 has elapsed (step 215) is detected (step 216).
Next, the cell number n of the battery pack 2 is obtained by dividing the battery voltage Voff detected in step 216 by the reference voltage Va (step 217). In step 217, it is assumed that the number of battery cells in the battery pack 2 is a multiple of two.
[0028]
Next, a cell voltage of the battery voltage Voff of the battery pack 2 is calculated from the battery voltage Voff detected in step 216 and the number n of cells obtained in step 217. The cell voltage is obtained by dividing the battery voltage Voff by the number n of cells. First, it is determined whether the cell voltage Voff is equal to or higher than 1.45 V / cell (step 218). When the cell voltage is 1.45 V / cell or more, it is determined that the remaining capacity of the battery pack 2 is large, that is, it is determined that the time until the completion of charging is short, and the LED 92 is lit green via the output port 56 (step 219), the flag of the LED 92 in the RAM 53 is set to 0 (step 220), and the process jumps to step 224. If the cell voltage is not 1.45 V / cell or more in step 218, it is determined whether or not the cell voltage of the battery voltage V0 before the start of charging is 1.275 V / cell or more (step 221). Note that the cell voltage of the battery voltage V0 before the start of charging is obtained by dividing the battery voltage V0 by the number n of cells obtained in step 217. If the cell voltage is 1.275 V / cell or more, the battery pack 2 determines that the remaining capacity is medium, and turns on the LED 92 in orange via the output port 56 (step 222). It is set to 0 (step 223).
[0029]
In step 221, when the cell voltage is not more than 1.275 V / cell, it is determined that the remaining battery charge is small. In this case, since the LED 92 is already turned on in steps 209 and 213 assuming that the remaining battery capacity is small, the display of the LED 92 is not changed.
[0030]
Next, it is determined whether or not the battery high temperature flag of the RAM 53 is 1 (step 224). If the battery high temperature Flag is 1, the battery pack 2 is determined to be high temperature, starts charging with a charging current I3 that can be handled in the high temperature state of the battery pack 2 (step 225), and jumps to step 229.
[0031]
If the battery high temperature flag is not 1, it is determined whether or not the battery low temperature flag is 1 (step 226). If the battery low-temperature Flag is 1, the battery pack 2 is determined to be at a low temperature, and charging is started with a charging current I2 (I2 <I3) that can be handled in the low-temperature state of the battery pack 2 (step 227), and the flow proceeds to step 229 Jump.
[0032]
If the battery low temperature flag is not 1, the battery pack 2 is determined to be at room temperature, and charging is started with the charging current I1 (I2 <I3 <I1) (step 228).
[0033]
When the charging is controlled with the charging current I1 in step 228, the microcomputer 50 outputs the charging current setting reference voltage V1 corresponding to the charging current I1 via the output port 56 to the charging current setting means 7 in step 228. It can be set by selecting the terminals of the resistors 7c, 7d and 7e to be high level. The charging current setting reference voltage V1 is applied to the operational amplifier 62, and charging is started with the charging current I1. The charging current flowing through the battery pack 2 is detected by the current detection resistor 3 simultaneously with the start of charging, and the difference between the voltage corresponding to the detected charging current and the reference voltage V1 from the charging current setting means 7 corresponding to the output of the output port 56 is calculated. The charge current control unit 60 feeds back the PWM control IC 23 via the signal transmission unit 5. That is, when the charging current is large, the pulse width is narrowed, and when the charging current is large, the pulse width is widened. keep. That is, the charging current is controlled via the current detecting resistor 3, the charging current control means 60, the charging current signal transmitting means 5, the switching circuit 20, and the rectifying / smoothing circuit 30 so as to have a predetermined current value I1.
[0034]
The same applies to the control of the charging current I2. The charging current setting reference voltage V2 corresponding to the charging current I2 is set to a low level at the resistor 7c terminal of the charging current setting means 7 (high level at the remaining 7d and 7e terminals). The charging current setting reference voltage V2 is applied to the operational amplifier 62, and charging is started and controlled by the charging current I2.
[0035]
Similarly, the charging current I3 is obtained by selecting the charging current setting reference voltage V3 corresponding to the charging current I3 to a low level at the resistor 7d terminal of the charging current setting means 7 (high level at the remaining 7c and 7e terminals). The charging current setting reference voltage V3 is applied to the operational amplifier 62, and charging is started and controlled with the charging current I3.
[0036]
After the start of charging, the microcomputer 50 starts a timer from the start of charging using the timer 54 (step 229), and subsequently determines whether or not a predetermined time has elapsed from the start of charging (step 230). If the time has elapsed, it is determined whether or not the LED 92 red lighting Flag is 1 (step 231). If the LED 92 red lighting Flag is 1, it is determined that the charging time is long because the LED 92 is red lighted. Since a predetermined time has elapsed from the determined state, the LED 92 red lighting Flag is reset to 0 (step 232), and the LED 92 is lit orange via the output port 56 (step 233).
[0037]
If the predetermined time has not elapsed from the start of charging in step 230, the process jumps to step 234. Similarly, if the LED 92 red lighting flag is not 1 in step 231, the process jumps to step 234.
[0038]
Next, data processing necessary for the near-full charge determination of the battery pack 2 and the full-charge determination processing is performed. First, the latest battery temperature Tin of the battery pack 2 during charging is taken in by inputting the voltage from the battery temperature detecting means 8 to the A / D converter 55 and performing A / D conversion (step 234). Further, by comparing the sampled battery temperature data during charging, the minimum value Tmin of the battery temperature during charging is calculated and stored (step 235).
[0039]
Subsequently, the voltage obtained by dividing the latest battery voltage Vin of the battery pack 2 by the battery voltage detecting means 40 is input to the A / D converter 55, A / D converted and taken in (step 236).
Further, the latest battery temperature gradient dT / dt of a predetermined sampling width is calculated from the sampled and stored battery temperature data during charging (step 237), and the latest battery temperature gradient dT / dt and the previous data stored are stored. By comparing the battery temperature gradient dT / dt, the minimum value dT / dt (min) of the battery temperature gradient dT / dt having a predetermined sampling width is calculated and stored (step 238).
[0040]
Further, the microcomputer 50 calculates the latest battery voltage gradient ΔV of a predetermined sampling width from the battery voltage data during charging based on the output of the battery voltage detecting means 40 (step 239). By comparing the data, a minimum battery voltage gradient value ΔVmin of a predetermined sampling width is calculated and stored (step 240).
[0041]
Next, a process for determining whether the battery pack 2 is about to be fully charged is performed. First, based on the processing data of steps 234 to 240, the latest battery voltage gradient ΔV is compared with the minimum battery voltage gradient value ΔVmin sampled and calculated during charging, and the latest battery voltage gradient ΔV is calculated as the minimum battery voltage gradient ΔV. It is determined whether or not the value has increased by a predetermined value R1 or more from the value ΔVmin (step 241). If the value has increased by the predetermined value R1 or more, it is determined that the battery pack 2 is just before full charge, and ΔVFlag is set to 1. (Step 242) In this case, it is determined that the time until the charging is completed is short, and the LED 92 is lit in green (Step 243), and the step 246 jumps.
[0042]
In step 241, if the latest battery voltage gradient ΔV has not risen from the minimum battery voltage gradient ΔVmin by a predetermined value R1 or more, the latest battery temperature gradient dT / dt and the minimum battery temperature gradient dT / dt (min) is compared to determine whether the latest battery temperature gradient dT / dt has risen from the minimum battery temperature gradient dT / dt (min) by a predetermined value Q1 or more (step 244). If the battery pack 2 has risen by the predetermined value Q1 or more, it is determined that the battery pack 2 is about to be fully charged. In this case, it is determined that the time until the completion of charging is short, and the LED 92 is lit in green (step 243). Jump to step 246.
[0043]
In step 244, if the latest battery temperature gradient dT / dt has not risen from the minimum battery temperature gradient dT / dt (min) by a predetermined value Q1 or more, the latest battery temperature Tin continues. The battery temperature minimum value Tmin is compared and calculated, and it is determined whether or not the latest battery temperature Tin has risen from the battery temperature minimum value Tmin by a predetermined value P1 or more (step 245). It is determined that the battery pack 2 is just before full charge. In this case, it is determined that the time until the charging is completed is short, the LED 92 is lit in green (step 243), and the process jumps to step 246.
[0044]
Next, a full charge determination process of the battery pack 2 is performed. First, it is determined whether or not the latest battery temperature Tin has increased from the minimum battery temperature value Tmin by a predetermined value P2 (P2> P1) or more (step 246). Is determined to be full charge, the process proceeds to trickle charge, which is the same state as the charge stop state, and the LED 92 is turned off (step 250). As is well known, trickle charging is performed at a very small charge current, that is, a trickle charge current, every predetermined time, while the battery pack 2 is inserted into the charger, in order to prevent the capacity from being reduced by spontaneous discharge. The charging current setting reference voltage corresponding to the trickle charging current is set by selecting the ends of the resistors 7c, 7d and 7e of the charging current setting means 7 at a low level, and this charging current setting reference voltage is calculated. This is performed by applying the voltage to the amplifier 62. Next, it is determined whether or not the battery pack 2 has been removed (step 251). If the battery pack 2 has been removed, the process returns to step 201 and waits for the next charge.
[0045]
In step 246, when the latest battery temperature Tin has not risen from the minimum battery temperature value Tmin by a predetermined value P2 or more, the latest battery temperature gradient dT / dt and the minimum battery temperature gradient value dT / dt (min) continue. To determine whether or not the latest battery temperature gradient dT / dt has risen from the minimum battery temperature gradient dT / dt (min) by a predetermined value Q2 (Q2> Q1) or more (step). 247) If the battery pack 2 has risen by the predetermined value Q2 or more, it is determined that the battery pack 2 is fully charged, and the processes in steps 250 and 251 described above are performed.
In step 247, if the latest battery temperature gradient dT / dt has not risen from the minimum battery temperature gradient dT / dt (min) by a predetermined value Q2 or more, it is determined whether or not ΔVFlag is 1. (Step 248) When ΔVFlag is not 1, it is determined that the battery pack 2 is not fully charged, and the process returns to Step 230.
[0046]
In step 248, if ΔVFlag is 1, it is determined whether or not the latest battery voltage gradient ΔV is equal to or smaller than a predetermined value R2 (step 249). Is determined to be fully charged, and performs the processing of steps 250 and 251 described above.
If it is determined in step 249 that the latest battery voltage gradient ΔV is not less than the predetermined value R2, the process returns to step 230.
[0047]
In the above-described embodiment, the battery charging rate, the battery temperature gradient, and the battery voltage gradient are compared with the respective minimum value data during charging, and the determination method of the full charge determination and the full charge determination is determined from the result. However, the present invention is not limited to this, and the determination may be made, for example, by comparing the latest data simply calculated with a predetermined value corresponding to the latest data.
[0048]
In the above-described embodiment, the operation of the LED 91 of the display unit 90 is not described. However, for example, the LED 91 is lit in red before waiting for charging, and is lit in green when charging is completed (transition to trickle charging). It is possible.
[0049]
In this embodiment, the control is performed by trickle charge (small current) after full charge. However, regardless of the effect of this embodiment, for example, a power supply of a control system is supplied from another power supply, and after completion of charge, There is no problem if the charging current is completely stopped by stopping the main power supply.
[0050]
【The invention's effect】
As described above, according to the present invention, a function of displaying how long charging is completed at the start of charging can be realized by the charging device.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a circuit configuration according to an embodiment of the present invention.
FIG. 2 is a flowchart for explaining the operation of the embodiment of the present invention.
FIG. 3 is a flowchart for explaining the operation of the embodiment of the present invention.
[Explanation of symbols]
2 is a battery pack, 7 is charging current setting means, 8 is battery temperature detecting means, 40 is battery voltage detecting means, 50 is a microcomputer, 60 is charging current control means, and 90 is display means.

Claims (6)

複数の電池セルを直列に接続した電池パックの充電を制御すると共に充電状態を検出してその状態を表示する充電装置であって、
電池パックの電池電圧を検出する電池電圧検出手段と、電池パックに付加された温度検出素子から電池パックの電池温度を検出する電池温度検出手段と、前記電池温度検出手段又は前記電池電圧検出手段の出力に基づき電池パックの充電完了までの充電時間を数段階で判別する制御手段と、充電完了までの充電時間を数段階で表示する表示手段とを備え、前記制御手段は電池パックの充電完了までの充電時間を数段階に判別した結果を前記表示手段に出力することを特徴とする充電装置。
A charging device that controls charging of a battery pack in which a plurality of battery cells are connected in series, detects a charging state, and displays the state,
A battery voltage detecting means for detecting a battery voltage of the battery pack; a battery temperature detecting means for detecting a battery temperature of the battery pack from a temperature detecting element added to the battery pack; and a battery temperature detecting means or the battery voltage detecting means. Control means for determining the charging time until the completion of charging of the battery pack in several stages based on the output; anddisplay means for displaying the charging time until the completion of charging in several stages. A result of discriminating the charging time in several stages to the display means.
電池パックを充電する充電電流を設定する充電電流設定手段と、充電電流設定手段の出力に基づいて所定の充電電流に制御する充電電流制御手段と、前記制御手段は、前記電池温度検出手段の出力に基づいて充電開始前の電池温度に応じて充電電流を設定して充電電流設定手段に出力することを特徴とする請求項1記載の充電装置。A charging current setting means for setting a charging current for charging the battery pack; a charging current control means for controlling a predetermined charging current based on an output of the charging current setting means; and an output of the battery temperature detecting means. 2. The charging device according to claim 1, wherein a charging current is set according to the battery temperature before the start of charging based on the charging current and output to the charging current setting means. 前記制御手段は、電池パックの充電完了までの数段階の充電時間を、前記電池温度検出手段の出力に基づく充電開始前の電池温度に基づいて判別することを特徴とする請求項1又は請求項2記載の充電装置。2. The control unit according to claim 1, wherein the control unit determines the charging time in several stages until the battery pack is completely charged, based on a battery temperature before the start of charging based on an output of the battery temperature detecting unit. 2. The charging device according to 2. 前記制御手段は、電池パックの充電完了までの数段階の充電時間を、充電開始前の電池温度における電池セル当たりの電池電圧検出手段により出力される無負荷電圧に基づいて判別することを特徴とする請求項1又は請求項2記載の充電装置。The control means determines the charging time in several stages until the completion of charging of the battery pack based on the no-load voltage output by the battery voltage detection means per battery cell at the battery temperature before the start of charging. The charging device according to claim 1 or 2, wherein 前記制御手段は、電池パックの充電完了までの数段階の充電時間を、充電初期に所定時間所定電流で充電した後の電池温度における電池電圧に基づいて判別することを特徴とする請求項1又は請求項2記載の充電装置。2. The control device according to claim 1, wherein the control unit determines the charging time in several stages until the charging of the battery pack is completed, based on a battery voltage at a battery temperature after charging at a predetermined current for a predetermined time at an initial stage of charging. The charging device according to claim 2. 前記制御手段は、電池パックの電池セル数の判別を、充電初期に所定時間所定電流で充電した後の電池温度における電池電圧に基づいて判別することを特徴とする請求項4又は請求項5記載の充電装置。6. The battery control apparatus according to claim 4, wherein the control unit determines the number of battery cells in the battery pack based on a battery voltage at a battery temperature after charging at a predetermined current for a predetermined time at an initial stage of charging. Charging device.
JP2002340996A 2002-11-25 2002-11-25 Charger Expired - Fee Related JP4127031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340996A JP4127031B2 (en) 2002-11-25 2002-11-25 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340996A JP4127031B2 (en) 2002-11-25 2002-11-25 Charger

Publications (3)

Publication Number Publication Date
JP2004180369A true JP2004180369A (en) 2004-06-24
JP2004180369A5 JP2004180369A5 (en) 2006-01-12
JP4127031B2 JP4127031B2 (en) 2008-07-30

Family

ID=32703484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340996A Expired - Fee Related JP4127031B2 (en) 2002-11-25 2002-11-25 Charger

Country Status (1)

Country Link
JP (1) JP4127031B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236632A (en) * 2013-06-04 2014-12-15 三菱電機株式会社 Lighting device and illuminating device
CN115932614A (en) * 2022-12-13 2023-04-07 惠州恒立能源科技有限公司 Battery charge state detection method and system for charging and discharging of lithium battery energy storage system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236632A (en) * 2013-06-04 2014-12-15 三菱電機株式会社 Lighting device and illuminating device
CN115932614A (en) * 2022-12-13 2023-04-07 惠州恒立能源科技有限公司 Battery charge state detection method and system for charging and discharging of lithium battery energy storage system
CN115932614B (en) * 2022-12-13 2023-08-29 惠州恒立能源科技有限公司 Method and system for detecting battery charge state of charge and discharge of lithium battery energy storage system

Also Published As

Publication number Publication date
JP4127031B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
US6992464B2 (en) Battery charger capable of indicating time remaining to achieve full charge
JP4952971B2 (en) Battery life discriminator
US6075343A (en) Rechargeable battery pack module
RU2448402C2 (en) Device for charging batteries
CN101325272B (en) Balance charging method and apparatus thereof
US7439708B2 (en) Battery charger with control of two power supply circuits
JP2006254607A (en) Battery charging device
CN102428620A (en) Multi-use fast rate charging stand
CN101641850A (en) Ultra fast battery charger with battery sensing part
JP2004187366A (en) General-purpose charging arrangement
CN104838559A (en) Charging device
CN101272058A (en) Charging device
JP5418871B2 (en) Charger
CN102457094B (en) Charging system
JP2010016976A (en) Charging system
CN101647176A (en) Lithium iron phosphate ultra fast battery charger
JPH11341694A (en) Charging method of secondary battery
CN102611181B (en) Charging system
JP2006166641A (en) Battery charger
JP4127031B2 (en) Charger
JP4022872B2 (en) Battery charger
JP4045930B2 (en) Charging apparatus having a charging time display function
JP4046139B2 (en) Battery charger
JP2015029390A (en) Charger
JP2004180370A (en) Battery charger

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4127031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150523

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees