JP2004177323A - Infrared gas analyzer - Google Patents

Infrared gas analyzer Download PDF

Info

Publication number
JP2004177323A
JP2004177323A JP2002345622A JP2002345622A JP2004177323A JP 2004177323 A JP2004177323 A JP 2004177323A JP 2002345622 A JP2002345622 A JP 2002345622A JP 2002345622 A JP2002345622 A JP 2002345622A JP 2004177323 A JP2004177323 A JP 2004177323A
Authority
JP
Japan
Prior art keywords
gas
sample
sample cell
infrared light
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002345622A
Other languages
Japanese (ja)
Other versions
JP3941679B2 (en
Inventor
Katsuhiko Araya
克彦 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002345622A priority Critical patent/JP3941679B2/en
Publication of JP2004177323A publication Critical patent/JP2004177323A/en
Application granted granted Critical
Publication of JP3941679B2 publication Critical patent/JP3941679B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate errors caused by a difference in the amounts of water vapor in reference gas and sample gas. <P>SOLUTION: The sample gas or the reference gas is provided from a gas introduction port 1a to a testpiece cell 1 via a three-way valve 7 and exhausted from a gas exhaust port 1b. An electronic cooler 10 for cooling and removing vapor in the gas is mounted at a flow passage between the three-way valve 7 and the testpiece cell 1 and the sample gas and the reference gas provided from the three-way valve 7 are introduced to the sample cell 1 via the electronic cooler 10. A light source 5 for emitting infrared light is provided at an end of the testpiece cell 1 and a detector 2 for detecting infrared light passed through the testpiece cell 1 is provided at the other end of the testpiece cell 1 and a sector 3 for interrupting the infrared light is provided between the light source 5 and the end part of the testpiece cell 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、化学工場や製鉄所のガス濃度に関するプロセスモニター、ボイラーや燃焼炉の燃焼ガス分析、大気汚染の監視、自動車排ガス測定などに使用するのに適した赤外線ガス分析計に関し、特にガス分子固有の赤外線吸収効果を利用してガス又は蒸気中にある特定成分の濃度を測定する赤外線ガス分析計に関する。
【0002】
【従来の技術】
基準ガスと試料ガスを試料セルに切り換えて流通させる赤外線ガス分析計が知られている。
図7はそのような赤外線ガス分析計で、本発明者が先に提案したものの流路図である(特許文献1参照。)。試料セル1はガス導入口1aとガス排出口1bを有し、三方弁7を介して試料ガス又は基準ガスがガス導入口1aから試料セル1内に供給され、ガス排出口1bから排出される。試料セル1の一端には赤外光を発する光源5が配設され、試料セル1の他端には試料セル1を透過した赤外光を検出するための検出器2が配設されている。
【0003】
光源5と試料セル1端部の間には赤外光を断続するためのセクタ3が設けられている。セクタ3は遮光部と切欠部とからなり、回転軸を中心に回転して、切欠部が試料セル1の光軸上にあるときに赤外光を試料セル1内に照射し、遮光部が試料セル1光軸上にあるときに試料セル1内への赤外光の照射を遮断するように構成されている。コントローラ6はモータ4を介してセクタ3の回転位置制御を行い、また、ドライバ8を介して三方弁7の駆動制御を行う。
【0004】
検出器2はその内部に試料ガス中の測定対象ガスが封入されており、測定対象ガス固有の周波数の赤外光強度を内部の圧力変化により検出する。そして、検出器2での検出出力は、信号処理回路9で所定の信号処理を受け、試料ガス中の測定ガス濃度が計測される。
【0005】
このような赤外線ガス分析計では、三方弁7を介して試料セル1に供給される基準ガスと試料ガスを得るための前処理装置が三方弁7の試料ガス用ポートと標準ガス用ポートにそれぞれ接続される。それらの前処理装置には、図8に示されるように、それぞれダスト除去のためのフィルタ12a,12b、ガスを吸引するポンプ14a,14b、ガス流量を調整するニードル弁16a,16bのほか、ガスを除湿するためにペルチェ素子を利用した電子クーラ18a,18bが設けられる。
【0006】
基準ガスとしては、基準ガスに含まれる測定対象成分の濃度が測定に影響しない程度である必要があり、大気や、大気を精製器に通して測定対象成分を取り除いたガスが用いられる。
【0007】
【特許文献1】
特開平9−49797号公報
【0008】
【発明が解決しようとする課題】
赤外線ガス分析計でSOやNOを測定する場合、SO、NOの赤外線吸収波長帯に重なる吸収波長帯をもつ水蒸気による干渉誤差がある。図8に示されたような前処理装置では、ガス中の水蒸気を電子クーラで取り除くが、電子クーラで発生するドレンの凍結の問題から電子クーラの温度は低くても1℃程度が限界である。しかし、1℃では、常圧で約7000ppmの水蒸気がガスに含まれる。
【0009】
そのため、SOやNO測定では検出器信号がガス中の水蒸気影響を受けるため、基準ガスと試料ガスで使われるそれぞれの電子クーラの温度を同一とし、試料セルヘ切り換えて導入される基準ガスと試料ガスに含まれる水蒸気量を等しくして水蒸気誤差を除いている。
【0010】
しかしながら、2つの電子クーラの温度を長期間にわたって全く同一に制御することは難しく、また、電子クーラの使用環境温度が上昇すると、ペルチェ素子の冷却能力の限界から温度制御ができなくなり、2つ電子クーラの温度のずれにより、測定の誤差が大きくなる問題点があった。その対策としては、2つの電子クーラの温度を全く同一にするために、同じ冷却ブロックに2つの流路を設置する、所謂2系列の電子クーラが用いられることもある。
【0011】
しかし、2つの電子クーラの温度を全く同一にできたとしても、基準ガスである大気が乾燥していてガス露点が電子クーラ温度より低い場合には、切り換えて試料セルに導入される基準ガスと試料ガスの水蒸気量が異なることになり、測定の誤差が大きくなる問題点があった。
【0012】
本発明は、基準ガスと試料ガスの水蒸気量が異なることに起因する誤差をなくすことのできる赤外線ガス分析装置を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
本発明は、基準ガスと試料ガスの供給を切り換える切換弁と試料セルの間に共通の冷却器を設置して、基準ガスと試料ガスがその共通の冷却器を通るように流路を構成することで、試料セルに交互に導入される基準ガスと試料ガスに含まれる水蒸気量を等しくする。
【0014】
すなわち、本発明の赤外線ガス分析計は、基準ガスと試料ガスを選択的に試料セルに供給する切換弁と、前記切換弁から試料セルヘガスが導入される途中でガス中の水蒸気を冷却除去する共通の冷却器と、前記試料セルに赤外光を照射する光源と、前記光源からの赤外光を断続する断続手段と、前記試料セルを透過した赤外光を検出する検出器と、前記切換弁の切換え制御と前記断続手段の断続制御とを行うコントローラと、基準ガスと試料ガスを透過したそれぞれの赤外光の前記検出器における検出値に基づいて試料ガス中の測定ガス濃度を求める信号処理手段とを備えている。
【0015】
【作用】
基準ガスと試料ガスが共通の冷却器を通るため、長期的に安定で、かつ冷却器の使用環境温度が高くなって温度制御が精度よくできなくても、両ガスの水蒸気量は常に等しいため、水蒸気誤差を排除することができる。
【0016】
基準ガスの露点が冷却器温度より低くなり、一方、試料ガスが燃焼排ガスのように露点が冷却器温度より高い場合、試料ガスが冷却器で除湿された際に結露したドレン水が冷却器内の流路に付着し、基準ガスが冷却器を通過する際にそのドレン水で加湿されるため、水蒸気誤差を排除することができる。基準ガスも試料ガスも、冷却器内のドレン水の温度の露点の水蒸気量を含んで冷却器から出てくるからである。
【0017】
【発明の実施の形態】
図1は一実施例の赤外線分析計の流路図であり、図7と同一部分には同一の符号を使用する。
試料セル1はガス導入口1aとガス排出口1bを有し、切換弁である三方弁7を介して試料ガス又は基準ガスがガス導入口1aから試料セル1内に供給され、ガス排出口1bから排出される。
【0018】
この実施例では、三方弁7と試料セル1の間の流路に、ガス中の水蒸気を冷却除去する共通の冷却器として、ペルチェ素子を利用した電子クーラ10を設置しており、三方弁7から供給される試料ガスと基準ガスは、ともにこの電子クーラ10を経由して試料セル1へ導かれる。
【0019】
電子クーラ10が三方弁7と試料セル1の間の流路に配置されたことにより、三方弁7に基準ガスと試料ガスを供給する前処理装置には冷却器は不要になる。すなわち、試料ガスと基準ガスをそれぞれ供給するために三方弁7の試料ガス用ポートと標準ガス用ポートにそれぞれ接続される前処理装置は、図2に示されるように、それぞれダスト除去のためのフィルタ12a,12b、ガスを吸引するポンプ14a,14b及びガス流量を調整するニードル弁16a,16bだけを含んだものとなり、ガスを除湿するための冷却器は省略される。
【0020】
試料セル1の一端には赤外光を発する光源5が、また、試料セル1の他端には試料セル1を透過した赤外光を検出するための検出器2が配設されている。
【0021】
光源5と試料セル1端部の間には赤外光を断続するためのセクタ3が設けられている。このセクタ3は、図3に示されるように、遮光部3aと切欠部3bとからなり、セクタ回転軸3cを中心としてセクタ3が回転するよう構成されている。1aは試料セル1の断面を表わしている。セクタ3が回転して切欠部3bが試料セル1の光軸上にあるときに赤外光を試料セル1内に照射し、遮光部3aが試料セル1の光軸上にあるときに試料セル1内への赤外光の照射を遮断する。
【0022】
コントローラ6は、モータ4を介してセクタ3の回転位置制御を行い、また、ドライバ8を介して三方弁7の駆動制御を行う。
【0023】
検出器2は、その内部に試料ガス中の測定対象ガスが封入されており、測定対象ガス固有の周波数の赤外光強度を内部の圧力変化により検出する。そして、検出器2での検出出力は、信号処理回路9で所定の信号処理を受け、試料ガス中の測定ガス濃度が計測される。
【0024】
図4は信号処理回路9の一実施例を示したものである。比較器9bは予め決められた所定電圧Vrと基準ガスを透過した赤外光の検出出力である比較信号との差に比例した信号を出力し、増幅器9aはかかる比較器9bの出力によりゲインが調整されるよう構成されている。このため、増幅器9aのゲインは、基準ガスの増幅された後の出力が一定値Vrに保持されるように調整されることとなり、この試料ガスの検出出力である測定信号がここでゲイン倍されることによって、基準ガスとの出力比が求められることとなる。
【0025】
そして、増幅器9aの出力は、試料ガス又は基準ガスの供給状態に応じてコントローラ6によって引算器9cの測定入力又は比較入力に適宜切り換えられ、引算器9cは両者の差をとり出力する。ここで、検出器2の比較信号をR,測定信号をMとすると、増幅器9aの増幅率は、比較信号Rを一定値VrにするようVr/Rとなるため、引算器9cの出力Vは、

Figure 2004177323
となり、測定信号Mと比較信号Rとの比に応じた出力を得ることができる。
【0026】
このように、試料ガス、基準ガスを透過した赤外光を別々に検出し、両者の検出出力比を求めるよう構成したため、光源の印加電圧や周囲温度或いは光源自体の劣化等による光量変化、試料セルの透過窓やセル内の汚れ、さらに検出器の感度変化があっても、検出精度が低下するといった問題が解消できる。
【0027】
次に、コントローラ6の動作を図5のフローチャートに基づいて説明する。まず、モータ4を介してセクタ3を回転させ赤外光を遮断した状態で(ステップS1)、一つ前に供給したガスとは異なるガスを供給するようにドライバ8を介して三方弁7を切り換える(ステップS2,S3,S4)。そして、供給されたガスが前回供給されたガスを完全に置換して試料セル1に充填されるまでの時間を待って(ステップS5)、再びモータ4を介してセクタ3を回転させ赤外光を試料セル1内に照射する(ステップS6)。そして、検出器2において赤外光が検出されるための時間を待って、再度モータ4を介してセクタ3を回転させ赤外光を遮断し、上記ステップS1〜S7の動作を繰り返す。
【0028】
図6は、以上のようにコントローラ6が動作したときのセクタ3の開閉動作と、試料セル1内の試料ガスの充填状態を示すタイミングチャートである。この図では、試料セル1の内径を8mm、長さを50mm、内容積2.51cm、ガス流量1リットル/minとし、0.5秒毎に三方弁7を切り換えた場合の例が示されている。かかる場合、ガスが完全に入れ換わる時間は0.15秒となり、試料セル内の試料ガスの状態は図6の上図に示されるようになる。ここで、試料ガスが存在しない部分は基準ガスが充填されていることを示している。
【0029】
コントローラ6によりセクタ3が駆動されるタイミングは、図6下図に示されているように、三方弁7を切り換えてからセクタ3を駆動し赤外光を試料セル1に照射するまでの時間を、ガスが完全に置換されるまでの時間の約2倍の0.3秒程度とすれば、ガスが完全に入れ替わった状態で赤外光が入射されるため、より精度の高い測定が可能となると共に、ガスの流量が0.5リットル/min程度に下がった場合であっても、測定精度に影響を与えることはない。
【0030】
このように、試料セル1内のガスが完全に置換される時間を予め求めておき、三方弁7を切り換えてからその時間を待って或いはさらに余裕を持たせてセクタ3を駆動し赤外光を試料セル1に照射するようにすれば、ガスが置換される際の流量変化による検出精度への影響を削減することができる。
【0031】
なお、以上の実施例では、セクタ3を回転駆動することによって、赤外光を断続的に試料セル1に照射するよう構成したが、セクタを設けるのに替えて光源への電力供給を断続することによって赤外光の照射を断続するようにしてもよい。
【0032】
また、上述した実施例では、1種類の試料ガスを分析する場合を示したが、複数種類の試料ガスを分析することも可能である。2種類の試料ガスを分析する場合の例も先に引用した特許文献1に記載されている。本発明はそのような複数種類の試料ガスを分析するように構成された赤外線ガス分析計においても、基準ガスと複数種類の試料ガスとを選択的に試料セルに供給する切換弁と試料セルとの間の流路に、全てのガスが共通に通過するように1つの水蒸気冷却除去用冷却器を配置することによって、同様に適用することができる。
【0033】
実施例では、ガス中の水蒸気を冷却除去する冷却器として、ペルチェ素子を利用した電子クーラを使用しているが、冷却器は電子クーラに限らず、ガスの断熱膨張による冷却を利用したガス冷却器など、ガスを連続的に冷却できる機能を持ったものであれば本発明の冷却器として使用することができる。
【0034】
【発明の効果】
本発明の赤外線ガス分析計では、基準ガスと試料ガスの供給を切り換える切換弁と試料セルの間に共通の冷却器を設置して、基準ガスと試料ガスがその共通の冷却器を通るように流路を構成したので、長期的で、かつ冷却器の使用環境温度が高い場合でも、ガス中の水蒸気による干渉誤差を受けずに測定できる。
基準ガスが冷却器温度より低い露点に乾燥している場合でも、水蒸気による干渉誤差を受けずに測定できる。
また、従来のように切換弁に試料ガスと基準ガスをそれぞれ供給する前処理装置電子に冷却器を設けた場合には、ガスの種類の数だけの冷却器が必要であったが、本発明では冷却器は1台でよいため、装置を小型で安価に実現できる。
【図面の簡単な説明】
【図1】一実施例の赤外線分析計を示す流路図である。
【図2】同実施例において供給されるガスの前処理装置を示す流路図である。
【図3】同実施例におけるセクタを示す平面図である。
【図4】同実施例における信号処理回路を示す回路図である。
【図5】同実施例の動作を示すフローチャート図である。
【図6】同実施例の動作を示すタイミングチャート図である。
【図7】従来の赤外線分析計を示す流路図である。
【図8】同従来例において供給されるガスの前処理装置を示す流路図である。
【符号の説明】
1 試料セル
1a ガス導入口
1b ガス排出口
2 検出器
3 セクタ
5 光源
6 コントローラ
7 三方弁
8 ドライバ
10 電子クーラ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a process monitor for gas concentration in a chemical factory or a steel mill, analysis of combustion gas in a boiler or a combustion furnace, monitoring of air pollution, an infrared gas analyzer suitable for use in automobile exhaust gas measurement, etc. The present invention relates to an infrared gas analyzer that measures the concentration of a specific component in a gas or vapor by utilizing a unique infrared absorption effect.
[0002]
[Prior art]
2. Description of the Related Art An infrared gas analyzer that switches a reference gas and a sample gas to a sample cell and distributes the gas is known.
FIG. 7 is a flow chart of such an infrared gas analyzer that has been previously proposed by the present inventor (see Patent Document 1). The sample cell 1 has a gas inlet 1a and a gas outlet 1b, and a sample gas or a reference gas is supplied into the sample cell 1 from the gas inlet 1a through the three-way valve 7 and is discharged from the gas outlet 1b. . A light source 5 for emitting infrared light is provided at one end of the sample cell 1, and a detector 2 for detecting infrared light transmitted through the sample cell 1 is provided at the other end of the sample cell 1. .
[0003]
A sector 3 for interrupting infrared light is provided between the light source 5 and an end of the sample cell 1. The sector 3 includes a light-shielding part and a notch, and rotates around a rotation axis to irradiate infrared light into the sample cell 1 when the notch is on the optical axis of the sample cell 1. It is configured to block the irradiation of the sample cell 1 with infrared light when it is on the optical axis of the sample cell 1. The controller 6 controls the rotational position of the sector 3 via the motor 4, and controls the driving of the three-way valve 7 via the driver 8.
[0004]
The detector 2 has a measurement target gas in a sample gas sealed therein, and detects the intensity of infrared light having a frequency unique to the measurement target gas by a change in internal pressure. The detection output from the detector 2 is subjected to predetermined signal processing in a signal processing circuit 9, and the measurement gas concentration in the sample gas is measured.
[0005]
In such an infrared gas analyzer, a pretreatment device for obtaining a reference gas and a sample gas supplied to the sample cell 1 via the three-way valve 7 is provided at the sample gas port and the standard gas port of the three-way valve 7, respectively. Connected. As shown in FIG. 8, the pretreatment devices include filters 12a and 12b for removing dust, pumps 14a and 14b for sucking gas, needle valves 16a and 16b for adjusting gas flow, and gas. Electronic coolers 18a and 18b using a Peltier element are provided to dehumidify.
[0006]
As the reference gas, it is necessary that the concentration of the measurement target component contained in the reference gas does not affect the measurement, and air or a gas from which the air is passed through a purifier to remove the measurement target component is used.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-49797
[Problems to be solved by the invention]
When measuring SO 2 or NO with an infrared gas analyzer, there is an interference error due to water vapor having an absorption wavelength band overlapping the infrared absorption wavelength band of SO 2 and NO. In the pretreatment device as shown in FIG. 8, water vapor in the gas is removed by an electronic cooler. However, the temperature of the electronic cooler is limited to about 1 ° C. even at a low temperature due to the problem of freezing of drain generated in the electronic cooler. . However, at 1 ° C., about 7000 ppm of water vapor is contained in the gas at normal pressure.
[0009]
Therefore, since the detector signal is SO 2 or NO measurement is subjected to vapor effects in the gas, the temperature of each electronic cooler used in reference gas and the sample gas is equal, the reference gas and the sample introduced by switching the sample Seruhe The water vapor error is removed by equalizing the amount of water vapor contained in the gas.
[0010]
However, it is difficult to control the temperatures of the two electronic coolers exactly the same over a long period of time, and when the use environment temperature of the electronic coolers rises, the temperature cannot be controlled due to the limit of the cooling capacity of the Peltier element. There has been a problem that a measurement error increases due to a difference in cooler temperature. As a countermeasure, a so-called two-system electronic cooler in which two flow paths are installed in the same cooling block in order to make the temperatures of the two electronic coolers exactly the same may be used.
[0011]
However, even if the temperatures of the two electronic coolers can be made exactly the same, if the reference gas atmosphere is dry and the gas dew point is lower than the electronic cooler temperature, it is switched to the reference gas introduced into the sample cell. There is a problem that the amount of water vapor of the sample gas is different, and the measurement error becomes large.
[0012]
An object of the present invention is to provide an infrared gas analyzer that can eliminate an error caused by a difference in water vapor amount between a reference gas and a sample gas.
[0013]
[Means for Solving the Problems]
In the present invention, a common cooler is installed between a switching valve for switching the supply of the reference gas and the sample gas and the sample cell, and a flow path is configured so that the reference gas and the sample gas pass through the common cooler. Thus, the amount of water vapor contained in the sample gas and the reference gas alternately introduced into the sample cell are made equal.
[0014]
That is, the infrared gas analyzer of the present invention has a switching valve for selectively supplying a reference gas and a sample gas to a sample cell, and a common valve for cooling and removing water vapor in the gas while gas is introduced from the switching valve to the sample cell. A cooler, a light source that irradiates the sample cell with infrared light, an intermittent unit that intermittently intercepts the infrared light from the light source, a detector that detects the infrared light transmitted through the sample cell, and the switch. A controller for controlling the switching of the valve and the intermittent control of the intermittent means, and a signal for determining the concentration of the measured gas in the sample gas based on the detection values of the respective infrared lights transmitted through the reference gas and the sample gas at the detector. Processing means.
[0015]
[Action]
Since the reference gas and the sample gas pass through a common cooler, they are stable for a long time, and even if the operating environment temperature of the cooler becomes too high to accurately control the temperature, the water vapor amounts of both gases are always the same. In addition, water vapor errors can be eliminated.
[0016]
If the dew point of the reference gas is lower than the cooler temperature, while the dew point of the sample gas is higher than the cooler temperature, as in the case of flue gas, the drain water condensed when the sample gas is dehumidified by the cooler The reference gas is humidified by the drain water when the reference gas passes through the cooler, so that a water vapor error can be eliminated. This is because both the reference gas and the sample gas come out of the cooler including the amount of water vapor at the dew point of the temperature of the drain water in the cooler.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a flow chart of an infrared spectrometer of one embodiment, and the same reference numerals are used for the same parts as in FIG.
The sample cell 1 has a gas inlet 1a and a gas outlet 1b, and a sample gas or a reference gas is supplied from the gas inlet 1a into the sample cell 1 through a three-way valve 7 serving as a switching valve. Is discharged from
[0018]
In this embodiment, an electronic cooler 10 using a Peltier element is installed in the flow path between the three-way valve 7 and the sample cell 1 as a common cooler for cooling and removing water vapor in the gas. Are supplied to the sample cell 1 via the electronic cooler 10.
[0019]
Since the electronic cooler 10 is arranged in the flow path between the three-way valve 7 and the sample cell 1, a cooler is not required in the pretreatment device that supplies the reference gas and the sample gas to the three-way valve 7. That is, as shown in FIG. 2, the pretreatment devices respectively connected to the sample gas port and the standard gas port of the three-way valve 7 for supplying the sample gas and the reference gas, respectively, are used for dust removal. It includes only the filters 12a and 12b, the pumps 14a and 14b for sucking the gas, and the needle valves 16a and 16b for adjusting the gas flow rate, and the cooling device for dehumidifying the gas is omitted.
[0020]
A light source 5 for emitting infrared light is provided at one end of the sample cell 1, and a detector 2 for detecting infrared light transmitted through the sample cell 1 is provided at the other end of the sample cell 1.
[0021]
A sector 3 for interrupting infrared light is provided between the light source 5 and an end of the sample cell 1. As shown in FIG. 3, the sector 3 includes a light-shielding portion 3a and a notch 3b, and is configured so that the sector 3 rotates about a sector rotation axis 3c. 1a represents a cross section of the sample cell 1. When the sector 3 rotates and the notch 3b is on the optical axis of the sample cell 1, the sample cell 1 is irradiated with infrared light. When the light-shielding portion 3a is on the optical axis of the sample cell 1, the sample cell is irradiated. 1. Irradiation of infrared light into 1 is cut off.
[0022]
The controller 6 controls the rotational position of the sector 3 via the motor 4, and controls the driving of the three-way valve 7 via the driver 8.
[0023]
The detector 2 has a measurement target gas in a sample gas sealed therein, and detects the infrared light intensity at a frequency unique to the measurement target gas by a change in internal pressure. The detection output from the detector 2 is subjected to predetermined signal processing in a signal processing circuit 9, and the measurement gas concentration in the sample gas is measured.
[0024]
FIG. 4 shows an embodiment of the signal processing circuit 9. The comparator 9b outputs a signal proportional to the difference between a predetermined voltage Vr and a comparison signal which is a detection output of infrared light transmitted through the reference gas, and the amplifier 9a has a gain based on the output of the comparator 9b. It is configured to be adjusted. For this reason, the gain of the amplifier 9a is adjusted so that the amplified output of the reference gas is maintained at a constant value Vr, and the measurement signal, which is the detection output of the sample gas, is multiplied by the gain here. As a result, the output ratio with respect to the reference gas is obtained.
[0025]
The output of the amplifier 9a is appropriately switched to the measurement input or the comparison input of the subtractor 9c by the controller 6 according to the supply state of the sample gas or the reference gas, and the subtractor 9c outputs the difference between the two. Here, assuming that the comparison signal of the detector 2 is R and the measurement signal is M, the amplification factor of the amplifier 9a becomes Vr / R so that the comparison signal R becomes a constant value Vr. Is
Figure 2004177323
And an output corresponding to the ratio between the measurement signal M and the comparison signal R can be obtained.
[0026]
As described above, since the infrared light transmitted through the sample gas and the reference gas are separately detected, and the detection output ratio between the two is obtained, the light amount change due to the applied voltage of the light source, the ambient temperature or the deterioration of the light source itself, the sample, etc. Even if there is a stain in the transmission window of the cell or in the cell and a change in the sensitivity of the detector, the problem that the detection accuracy is reduced can be solved.
[0027]
Next, the operation of the controller 6 will be described based on the flowchart of FIG. First, in a state where the sector 3 is rotated via the motor 4 to block the infrared light (step S1), the three-way valve 7 is operated via the driver 8 so as to supply a gas different from the gas supplied immediately before. Switching is performed (steps S2, S3, S4). Then, after waiting for a time until the supplied gas completely replaces the previously supplied gas and fills the sample cell 1 (step S5), the sector 3 is again rotated via the motor 4 and the infrared light Is irradiated into the sample cell 1 (step S6). Then, after waiting for a time for the infrared light to be detected by the detector 2, the sector 3 is again rotated via the motor 4 to cut off the infrared light, and the operations in steps S1 to S7 are repeated.
[0028]
FIG. 6 is a timing chart showing the opening / closing operation of the sector 3 when the controller 6 operates as described above, and the state of filling the sample gas in the sample cell 1. This figure shows an example in which the inner diameter of the sample cell 1 is 8 mm, the length is 50 mm, the internal volume is 2.51 cm 3 , the gas flow rate is 1 liter / min, and the three-way valve 7 is switched every 0.5 seconds. ing. In such a case, the time when the gas is completely replaced is 0.15 seconds, and the state of the sample gas in the sample cell is as shown in the upper diagram of FIG. Here, the portion where the sample gas does not exist indicates that the reference gas is filled.
[0029]
The timing at which the sector 3 is driven by the controller 6 is, as shown in the lower diagram of FIG. 6, the time from switching the three-way valve 7 to driving the sector 3 and irradiating the sample cell 1 with infrared light. If the time until the gas is completely replaced is about 0.3 seconds, which is about twice as long as the gas is completely replaced, infrared light is incident with the gas completely replaced, so that more accurate measurement can be performed. At the same time, even when the gas flow rate is reduced to about 0.5 liter / min, the measurement accuracy is not affected.
[0030]
In this way, the time at which the gas in the sample cell 1 is completely replaced is obtained in advance, and after the three-way valve 7 is switched, the time is waited or the spare time is further increased to drive the sector 3 and the infrared light Is applied to the sample cell 1, the influence on the detection accuracy due to a change in the flow rate when the gas is replaced can be reduced.
[0031]
In the above embodiment, the infrared light is intermittently applied to the sample cell 1 by rotating the sector 3, but the power supply to the light source is intermittently provided instead of providing the sector. Irradiation of infrared light may be intermittent.
[0032]
Further, in the above-described embodiment, a case in which one type of sample gas is analyzed has been described. However, a plurality of types of sample gas can be analyzed. An example in which two types of sample gases are analyzed is also described in Patent Document 1 cited above. The present invention is also an infrared gas analyzer configured to analyze such a plurality of types of sample gases, a switching valve and a sample cell that selectively supply a reference gas and a plurality of types of sample gases to the sample cell. The same can be applied by arranging one cooler for removing and cooling water vapor so that all the gases pass in common in the flow path between them.
[0033]
In the embodiment, an electronic cooler using a Peltier element is used as a cooler for cooling and removing water vapor in a gas. Any device having a function of continuously cooling gas, such as a cooler, can be used as the cooler of the present invention.
[0034]
【The invention's effect】
In the infrared gas analyzer of the present invention, a common cooler is installed between the switching valve for switching the supply of the reference gas and the sample gas and the sample cell so that the reference gas and the sample gas pass through the common cooler. Since the flow path is configured, measurement can be performed for a long period of time without receiving an interference error due to water vapor in the gas even when the use environment temperature of the cooler is high.
Even when the reference gas is dried to a dew point lower than the cooler temperature, measurement can be performed without receiving an interference error due to water vapor.
Further, in the case where the coolers are provided in the pretreatment device electronics which respectively supply the sample gas and the reference gas to the switching valve as in the related art, the same number of coolers as the number of gas types is required. In this case, since only one cooler is required, the apparatus can be realized in a small size and at low cost.
[Brief description of the drawings]
FIG. 1 is a flow chart showing an infrared analyzer of one embodiment.
FIG. 2 is a flow chart showing a pretreatment device for gas supplied in the embodiment.
FIG. 3 is a plan view showing a sector in the embodiment.
FIG. 4 is a circuit diagram showing a signal processing circuit in the embodiment.
FIG. 5 is a flowchart showing the operation of the embodiment.
FIG. 6 is a timing chart showing the operation of the embodiment.
FIG. 7 is a flow chart showing a conventional infrared analyzer.
FIG. 8 is a flow chart showing a pretreatment device for gas supplied in the conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sample cell 1a Gas inlet 1b Gas outlet 2 Detector 3 Sector 5 Light source 6 Controller 7 Three-way valve 8 Driver 10 Electronic cooler

Claims (3)

基準ガスと試料ガスを選択的に試料セルに供給する切換弁と、
前記切換弁から試料セルヘガスが導入される途中でガス中の水蒸気を冷却除去する共通の冷却器と、
前記試料セルに赤外光を照射する光源と、
前記光源からの赤外光を断続する断続手段と、
前記試料セルを透過した赤外光を検出する検出器と、
前記切換弁の切換え制御と前記断続手段の断続制御とを行うコントローラと、
基準ガスと試料ガスを透過したそれぞれの赤外光の前記検出器における検出値に基づいて試料ガス中の測定ガス濃度を求める信号処理手段とを備えたことを特徴とする赤外線ガス分析計。
A switching valve for selectively supplying a reference gas and a sample gas to the sample cell,
A common cooler that cools and removes water vapor in the gas while the gas is being introduced from the switching valve to the sample cell,
A light source for irradiating the sample cell with infrared light,
Intermittent means for intermittent infrared light from the light source,
A detector for detecting infrared light transmitted through the sample cell,
A controller that performs switching control of the switching valve and intermittent control of the intermittent unit,
An infrared gas analyzer comprising: signal processing means for obtaining a measured gas concentration in the sample gas based on detection values of the infrared light transmitted through the reference gas and the sample gas by the detector.
前記コントローラは、基準ガス又は試料ガスを試料セルに供給して試料セル内が基準ガス又は試料ガスに完全に置換された後、前記光源からの赤外光が前記試料セルに照射されるように前記断続手段を制御するものである請求項1に記載の赤外線ガス分析計。The controller supplies a reference gas or a sample gas to the sample cell, and after the inside of the sample cell is completely replaced with the reference gas or the sample gas, the infrared light from the light source is irradiated to the sample cell. 2. The infrared gas analyzer according to claim 1, wherein said infrared gas analyzer controls said intermittent means. 前記信号処理手段は、基準ガスと試料ガスを透過したそれぞれの赤外光の前記検出器における検出値の比に基づいて測定ガス濃度を求める処理を行うものである請求項1又は2に記載の赤外線ガス分析計。3. The signal processing unit according to claim 1, wherein the signal processing unit performs a process of obtaining a measurement gas concentration based on a ratio of detection values of the infrared light transmitted through the reference gas and the sample gas at the detector. 4. Infrared gas analyzer.
JP2002345622A 2002-11-28 2002-11-28 Infrared gas analyzer Expired - Lifetime JP3941679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345622A JP3941679B2 (en) 2002-11-28 2002-11-28 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345622A JP3941679B2 (en) 2002-11-28 2002-11-28 Infrared gas analyzer

Publications (2)

Publication Number Publication Date
JP2004177323A true JP2004177323A (en) 2004-06-24
JP3941679B2 JP3941679B2 (en) 2007-07-04

Family

ID=32706762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345622A Expired - Lifetime JP3941679B2 (en) 2002-11-28 2002-11-28 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JP3941679B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125338A1 (en) * 2015-02-06 2016-08-11 株式会社 東芝 Gas analyzing method and gas analyzing device
CN109444064A (en) * 2018-12-25 2019-03-08 青岛海纳光电环保有限公司 Calibrating gas detection device and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125338A1 (en) * 2015-02-06 2016-08-11 株式会社 東芝 Gas analyzing method and gas analyzing device
CN106062534A (en) * 2015-02-06 2016-10-26 株式会社东芝 Gas analyzing method and gas analyzing device
JPWO2016125338A1 (en) * 2015-02-06 2017-04-27 株式会社東芝 Gas analysis method and gas analyzer
CN109444064A (en) * 2018-12-25 2019-03-08 青岛海纳光电环保有限公司 Calibrating gas detection device and system

Also Published As

Publication number Publication date
JP3941679B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
US7240535B2 (en) Method and apparatus for gas measurement at substantially constant pressure
JP3771849B2 (en) Infrared gas analysis method and apparatus
US8302461B2 (en) Gas detector having an acoustic measuring cell and selectively adsorbing surface
US20220074890A1 (en) System having a pre-separation unit
JP4025702B2 (en) Method and apparatus for analyzing sulfur component by ultraviolet fluorescence method
JP2002168776A (en) Environment monitoring method and device and semiconductor manufacturing device
JPH1082740A (en) Infrared gas analyzer
JP3809734B2 (en) Gas measuring device
JP2010523938A (en) Method for monitoring the concentration of dissolved substances in aqueous media
JP4042638B2 (en) Infrared gas analyzer
JP2004177323A (en) Infrared gas analyzer
JPH0512659B2 (en)
JP2011232300A (en) Monitoring system and monitoring method
JP4057659B2 (en) Infrared gas analyzer
JP3599599B2 (en) Gas concentration analyzer
JP2001324446A (en) Apparatus for measuring isotope gas
JPH09178655A (en) Infrared gas analyzer
JP4165341B2 (en) Infrared gas analyzer
JP2003215037A (en) Method and apparatus for hc analysis by ndir method
JP2005069874A (en) Gas concentration measuring apparatus
JPH11226341A (en) Method and apparatus for clarification of gas
JP3506578B2 (en) Substrate processing device and air concentration management system
JP4176535B2 (en) Infrared analyzer
JPH0933429A (en) Ozone densitometer
US20230258615A1 (en) Gas spectroscopic device and gas spectroscopic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Ref document number: 3941679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

EXPY Cancellation because of completion of term