JP5418871B2 - Charger - Google Patents

Charger Download PDF

Info

Publication number
JP5418871B2
JP5418871B2 JP2007277053A JP2007277053A JP5418871B2 JP 5418871 B2 JP5418871 B2 JP 5418871B2 JP 2007277053 A JP2007277053 A JP 2007277053A JP 2007277053 A JP2007277053 A JP 2007277053A JP 5418871 B2 JP5418871 B2 JP 5418871B2
Authority
JP
Japan
Prior art keywords
charging
battery
voltage
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007277053A
Other languages
Japanese (ja)
Other versions
JP2009106118A (en
Inventor
卓央 荒舘
一彦 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2007277053A priority Critical patent/JP5418871B2/en
Publication of JP2009106118A publication Critical patent/JP2009106118A/en
Application granted granted Critical
Publication of JP5418871B2 publication Critical patent/JP5418871B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、リチウムイオン電池等の二次電池を定電流・定電圧充電制御方式で充電するための充電装置に関し、特に、充電すべき二次電池の内部抵抗等の種類に対応して充分な充電容量を確保することが可能な充電装置に関する。   The present invention relates to a charging device for charging a secondary battery such as a lithium ion battery by a constant current / constant voltage charging control system, and particularly, it is sufficient for the type of internal resistance of the secondary battery to be charged. The present invention relates to a charging device capable of securing a charging capacity.

一般に、繰り返し充電が可能な二次電池は、電動工具等の携帯用機器の電源として利用され、容量がなくなる毎に機器から取り外されて充電装置で充電した後に、再び携帯用機器に装着されるという作業を繰り返し、多数回の使用が可能になる。この種の二次電池としては、出力密度が高いリチウムイオン電池が広く使用されつつある。   In general, a rechargeable secondary battery is used as a power source for portable devices such as electric tools, and is removed from the device whenever it runs out of capacity and charged with a charging device, and then attached to the portable device again. Repeatedly, it can be used many times. As this type of secondary battery, a lithium ion battery having a high output density is being widely used.

リチウムイオン電池の充電には、充電を行う二次電池に対して定電流を通電した後に、定電圧を印加する定電流・定電圧充電制御方式が使用されている。この定電流・定電圧充電制御方式における満充電の判定は、下記特許文献1に示されるように、定電流充電の期間が終了した後に、定電圧充電制御に移行し、定電圧充電制御では、充電電流が定電流値から降下するので、充電電流が所定の終止電流値以下に達した時に、二次電池は満充電と判別する方法が一般に採用されている。   For charging a lithium ion battery, a constant current / constant voltage charging control system in which a constant voltage is applied after a constant current is applied to a secondary battery to be charged is used. In the constant current / constant voltage charging control method, as shown in Patent Document 1 below, after the constant current charging period is over, the constant voltage charging control is started. Since the charging current drops from the constant current value, a method is generally adopted in which the secondary battery is determined to be fully charged when the charging current reaches a predetermined end current value or less.

特開平2−192670号公報Japanese Patent Laid-Open No. 2-192670

しかしながら、定電流・定電圧充電制御方式において、二次電池は電池内部の材料、構造、製造方法等により異なる充電特性を示すため、終止電流を、単純に、電池種に従って一律にある所定値に設定して、その設定した所定値に充電電流が降下したか否かによって満充電を判別するだけでは、二次電池の種類による充電特性の違いから適切な充電が行われない場合がある。   However, in the constant current / constant voltage charging control system, the secondary battery exhibits different charging characteristics depending on the material, structure, manufacturing method, etc. of the battery, so the end current is simply set to a predetermined value according to the battery type. If only the full charge is determined by setting and determining whether or not the charging current has dropped to the set predetermined value, there is a case where appropriate charging is not performed due to the difference in charging characteristics depending on the type of the secondary battery.

例えば、リチウムイオン電池を定電流・定電圧充電制御にて充電を行う場合、内部抵抗が高い二次電池を充電する場合には、内部抵抗が比較的低いものに比べ、電池電圧の上昇率が高くなるため、早い時点で定電圧に達してしまう。この場合、定電流充電によって電池電圧が定電圧に達した後に、充電電流は刻々と降下して所定電流値(終止電流値)以下に減少した時に、満充電と判別して充電を終了する。一方、比較的内部抵抗が低い二次電池を充電する場合は、電池電圧の上昇率が低いため、比較的長い時間、定電流で充電が行われ、しかる後に、充電電流が降下して上記の場合と同一に設定された終止電流値までさらに減少すると、満充電と判別して充電を終了する。この結果、図4の充電特性図に示すように、内部抵抗小RSの電池における定電流Icでの充電時間tc2は、内部抵抗大RLの電池における定電流充電時間tc1に比較して長くなる。 For example, when charging a lithium ion battery with constant current / constant voltage charging control, when charging a secondary battery with a high internal resistance, the rate of increase in battery voltage is higher than that with a relatively low internal resistance. Because it becomes high, it reaches a constant voltage at an early point. In this case, after the battery voltage reaches a constant voltage by constant current charging, when the charging current drops every moment and decreases below a predetermined current value (end current value), it is determined that the battery is fully charged and the charging is terminated. On the other hand, when charging a secondary battery having a relatively low internal resistance, since the rate of increase in battery voltage is low, charging is performed at a constant current for a relatively long time. When it further decreases to the end current value set to be the same as the case, it is determined that the battery is fully charged and charging is terminated. As a result, as shown in the charging characteristic diagram of FIG . 4 , the charging time tc2 at the constant current Ic in the battery with the small internal resistance RS becomes longer than the constant current charging time tc1 in the battery with the large internal resistance RL.

このように、本発明者の検討によれば、二次電池の内部抵抗の違いに基づいて充電特性に差異が生ずるため、図4に示すように、定電流充電後の定電圧充電時における充電電流の終止電流を一律に所定値Irに設定して満充電の判別を行うと、内部抵抗の大きい二次電池を充電する場合は、充分な充電が行われず、充電容量の不足を来す場合があることが分かった。すなわち、従来の満充電の判別法では、二次電池の公称容量を充分確保できない場合があることが分かった。 As described above, according to the study of the present inventor, since the charging characteristics are different based on the difference in the internal resistance of the secondary battery, as shown in FIG. 4 , the charging at the constant voltage charging after the constant current charging is performed. If the end-of-current current is uniformly set to the predetermined value Ir and full charge is determined, when charging a secondary battery with a large internal resistance, sufficient charge is not performed and the charge capacity is insufficient. I found out that That is, it has been found that the conventional full charge discrimination method may not be able to secure a sufficient nominal capacity of the secondary battery.

従って、本発明の目的は、かかる問題を解決するために、リチウムイオン電池等の二次電池を定電流・定電圧充電制御方式で充電するための充電装置において、充電特性に応じた適切な満充電を行うことにある。   Accordingly, an object of the present invention is to solve such a problem by using a charging device for charging a secondary battery such as a lithium ion battery by a constant current / constant voltage charging control method. There is to charge.

上記課題を解決するために本発明に従って開示される発明のうち、代表的なものの特徴を説明すれば、次のとおりである。   Among the inventions disclosed in accordance with the present invention in order to solve the above problems, the characteristics of typical ones will be described as follows.

本発明は、二次電池を定電流・定電圧充電制御方式で充電する充電装置であって、前記定電流を通電するための充電電流制御回路と、前記定電圧を印加するための充電電圧制御回路と、前記充電電流制御回路および前記充電電圧制御回路を制御するための制御回路装置とを具備し、充電電流が所定の定電流値(Ic)より第1の終止電流値(Iq)に降下した際に満充電と判別して充電を終了させる充電装置において、前記制御回路装置は、充電開始から所定時間(td)を経過した時の電池電圧(Vx)が所定値以上のときと、充電開始から定電流充電を行い、該定電流充電を終了して定電圧充電に移行するまでの時間が所定時間(tc)以下のときは、満充電判定の終止電流を前記第1の、終止電流値(Iq)よりも小さい第2の終止電流値(Ip)に設定して満充電を検出することに一つの特徴を有する。 The present invention is a charging device for charging a secondary battery by a constant current / constant voltage charging control method, a charging current control circuit for energizing the constant current, and a charging voltage control for applying the constant voltage And a control circuit device for controlling the charge current control circuit and the charge voltage control circuit, wherein the charge current drops from a predetermined constant current value (Ic) to a first end current value (Iq) When the battery voltage (Vx) when a predetermined time (td) has elapsed since the start of charging is determined, the control circuit device performs charging when the battery voltage (Vx) exceeds a predetermined value. When the time from the start to the constant current charging and the end of the constant current charging to the transition to the constant voltage charging is equal to or shorter than a predetermined time (tc), the end current of the full charge determination is set as the first end current. The second terminal power smaller than the value (Iq) Has one of the features to detect the full charge is set to a value (Ip).

本発明の他の特徴は、前記充電装置は前記二次電池のセル数を判別するためのセル数判別回路を具備し、前記制御回路装置は、セル数が所定数(a)以上の場合は、第1の終止電流値を、前記第1の終止電流値Iqより大きい電流値Iq’(Iq’>Iq)に設定し、第2の終止電流値を、前記第2の終止電流値Ipより大きい電流値Ip’(Ip’>Ip)に設定することにある。
According to another feature of the present invention, the charging device includes a cell number determination circuit for determining the number of cells of the secondary battery, and the control circuit device is configured such that the number of cells is equal to or greater than a predetermined number (a). The first end current value is set to a current value Iq ′ (Iq ′> Iq) larger than the first end current value Iq, and the second end current value is set from the second end current value Ip. The purpose is to set a large current value Ip ′ (Ip ′> Ip) .

上記本発明の特徴によれば、二次電池を定電流・定電圧充電制御方式で充電する充電装置において、充電すべき二次電池の電池電圧および電池温度等に基づいて、満充電と判別するための終止電流値を変更するので、終止電流値を二次電池の特性に応じて変更することが可能となり、適切な電池容量を持つように充電することが可能となる。
本発明の上記および他の目的、ならびに上記および他の特徴および利点は、以下の本明細書の記述および添付図面からさらに明らかとなるであろう。
According to the above feature of the present invention, in a charging device for charging a secondary battery by a constant current / constant voltage charging control method, it is determined that the battery is fully charged based on the battery voltage, battery temperature, etc. of the secondary battery to be charged. Therefore, the end current value can be changed according to the characteristics of the secondary battery, and charging can be performed so as to have an appropriate battery capacity.
The above and other objects, and the above and other features and advantages of the present invention will become more apparent from the following description of the present specification and the accompanying drawings.

最初に、本発明の一実施形態に係る充電装置の回路構成について、図1に示した回路図を参照して説明する。   First, a circuit configuration of a charging device according to an embodiment of the present invention will be described with reference to the circuit diagram shown in FIG.

図1において、充電装置300によって充電すべき電池パック(二次電池)2は、単数または直列接続された複数の充電可能な、リチウムイオン電池セル2aと、電池パック2内の電池温度を検出するために、電池セル2aに接触または近接して配置されたサーミスタ等の温度検出センサとして機能する感温素子2bとから成る。さらに、電池パック2は電池セル2aのセル数を判別するための電池種判別手段2cを有する。この電池種判別手段2cは、本実施形態では、電池種によって異なる抵抗値を持つ抵抗2cから成るが、電池種を種別コードで表示して、コードを読み出すように構成しても良い。例えば、電池パック2は、電池セル2aが公称電圧3.6Vの電圧を有するリチウムイオン電池(セル)を4個直列接続したもの(4セル)から成り、その出力電圧は14.4Vである。   In FIG. 1, a battery pack (secondary battery) 2 to be charged by a charging device 300 detects a single or a plurality of rechargeable lithium ion battery cells 2 a and a battery temperature in the battery pack 2. Therefore, it comprises a temperature sensitive element 2b functioning as a temperature detection sensor such as a thermistor disposed in contact with or in proximity to the battery cell 2a. Furthermore, the battery pack 2 has a battery type discriminating means 2c for discriminating the number of battery cells 2a. In the present embodiment, the battery type discriminating means 2c is composed of the resistor 2c having a resistance value that differs depending on the battery type. However, the battery type may be displayed by a type code and the code may be read out. For example, the battery pack 2 includes a battery cell 2a in which four lithium ion batteries (cells) having a nominal voltage of 3.6V are connected in series (4 cells), and its output voltage is 14.4V.

電池パック2に充電電力を供給するための充電電源回路(第1の電源回路)200は、第1の整流平滑回路10と、スイッチング電源回路20と、第2の整流平滑回路30とから構成される。   A charging power supply circuit (first power supply circuit) 200 for supplying charging power to the battery pack 2 includes a first rectifying / smoothing circuit 10, a switching power supply circuit 20, and a second rectifying / smoothing circuit 30. The

第1の整流平滑回路10は全波整流回路11と平滑用コンデンサ12とから成り、商用交流電源等の交流電源1を全波整流する。スイッチング電源回路20は、高周波トランス21と、トランス21の1次コイルに直列接続されたMOSFET(スイッチング素子)22と、MOSFET22のゲート電極に印加する駆動パルス信号のパルス幅を変調させるためのPWM制御IC(スイッチング制御IC)23とを備える。PWM制御IC23は、ホトカプラから成る充電制御信号伝達手段4および充電帰還信号伝達手段5より入力される制御入力信号に基づいて、MOSFET22の充電動作の開始および停止を制御し、かつMOSFET22のゲート電極に供給する駆動パルス幅を変えることによって、MOSFET22のオン時間を制御し、整流平滑回路30の出力電圧と電池パック2の充電電流を調整する。第2の整流平滑回路30はトランス21の2次コイル側に接続されたダイオード31および32、チョークコイル33、ならびに平滑用コンデンサ34および放電用抵抗35から成る。   The first rectifying / smoothing circuit 10 includes a full-wave rectifying circuit 11 and a smoothing capacitor 12, and full-wave rectifies the AC power source 1 such as a commercial AC power source. The switching power supply circuit 20 includes a high-frequency transformer 21, a MOSFET (switching element) 22 connected in series to a primary coil of the transformer 21, and PWM control for modulating the pulse width of a drive pulse signal applied to the gate electrode of the MOSFET 22. IC (switching control IC) 23. The PWM control IC 23 controls the start and stop of the charging operation of the MOSFET 22 based on the control input signals input from the charge control signal transmission means 4 and the charge feedback signal transmission means 5 made of a photocoupler, and is applied to the gate electrode of the MOSFET 22. By changing the drive pulse width to be supplied, the ON time of the MOSFET 22 is controlled, and the output voltage of the rectifying and smoothing circuit 30 and the charging current of the battery pack 2 are adjusted. The second rectifying / smoothing circuit 30 includes diodes 31 and 32 connected to the secondary coil side of the transformer 21, a choke coil 33, a smoothing capacitor 34, and a discharging resistor 35.

充電電源回路200の出力側30aには充電するための電池パック2が接続される。一方、充電電源回路200には、充電電流制御回路60および定電圧制御回路80が電気的に接続される。   A battery pack 2 for charging is connected to the output side 30a of the charging power supply circuit 200. On the other hand, charging current control circuit 60 and constant voltage control circuit 80 are electrically connected to charging power supply circuit 200.

充電電流制御回路60は、オペアンプ(演算増幅器)61aおよび61bと、オペアンプ61aおよび61bの入力抵抗62および64と、オペアンプ61aおよび61bの帰還抵抗63および65と、充電電流設定回路を構成する抵抗66および抵抗67と、ダイオード69およびダイオード電流制限用抵抗68からなる出力回路とから構成されたオペアンプ多段接続回路を含む。設定充電電流に対応する設定電位を与える分圧抵抗66および67には、マイコン50等の駆動電源Vccを給電する、後述の定電圧電源100の出力電圧(Vcc)が印加される。充電電流制御回路60の入力側は電池パック2の充電電流を検出するための抵抗から成る電流検出手段3に接続される。また、その出力側は、上述したように、ホトカプラから成る充電帰還信号伝達手段5を介してPWM制御IC23を制御する。このような構成に基づき充電電流制御回路60は電池パック2に供給する充電電流を定電流値に制御する。なお、オペアンプ61aの出力はA/Dコンバータ(A/Dポート)52に入力され、その値はマイコン50において電流値として取込まれる。   The charging current control circuit 60 includes operational amplifiers (operational amplifiers) 61a and 61b, input resistors 62 and 64 of the operational amplifiers 61a and 61b, feedback resistors 63 and 65 of the operational amplifiers 61a and 61b, and a resistor 66 constituting a charging current setting circuit. And an operational amplifier multistage connection circuit comprising a resistor 67 and an output circuit comprising a diode 69 and a diode current limiting resistor 68. An output voltage (Vcc) of a constant voltage power supply 100 (described later) that supplies power to the drive power supply Vcc of the microcomputer 50 or the like is applied to the voltage dividing resistors 66 and 67 that provide a set potential corresponding to the set charge current. The input side of the charging current control circuit 60 is connected to the current detecting means 3 comprising a resistor for detecting the charging current of the battery pack 2. Further, as described above, the output side controls the PWM control IC 23 via the charging feedback signal transmission means 5 comprising a photocoupler. Based on such a configuration, the charging current control circuit 60 controls the charging current supplied to the battery pack 2 to a constant current value. The output of the operational amplifier 61a is input to an A / D converter (A / D port) 52, and the value is taken as a current value in the microcomputer 50.

定電圧制御回路80は、オペアンプ81と、反転入力端子(−)側の入力抵抗82と、帰還抵抗84と、非反転入力端子(+)側の入力抵抗83と、ダイオード89およびダイオード電流制限用抵抗85から成る出力回路とから構成される。定電圧制御回路80の入力側は、抵抗41および抵抗42から成る充電電源の出力電圧検出回路40に接続され、上述した充電電源回路200の出力側30aのフィードバック用検出電圧が入力される。その出力側は、上記充電電流制御回路60の出力側と同様に、ホトカプラから成る充電帰還信号伝達手段5を介してPWM制御IC23を制御する。従って、PWM制御IC23は、上記充電電流制御回路60または定電圧制御回路80の出力信号(フィードバック信号)により制御されることになる。   The constant voltage control circuit 80 includes an operational amplifier 81, an input resistor 82 on the inverting input terminal (−) side, a feedback resistor 84, an input resistor 83 on the non-inverting input terminal (+) side, a diode 89, and a diode current limiter. And an output circuit composed of a resistor 85. The input side of the constant voltage control circuit 80 is connected to the output voltage detection circuit 40 of the charging power source composed of the resistor 41 and the resistor 42, and the feedback detection voltage on the output side 30a of the charging power source circuit 200 described above is input. The output side controls the PWM control IC 23 via the charge feedback signal transmission means 5 formed of a photocoupler, similarly to the output side of the charging current control circuit 60. Therefore, the PWM control IC 23 is controlled by the output signal (feedback signal) of the charging current control circuit 60 or the constant voltage control circuit 80.

さらに、オペアンプ81の非反転入力端子には抵抗83を介して出力電圧設定回路80aが接続される。出力電圧設定回路80aは、抵抗86〜88から構成される。出力電圧設定回路80aからオペアンプ81の非反転入力(+)へ供給する設定電圧は、後述するマイコン50の出力ポート53bに抵抗88の一端を接続し、出力ポート53bからハイまたはロー信号を出力することにより抵抗88を抵抗87に並列接続するか否か制御する。これによってセル数の異なる充電電圧値を設定する。該設定電圧値に応じた定電圧制御回路80のフィードバック作用によって、第2の整流平滑回路30の出力電圧(出力端子30aの電圧)が所定の出力電圧値に制御される。   Further, an output voltage setting circuit 80 a is connected to the non-inverting input terminal of the operational amplifier 81 through a resistor 83. The output voltage setting circuit 80a includes resistors 86 to 88. The set voltage supplied from the output voltage setting circuit 80a to the non-inverting input (+) of the operational amplifier 81 connects one end of the resistor 88 to an output port 53b of the microcomputer 50, which will be described later, and outputs a high or low signal from the output port 53b. Thus, it is controlled whether or not the resistor 88 is connected to the resistor 87 in parallel. As a result, charging voltage values with different numbers of cells are set. The output voltage of the second rectifying and smoothing circuit 30 (voltage of the output terminal 30a) is controlled to a predetermined output voltage value by the feedback action of the constant voltage control circuit 80 according to the set voltage value.

従って、定電圧制御回路80は出力電圧設定回路80aと共に、充電電源回路200の出力電圧を設定するための出力電圧制御回路を構成する。   Therefore, the constant voltage control circuit 80 and the output voltage setting circuit 80a constitute an output voltage control circuit for setting the output voltage of the charging power supply circuit 200.

充電電源回路200、充電電流制御回路60、定電圧制御回路80、出力電圧設定回路80a、および電池温度検出回路70等の動作は、マイコン(制御回路装置)50によって制御される。
マイコン50は、制御プログラムを実行するCPU(中央処理装置)51の他に、CPU51の制御プログラム、電池パック2の電池種に関するデータ、後述する図3および図4に示すような基準となる二次電池について、満充電判定に必要な終止電流の設定値と、充電前の電池電圧(Vo)の基準値、充電前の電池温度(To)の基準値、定電流充電時間の判別値(tc)、検出時間の判別値(Vx)等との関係を格納するリード・オンリ・メモリ(ROM)55、CPU51の作業領域やデータの一時記憶領域などとして利用されるランダム・アクセス・メモリ(RAM)56、および充電時間等の計測に使用するタイマ57等を具備している。さらに、マイコン50は、上記した電池種判別抵抗2cおよび抵抗6、電池電圧検出回路7および電池温度検出回路70によって検出されたアナログ入力信号をデジタル出力信号に変換するための上記A/Dコンバータ52と、上記出力電圧設定回路80aに制御信号を出力するための出力ポート53bと、充電制御信号伝達手段4に充電の開始または停止を制御する制御信号を出力するための出力ポート53aと、電源投入時にリセット信号を入力するためのリセット入力ポート54とを具備する。
The operations of the charging power supply circuit 200, the charging current control circuit 60, the constant voltage control circuit 80, the output voltage setting circuit 80a, the battery temperature detection circuit 70, and the like are controlled by a microcomputer (control circuit device) 50.
In addition to a CPU (Central Processing Unit) 51 that executes a control program, the microcomputer 50 is a control program for the CPU 51, data related to the battery type of the battery pack 2, and a secondary that serves as a reference as shown in FIGS. For the battery, the set value of the end current required for full charge determination, the reference value of the battery voltage (Vo) before charging, the reference value of the battery temperature (To) before charging, the discriminating value of the constant current charging time (tc) , A read-only memory (ROM) 55 for storing a relationship with the detection time discrimination value (Vx) and the like, and a random access memory (RAM) 56 used as a work area of the CPU 51, a temporary data storage area, and the like. , And a timer 57 used for measuring charging time and the like. Further, the microcomputer 50 converts the analog input signal detected by the battery type discrimination resistor 2c and resistor 6, the battery voltage detection circuit 7 and the battery temperature detection circuit 70 into a digital output signal. An output port 53b for outputting a control signal to the output voltage setting circuit 80a, an output port 53a for outputting a control signal for controlling start or stop of charging to the charge control signal transmitting means 4, and power-on And a reset input port 54 for inputting a reset signal.

電池パック2の感温素子2bは、駆動電源電圧Vccが給電された直列抵抗71および72から成る電池温度検出回路70に接続され、抵抗値の温度変化を電圧に変換し、マイコン50のA/Dコンバータ52に入力される。   The temperature sensing element 2b of the battery pack 2 is connected to a battery temperature detection circuit 70 composed of series resistors 71 and 72 to which the drive power supply voltage Vcc is fed, and converts the temperature change of the resistance value into a voltage. Input to the D converter 52.

電池パック2の電池種判別抵抗2cは、上述したように電池パック2のセル数に対応する抵抗値を持つので、一端が駆動電源Vccに接続された抵抗6と共に分圧回路を構成し、その分圧電圧をマイコン50のA/Dコンバータ52に入力し、マイコン50によって電池パック2の電池の種類(セル数)を判別する。   Since the battery type discrimination resistor 2c of the battery pack 2 has a resistance value corresponding to the number of cells of the battery pack 2 as described above, a voltage dividing circuit is configured with the resistor 6 having one end connected to the drive power source Vcc. The divided voltage is input to the A / D converter 52 of the microcomputer 50, and the microcomputer 50 determines the type of battery (number of cells) of the battery pack 2.

電池パック2の電池電圧は、分圧用抵抗7aおよび7bから成る電池電圧検出回路7によって検出電圧として分圧され、マイコン50のA/Dコンバータ52に入力される。   The battery voltage of the battery pack 2 is divided as a detection voltage by the battery voltage detection circuit 7 including the voltage dividing resistors 7 a and 7 b and is input to the A / D converter 52 of the microcomputer 50.

電池パック2の充電を開始または停止させる制御信号は、マイコン50の制御プログラムに従って、その出力ポート53aより充電制御信号伝達手段4を介してPWM制御IC23の制御入力へ供給される。充電制御信号伝達手段4より充電開始の制御信号を受信すれば、PWM制御IC23によって、MOSFET22はスイッチング動作を開始し、逆に充電停止の制御信号を受信すれば、MOSFET22はスイッチング動作を停止する。   A control signal for starting or stopping charging of the battery pack 2 is supplied from the output port 53a to the control input of the PWM control IC 23 via the charge control signal transmission means 4 in accordance with the control program of the microcomputer 50. If a charge start control signal is received from the charge control signal transmission means 4, the PWM control IC 23 causes the MOSFET 22 to start a switching operation. Conversely, if a charge stop control signal is received, the MOSFET 22 stops the switching operation.

定電圧電源100は、マイコン50、充電電流制御回路60、充電電圧制御回路80(充電電圧設定回路80aを含む)、電池温度検出回路70、電池種判別の検出抵抗6等の駆動電源電圧Vccを供給するために設けられる。この電源100は、商用交流電源1を整流する第1の整流平滑回路10より分岐され、上記第1の電源回路である充電電源回路200とは別系統の第2の電源回路として設けられる。   The constant voltage power supply 100 includes a driving power supply voltage Vcc for the microcomputer 50, the charging current control circuit 60, the charging voltage control circuit 80 (including the charging voltage setting circuit 80a), the battery temperature detection circuit 70, the battery type discrimination detection resistor 6 and the like. Provided to supply. The power source 100 is branched from a first rectifying / smoothing circuit 10 that rectifies the commercial AC power source 1 and is provided as a second power source circuit that is different from the charging power source circuit 200 that is the first power source circuit.

定電圧電源100は、電源トランス102と、電源トランス102の1次コイル102aの閉回路に設けられたスイッチング電源用IC(PWM制御ICとFETを含む)101と、スイッチング電源用IC101によって発生したパルス電圧を電源トランス102の2次コイル102b側で整流する整流ダイオード103および平滑コンデンサ104と、フィードバック回路装置105、シャントレギュレータ106、出力電圧を設定する分圧抵抗107、108および平滑用コンデンサ109から成る定電圧化回路と、3端子レギュレータ110および平滑用コンデンサ111から成る定電圧Vccを出力する定電圧出力回路と、定電圧出力側に設けられたリセットIC112とから構成される。定電圧電源100のリセットIC112は、電源投入時などにマイコン50を初期状態にするために、マイコン50のリセット入力ポート54にリセット信号を出力する機能を有する。   The constant voltage power supply 100 includes a power supply transformer 102, a switching power supply IC (including a PWM control IC and FET) 101 provided in a closed circuit of the primary coil 102a of the power supply transformer 102, and a pulse generated by the switching power supply IC101. It comprises a rectifier diode 103 and a smoothing capacitor 104 for rectifying the voltage on the secondary coil 102b side of the power transformer 102, a feedback circuit device 105, a shunt regulator 106, voltage dividing resistors 107 and 108 for setting an output voltage, and a smoothing capacitor 109. The circuit includes a constant voltage circuit, a constant voltage output circuit that outputs a constant voltage Vcc composed of a three-terminal regulator 110 and a smoothing capacitor 111, and a reset IC 112 provided on the constant voltage output side. The reset IC 112 of the constant voltage power supply 100 has a function of outputting a reset signal to the reset input port 54 of the microcomputer 50 in order to put the microcomputer 50 in an initial state when the power is turned on.

直流電源回路90は、上記PWM制御IC23を駆動するための電源回路で、電源トランス102の第2の2次コイル92に接続された整流用ダイオード91および平滑用コンデンサ93から成り、この電源回路も上記充電電源回路200と別系統の電源回路として構成されている。   The DC power supply circuit 90 is a power supply circuit for driving the PWM control IC 23, and includes a rectifying diode 91 and a smoothing capacitor 93 connected to the second secondary coil 92 of the power transformer 102. The charging power supply circuit 200 is configured as a separate power supply circuit.

表示回路120は、電池パック2の充電状態を表示するために設けられ、例えば、赤色LED(R)および緑色LED(G)から成る表示回路121と、表示回路121の電流を制限する抵抗122、123とを具備する。表示回路120は、マイコン50の出力ポート53bの出力信号によって、赤色LED(R)の赤色または緑色LED(G)の緑色を点灯させ、さらに、両LED(R)、(G)を同時に発光させて橙色を点灯させる。本実施形態では、充電前には赤色を点灯させ、充電中は橙色を点灯させ、さらに充電終了時には緑色を点灯させるようにマイコン50によって制御する。   The display circuit 120 is provided to display the state of charge of the battery pack 2, and includes, for example, a display circuit 121 including a red LED (R) and a green LED (G), and a resistor 122 that limits the current of the display circuit 121. 123. The display circuit 120 turns on the red LED (R) or green LED (G) in response to an output signal from the output port 53b of the microcomputer 50, and further causes both LEDs (R) and (G) to emit light simultaneously. To light up orange. In this embodiment, the microcomputer 50 controls the red light before charging, the orange light during charging, and the green light when charging ends.

図4に示すように、従来の充電特性図によれば、一律に終止電流Irが設定され、電池の内部抵抗の大小(RLまたはRS)によって、定電流Icの充電時間または電池電圧の上昇率が大きく変化する。すなわち、内部抵抗が大きい電池(RL)は、小さい電池(RS)に比べて、定電流Icの充電時間tcが短くなる(tc1<tc2)。一方、所定時間td経過後の電池電圧(検出電圧)Vxは大きくなる。このとき、従来、二次電池の内部抵抗の大小(RLまたはRS)にかかわらず、満充電を判別する終止電流を一律Irに設定して判別していたので、内部抵抗の大きい二次電池は、充分な充電容量を確保できないという問題が生じた。 As shown in FIG. 4 , according to the conventional charging characteristic diagram, the termination current Ir is uniformly set, and the charging time of the constant current Ic or the rate of increase of the battery voltage is determined according to the internal resistance (RL or RS) of the battery. Changes significantly. That is, the battery (RL) having a large internal resistance has a shorter charging time tc of the constant current Ic than the battery (RS) having a small internal resistance (tc1 <tc2). On the other hand, the battery voltage (detection voltage) Vx after the predetermined time td has elapsed. At this time, conventionally, regardless of the internal resistance of the secondary battery (RL or RS), the end current for determining full charge is determined to be uniformly set to Ir. As a result, there was a problem that sufficient charge capacity could not be secured.

本発明では、このような充電特性に着眼し、図2の充電特性図に示すように、この定電流Icで充電が行われている時間tcによって内部抵抗の大小(RLまたはRS)に起因して決定される、例えば、定電流Icの充電時間tcの大小を検出し、この充電時間tcの大小に応じて満充電を判別するための複数の終止電流値(IpまたはIq)を設定する。 In the present invention, focusing on such charging characteristics, as shown in the charging characteristics diagram of FIG. 2, the time tc during which charging is performed with this constant current Ic is caused by the magnitude (RL or RS) of the internal resistance. For example, the magnitude of the charging time tc of the constant current Ic is detected, and a plurality of end current values (Ip or Iq) for determining full charge are set according to the magnitude of the charging time tc.

一方、図2の充電特性図に示すように、内部抵抗が大きい電池(RL)は、小さい電池(RS)に比べて、電池電圧の上昇率が大きくなるので、充電開始後における所定時間td経過後の電池電圧Vxを検出し、この電池電圧Vxの大小に対応して、電池種に従った複数の終止電流値を設定する。   On the other hand, as shown in the charging characteristic diagram of FIG. 2, the battery (RL) having a large internal resistance has a higher battery voltage increase rate than the battery (RS) having a small internal resistance. A later battery voltage Vx is detected, and a plurality of end current values according to the battery type are set according to the magnitude of the battery voltage Vx.

ここで、定電流充電時間tcの長短の程度、または電池電圧Vxの上昇の程度は、充電前の電池電圧Vo(残容量)および充電前の電池温度(To)によって異なっていることに着目して終止電流の大小を決定する。すなわち、図2に示すように、充電前の電池電圧Vo、すなわち電池の残容量が多い程、または電池温度Toが低いほど電池電圧Vxの上昇の程度は大きいので、本発明では、上記電池電圧Vxの値に応じて、満充電判別のための終止電流の設定値(IpまたはIq)を使い分ける。 Here, attention is paid to the fact that the length of the constant current charging time tc or the degree of increase of the battery voltage Vx differs depending on the battery voltage Vo (remaining capacity) before charging and the battery temperature (To) before charging. Determine the magnitude of the end current. That is, as shown in FIG. 2, the battery voltage Vo before charging, i.e. the larger the remaining battery capacity, or because the degree of rise of the battery temperature To lower the battery voltage Vx is large, in the present invention, the battery voltage Depending on the value of Vx, the set value (Ip or Iq) of the end current for full charge determination is properly used.

マイコン50のROM(記憶部)55には、基準となるリチウムイオン電池(2)について、充電前の電池電圧Vo(1セル当たりの電池電圧)の基準値(比較値)と、充電前の電池温度(To)の基準値と、定電流充電時間(tc)の判別値と、満充電判定の終止電流設定値(IpまたはIq)との相互関係を記憶させておく。二次電池を充電する際は、充電前の電池電圧Vo、充電前の電池温度To、時間td経過後の充電電圧Vx、定電流の充電時間tc等をマイコン50のCPU51、タイマ57で実測、記録し、基準値または判別値と比較演算する。 The a ROM (storage unit) 55 of the microcomputer 50, the lithium-ion battery as a reference (2), the reference value of the battery voltage Vo before charging (battery voltage per cell) and (comparison value), the pre-charging the battery A correlation between a reference value of temperature (To), a discriminating value of constant current charging time (tc), and an end current setting value (Ip or Iq) for full charging determination is stored . When charging the secondary battery, the battery voltage Vo before charging, the battery temperature To before charging, the charging voltage Vx after elapse of time td, the charging time tc of constant current, etc. are measured by the CPU 51 and timer 57 of the microcomputer 50, Record and compare with reference value or discriminant value.

次に、上記実施形態に係る充電装置300の動作について、図3に示す制御フローチャートを参照して説明する。
電源を投入すると、マイコン50は、出力ポート53aおよび53bをイニシャルセットする。次に、表示回路120の赤色点灯によって充電前であることを表示する。本実施例では、表示回路120の抵抗122に連なるマイコン50の出力ポート53bからハイ信号を出力し、表示回路120を赤点灯させることにより充電前であることを表示する(ステップ301)。
Next, the operation of the charging apparatus 300 according to the above embodiment will be described with reference to the control flowchart shown in FIG .
When the power is turned on, the microcomputer 50 initially sets the output ports 53a and 53b. Next, the display circuit 120 indicates that the battery is not charged by lighting in red. In this embodiment, a high signal is output from the output port 53b of the microcomputer 50 connected to the resistor 122 of the display circuit 120, and the display circuit 120 is lit in red to indicate that it is before charging (step 301).

次に、二次電池2が充電装置300の出力端子30aに接続されたか否かを判別する(ステップ302)。二次電池2の接続は、例えば、電池温度検出回路70を介して入力されるマイコン50のA/Dコンバータ52の値に変化があった場合に、二次電池2が接続されたものと検出すればよい。二次電池2が接続された場合は、マイコン50は、電池電圧検出回路7を介して入力されるA/Dコンバータ52の値より充電開始前の電池電圧Voを記憶するとともに、電池温度検出回路70を介して入力されるA/Dコンバータ52の値より充電開始前の電池温度Toの値を記憶する(ステップ303)。   Next, it is determined whether or not the secondary battery 2 is connected to the output terminal 30a of the charging device 300 (step 302). The connection of the secondary battery 2 is detected, for example, when the value of the A / D converter 52 of the microcomputer 50 input via the battery temperature detection circuit 70 is changed, to which the secondary battery 2 is connected. do it. When the secondary battery 2 is connected, the microcomputer 50 stores the battery voltage Vo before the start of charging from the value of the A / D converter 52 input via the battery voltage detection circuit 7, and the battery temperature detection circuit The value of battery temperature To before charging is stored from the value of A / D converter 52 input via 70 (step 303).

次に、抵抗から成るセル数判別手段6を介して入力されるマイコン50のA/Dコンバータ52の値よりセル数を判別し、判別したセル数に応じて充電電圧制御回路80の抵抗88に連なるマイコン50の出力ポート53bからハイまたはロー信号を出力させ、出力電圧を設定する(ステップ304)。例えば、ステップ304において3セルであると判別した場合、抵抗88に連なるマイコン50の出力ポートからロー信号を出力し、4セルであると判別した場合、ハイ信号を出力することによりそれぞれのセル数に応じた出力電圧を設定する。   Next, the number of cells is discriminated from the value of the A / D converter 52 of the microcomputer 50 inputted through the cell number discriminating means 6 composed of a resistor, and the resistance 88 of the charging voltage control circuit 80 is applied to the determined number of cells. A high or low signal is output from the output port 53b of the continuous microcomputer 50, and the output voltage is set (step 304). For example, if it is determined in step 304 that there are 3 cells, a low signal is output from the output port of the microcomputer 50 connected to the resistor 88, and if it is determined that there are 4 cells, each cell number is output by outputting a high signal. Set the output voltage according to.

次に、出力ポート53aよりハイ信号を出力し、その出力信号を、充電制御信号伝達手段4を介してPWM制御IC(スイッチング電源IC)23に、伝達することにより充電を開始する(ステップ305)。充電を開始したら、表示回路120より充電中であることを表示する。本実施形態では、表示回路120の抵抗123および抵抗122に連なる出力ポート53bよりハイ信号を出力して橙色を点灯させることにより充電中であることを表示する(ステップ306)。   Next, a high signal is output from the output port 53a, and charging is started by transmitting the output signal to the PWM control IC (switching power supply IC) 23 via the charging control signal transmitting means 4 (step 305). . When charging is started, the display circuit 120 displays that charging is in progress. In the present embodiment, a high signal is output from the output port 53b connected to the resistor 123 and the resistor 122 of the display circuit 120 to light up orange to indicate that charging is in progress (step 306).

次に、充電開始から所定時間を経過したか否かをチェックするために、所定時間の経過フラグが1であるか否かを判別する(ステップ307)。所定時間経過フラグが1でない場合は、充電開始から所定時間経過したか否かを判別する(ステップ308)。ステップ308において所定時間の経過を判別した場合(YESの場合)、ステップ309に進み、所定時間経過フラグを1とし、電池電圧が所定値以上か否かを判別する(ステップ310)。ステップ310では、所定時間tdの経過後に検出される電池電圧Vxの値から二次電池2の内部抵抗が大きいか否かを判別する。   Next, in order to check whether or not a predetermined time has elapsed since the start of charging, it is determined whether or not a predetermined time elapsed flag is 1 (step 307). If the predetermined time elapsed flag is not 1, it is determined whether or not a predetermined time has elapsed since the start of charging (step 308). When it is determined in step 308 that the predetermined time has elapsed (in the case of YES), the process proceeds to step 309, where the predetermined time elapsed flag is set to 1, and it is determined whether or not the battery voltage is equal to or higher than a predetermined value (step 310). In step 310, it is determined whether or not the internal resistance of the secondary battery 2 is large from the value of the battery voltage Vx detected after the lapse of the predetermined time td.

図2を参照して上述したように、内部抵抗が大きい電池は小さい電池に比べ、所定時間td経過後の電池電圧Vxの上昇が大きくなる。この電池電圧Vxの上昇の具合から内部抵抗の大小を判別する。また、電池電圧Vxの上昇の程度は、充電前の電池電圧(残容量)Voや電池温度Toによって異なる。充電前の電池電圧Voが高いほど、または電池温度Toが低いほど、電池電圧Vxの上昇の程度は大きくなる。結果的に、充電前の電池電圧の大きさとともに、電池電圧Vxの大きさに従って二次電池の内部抵抗を判定し、その内部抵抗の大きさに対応して満充電の終止電流の判別値を設定する。ステップ310では、電池電圧Vxが所定値以上であるか否かを判別し、内部抵抗Riが大きいと判別した場合、ステップ311で内部抵抗大フラグを1にする。なお、本実施形態では、電池電圧Vxの検出は、電池に充電負荷がかかった状態で行っているが、検出時には充電を一旦停止して無負荷の状態で電池電圧を検出してもよい。 As described above with reference to FIG. 2, the battery having a large internal resistance increases the battery voltage Vx after the predetermined time td has elapsed, compared to the battery having a small internal resistance. The magnitude of the internal resistance is determined from the degree of increase of the battery voltage Vx. Further, the degree of increase in the battery voltage Vx varies depending on the battery voltage (remaining capacity) Vo before charging and the battery temperature To. The higher the battery voltage Vo before charging or the lower the battery temperature To, the greater the increase in the battery voltage Vx. As a result, the internal resistance of the secondary battery is determined according to the magnitude of the battery voltage Vx as well as the magnitude of the battery voltage before charging, and the full charge end current discriminating value is determined according to the magnitude of the internal resistance. Set. In step 310, it is determined whether or not the battery voltage Vx is equal to or higher than a predetermined value. If it is determined that the internal resistance Ri is large, the large internal resistance flag is set to 1 in step 311. In this embodiment, the battery voltage Vx is detected in a state where a charging load is applied to the battery. However, at the time of detection, the charging may be temporarily stopped and the battery voltage may be detected in a no-load state.

ステップ308において充電開始から所定時間経過していない場合(Noの場合)、またはステップ307において所定時間経過フラグが1の場合(Yesの場合)、ステップ312に進み、定電圧の充電中であるか否かを、すなわち定電圧充電中フラグが1か否かを判別する(ステップ312)。   If the predetermined time has not elapsed since the start of charging in Step 308 (in the case of No), or if the predetermined time elapsed flag is 1 in Step 307 (in the case of Yes), the process proceeds to Step 312 and whether constant voltage is being charged. It is determined whether or not the constant voltage charging flag is 1 (step 312).

ステップ312において定電圧充電中フラグが1でない場合(Noの場合)、定電流充電中であるか否かを判別する(ステップ313)。定電流充電中であるか否かの判別は、充電電流が所定定電流値以下か否かによって判別すればよい。例えば、4Aが定電流の設定値であるとすれば、4Aから所定値だけ電流値が低下したか否かで判別すればよい。ステップ313において定電流充電中であると判別しなかった場合(Noの場合)、定電圧充電が行われていると判別して定電圧充電中フラグを1にする(ステップ314)。   If the constant voltage charging flag is not 1 in Step 312 (No), it is determined whether or not constant current charging is in progress (Step 313). Whether or not the constant current charging is being performed may be determined based on whether or not the charging current is equal to or less than a predetermined constant current value. For example, if 4A is a constant current setting value, it may be determined whether or not the current value has decreased by a predetermined value from 4A. If it is not determined in step 313 that constant current charging is being performed (in the case of No), it is determined that constant voltage charging is being performed, and the constant voltage charging flag is set to 1 (step 314).

次に、充電開始から現在までの経過時間、すなわち定電流充電が行われていた時間が所定時間tc以下か否かを判別する(ステップ315)。図2の特性図から明らかなように、内部抵抗Riが大きい電池(RL)は小さい電池(RS)に比べて、上昇した電池電圧Vxの高く、その電池電圧Vxが高い程、早くに電池電圧が定電圧Vcまで達して定電圧充電が行われる。すなわち、内部抵抗Riが小さい程、定電流充電が行われている時間tcが長く、内部抵抗Riが大きい程、定電流充電が行われている時間tcが短くなる。この定電流が行われている時間によって内部抵抗の高低を判別する。 Next, it is determined whether or not the elapsed time from the start of charging to the present, that is, the time during which constant current charging has been performed is equal to or shorter than a predetermined time tc (step 315). As is clear from the characteristic diagram of FIG. 2, the battery (RL) having a large internal resistance Ri has a higher battery voltage Vx than the battery (RS), and the higher the battery voltage Vx, the sooner the battery voltage. Reaches a constant voltage Vc, and constant voltage charging is performed. That is, the smaller the internal resistance Ri, the longer the time tc during which constant current charging is performed, and the larger the internal resistance Ri, the shorter the time tc during which constant current charging is performed. The level of the internal resistance is determined by the time during which this constant current is being performed.

この判別において、電池電圧の上昇(Vx)の程度は、充電前の電池電圧(残容量)Voおよび電池温度Toによって異なる。上述したように、電池の残容量(Vo)が多い程、また電池温度(To)が低い程、電池電圧の上昇の程度は大きい。   In this determination, the degree of increase (Vx) of the battery voltage varies depending on the battery voltage (remaining capacity) Vo before charging and the battery temperature To. As described above, the greater the remaining battery capacity (Vo) and the lower the battery temperature (To), the greater the degree of battery voltage increase.

ステップ315において、充電開始からの経過時間が所定値tc以下であると判別した場合、内部抵抗Riが高いと判別して、内部抵抗大フラグを1にする(ステップ316)。 If it is determined in step 315 that the elapsed time from the start of charging is equal to or less than the predetermined value tc, it is determined that the internal resistance Ri is high, and the large internal resistance flag is set to 1 (step 316).

次に、ステップ317に進み、内部抵抗大フラグが1か否かを判別する。内部抵抗が高い二次電池を内部抵抗が低い二次電池の場合と同じ充電制御で充電を行なうと容量不足を生ずる。すなわち、図4に示す従来の特性図から明らかにされるように、リチウムイオン電池である二次電池を定電流・定電圧充電において、内部抵抗の高いような電池(RL)を充電する場合、比較的内部抵抗の低い電池(RS)を充電する場合に比べ、電池電圧の上昇が高いため早い段階で定電圧Vcにまで達してしまう。定電圧Vcにまで達すると定電流Icの充電電流が降下し、その後ある所定電流値Irまで降下すると、満充電と判別し充電が終了する。一方、比較的内部抵抗が低い電池(RS)の場合、電圧の上昇が低いため、比較的長い時間、定電流で充電が行われる。充電特性にこのような差異があるため、所定電流値Irまで降下した場合に、一律、満充電であると判別してしまう従来の判別方式では、内部抵抗の高い電池(RL)を充電する場合に容量不足をきたす場合がある。本発明では、図2に示すように、適切な充電容量を得るため、内部抵抗が高い電池(RL)を充電する場合の満充電を判別するための終止電流の値Ipを、内部抵抗が低い電池(RS)の終止電流の値Iqより小さく設定する。 Next, the routine proceeds to step 317, where it is determined whether or not the large internal resistance flag is 1. If a secondary battery having a high internal resistance is charged with the same charge control as that of a secondary battery having a low internal resistance, a capacity shortage occurs. That is, as is clear from the conventional characteristic diagram shown in FIG. 4 , when charging a battery (RL) having a high internal resistance in constant current / constant voltage charging of a secondary battery that is a lithium ion battery, Compared to the case of charging a battery (RS) having a relatively low internal resistance, the battery voltage rises so high that it reaches the constant voltage Vc at an early stage. When the voltage reaches the constant voltage Vc, the charging current of the constant current Ic decreases. When the charging current subsequently decreases to a predetermined current value Ir, it is determined that the battery is fully charged and charging is terminated. On the other hand, in the case of a battery (RS) having a relatively low internal resistance, since the voltage rise is low, charging is performed with a constant current for a relatively long time. When there is such a difference in charging characteristics, when a conventional determination method in which it is determined that the battery is fully charged when it drops to a predetermined current value Ir, a battery (RL) having a high internal resistance is charged. May cause a shortage of capacity. In the present invention, as shown in FIG. 2, in order to obtain an appropriate charge capacity, the end current value Ip for determining full charge when charging a battery (RL) having a high internal resistance is set to a low internal resistance. It is set smaller than the value Iq of the end current of the battery (RS).

すなわち、ステップ317において内部抵抗大フラグが1であると判別した場合、1であると判別されなかった場合の終止電流Iqより小さい終止電流Ipとする(ステップ319およびステップ322)。   That is, if it is determined in step 317 that the large internal resistance flag is 1, the end current Ip is smaller than the end current Iq when it is not determined that it is 1 (step 319 and step 322).

一方、終止電流を小さくしてより深い充電を行うことは、浅い充電を行った場合よりも電池の寿命に影響を与えてしまう場合がある。また、二次電池のセル数が多セルの場合、個々のセルの電池寿命に影響を与えるような充電容量にアンバランスを起こし易くなるので、充電制御において極力、二次電池の寿命を伸ばすような制御が必要となる。そこで、本実施態様によれば、セル数が所定の個数a以上であるか否かを判断する(ステップ318およびステップ321)。セル数が個数a以上である場合(ステップ318およびステップ321のYesの場合)は、終止電流が、前記終止電流値Iqより浅い(大きい)終止電流値Iq’(Iq’>Iq)以下に降下したか(ステップ320)、または終止電流値Ipより浅い(大きい)終止電流値Ip’(Ip’>Ip)以下に降下したかを判定する(ステップ323)。そして終止電流値Iq’以下または終止電流値Ip’以下に達した時点で満充電と判別して充電を終了する。これによって、浅い充電を行い、寿命劣化を抑制する。 On the other hand, reducing the end current and performing deeper charging may affect the life of the battery more than when performing shallow charging. In addition, when the number of secondary battery cells is large, it is easy to cause an imbalance in the charge capacity that affects the battery life of each cell, so that the life of the secondary battery should be extended as much as possible in charge control. Control is required. Therefore, according to this embodiment, it is determined whether or not the number of cells is equal to or greater than the predetermined number a (step 318 and step 321). If the number of cells is equal to or greater than the number a (Yes in step 318 and step 321), the termination current is shallower than the end current value Iq (large) end current value Iq '(Iq'> Iq) below drop It is determined whether it has fallen below (step 320) or less than or equal to the termination current value Ip ′ (Ip ′> Ip) shallower (larger) than the termination current value Ip (step 323). When the current reaches the end current value Iq ′ or less or the end current value Ip ′ or less, it is determined that the battery is fully charged, and the charging is terminated. As a result, shallow charging is performed, and life deterioration is suppressed.

ステップ324で充電を終了したら、充電が終了したことを表示するために表示回路120の抵抗123に連なるマイコン50の出力ポート53bからハイ信号を出力することにより緑色を点灯させ、充電終了を表示する(ステップ325)。その後、二次電池2が充電装置300より抜かれたら(ステップ326)、ステップ301に戻る。   When charging is completed in step 324, a high signal is output from the output port 53b of the microcomputer 50 connected to the resistor 123 of the display circuit 120 in order to display the completion of charging, so that the green is turned on and the charging end is displayed. (Step 325). Thereafter, when the secondary battery 2 is removed from the charging device 300 (step 326), the process returns to step 301.

以上の実施態様の説明から明らかにされるように、本発明によれば、二次電池の充電特性を予め検出し、充電特性に応じて満充電を判別するための終止電流値を設定するので、電池内部の構成材料、構造、製造方法等による電池種に基づいて異なる充電特性に対応したより適切な充電を行うことができる。   As will be apparent from the above description of the embodiment, according to the present invention, the charging characteristics of the secondary battery are detected in advance, and the end current value for determining full charge is set according to the charging characteristics. More appropriate charging corresponding to different charging characteristics can be performed based on the battery type depending on the constituent material, structure, manufacturing method, and the like inside the battery.

なお、以上の実施形態では、定電流・定電圧制御によって充電される電池パックの電池種としてリチウムイオン電池を例に説明したが、本発明はその他の電池種の定電流・定電圧制御に適用してもよい。また、リチウムイオン電池では、定電流制御のみとして電池電圧が充電電圧に達した時に充電電流を小さく制御する充電方式にも適用可能であり、最初の充電電流での充電時間(tc)や充電を開始してから所定時間(td)経過後の電池電圧(Vx)に基づいて判定値を設定してもよい。   In the above embodiment, the lithium ion battery has been described as an example of the battery type of the battery pack charged by the constant current / constant voltage control. However, the present invention is applied to the constant current / constant voltage control of other battery types. May be. In addition, the lithium-ion battery can be applied to a charging method in which the charging current is controlled to be small when the battery voltage reaches the charging voltage as only constant current control. The charging time (tc) and charging at the initial charging current are The determination value may be set based on the battery voltage (Vx) after a predetermined time (td) has elapsed since the start.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲内で種々の変更が可能である。   Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. It is.

本発明の一実施形態に係る充電装置の回路図。The circuit diagram of the charging device which concerns on one Embodiment of this invention. 本発明の充電装置による定電流・定電圧充電による充電特性図。The charge characteristic figure by the constant current and constant voltage charge by the charging device of this invention. 本発明の実施形態に係る充電装置の制御フローチャート。The control flowchart of the charging device which concerns on embodiment of this invention. 従来の充電装置による定電流・定電圧充電による充電特性図。The charge characteristic figure by the constant current and constant voltage charge by the conventional charging device.

1:入力商用電源 2:電池パック 2a:電池セル 2b:感温素子
2c:電池種判別素子 3:電流検出抵抗
4:充電制御信号伝達手段(ホトカプラ) 5:充電帰還信号伝達手段(ホトカプラ)
6:検出用抵抗 7:電池電圧検出回路 7a、7b:分圧用抵抗
10:第1の整流平滑回路 11:全波整流回路 12:平滑用コンデンサ
20:スイッチング電源回路 21:高周波トランス 22:MOSFET
23:PWM制御IC 30:第2の整流平滑回路 30a:出力端子
31、32:整流用ダイオード 33:チョークコイル
34:平滑用コンデンサ 35:放電用抵抗 40:出力電圧検出回路
41、42:分圧用抵抗 50:マイコン(制御回路装置) 51:CPU
52:A/Dポート 53a、53b:出力ポート
54:リセット入力ポート 55:ROM 56:RAM 57:タイマ
60:充電電流制御回路 61a、61b:オペアンプ(演算増幅器)
62、64:オペアンプの入力用抵抗 63、65:オペアンプの帰還用抵抗
66、67:充電電流設定用分圧抵抗 68:抵抗 69:ダイオード
70:電池温度検出回路 71、72:分圧用抵抗 80:充電電圧制御回路
80a:充電電圧制御回路(出力電圧制御回路) 81:オペアンプ
82、83:オペアンプの入力用抵抗 84:オペアンプの帰還用抵抗
85:出力用抵抗 86〜88:検出用抵抗 89:ダイオード
90:直流電源回路 91:整流用ダイオード
92:電源トランスの2次コイル 93:平滑用コンデンサ
100:定電圧電源 101:スイッチング電源用IC
102:電源トランス 102a:電源トランスの1次コイル
102b:電源トランスの2次コイル 103:整流用ダイオード
104:平滑用コンデンサ 105:フィードバック回路装置
106:シャントレギュレータ 107、108:分圧用抵抗
109:平滑用コンデンサ 110:3端子レギュレータ
111:平滑用コンデンサ 112:リセットIC 120:表示回路
121:表示手段(LED) 122、123:電流制限用抵抗
200:充電電源回路 300:充電装置
1: Input commercial power source 2: Battery pack 2a: Battery cell 2b: Temperature sensitive element 2c: Battery type discriminating element 3: Current detection resistor 4: Charge control signal transmission means (photocoupler) 5: Charge feedback signal transmission means (photocoupler)
6: detection resistor 7: battery voltage detection circuit 7a, 7b: voltage dividing resistor 10: first rectifying / smoothing circuit 11: full-wave rectifying circuit 12: smoothing capacitor 20: switching power supply circuit 21: high-frequency transformer 22: MOSFET
23: PWM control IC 30: second rectifying / smoothing circuit 30a: output terminal 31, 32: rectifying diode 33: choke coil 34: smoothing capacitor 35: discharging resistor 40: output voltage detecting circuit 41, 42: for voltage division Resistance 50: Microcomputer (control circuit device) 51: CPU
52: A / D port 53a, 53b: output port 54: reset input port 55: ROM 56: RAM 57: timer 60: charge current control circuit 61a, 61b: operational amplifier (operational amplifier)
62, 64: operational amplifier input resistors 63, 65: operational amplifier feedback resistors 66, 67: charge current setting voltage dividing resistors 68: resistors 69: diodes 70: battery temperature detection circuits 71, 72: voltage dividing resistors 80: Charging voltage control circuit 80a: charging voltage control circuit (output voltage control circuit) 81: operational amplifier 82, 83: operational amplifier input resistance 84: operational amplifier feedback resistance 85: output resistance 86-88: detection resistance 89: diode 90: DC power supply circuit 91: Rectifier diode 92: Secondary coil of power transformer 93: Smoothing capacitor 100: Constant voltage power supply 101: IC for switching power supply
102: power transformer 102a: primary coil 102b of the power transformer 102: secondary coil of the power transformer 103: rectifier diode 104: smoothing capacitor 105: feedback circuit device 106: shunt regulator 107, 108: voltage dividing resistor 109: smoothing Capacitor 110: Three-terminal regulator 111: Smoothing capacitor 112: Reset IC 120: Display circuit 121: Display means (LED) 122, 123: Current limiting resistor 200: Charging power supply circuit 300: Charging device

Claims (2)

二次電池を定電流・定電圧充電制御方式で充電する充電装置であって、
前記定電流を通電するための充電電流制御回路と、
前記定電圧を印加するための充電電圧制御回路と、
前記充電電流制御回路および前記充電電圧制御回路を制御するための制御回路装置とを具備し、
充電電流が所定の定電流値(Ic)より第1の終止電流値(Iq)に降下した際に満充電と判別して充電を終了させる充電装置において、
前記制御回路装置は、充電開始から所定時間(td)を経過した時の電池電圧(Vx)が所定値以上のときと、
充電開始から定電流充電を行い、該定電流充電を終了して定電圧充電に移行するまでの時間が所定時間(tc)以下のときは、満充電判定の終止電流を前記第1の終止電流値(Iq)よりも小さい第2の終止電流値(Ip)に設定して満充電を検出することを特徴とする充電装置。
A charging device for charging a secondary battery with a constant current / constant voltage charging control method,
A charging current control circuit for energizing the constant current;
A charging voltage control circuit for applying the constant voltage;
A control circuit device for controlling the charging current control circuit and the charging voltage control circuit,
In the charging device that determines that the charging current is full when the charging current drops from the predetermined constant current value (Ic) to the first end current value (Iq), and ends the charging.
The control circuit device has a battery voltage (Vx) when a predetermined time (td) has elapsed from the start of charging when a predetermined value or more,
When the time from the start of charging to constant current charging until the end of the constant current charging and the transition to constant voltage charging is equal to or shorter than a predetermined time (tc), the end current of the full charge determination is set as the first end current. A full charge is detected by setting a second end current value (Ip) smaller than the value (Iq).
前記充電装置は、前記二次電池のセル数を判別するためのセル数判別回路を具備し、 前記制御回路装置は、セル数が所定数(a)以上の場合は、第1の終止電流値を、前記第1の終止電流値Iqより大きい電流値Iq’(Iq’>Iq)に設定し、第2の終止電流値を、前記第2の終止電流値Ipより大きい電流値Ip’(Ip’>Ip)に設定することを特徴とする請求項1に記載された充電装置。 The charging device includes a cell number determination circuit for determining the number of cells of the secondary battery, and the control circuit device has a first end current value when the number of cells is a predetermined number (a) or more. Is set to a current value Iq ′ (Iq ′> Iq) larger than the first end current value Iq, and the second end current value is set to a current value Ip ′ (Ip greater than the second end current value Ip). The charging device according to claim 1, wherein “> Ip) is set .
JP2007277053A 2007-10-25 2007-10-25 Charger Expired - Fee Related JP5418871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277053A JP5418871B2 (en) 2007-10-25 2007-10-25 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277053A JP5418871B2 (en) 2007-10-25 2007-10-25 Charger

Publications (2)

Publication Number Publication Date
JP2009106118A JP2009106118A (en) 2009-05-14
JP5418871B2 true JP5418871B2 (en) 2014-02-19

Family

ID=40707263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277053A Expired - Fee Related JP5418871B2 (en) 2007-10-25 2007-10-25 Charger

Country Status (1)

Country Link
JP (1) JP5418871B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532331B2 (en) * 2010-09-29 2014-06-25 日立工機株式会社 Charger
JP5396428B2 (en) * 2011-05-16 2014-01-22 三菱電機株式会社 In-vehicle battery full charge control device
JPWO2013008396A1 (en) * 2011-07-08 2015-02-23 Necエナジーデバイス株式会社 Battery pack, charging control system, and charging method
JP5655760B2 (en) * 2011-10-18 2015-01-21 トヨタ自動車株式会社 VEHICLE CHARGE CONTROL DEVICE AND VEHICLE CONTROL DEVICE
JP5811055B2 (en) * 2012-07-11 2015-11-11 株式会社デンソー Battery system control device
KR101568110B1 (en) 2012-07-12 2015-11-11 닛산 지도우샤 가부시키가이샤 Charging control method for secondary cell and charging control device for secondary cell
JP6633104B2 (en) * 2016-07-26 2020-01-22 オッポ広東移動通信有限公司 Adapter and charge control method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3268866B2 (en) * 1993-02-08 2002-03-25 三洋電機株式会社 Rechargeable battery charging method
JPH07105980A (en) * 1993-09-30 1995-04-21 Sanyo Electric Co Ltd Charging method for non-aqueous secondary battery
JP3174481B2 (en) * 1995-06-30 2001-06-11 松下電器産業株式会社 How to fast charge secondary batteries
JP3692617B2 (en) * 1996-05-27 2005-09-07 ソニー株式会社 Charging time calculation method and battery pack
JP3641885B2 (en) * 1996-11-12 2005-04-27 日産自動車株式会社 Battery charging method and charging device
JPH11162526A (en) * 1997-11-29 1999-06-18 Sanyo Electric Co Ltd Battery condition detecting device
JP5074648B2 (en) * 2000-05-23 2012-11-14 キヤノン株式会社 Secondary battery internal state detection method, detection device, device provided with the detection device, internal state detection program, and medium containing the program
JP3611104B2 (en) * 2000-08-09 2005-01-19 松下電器産業株式会社 Secondary battery charging control method
JP4215152B2 (en) * 2001-08-13 2009-01-28 日立マクセル株式会社 Battery capacity detection method
JP4661457B2 (en) * 2005-08-24 2011-03-30 日産自動車株式会社 Detection method of internal resistance of secondary battery
JP5029862B2 (en) * 2006-03-31 2012-09-19 日立工機株式会社 Charger

Also Published As

Publication number Publication date
JP2009106118A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP4952971B2 (en) Battery life discriminator
US7592780B2 (en) Battery charging apparatus
JP5418871B2 (en) Charger
RU2448402C2 (en) Device for charging batteries
JP5151506B2 (en) Battery pack, charging device and charging system for charging the same
JP2008193797A (en) Charging device
US20080238357A1 (en) Ultra fast battery charger with battery sensing
US5677615A (en) Service-life discriminating feature added to a battery charger
JP4406932B2 (en) Charger
JP2014523731A (en) Li-ion battery charging
JP4434108B2 (en) Charger
WO2014087675A2 (en) Charging device
CN101647177A (en) Fast battery charger device and method
JP2010016976A (en) Charging system
US6420853B1 (en) Battery charger capable of accurately determining fully charged condition regardless of batteries with different charge chracteristics
JPH11206034A (en) Battery charging method
JP2014117054A (en) Charger
JP2006166641A (en) Battery charger
JP2012055043A (en) Charging system, battery pack, and charger
JP2015029390A (en) Charger
JP3722091B2 (en) Battery assembly life discriminator for charger
JP4022872B2 (en) Battery charger
JP3336790B2 (en) Battery life judgment device for battery charger
JP4038820B2 (en) Charger
JP2010016975A (en) Charging system and battery pack used for the system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130825

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131107

R150 Certificate of patent or registration of utility model

Ref document number: 5418871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees