JP3599599B2 - Gas concentration analyzer - Google Patents

Gas concentration analyzer Download PDF

Info

Publication number
JP3599599B2
JP3599599B2 JP14469999A JP14469999A JP3599599B2 JP 3599599 B2 JP3599599 B2 JP 3599599B2 JP 14469999 A JP14469999 A JP 14469999A JP 14469999 A JP14469999 A JP 14469999A JP 3599599 B2 JP3599599 B2 JP 3599599B2
Authority
JP
Japan
Prior art keywords
gas
ultraviolet
porous glass
absorption spectrum
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14469999A
Other languages
Japanese (ja)
Other versions
JP2000338040A (en
Inventor
祐子 上野
康司 村松
融 田中
孝好 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14469999A priority Critical patent/JP3599599B2/en
Publication of JP2000338040A publication Critical patent/JP2000338040A/en
Application granted granted Critical
Publication of JP3599599B2 publication Critical patent/JP3599599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大気汚染の原因となる希薄な有機ガスを、紫外・可視分光器の試料室内に置かれた紫外・可視光を透過する板状に研磨した多孔質ガラスに吸着捕集し、その後各ガス成分に固有な温度で加熱して脱着し、各過程において紫外・可視吸収スペクトルの測定をその場で測定を行い、強度の変化から有機ガスの種類と濃度を分析するガス濃縮分析装置に関するものである。
【0002】
【従来の技術】
大気汚染の原因となる有機ガスの分析においては、一般に分析対象ガスの濃度が希薄であるため、分析操作の前段にこの低濃度分析対象ガスの濃縮回収処理が必要となる。従来のガス濃縮分析装置においては、吸着捕集管に充填された吸着剤に分析対象ガスを吸着させ、その後に加熱脱着装置により分析対象ガスを高濃度な濃縮ガスとして回収し、分析装置に導入して分析する装置が最も一般的である。
【0003】
この従来のガス濃縮分析装置の使用手順とその問題について、紫外分光器等の分析手段を組み合わせたガス分光分析装置(特願平11−38606号)を例として、以下に簡単に説明する。分析したい場所において、分析対象の有機ガスを含んだ大気を捕集管に導入し、有機ガスを吸着剤に捕集する。その後、この捕集管を加熱することにより吸着剤に吸着されている有機ガスを濃縮ガスとして脱着させ、この濃縮ガスを紫外分光器等の分析装置へ導入して分析する。
【0004】
この手順において、次のような問題が生じる。すなわち、加熱脱着により回収したガスは、分析する前の漏れや壁面への吸着などの原因により濃度変化を生じやすいという問題がある。また濃縮ガスは長時間濃度を均一に保つことが困難であり、分光分析においては信号強度の時間変化が生じるため、積算時間を長くしてS/N比の向上をはかることが困難である。
【0005】
【発明が解決しようとする課題】
大気汚染有機ガスの分析には低濃度の分析対象ガスを分析の前段で濃縮回収する必要がある。しかし、上記のように捕集管を用いたガスの吸着捕集と加熱脱着による濃縮ガスの回収に引き続き分析を行う従来のガス濃縮分析装置では、分析装置に導入する際に濃度変化が生じたり積算によってS/N比の向上をはかることが困難であるなど、分析における感度と精度の向上に限界があった。
【0006】
本発明は上記の事情に鑑みてなされたもので、紫外・可視光を透過する多孔質ガラスを吸着捕集剤および分光セルとして用い、多孔質ガラス内に吸着したガスの紫外・可視スペクトルを濃縮ガスとして回収することなく分析することで回収後の濃度変化による定量誤差の低減をはかり、またガスを多孔質ガラス内に固定することにより時間による吸収強度変化が少なくなるため、積算時間を長くしてS/N比の向上をはかり、分析における感度と精度の向上を達成するガス濃縮分析装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために本発明のガス濃縮分析装置は、紫外・可視光を透過する多孔質ガラスに有機ガスを吸着させることにより所望の濃度に濃縮させる手段と、この手段で有機ガスを吸着した多孔質ガラスの紫外・可視吸収スペクトルを測定する手段と、有機ガスを吸着した多孔質ガラスを所定の温度で加熱して吸着した有機ガスを脱着させる加熱手段と、前記紫外・可視吸収スペクトルを測定する手段および前記加熱手段を制御して吸着した有機ガスの脱着前後の多孔質ガラスの紫外・可視吸収スペクトルの強度変化を加熱する温度を変えて繰り返し測定し、脱着前後の多孔質ガラスの紫外・可視吸収スペクトルの強度変化から脱着成分のみの紫外・可視吸収スペクトルを得ることにより吸着したガスの成分の種類と濃度を分析する手段とを具備することを特徴とするものである
【0011】
本発明は、多孔質ガラスを分析対象ガスの吸着捕集剤および分光セルとして用い、この多孔質ガラスに吸着捕集させた有機ガスを紫外・可視分光スペクトルによる分析を行うことを特徴とする濃縮分析装置である。本発明で用いる多孔質ガラスにはガラス表面での光散乱による透過光の強度減衰を抑えるために表面研磨を施した板状ガラスとするとともに、不純物による透過光の吸収減衰を抑えるために、不純物を極力取り除いた純度の高いガラスを用いるため、これを分光セルとして用いることが可能である。このため従来装置と比較して濃縮ガスとして回収することなくその場で紫外・可視分光スペクトルによる分析を行うことができ、分析装置導入時の濃度変化による定量誤差の低減をはかることができる。またガスを多孔質ガラス内に固定することにより時間による強度変化が少なくなり、積算時間を長くしてS/N比の向上をはかることができる。
【0012】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態例を詳細に説明する。
【0013】
図1は本発明の一実施形態例を示す構成説明図である。
【0014】
紫外・可視分光器1の試料室内にはガスフローチューブ6が設置され、このガスフローチューブ6には図示しない小型ポンプが連結される。前記ガスフローチューブ6内には所望の場所で所望の時間だけ分析対象有機ガスを含む大気を通気することができる。前記ガスフローチューブ6内には紫外・可視光を透過する多孔質ガラス4が設置され、この多孔質ガラス4に対象有機ガスを吸着捕集する。その後、紫外線光源2から発生した紫外線が入射スリット3を介して前記有機ガスを吸着した多孔質ガラス4を透過して回折格子7に照射される。前記回折格子7で回折した光は検出器8で検出されて電気信号に変換され、計数回路10を介してコンピュータ11に入力されて有機ガスを吸着した多孔質ガラス4の紫外・可視吸収スペクトルの測定を行う。この測定結果と予め測定しておいたガス吸着前の多孔質ガラスの紫外・可視吸収スペクトルとの差から吸着ガスの紫外・可視吸収スペクトルを得る。前記ガスフローチューブ6の外周には加熱装置5が前記多孔質ガラス4を加熱するようにして取り付けられており、前記加熱装置5は温度制御用電子回路9を介してコンピュータ11に接続されて温度制御される。加熱装置5を所定の温度に設定して多孔質ガラス4に吸着されている有機ガス分子を加熱により脱着し、脱着前後の紫外・可視吸収スペクトルの強度変化から脱着成分のみの紫外・可視吸収スペクトルを得る。これを分析したいガス成分の数だけ繰り返し、有機ガスの分析測定を行う。
【0015】
すなわち、紫外・可視光を透過する多孔質ガラスに有機ガスを吸着させることにより所望の濃度に濃縮させた後、この有機ガスを吸着した多孔質ガラスの紫外・可視吸収スペクトルを測定し、有機ガス吸着前の多孔質ガラスの紫外・可視吸収スペクトルとの差を計算することにより吸着したガスの種類と濃度を分析する。
【0016】
また、紫外・可視分光器1の試料室内において多孔質ガラスを吸着ガスに固有な温度で制御して加熱処理することにより吸着ガスを多孔質ガラスから脱着せしめ、吸着ガス脱着前後の紫外・可視吸収スペクトル強度の時間変化から脱着ガスの吸収減少を検出し、ガスの種類と濃度を特定する。
【0017】
さらに、紫外・可視分光器1の試料室内において多孔質ガラスの加熱温度を吸着ガスが十分脱着する温度で加熱処理することにより多孔質ガラスをその場で再生し、繰り返し測定が可能となるようにする。
【0018】
次に、多孔質ガラスを用いたガス濃縮分析法の効果を確認するため、例として紫外・可視光を透過する板状に研磨した多孔質ガラスに吸着した有機ガスの紫外吸収スペクトルと、吸着剤に有機ガスを吸着後、加熱脱着により濃縮回収したガスを測定した場合と比較し以下に示す。
【0019】
窒素ガスを用いて約5ppmの濃度に希釈したトルエンのガスを、本発明で用いる多孔質ガラスと参照のため従来装置で用いられている吸着剤を充填した濃縮捕集管にそれぞれ約5minだけ流すことにより両者にガスを採取した。ガスを吸着した多孔質ガラスの紫外吸収スペクトルから吸着前の多孔質ガラスの紫外吸収スペクトルを差し引いたスペクトルが図2(a)である。参照の吸着剤を200℃で15分間だけ加熱し、脱着により回収された濃縮ガスの紫外吸収スペクトルが図2(b)である。両者のスペクトルを比較すると、多孔質ガラスを用いた場合のスペクトルは時間によって強度変化がほとんどなく積算時間が稼げるのに対し、従来の吸着剤から回収した濃縮ガスは時間による強度変化が大きく積算時間を長くとることが難しいことが分かる。これから、多孔質ガラスを用いた場合はS/N比の向上が図れることが確認される。
【0020】
もう一つの多孔質ガラスを用いたガス濃縮分析法の効果を確認するため、試料ガスを採取直後の多孔質ガラスの紫外吸収スペクトルと、トルエンガスの脱着固有温度で加熱脱着後の多孔質ガラスの紫外吸収スペクトルを測定し、この前後の差スペクトル計算によって得られたトルエンガスの紫外吸収スペクトルを図3(a),(b)に示し、以下説明する。
【0021】
窒素ガスを用いてそれぞれ約5ppmの濃度に希釈したトルエンおよびo−キシレンの2成分混合ガスを、本発明で用いる多孔質ガラスに約5minだけ流すことによりガスを採取した。前記混合ガスを吸着した多孔質ガラスの紫外吸収スペクトルおよびトルエンガスを脱着固有温度で加熱脱着した後の多孔質ガラスの紫外吸収スペクトルが図3(a)である。前記混合ガスを吸着した多孔質ガラスの紫外吸収スペクトルからトルエンガスを加熱脱着後の多孔質ガラスの紫外吸収スペクトルを差し引いた紫外吸収スペクトルが図3(b)であり、試料採取時に吸着していたトルエンガス単成分の紫外吸収スペクトルに相当する。これを検出したいガス成分の数だけ繰り返すことにより、各ガスの種類と濃度の検出を行うことができる。多孔質ガラスは、分析終了時に加熱処理を行うことにより再生され、装置から取り外すことなく繰り返し使用が可能となる。
【0022】
【発明の効果】
以上説明したように、本発明は紫外・可視光を透過する多孔質ガラスを吸着剤および分光セルとして用い、吸着したガスの紫外・可視スペクトルを濃縮ガスとして回収することなく分析することで回収後の濃度変化による定量誤差の低減およびS/N比の向上をはかることができる。これらによって大気汚染有機ガス分析における感度と精度の向上を可能とする。
【0023】
また、本発明を用いれば従来装置のようなガス濃縮回収装置が不要となるため、非走査型分光器を用いた小型紫外・可視分光装置と組み合わせることにより、携帯可能な小型大気汚染有機ガス分析装置を構成することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態例を示す構成説明図である。
【図2】本発明の実施形態例を説明する特性図であり、(a)は本発明の多孔質ガラス上に吸着したトルエンの紫外吸収スペクトルであり、(b)は従来の吸着剤を用いて濃縮回収したトルエンガスの紫外吸収スペクトルである。
【図3】本発明の実施形態例で、加熱脱着法による多成分ガスからのトルエンガスの分離検出を説明する特性図であり、(a)は試料採取直後とトルエンガス加熱脱着後の測定により得られた紫外吸収スペクトルであり、(b)は加熱脱着前後の差スペクトル計算により得られたトルエンガスの紫外吸収スペクトルである。
【符号の説明】
1 紫外・可視分光器
2 紫外線光源
3 入射スリット
4 多孔質ガラス
5 加熱装置
6 ガスフローチューブ
7 回折格子
8 検出器
9 温度制御用電子回路
10 計数回路
11 コンピュータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention adsorbs and collects a dilute organic gas that causes air pollution to a porous glass polished into a plate that transmits ultraviolet and visible light, which is placed in a sample chamber of an ultraviolet and visible spectroscope, and thereafter, desorbed by heating at specific temperatures to the gas components, was measured to measure the ultraviolet-visible absorption spectrum in situ in the process, the gas enriched fraction to analyze the type and concentration of the organic gas from the change in intensity 析装 Related to the location.
[0002]
[Prior art]
In the analysis of an organic gas that causes air pollution, the concentration of the gas to be analyzed is generally low, so that a process of concentrating and recovering the low-concentration gas to be analyzed is required before the analysis operation. In conventional gas concentration analyzers, the gas to be analyzed is adsorbed on the adsorbent filled in the adsorption collection tube, and then the gas to be analyzed is recovered as a highly concentrated gas by a heat desorption device and introduced into the analyzer. The most common is a device that performs analysis.
[0003]
The procedure for using the conventional gas concentration analyzer and its problems will be briefly described below by taking a gas spectrometer (Japanese Patent Application No. 11-38606) as an example in which analysis means such as an ultraviolet spectrometer are combined. At the place where analysis is desired, the atmosphere containing the organic gas to be analyzed is introduced into the collection tube, and the organic gas is collected by the adsorbent. Thereafter, by heating the collection tube, the organic gas adsorbed by the adsorbent is desorbed as a concentrated gas, and the concentrated gas is introduced into an analyzer such as an ultraviolet spectrometer for analysis.
[0004]
In this procedure, the following problems occur. That is, there is a problem that the concentration of the gas recovered by the heat desorption tends to change due to leakage before analysis, adsorption to the wall surface, and the like. Further, it is difficult to keep the concentration of the concentrated gas uniform for a long time, and the signal intensity changes with time in the spectroscopic analysis. Therefore, it is difficult to increase the integration time to improve the S / N ratio.
[0005]
[Problems to be solved by the invention]
For the analysis of air polluting organic gas, it is necessary to concentrate and recover a low concentration of the gas to be analyzed in a stage prior to the analysis. However, as described above, in a conventional gas concentration analyzer that performs analysis following adsorption and collection of gas using a collection tube and recovery of concentrated gas by thermal desorption, a change in concentration occurs when the gas is introduced into the analyzer. It is difficult to improve the S / N ratio by integration, and there is a limit in improving sensitivity and accuracy in analysis.
[0006]
The present invention has been made in view of the above circumstances, and uses a porous glass that transmits ultraviolet and visible light as an adsorbent collector and a spectroscopic cell to concentrate the ultraviolet and visible spectra of a gas adsorbed in the porous glass. By analyzing without collecting as a gas, quantitative errors due to changes in concentration after collection are reduced, and by fixing the gas in the porous glass, the change in absorption intensity with time is reduced. aim to improve the S / N ratio Te, and an object thereof is to provide a gas enriched fraction 析装 location to achieve an improvement in sensitivity and accuracy in the analysis.
[0007]
[Means for Solving the Problems]
The gas concentration analyzer of the present invention in order to achieve the above object, and means Ru is concentrated to a desired concentration by adsorbing the organic gas in the porous glass that transmits ultraviolet-visible light, the organic gas in this way A means for measuring the ultraviolet / visible absorption spectrum of the adsorbed porous glass, a heating means for heating the porous glass adsorbing the organic gas at a predetermined temperature and desorbing the adsorbed organic gas, and the ultraviolet / visible absorption spectrum The intensity of the ultraviolet / visible absorption spectrum of the porous glass before and after desorption of the organic gas adsorbed by controlling the means for measuring and the heating means is repeatedly measured by changing the heating temperature, and the porous glass before and after desorption is measured. A method for analyzing the type and concentration of adsorbed gas components by obtaining an ultraviolet / visible absorption spectrum of only the desorbed component from the intensity change of the ultraviolet / visible absorption spectrum It is characterized in that it comprises and.
[0011]
The present invention provides an enrichment method comprising using a porous glass as an adsorption trapping agent and a spectroscopic cell for a gas to be analyzed, and analyzing the organic gas adsorbed and collected on the porous glass by an ultraviolet / visible spectrum. It is an analyzer. The porous glass used in the present invention is a plate-like glass whose surface is polished in order to suppress the intensity attenuation of transmitted light due to light scattering on the glass surface. Since highly pure glass from which is removed as much as possible is used, it can be used as a spectral cell. For this reason, compared with the conventional apparatus, it is possible to perform an analysis by an ultraviolet / visible spectrum without being recovered as a concentrated gas, and it is possible to reduce a quantitative error due to a change in concentration when the analyzer is introduced. In addition, by fixing the gas in the porous glass, the intensity change with time is reduced, and the integration time can be increased to improve the S / N ratio.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 is a configuration explanatory view showing an embodiment of the present invention.
[0014]
A gas flow tube 6 is installed in the sample chamber of the ultraviolet / visible spectroscope 1, and a small pump (not shown) is connected to the gas flow tube 6. The atmosphere containing the organic gas to be analyzed can be ventilated into the gas flow tube 6 at a desired place for a desired time. A porous glass 4 that transmits ultraviolet and visible light is installed in the gas flow tube 6, and a target organic gas is adsorbed and collected on the porous glass 4. Thereafter, the ultraviolet light generated from the ultraviolet light source 2 passes through the porous glass 4 adsorbing the organic gas through the entrance slit 3 and is irradiated on the diffraction grating 7. The light diffracted by the diffraction grating 7 is detected by a detector 8 and converted into an electric signal. The converted signal is input to a computer 11 via a counting circuit 10 and the ultraviolet / visible absorption spectrum of the porous glass 4 to which the organic gas is adsorbed. Perform the measurement. The ultraviolet / visible absorption spectrum of the adsorbed gas is obtained from the difference between this measurement result and the previously measured ultraviolet / visible absorption spectrum of the porous glass before gas adsorption. A heating device 5 is attached to the outer periphery of the gas flow tube 6 so as to heat the porous glass 4, and the heating device 5 is connected to a computer 11 via a temperature control electronic circuit 9 to control the temperature. Controlled. The heating device 5 is set at a predetermined temperature to desorb the organic gas molecules adsorbed on the porous glass 4 by heating, and the ultraviolet / visible absorption spectrum of only the desorbed component is determined from the intensity change of the ultraviolet / visible absorption spectrum before and after the desorption. Get. This is repeated by the number of gas components to be analyzed, and the analysis and measurement of the organic gas are performed.
[0015]
That is, after the organic gas is concentrated to a desired concentration by adsorbing the organic gas on the porous glass transmitting ultraviolet / visible light, the ultraviolet / visible absorption spectrum of the porous glass adsorbing the organic gas is measured, and the organic gas is absorbed. The type and concentration of the adsorbed gas are analyzed by calculating the difference between the ultraviolet and visible absorption spectra of the porous glass before adsorption.
[0016]
Further, the porous glass is heated and controlled at a temperature specific to the adsorbed gas in the sample chamber of the ultraviolet / visible spectrometer 1 so that the adsorbed gas is desorbed from the porous glass. The decrease in absorption of the desorbed gas is detected from the time change of the spectrum intensity, and the type and concentration of the gas are specified.
[0017]
Further, by heating the porous glass in the sample chamber of the ultraviolet / visible spectrometer 1 at a temperature at which the adsorbed gas is sufficiently desorbed, the porous glass is regenerated on the spot so that the measurement can be repeated. I do.
[0018]
Next, in order to confirm the effect of the gas concentration analysis method using porous glass, as an example, an ultraviolet absorption spectrum of an organic gas adsorbed on a porous glass polished into a plate shape that transmits ultraviolet and visible light, and an adsorbent The following shows a comparison with the case where a gas concentrated and recovered by heat desorption after adsorption of an organic gas is measured.
[0019]
Toluene gas diluted to a concentration of about 5 ppm with nitrogen gas is passed through the porous glass used in the present invention and the concentration collecting tube filled with an adsorbent used in a conventional apparatus for reference for only about 5 min each. Thereby, gas was sampled for both. FIG. 2A shows a spectrum obtained by subtracting the ultraviolet absorption spectrum of the porous glass before adsorption from the ultraviolet absorption spectrum of the porous glass to which the gas has been adsorbed. The reference adsorbent was heated at 200 ° C. for 15 minutes, and the ultraviolet absorption spectrum of the concentrated gas recovered by desorption is shown in FIG. 2 (b). Comparing the two spectra, the spectrum using porous glass shows little change in intensity with time, and the accumulation time can be obtained, whereas the concentration gas recovered from the conventional adsorbent has a large change in intensity with time and the integration time is large. It turns out that it is difficult to take long. From this, it is confirmed that when the porous glass is used, the S / N ratio can be improved.
[0020]
In order to confirm the effect of the gas concentration analysis method using another porous glass, the UV absorption spectrum of the porous glass immediately after sampling the sample gas and the porous glass after heating and desorption at the specific temperature for desorption of toluene gas were used. The ultraviolet absorption spectrum of the toluene gas obtained by measuring the ultraviolet absorption spectrum and calculating the difference spectrum before and after this is shown in FIGS. 3A and 3B and will be described below.
[0021]
Gases were collected by flowing a binary mixed gas of toluene and o-xylene, each diluted to a concentration of about 5 ppm with nitrogen gas, through the porous glass used in the present invention for about 5 minutes. FIG. 3A shows an ultraviolet absorption spectrum of the porous glass to which the mixed gas has been adsorbed and an ultraviolet absorption spectrum of the porous glass after toluene gas has been heated and desorbed at a desorption specific temperature. FIG. 3 (b) shows an ultraviolet absorption spectrum obtained by subtracting the ultraviolet absorption spectrum of the porous glass after the heating and desorption of toluene gas from the ultraviolet absorption spectrum of the porous glass to which the mixed gas has been adsorbed. This corresponds to the ultraviolet absorption spectrum of a single component of toluene gas. By repeating this for the number of gas components to be detected, the type and concentration of each gas can be detected. The porous glass is regenerated by performing a heat treatment at the end of the analysis, and can be used repeatedly without removing it from the apparatus.
[0022]
【The invention's effect】
As described above, the present invention uses a porous glass that transmits ultraviolet and visible light as an adsorbent and a spectroscopic cell, and analyzes the ultraviolet and visible spectrum of the adsorbed gas without collecting it as a concentrated gas. Quantitative error due to a change in the concentration of the compound can be reduced and the S / N ratio can be improved. These make it possible to improve sensitivity and accuracy in the analysis of air pollutant organic gas.
[0023]
In addition, since the present invention eliminates the need for a gas concentration and recovery device as in the conventional device, it can be used in combination with a small ultraviolet / visible spectrometer using a non-scanning spectrometer to provide a portable small air pollution organic gas analyzer. The device can be configured.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory view showing an embodiment of the present invention.
FIGS. 2A and 2B are characteristic diagrams for explaining an embodiment of the present invention. FIG. 2A is an ultraviolet absorption spectrum of toluene adsorbed on a porous glass of the present invention, and FIG. 5 is an ultraviolet absorption spectrum of toluene gas concentrated and recovered by the method.
FIG. 3 is a characteristic diagram illustrating separation and detection of toluene gas from a multi-component gas by a thermal desorption method according to an embodiment of the present invention. It is an ultraviolet absorption spectrum obtained, and (b) is an ultraviolet absorption spectrum of toluene gas obtained by difference spectrum calculation before and after thermal desorption.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 UV-visible spectroscope 2 Ultraviolet light source 3 Incident slit 4 Porous glass 5 Heating device 6 Gas flow tube 7 Diffraction grating 8 Detector 9 Temperature control electronic circuit 10 Counting circuit 11 Computer

Claims (1)

紫外・可視光を透過する多孔質ガラスに有機ガスを吸着させることにより所望の濃度に濃縮させる手段と、この手段で有機ガスを吸着した多孔質ガラスの紫外・可視吸収スペクトルを測定する手段と、有機ガスを吸着した多孔質ガラスを所定の温度で加熱して吸着した有機ガスを脱着させる加熱手段と、前記紫外・可視吸収スペクトルを測定する手段および前記加熱手段を制御して吸着した有機ガスの脱着前後の多孔質ガラスの紫外・可視吸収スペクトルの強度変化を加熱する温度を変えて繰り返し測定し、脱着前後の多孔質ガラスの紫外・可視吸収スペクトルの強度変化から脱着成分のみの紫外・可視吸収スペクトルを得ることにより吸着したガスの成分の種類と濃度を分析する手段とを具備することを特徴とするガス濃縮分析装置。Means for concentrating to a desired concentration by adsorbing an organic gas on porous glass that transmits ultraviolet and visible light, and means for measuring the ultraviolet and visible absorption spectrum of the porous glass that has absorbed the organic gas with this means, Heating means for heating the porous glass having the organic gas adsorbed thereto at a predetermined temperature to desorb the adsorbed organic gas, means for measuring the ultraviolet / visible absorption spectrum, and controlling the heating means for the adsorbed organic gas. The intensity change of the ultraviolet / visible absorption spectrum of the porous glass before and after desorption is repeatedly measured by changing the heating temperature, and based on the intensity change of the ultraviolet / visible absorption spectrum of the porous glass before and after desorption, the ultraviolet / visible absorption of only the desorbed component Means for analyzing the type and concentration of the component of the adsorbed gas by obtaining a spectrum.
JP14469999A 1999-05-25 1999-05-25 Gas concentration analyzer Expired - Fee Related JP3599599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14469999A JP3599599B2 (en) 1999-05-25 1999-05-25 Gas concentration analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14469999A JP3599599B2 (en) 1999-05-25 1999-05-25 Gas concentration analyzer

Publications (2)

Publication Number Publication Date
JP2000338040A JP2000338040A (en) 2000-12-08
JP3599599B2 true JP3599599B2 (en) 2004-12-08

Family

ID=15368229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14469999A Expired - Fee Related JP3599599B2 (en) 1999-05-25 1999-05-25 Gas concentration analyzer

Country Status (1)

Country Link
JP (1) JP3599599B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050201A (en) * 2001-08-08 2003-02-21 Toyota Motor Corp Analyzing method and device for adsorbing material
JP2005147962A (en) * 2003-11-18 2005-06-09 Takao Tsuda Optical gas concentration detector
JP5300668B2 (en) * 2009-09-04 2013-09-25 日本電信電話株式会社 Method for identifying benzene and toluene concentrations in liquid samples
JP6169374B2 (en) * 2013-03-04 2017-07-26 日野自動車株式会社 Sensor system
CN104614279B (en) * 2014-12-30 2017-04-12 海南中航特玻材料有限公司 Method for determining content of gas in vitreous body by using density process
GB2544507B (en) * 2015-11-18 2017-11-22 Servomex Group Ltd Method and system for reduction of influence of baseline distortion in absorption spectroscopy measurements
JP6681744B2 (en) * 2016-03-01 2020-04-15 旭化成エレクトロニクス株式会社 Mobile device
FR3088727B1 (en) * 2018-11-21 2022-08-05 Univ Aix Marseille Optical device for detecting volatile compounds or adsorbable gas and associated method for detecting and quantifying volatile compounds

Also Published As

Publication number Publication date
JP2000338040A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
US6112602A (en) Analytical apparatus and instrumentation for on-line measurement of volatile organic compounds in fluids
US6503758B1 (en) Systems and methods for measuring nitrate levels
US4293316A (en) Inlet system for a gas analyzer
JP2580988B2 (en) Organic matter analyzer and organic matter analysis method
JP3771849B2 (en) Infrared gas analysis method and apparatus
JP3599599B2 (en) Gas concentration analyzer
JP2000241313A (en) Gas spectrochemical analysis device
JP2010513898A (en) Detection device
JPH1082740A (en) Infrared gas analyzer
JPS61213655A (en) Thermal analyzing instrument provided with gas chromatograph and mass spectrometer
Lamotte et al. Evaluation of the possibility of detecting benzenic pollutants by direct spectrophotometry on PDMS solid sorbent
US20190137460A1 (en) Method for Identification and Quantification of Siloxanes in Gaseous Stream
CN209014526U (en) Gas chromatography-mass spectrometry for Organic Contamination of Groundwater signature analysis
Zhang et al. Real‐time monitoring of indoor organic compounds
TWI756766B (en) Analyzing method for gas chromatography-mass spectrometry data
KR101159078B1 (en) Analysis method of element mercury and mercury oxide using adsorbent and microwave
Münchmeyer et al. Online measurement of polycyclic aromatic hydrocarbons by fast GC/MS
JPH07270316A (en) Infrared gas analyzer
RU2390750C2 (en) Method of monitoring impurities in air
JP3033611B2 (en) Trace isotope analyzer
US20030138965A1 (en) Systems and methods for measuring nitrate levels
JP4235028B2 (en) Analysis method of air pollutants
JPH0251057A (en) Analysis for water absorbed on surface
JP2001235406A (en) Analyzer for gaseous organic compound
JPH0546500B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees