JP2004179347A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element Download PDF

Info

Publication number
JP2004179347A
JP2004179347A JP2002342998A JP2002342998A JP2004179347A JP 2004179347 A JP2004179347 A JP 2004179347A JP 2002342998 A JP2002342998 A JP 2002342998A JP 2002342998 A JP2002342998 A JP 2002342998A JP 2004179347 A JP2004179347 A JP 2004179347A
Authority
JP
Japan
Prior art keywords
layer
electrode
type semiconductor
semiconductor layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002342998A
Other languages
Japanese (ja)
Inventor
Nobuyuki Takakura
信之 高倉
Masaharu Yasuda
正治 安田
Kazunari Kuzuhara
一功 葛原
Takanori Akeda
孝典 明田
Masaru Sugimoto
勝 杉本
Shigenari Takami
茂成 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002342998A priority Critical patent/JP2004179347A/en
Publication of JP2004179347A publication Critical patent/JP2004179347A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting element that can be manufactured comparatively easily while ohmic contact property and high reflectivity of an electrode are kept and wherein light emitting efficiency is improved. <P>SOLUTION: The semiconductor light emitting element is provided with an n-type semiconductor layer 2, a light emitting layer 3, and a p-type semiconductor layer 4 that are stacked in sequence on one surface of a supporting substrate 1. The p-type semiconductor layer 4 is provided with a p electrode 6, and then the n-type semiconductor layer 2 wherein a part of the n-type semiconductor layer 2, the light emitting layer 3 and the p-type semiconductor layer 4 is removed and they are exposed, is provided with an n electrode 5. Furthermore, the p electrode 6 and the n electrode 5 are formed by stacking transparent layers 51 and 61 made of indium oxide tin that is formed being in contact with almost entire surface of the p-type semiconductor layer 4 and the n-type semiconductor layer 2, and reflection layers 52 and 62 that are formed thereon and are at least equivalent in size to the transparent layers 51 and 61, and are made of at least one material among silver, aluminum and rhodium. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体発光素子に関し、特に発光半導体層に電圧を印加するための電極をそれぞれ支持基板の同一面側に形成した構造を有する半導体発光素子に関するものである。
【0002】
【従来の技術】
従来の半導体発光素子として、例えば、特開2000−294837号公報(特許文献1)に提案されているものがあり、これを図2に示す。図2は側面断面図である。
【0003】
このものは、サファイアからなる支持基板101に窒化ガリウム(GaN)からなるバッファ層102を積層し、次いで、n型の導電型を有するGaN層103と、ノンドープの窒化インジウムガリウム(InGaN)からなる発光層104と、p型の導電型を有する窒化アルミニウムガリウム(AlGaN)層105と、p型の導電型を有するGaN層106とを順に積層した構造をなしている。
【0004】
このうち、n型の導電型を有するGaN層103は、ノンドープの窒化インジウムガリウム(InGaN)からなる発光層104とp型の導電型を有する窒化アルミニウムガリウム(AlGaN)層105とp型の導電型を有するGaN層106の一部をエッチングにより除去してその表面を露出させている。そして、このn型の導電型を有するGaN層103の露出部103aにはn電極107が形成されている。このn電極107は、チタン(Ti)及びアルミニウム(Al)を順次蒸着することにより積層されており、その膜厚は、Tiが250Å、Alが10000Åである。
【0005】
また、p型の導電型を有するGaN層106のほぼ全面にはp電極108が形成されている。このp電極108は、ニッケル(Ni)及び銀(Ag)を順次蒸着することにより積層されている。さらに、Ni及びAgを蒸着した後に半導体発光素子全体をアニールすることにより、p電極108を合金化してオーミック接触を実現している。また、p電極108のNi層の膜厚を10Å、Ag層の膜厚を2500Åとすることにより、Ni層での光の反射成分が占める割合を低減すると同時にAg層での光の反射成分が占める割合を向上させて光を効率よく反射するようにしている。
【0006】
そして、このn電極107及びp電極108には、例えば、半田からなる導電性材料109が設けられており、基体110上に形成された外部電極端子111と導電性材料109を介してフリップチップ実装されている。
【0007】
したがって、この半導体発光素子によれば、基体110側から発光する光を取り出すことができ、支持基板101を基体110上に載置してn電極107及びp電極108形成面側から光を取り出す構造と比較した場合にp電極108で反射される光量が増加するので、光の取り出し効率を向上することができるのである。
【0008】
【特許文献1】
特開2000−294837号公報
【0009】
【発明が解決しようとする課題】
しかしながら、このような半導体発光素子において、上述したようにNi層の膜厚は10Åであり、ピーク波長が470nmの光に対する反射率は70.9%である。また、Ni層の厚みが100Åを越えるものでは実用的でないともされている。つまり、Ni層での光の反射及び吸収を低減してAg層での反射の割合を向上させるためにはNi層を薄く形成する必要があり、100Å付近では反射率が30%程度まで減少してしまう。
【0010】
さらに、10Å程度の膜厚のNi層を精度よく形成することは比較的困難であり、また、膜厚の少しのばらつきが反射率の低下に反映されてしまい、反射率を高くして発光効率を向上させた半導体発光素子を比較的容易に製造することは困難である。
【0011】
本発明は、上記の点に鑑みてなしたものであり、その目的とするところは、電極のオーミック接触性と高反射率を維持しながら比較的容易に製造できる発光効率の向上した半導体発光素子を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明の半導体発光素子は、支持基板と、支持基板の一方の面にn型の半導体層と、発光層と、p型の半導体層とを順次積層して備え、p型の半導体層にp電極を設けるとともに、n型の半導体層と発光層とp型の半導体層の一部を除去して露出させたn型の半導体層にn電極を設けた半導体発光素子であって、前記p電極及び前記n電極は、それぞれ前記p型の半導体層及び前記n型の半導体層のほぼ全面に接触して形成された酸化インジウム錫からなる透明層と、透明層上に形成されてその大きさを少なくとも透明層と同等とし、銀、アルミニウム、ロジウムのうち少なくとも一つの材料からなる反射層とを積層してなることを特徴としている。
【0013】
この構成において酸化インジウム錫は膜厚を厚くしても透光性が高く、例えば、Ni層の厚みの100倍程度の厚みを有しても90%程度の透光性がある。したがって、従来技術と同様に反射層に銀を使用し、透明層を100倍程度の膜厚としてもn電極及びp電極としては73%程度の反射率を有するので、高精度な膜厚の制御を必要とせずに比較的容易に透過率のよい透明層を形成することができ、また、膜厚のばらつきによる透光性の低下率を低減できるので、結果的に反射率の低下を抑制して発光効率を向上させることができる。
【0014】
【発明の実施の形態】
第1の実施形態に係る半導体発光素子を図1に基づいて説明する。図1は半導体発光素子の中央付近を切断した斜視図である。
【0015】
この半導体発光素子は、支持基板1と、n型の半導体層2と、発光層3と、p型の半導体層4と、n電極5と、p電極6とを主要構成要素としている。
【0016】
支持基板1は、半導体発光素子のベースとなるものであり、例えば、サファイアのような透光性及び絶縁性を有する基板にて形成されている。また、この支持基板1の一方の面に、n型の半導体層2と、発光層3と、p型の半導体層4とが順次積層されている。
【0017】
n型の半導体層2は、支持基板1上に積層してn型の導電型を示すように形成している。この第1の導電型を有する半導体層2は、詳しくは、バッファ層21とn型コンタクト層22とn型クラッド層23の3層にて構成している。このうち、バッファ層21は、例えば、GaNにて形成しており、支持基板1とn型コンタクト層22との格子不整合を緩和するために設けている。また、n型クラッド層23は、例えば、窒化アルミニウムガリウム(AlGaN)のような後述する発光層3よりバンドギャップエネルギーが大きい組成のもので形成している。そして、n型コンタクト層22は、例えば、GaNにて形成しており、後述するn電極5を直接n型クラッド層23に設けたものと比較して両者の接触界面における接触障壁(ショットキバリア)を小さくし、オーミック接触を実現している。さらに、このn型コンタクト層22の一部は、その表層にあるn型クラッド層23と発光層3と後述するp型の半導体層4を除去することにより露出している。
【0018】
発光層3は、例えば、窒化インジウムガリウム(InGaN)からなる半導体で形成され、単一量子井戸又は多重量子井戸構造をなしている。また、この発光層3は、不純物を注入せずにニュートラルなInGaN層としている。これにより、色純度のよい発光を得ている。また、このもののInとGaの組成比を調整したり、n型あるいはp型の導電型にすることによりバンドギャップを変化させて発光波長を変化させることができる。なお、n型の導電型にするにはシリコン(Si)やゲルマニウム(Ge)等の不純物を適宜注入すればよく、逆に、p型の導電型にするにはマグネシウム(Mg)や亜鉛(Zn)等の不純物を注入すればよい。
【0019】
p型の半導体層4は、例えば、n型の半導体層2と同様にp型コンタクト層41とp型クラッド層42にて構成している。p型コンタクト層41は、例えば、GaNにて形成しており、後述するp電極6を直接p型クラッド層42に設けたものと比較すると、両者の接触界面における接触障壁(ショットキバリア)を小さくし、オーミック接触を実現している。また、p型クラッド層42は、例えば、AlGaNのような発光層3よりバンドギャップエネルギーが大きい組成のもので形成している。
【0020】
n電極5は、n型コンタクト層22の露出した表面の略全面を覆うように設けている。このものは、酸化インジウム錫(ITO)からなる透明層51と、Agからなる反射層52とを積層した2層構造としており、nコンタクト層22、透明層51、反射層52の順に積層している。また、このものは、積層後にアニールすることにより合金化しており、n型コンタクト層22とオーミック接触を実現している。また、本実施形態では、透明層51の膜厚を1000Å程度としており、この膜厚においても透明層51の材料であるITOは光の透過性がよく、光の透過率は90%程度を示す。また、反射層52の膜厚は10000Å程度としている。また、n電極5の高さは、その上面(図1の上方向)が後述するp電極6の上面よりも支持基板1側にあるように、すなわち、本実施形態の半導体発光素子をリードフレーム(図示せず)に水平にフリップチップ実装したとき、n電極5とリードフレームとの距離がp電極6とリードフレームとの距離より大きくなるように形成している。
【0021】
p電極6は、p型コンタクト層41の表面の略全面を覆うように設けている。このものは、n電極5と同じく酸化インジウム錫(ITO)からなる透明層61と、Agからなる反射層62とから構成されており、p型コンタクト層41、透明層61、反射層62の順に積層している。また、このものは、積層後にアニールすることにより合金化しており、p型コンタクト層41とオーミック接触を実現している。また、本実施形態では、透明層61の膜厚を1000Å程度としており、この膜厚においても透明層61の材料であるITOは光の透過性がよく、光の透過率は90%程度を示す。また、反射層62の膜厚は10000Å程度としている。
【0022】
以上説明した第1の実施形態の半導体発光素子によると、n電極5及びp電極6を透明層51,61と反射層52,62の2層で構成し、透明層51,61を1000Åの膜厚を有するITOで形成し、反射層52,62を10000Åの膜厚を有するAgで形成することにより、オーミック接触を実現するとともに透明層51,61と反射層52,62との境界面で反射される光の反射率は73%程度となるので、薄膜にするための高精度な膜厚の制御を必要とせずに比較的容易に透過率のよい透明層を形成することができ、また、膜厚のばらつきによる透光性の低下率を低減して反射率の低下を抑制し、発光効率を向上させることができる。
【0023】
なお、透明層51,61と反射層52,62の膜厚は上記膜厚に限定されるものではない。
【0024】
【発明の効果】
請求項1に係る発明の半導体発光素子は、支持基板と、支持基板の一方の面にn型の半導体層と、発光層と、p型の半導体層とを順次積層して備え、p型の半導体層にp電極を設けるとともに、n型の半導体層と発光層とp型の半導体層の一部を除去して露出させたn型の半導体層にn電極を設けた半導体発光素子であって、前記p電極及び前記n電極は、それぞれ前記p型の半導体層及び前記n型の半導体層のほぼ全面に接触して形成された酸化インジウム錫からなる透明層と、透明層上に形成されてその大きさを少なくとも透明層と同等とし、銀、アルミニウム、ロジウムのうち少なくとも一つの材料からなる反射層とを積層してなることにより、オーミック接触性及び透過率のよい透明層を高精度な膜厚の制御を必要とせずに比較的容易に形成することができるので、膜厚のばらつきによる透光性の低下率を低減できる。また、透明層上に反射率の高い材料を用いているので、反射率の低下を抑制して半導体発光素子の発光効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る半導体発光素子の中央付近を切断した斜視図である。
【図2】従来の半導体発光素子の側面断面図である。
【符号の説明】
1 支持基板
2 n型の半導体層
3 発光層
4 p型の半導体層
5 n電極
51 透明層(n電極側)
52 反射層(n電極側)
6 p電極
61 透明層(p電極側)
62 反射層(p電極側)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device having a structure in which electrodes for applying a voltage to a light emitting semiconductor layer are formed on the same surface side of a support substrate.
[0002]
[Prior art]
2. Description of the Related Art As a conventional semiconductor light emitting element, for example, there is one proposed in Japanese Patent Application Laid-Open No. 2000-294837 (Patent Document 1), which is shown in FIG. FIG. 2 is a side sectional view.
[0003]
In this device, a buffer layer 102 made of gallium nitride (GaN) is laminated on a support substrate 101 made of sapphire, and then a GaN layer 103 having an n-type conductivity and light emission made of undoped indium gallium nitride (InGaN) are used. It has a structure in which a layer 104, an aluminum gallium nitride (AlGaN) layer 105 having a p-type conductivity, and a GaN layer 106 having a p-type conductivity are sequentially stacked.
[0004]
Among them, the GaN layer 103 having the n-type conductivity is composed of the light emitting layer 104 made of non-doped indium gallium nitride (InGaN), the aluminum gallium nitride (AlGaN) layer 105 having the p-type conductivity, and the p-type conductivity. Is removed by etching to expose the surface. An n-electrode 107 is formed on the exposed portion 103a of the GaN layer 103 having the n-type conductivity. The n-electrode 107 is laminated by sequentially depositing titanium (Ti) and aluminum (Al), and has a thickness of 250 ° for Ti and 10,000 ° for Al.
[0005]
A p-electrode 108 is formed on almost the entire surface of the GaN layer 106 having a p-type conductivity. The p-electrode 108 is laminated by sequentially depositing nickel (Ni) and silver (Ag). Furthermore, by annealing Ni and Ag after vapor deposition of the entire semiconductor light emitting element, the p electrode 108 is alloyed to realize ohmic contact. Further, by setting the thickness of the Ni layer of the p-electrode 108 to 10 ° and the thickness of the Ag layer to 2500 °, the ratio of the light reflection component in the Ni layer is reduced, and at the same time, the reflection component of the light in the Ag layer is reduced. The proportion of the light is increased to reflect light efficiently.
[0006]
The n-electrode 107 and the p-electrode 108 are provided with a conductive material 109 made of, for example, solder. The external electrode terminal 111 formed on the base 110 and the conductive material 109 are used for flip-chip mounting. Have been.
[0007]
Therefore, according to this semiconductor light emitting device, light emitted from the base 110 can be extracted, and the support substrate 101 is placed on the base 110 and the light is extracted from the surface on which the n-electrode 107 and the p-electrode 108 are formed. Since the amount of light reflected by the p-electrode 108 increases as compared with the case of, the light extraction efficiency can be improved.
[0008]
[Patent Document 1]
JP 2000-294837 A
[Problems to be solved by the invention]
However, in such a semiconductor light emitting device, as described above, the thickness of the Ni layer is 10 °, and the reflectance for light having a peak wavelength of 470 nm is 70.9%. It is also said that if the thickness of the Ni layer exceeds 100 °, it is not practical. That is, in order to reduce the reflection and absorption of light in the Ni layer and improve the ratio of reflection in the Ag layer, it is necessary to form the Ni layer thinly. At around 100 °, the reflectance decreases to about 30%. Would.
[0010]
Furthermore, it is relatively difficult to accurately form a Ni layer having a thickness of about 10 °, and a slight variation in the film thickness is reflected in a decrease in reflectivity. It is difficult to relatively easily manufacture a semiconductor light emitting device with improved characteristics.
[0011]
The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor light emitting device with improved luminous efficiency which can be relatively easily manufactured while maintaining ohmic contact and high reflectivity of an electrode. Is to provide.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a semiconductor light emitting device according to the first aspect of the present invention includes a support substrate, an n-type semiconductor layer on one surface of the support substrate, a light-emitting layer, and a p-type semiconductor layer. A p-electrode is provided on the p-type semiconductor layer, and an n-electrode is provided on the n-type semiconductor layer which is exposed by removing a part of the n-type semiconductor layer, the light emitting layer and the p-type semiconductor layer. A semiconductor light emitting device provided, wherein the p-electrode and the n-electrode are each formed of a transparent layer made of indium tin oxide and in contact with substantially the entire surface of the p-type semiconductor layer and the n-type semiconductor layer. It is formed on a transparent layer and has a size at least equal to that of the transparent layer, and is formed by laminating a reflective layer made of at least one material of silver, aluminum and rhodium.
[0013]
In this configuration, indium tin oxide has a high light-transmitting property even when the film thickness is large, and for example, has a light-transmitting property of about 90% even if the thickness is about 100 times the thickness of the Ni layer. Therefore, as in the prior art, silver is used for the reflective layer, and even if the thickness of the transparent layer is about 100 times, the reflectivity of the n-electrode and the p-electrode is about 73%. A transparent layer having a good transmittance can be formed relatively easily without the need for, and a reduction rate of the light transmittance due to a variation in film thickness can be reduced. As a result, a reduction in the reflectance is suppressed. As a result, the luminous efficiency can be improved.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
A semiconductor light emitting device according to a first embodiment will be described with reference to FIG. FIG. 1 is a perspective view in which the vicinity of the center of the semiconductor light emitting device is cut.
[0015]
This semiconductor light-emitting element has a supporting substrate 1, an n-type semiconductor layer 2, a light-emitting layer 3, a p-type semiconductor layer 4, an n-electrode 5, and a p-electrode 6 as main components.
[0016]
The support substrate 1 serves as a base of the semiconductor light emitting element, and is formed of, for example, a translucent and insulating substrate such as sapphire. On one surface of the support substrate 1, an n-type semiconductor layer 2, a light-emitting layer 3, and a p-type semiconductor layer 4 are sequentially stacked.
[0017]
The n-type semiconductor layer 2 is formed on the supporting substrate 1 so as to have an n-type conductivity. More specifically, the semiconductor layer 2 having the first conductivity type is composed of a buffer layer 21, an n-type contact layer 22, and an n-type cladding layer 23. The buffer layer 21 is formed of, for example, GaN, and is provided to reduce lattice mismatch between the support substrate 1 and the n-type contact layer 22. The n-type cladding layer 23 is formed of, for example, a composition such as aluminum gallium nitride (AlGaN) having a larger band gap energy than the light emitting layer 3 described later. The n-type contact layer 22 is formed of, for example, GaN, and has a contact barrier (Schottky barrier) at a contact interface between the two, as compared with an n-electrode 5 described later provided directly on the n-type cladding layer 23. And ohmic contact is realized. Further, a part of the n-type contact layer 22 is exposed by removing the n-type cladding layer 23, the light emitting layer 3 and the p-type semiconductor layer 4 described later on the surface.
[0018]
The light emitting layer 3 is formed of, for example, a semiconductor made of indium gallium nitride (InGaN), and has a single quantum well or multiple quantum well structure. The light emitting layer 3 is a neutral InGaN layer without implanting impurities. Thereby, light emission with good color purity is obtained. In addition, the emission wavelength can be changed by adjusting the composition ratio of In and Ga or changing the band gap by changing the composition to n-type or p-type. In order to obtain an n-type conductivity, an impurity such as silicon (Si) or germanium (Ge) may be implanted as appropriate. Conversely, for obtaining a p-type conductivity, magnesium (Mg) or zinc (Zn) may be used. ) May be implanted.
[0019]
The p-type semiconductor layer 4 includes, for example, a p-type contact layer 41 and a p-type cladding layer 42, like the n-type semiconductor layer 2. The p-type contact layer 41 is formed of, for example, GaN, and has a smaller contact barrier (Schottky barrier) at the contact interface between the two than when a p-electrode 6 described later is directly provided on the p-type cladding layer 42. And realizes ohmic contact. Further, the p-type cladding layer 42 is formed of, for example, a composition such as AlGaN having a band gap energy larger than that of the light emitting layer 3.
[0020]
The n-electrode 5 is provided so as to cover substantially the entire exposed surface of the n-type contact layer 22. This has a two-layer structure in which a transparent layer 51 made of indium tin oxide (ITO) and a reflective layer 52 made of Ag are laminated. The n-contact layer 22, the transparent layer 51, and the reflective layer 52 are laminated in this order. I have. Further, this is alloyed by annealing after lamination to realize ohmic contact with the n-type contact layer 22. Further, in the present embodiment, the thickness of the transparent layer 51 is set to about 1000 °, and even at this thickness, ITO, which is a material of the transparent layer 51, has a good light transmittance and a light transmittance of about 90%. . The thickness of the reflective layer 52 is about 10000 °. The height of the n-electrode 5 is such that its upper surface (upward direction in FIG. 1) is closer to the support substrate 1 than the upper surface of a p-electrode 6 described later. (Not shown) when flip-chip mounted horizontally, the distance between the n-electrode 5 and the lead frame is larger than the distance between the p-electrode 6 and the lead frame.
[0021]
The p-electrode 6 is provided so as to cover substantially the entire surface of the p-type contact layer 41. This is composed of a transparent layer 61 made of indium tin oxide (ITO) and a reflective layer 62 made of Ag as in the case of the n-electrode 5, and a p-type contact layer 41, a transparent layer 61, and a reflective layer 62 in this order. Laminated. Further, this is alloyed by annealing after lamination, and realizes ohmic contact with the p-type contact layer 41. In the present embodiment, the thickness of the transparent layer 61 is set to about 1000 °. Even at this thickness, ITO, which is a material of the transparent layer 61, has good light transmittance and the light transmittance is about 90%. . The thickness of the reflective layer 62 is about 10000 °.
[0022]
According to the semiconductor light emitting device of the first embodiment described above, the n-electrode 5 and the p-electrode 6 are composed of two layers of the transparent layers 51 and 61 and the reflection layers 52 and 62, and the transparent layers 51 and 61 are formed of a film of 1000 °. By forming the reflective layers 52 and 62 from Ag having a thickness of 10000 °, ohmic contact is realized and the reflection layers 52 and 62 are reflected at the boundary surfaces between the transparent layers 51 and 61 and the reflective layers 52 and 62. Since the reflectance of the light to be emitted is about 73%, it is possible to relatively easily form a transparent layer having a high transmittance without requiring a highly accurate control of the film thickness for forming a thin film. The rate of decrease in light transmittance due to the variation in film thickness is reduced, the decrease in reflectance is suppressed, and the luminous efficiency can be improved.
[0023]
The thicknesses of the transparent layers 51 and 61 and the reflection layers 52 and 62 are not limited to the above thicknesses.
[0024]
【The invention's effect】
The semiconductor light-emitting device according to the first aspect of the present invention includes a support substrate, an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer sequentially stacked on one surface of the support substrate, and a p-type semiconductor layer. A semiconductor light emitting device comprising: a semiconductor layer provided with a p-electrode; and an n-type semiconductor layer, a light-emitting layer, and an n-type semiconductor layer provided by removing a part of the p-type semiconductor layer and exposing the n-type semiconductor layer. The p-electrode and the n-electrode are formed on a transparent layer of indium tin oxide formed in contact with substantially the entire surface of the p-type semiconductor layer and the n-type semiconductor layer, respectively; A transparent layer having good ohmic contact and transmittance can be formed as a high-precision film by making the size at least equivalent to the transparent layer and laminating a reflective layer made of at least one material of silver, aluminum and rhodium. Relatively compact without the need for thickness control Can be formed on, it can be reduced translucency reduction rate due to variations in thickness. In addition, since a material having a high reflectance is used on the transparent layer, a decrease in the reflectance can be suppressed, and the luminous efficiency of the semiconductor light emitting element can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view in which the vicinity of the center of a semiconductor light emitting device according to a first embodiment of the present invention is cut.
FIG. 2 is a side sectional view of a conventional semiconductor light emitting device.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 support substrate 2 n-type semiconductor layer 3 light-emitting layer 4 p-type semiconductor layer 5 n-electrode 51 transparent layer (n-electrode side)
52 reflection layer (n-electrode side)
6 p-electrode 61 transparent layer (p-electrode side)
62 Reflective layer (p electrode side)

Claims (1)

支持基板と、支持基板の一方の面にn型の半導体層と、発光層と、p型の半導体層とを順次積層して備え、p型の半導体層にp電極を設けるとともに、n型の半導体層と発光層とp型の半導体層の一部を除去して露出させたn型の半導体層にn電極を設けた半導体発光素子であって
前記p電極及び前記n電極は、それぞれ前記p型の半導体層及び前記n型の半導体層のほぼ全面に接触して形成された酸化インジウム錫からなる透明層と、透明層上に形成されてその大きさを少なくとも透明層と同等とし、銀、アルミニウム、ロジウムのうち少なくとも一つの材料からなる反射層とを積層してなることを特徴とする半導体発光素子。
A support substrate, an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer are sequentially stacked on one surface of the support substrate, and a p-electrode is provided on the p-type semiconductor layer, and an n-type semiconductor layer is provided. A semiconductor light-emitting device in which an n-electrode is provided on an n-type semiconductor layer in which a semiconductor layer, a light-emitting layer, and a part of a p-type semiconductor layer are removed and exposed, wherein the p-electrode and the n-electrode are respectively A transparent layer made of indium tin oxide formed in contact with almost the entire surface of the n-type semiconductor layer and the n-type semiconductor layer, formed on the transparent layer to have a size at least equivalent to the transparent layer, silver, A semiconductor light-emitting device comprising: a stack of a reflection layer made of at least one of aluminum and rhodium.
JP2002342998A 2002-11-26 2002-11-26 Semiconductor light emitting element Pending JP2004179347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002342998A JP2004179347A (en) 2002-11-26 2002-11-26 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342998A JP2004179347A (en) 2002-11-26 2002-11-26 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JP2004179347A true JP2004179347A (en) 2004-06-24

Family

ID=32704908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342998A Pending JP2004179347A (en) 2002-11-26 2002-11-26 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP2004179347A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045038A (en) * 2003-07-23 2005-02-17 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP2005197687A (en) * 2004-01-06 2005-07-21 Samsung Electronics Co Ltd Low-resistance electrode of compound semiconductor light-emitting element, and compound semiconductor light-emitting element using the same
JP2006032952A (en) * 2004-07-12 2006-02-02 Shogen Koden Kofun Yugenkoshi Light emitting diode having omnidirectional reflector including transparent conductive layer
KR100628125B1 (en) 2004-09-02 2006-09-26 엘지전자 주식회사 lighting apparatus using LED and projection display system using it
JP2006261609A (en) * 2005-03-18 2006-09-28 Mitsubishi Cable Ind Ltd Garium nitride based light emitting diode and light emitting device using the same
KR100631976B1 (en) 2005-03-30 2006-10-11 삼성전기주식회사 Group iii-nitride light emitting device
JP2007043045A (en) * 2005-08-03 2007-02-15 Samsung Electro Mech Co Ltd Unitary directional reflector and light-emitting device applying same
JP2007273975A (en) * 2006-03-10 2007-10-18 Matsushita Electric Works Ltd Light-emitting device
JP2008506272A (en) * 2004-07-12 2008-02-28 グァンジュ インスティチュート オブ サイエンス アンド テクノロジー Flip-chip nitride-based light emitting device and method for manufacturing the same
JP2008112957A (en) * 2006-10-06 2008-05-15 Mitsubishi Cable Ind Ltd GaN-BASED LED CHIP
EP1953838A2 (en) 2007-02-01 2008-08-06 Nichia Corporation Semiconductor light emitting element
US7491979B2 (en) 2004-08-31 2009-02-17 Samsung Electro-Mechanics Co., Ltd. Reflective electrode and compound semiconductor light emitting device including the same
JP2009049267A (en) * 2007-08-22 2009-03-05 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
KR101008023B1 (en) 2004-08-04 2011-01-14 광주과학기술원 A low-resistance electrode of compound semiconductor light emitting device and a compound semiconductor light emitting device using the electrode
JP2011066461A (en) * 2004-07-29 2011-03-31 Showa Denko Kk Semiconductor light emitting element
JP2011071340A (en) * 2009-09-25 2011-04-07 Toyoda Gosei Co Ltd Light-emitting element
US7947996B2 (en) 2006-06-28 2011-05-24 Nichia Corporation Semiconductor light emitting element
US7947521B2 (en) 2007-03-27 2011-05-24 Toyota Gosei Co., Ltd. Method for forming electrode for group-III nitride compound semiconductor light-emitting devices
JP2011258974A (en) * 2011-08-12 2011-12-22 Mitsubishi Chemicals Corp GaN-BASED LIGHT-EMITTING DIODE AND LIGHT-EMITTING DEVICE USING THE SAME
US8158990B2 (en) 2006-10-05 2012-04-17 Mitsubishi Chemical Corporation Light emitting device using GaN LED chip
KR101201597B1 (en) 2011-03-25 2012-11-14 주식회사 퀀텀디바이스 Light emitting device and manufacturing method thereof
US8536585B2 (en) 2008-10-22 2013-09-17 Panasonic Corporation Semiconductor light emitting device including anode and cathode having the same metal structure
KR101342664B1 (en) * 2012-02-01 2013-12-17 삼성전자주식회사 Light emitting diode for emitting ultraviolet
US8716728B2 (en) 2006-10-20 2014-05-06 Mitsubishi Chemical Corporation Nitride semiconductor light-emitting diode device
JP2017054976A (en) * 2015-09-10 2017-03-16 Dowaエレクトロニクス株式会社 Light-emitting element, manufacturing method thereof, and light-emitting/receiving module employing the same
CN117393680A (en) * 2023-12-12 2024-01-12 江西兆驰半导体有限公司 Flip light-emitting diode chip and preparation method thereof

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045038A (en) * 2003-07-23 2005-02-17 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP2005197687A (en) * 2004-01-06 2005-07-21 Samsung Electronics Co Ltd Low-resistance electrode of compound semiconductor light-emitting element, and compound semiconductor light-emitting element using the same
US7960746B2 (en) 2004-01-06 2011-06-14 Samsung Led Co., Ltd. Low resistance electrode and compound semiconductor light emitting device including the same
JP2008506272A (en) * 2004-07-12 2008-02-28 グァンジュ インスティチュート オブ サイエンス アンド テクノロジー Flip-chip nitride-based light emitting device and method for manufacturing the same
US8202751B2 (en) 2004-07-12 2012-06-19 Samsung Led Co., Ltd. Flip-chip light emitting diodes and method of manufacturing thereof
US7872271B2 (en) 2004-07-12 2011-01-18 Samsung Led Co., Ltd. Flip-chip light emitting diodes and method of manufacturing thereof
JP2006032952A (en) * 2004-07-12 2006-02-02 Shogen Koden Kofun Yugenkoshi Light emitting diode having omnidirectional reflector including transparent conductive layer
JP2011066461A (en) * 2004-07-29 2011-03-31 Showa Denko Kk Semiconductor light emitting element
KR101008023B1 (en) 2004-08-04 2011-01-14 광주과학기술원 A low-resistance electrode of compound semiconductor light emitting device and a compound semiconductor light emitting device using the electrode
KR100896564B1 (en) * 2004-08-31 2009-05-07 삼성전기주식회사 Reflective electrode and compound semiconductor light emitting device including the same
US7491979B2 (en) 2004-08-31 2009-02-17 Samsung Electro-Mechanics Co., Ltd. Reflective electrode and compound semiconductor light emitting device including the same
KR100628125B1 (en) 2004-09-02 2006-09-26 엘지전자 주식회사 lighting apparatus using LED and projection display system using it
JP2006261609A (en) * 2005-03-18 2006-09-28 Mitsubishi Cable Ind Ltd Garium nitride based light emitting diode and light emitting device using the same
KR100631976B1 (en) 2005-03-30 2006-10-11 삼성전기주식회사 Group iii-nitride light emitting device
JP2007043045A (en) * 2005-08-03 2007-02-15 Samsung Electro Mech Co Ltd Unitary directional reflector and light-emitting device applying same
JP2007273975A (en) * 2006-03-10 2007-10-18 Matsushita Electric Works Ltd Light-emitting device
US7947996B2 (en) 2006-06-28 2011-05-24 Nichia Corporation Semiconductor light emitting element
US8455886B2 (en) 2006-10-05 2013-06-04 Mitsubishi Chemical Corporation Light emitting device using GaN LED chip
US8158990B2 (en) 2006-10-05 2012-04-17 Mitsubishi Chemical Corporation Light emitting device using GaN LED chip
JP2008112957A (en) * 2006-10-06 2008-05-15 Mitsubishi Cable Ind Ltd GaN-BASED LED CHIP
US8716728B2 (en) 2006-10-20 2014-05-06 Mitsubishi Chemical Corporation Nitride semiconductor light-emitting diode device
EP3454383A1 (en) 2007-02-01 2019-03-13 Nichia Corporation Semiconductor light emitting element
EP3258506A1 (en) 2007-02-01 2017-12-20 Nichia Corporation Semiconductor light emitting element
US8120057B2 (en) 2007-02-01 2012-02-21 Nichia Corporation Semiconductor light emitting element
US7982236B2 (en) 2007-02-01 2011-07-19 Nichia Corporation Semiconductor light emitting element
EP1953838A2 (en) 2007-02-01 2008-08-06 Nichia Corporation Semiconductor light emitting element
USRE49406E1 (en) 2007-02-01 2023-01-31 Nichia Corporation Semiconductor light emitting element
USRE49298E1 (en) 2007-02-01 2022-11-15 Nichia Corporation Semiconductor light emitting element
EP4068398A1 (en) 2007-02-01 2022-10-05 Nichia Corporation Semiconductor light emitting element
US7947521B2 (en) 2007-03-27 2011-05-24 Toyota Gosei Co., Ltd. Method for forming electrode for group-III nitride compound semiconductor light-emitting devices
JP2009049267A (en) * 2007-08-22 2009-03-05 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
US8536585B2 (en) 2008-10-22 2013-09-17 Panasonic Corporation Semiconductor light emitting device including anode and cathode having the same metal structure
JP2011071340A (en) * 2009-09-25 2011-04-07 Toyoda Gosei Co Ltd Light-emitting element
KR101201597B1 (en) 2011-03-25 2012-11-14 주식회사 퀀텀디바이스 Light emitting device and manufacturing method thereof
JP2011258974A (en) * 2011-08-12 2011-12-22 Mitsubishi Chemicals Corp GaN-BASED LIGHT-EMITTING DIODE AND LIGHT-EMITTING DEVICE USING THE SAME
KR101342664B1 (en) * 2012-02-01 2013-12-17 삼성전자주식회사 Light emitting diode for emitting ultraviolet
JP2017054976A (en) * 2015-09-10 2017-03-16 Dowaエレクトロニクス株式会社 Light-emitting element, manufacturing method thereof, and light-emitting/receiving module employing the same
CN117393680A (en) * 2023-12-12 2024-01-12 江西兆驰半导体有限公司 Flip light-emitting diode chip and preparation method thereof
CN117393680B (en) * 2023-12-12 2024-04-12 江西兆驰半导体有限公司 Flip light-emitting diode chip and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2004179347A (en) Semiconductor light emitting element
US10840412B2 (en) Semiconductor light emitting device
JP7221591B2 (en) light emitting element
KR101627010B1 (en) Semiconductor light emitting device including metal reflecting layer
JP4882792B2 (en) Semiconductor light emitting device
TWI462326B (en) Semiconductor light emitting element
CN107527976B (en) Semiconductor light emitting device and method for manufacturing the same
US20050017262A1 (en) [led device, flip-chip led package and light reflecting structure]
US8022430B2 (en) Nitride-based compound semiconductor light-emitting device
JP5630384B2 (en) Group III nitride semiconductor light emitting device manufacturing method
TW200816519A (en) Semiconductor light emitting device and its manufacturing method
JP2007103689A (en) Semiconductor light emitting device
WO2012026068A1 (en) Light-emitting element
JP2008218878A (en) GaN BASED LED ELEMENT AND LIGHT-EMITTING DEVICE
US20190348571A1 (en) Semiconductor Light Emitting Device and Semiconductor Light Emitting Device Package Using the Same
JP2006287189A (en) Group iii nitride light emitting device
JP5165254B2 (en) Flip chip type light emitting device
JP2010272592A (en) Semiconductor light emitting element
US20130328077A1 (en) Light-emitting element
KR20210135424A (en) Light-emitting device
JP2009038355A (en) Light emitting device
JP4622426B2 (en) Semiconductor light emitting device
JP5586860B2 (en) Semiconductor light emitting device and semiconductor light emitting device
CN210040239U (en) Light emitting diode
US10910538B2 (en) Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109