JP2004177185A - Inspection method and inspection device for substrate - Google Patents

Inspection method and inspection device for substrate Download PDF

Info

Publication number
JP2004177185A
JP2004177185A JP2002341451A JP2002341451A JP2004177185A JP 2004177185 A JP2004177185 A JP 2004177185A JP 2002341451 A JP2002341451 A JP 2002341451A JP 2002341451 A JP2002341451 A JP 2002341451A JP 2004177185 A JP2004177185 A JP 2004177185A
Authority
JP
Japan
Prior art keywords
substrate
conical
extension
angle
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002341451A
Other languages
Japanese (ja)
Inventor
Tetsuya Taguchi
哲也 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002341451A priority Critical patent/JP2004177185A/en
Publication of JP2004177185A publication Critical patent/JP2004177185A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inspect in a short time an in-plane distribution of an uneven shape formed on a surface of a substrate having a wide area, and to quantitatively inspect the uneven shape in a short time. <P>SOLUTION: In this inspection method for the substrate having a large number of circular-conical or pyramid-shaped protrusions 1 of half-apex angle α on its surface, the substrate is laid on a reference face 4, and light 2 is emitted from a prolonged line of half-apex angle α+β<SB>1</SB>from the reference face 4, and reflected light is detected by a camera 3 provided on an extended line of half-apex angle α-β<SB>2</SB>(β<SB>2</SB>=β<SB>1</SB>). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は基板の検査方法と検査装置に関し、特に表面に微細な突起を多数有する基板の検査方法や検査装置として好適な基板の検査方法と検査装置に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
太陽電池は表面に照射した太陽光などの光エネルギーを電気エネルギーに変換するものである。この電気エネルギーへの変換効率を向上させるため、従来から様々な試みがなされてきた。そのひとつに基板の表面に照射された光の反射を少なくする技術があり、照射された光の反射を低減することで電気エネルギーヘの変換効率を高めることができる。
【0003】
シリコン基板を用いて太陽電池素子を形成する場合に、基板の表面を水酸化ナトリウムなどのアルカリ水溶液でエッチングすると、表面に凹凸が形成されて基板の表面の反射を低減させることができる。
【0004】
例えば面方位が〈100〉面の単結晶シリコン基板を用いた場合は、このような方法でテクスチャー構造と呼ばれる凹凸を基板の表面に形成する。この凹凸が表面に均一に形成できないと、太陽電池表面の反射率を有効に低減させることができず、電気特性が向上しない。
【0005】
そこで、その形状を検査するには例えばSEMなどを用いて観察していた。しかし、近年太陽電池は生産コストを抑えるため、使用する基板が大型化しており、例えばSEMなどの観察領域の小さい装置で基板の全面を観察するには長時間を要する。また、量産する場合、基板を1枚ずつSEM観察することは困難であり、従来は目視による検査を実施していたが、観察者によって検査結果にバラツキが生じるという問題があった。
【0006】
本発明は、このような従来の問題点に鑑みてなされたものであり、大面積の基板の表面に形成された凹凸の形状の面内分布を短時間で検査したり、凹凸の形状の短時間で定量的に検査する方法と装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る基板の検査方法は、表面に円錐状もしくは角錐状の突起を多数有する基板の検査方法において、前記円錐状もしくは角錐状の錐面の母線に対する入射角θの延長線上から光を照射して反射光を反射角θの延長線上で受光することを特徴とする。
【0008】
また、請求項2に係る基板の検査方法は、表面に半頂角αの円錐状もしくは角錐状の突起を多数有する基板の検査方法において、前記基板を基準面上に載置し、この基準面から前記半頂角α+βの延長線上から光を照射して反射光を前記半頂角α−β(β=β)の延長線上に設置したカメラで受光することを特徴とする。
【0009】
また、請求項3に係る基板の検査装置は、表面に円錐状もしくは角錐状の突起を多数有する基板の検査装置において、前記円錐状もしくは角錐状の錐面の母線に対する入射角θの延長線上に光源を設置するとともに、この光源の反射光の反射角θの延長線上にカメラを設置したことを特徴とする。
【0010】
また、請求項4に係る基板の検査装置は、表面に半頂角αの円錐状もしくは角錐状の突起を多数有する基板の検査装置において、前記基板を基準面上に載置し、この基準面から前記半頂角α+βの延長線上に光源を設置するとともに、前記基準面から前記半頂角α−β(β=β)の延長線上にカメラを設置したことを特徴とする。
【0011】
上記基板の検査装置では、前記カメラで測定した前記基板表面の輝度を前記突起の形状の面内分布として表示装置に表示することができる。
【0012】
また、上記基板の検査装置では、前記光源がハロゲンランプであることが望ましい。
【0013】
【発明の実施の形態】
以下、本発明に係る基板の検査方法および検査装置の実施形態を添付図面に基づき詳細に説明する。図1は本発明に係る検査方法と検査装置を説明するための図である。図中の1は円錐状もしくは角錐状の突起、2は光源、3はカメラを示す。
【0014】
円錐状もしくは角錐状の突起1の錐面の母線mに対する入射角θの角度の延長線上に光源2を設置する。この光源2は平行光を発するものが望ましく、被測定物がシリコンの場合はハロゲンランプが適している。
【0015】
また、光源2の反射光の反射角θ(θ=θ)の延長線上にカメラ3を設置する。このカメラ3は輝度を数値化して測定できるものである。また輝度だけでなく色彩を数値化して測定できるものでもよい。 光源2から円錐状もしくは角錐状の突起1の錐面に入射角θで照射された平行光は反射角θで反射されてその反射光をカメラ3によって測定する。
【0016】
円錐状もしくは角錐状の突起1の錐面の母線mが直線の場合、入射角θと反射角θは等しくなるが、錐面の母線mが部分的に湾曲したり屈曲している場合などは必ずしも等しくならない。また、円錐状もしくは角錐状の突起1が基板の表面に多数ある場合、他の突起1の錐面とは異なる入射角θを有する突起1があると、その突起1は他の突起1の反射光との比較でその突起1の形状が異常であることを検知できる。つまり、この方法では、突起1の形状に部分的に異常がある場合や多数の突起1と比較して形状が異常な突起1があるかないかを検査することができる。したがって、本発明では錐面に対する入射角θとは予め設定された円錐状もしくは角錐状の突起1の母線に対する入射角をいい、反射角θとはあらかじめ設定された円錐状もしくは角錐状の突起1の母線に対する入射角をいう。
【0017】
図2は、本発明に係る他の基板の検査方法と検査装置を説明するための図である。図2においても1は円錐状もしくは角錐状の突起、2は光源、3はカメラを示し、4は基準面を示す。基準面4から円錐状もしくは角錐状の突起1の半頂角αの角度を中心として、半頂角α+βの角度の延長線上に光源2を設置する。また、半頂角α−β(β=β)の延長線上にカメラ3を設置する。
【0018】
このときも光源2は平行光を発するものが望ましく、カメラ3はその反射光の輝度の測定が可能なものである。
【0019】
また、円錐状もしくは角錐状の突起1の錐面の母線mが直線の場合、基準面4から半頂角αに対する所定角度のβとβは等しくなるが、錐面の母線mが部分的に湾曲したり屈曲している場合などは必ずしも等しくならない。また、円錐状もしくは角錐状の突起1が基板の表面に多数ある場合、他の突起1の母線mとは異なる入射角θを有する突起1があると、その突起1は他の突起1とは反射光の輝度が異なることになり、他の突起1の反射光との比較でその突起1の形状が異常であることを検知できる。したがって、本発明で半頂角αとは、あらかじめ設定された円錐状もしくは角錐状の突起1の半頂角をいう。
【0020】
この方法では、一つ一つの突起が設計どおりの突起になっているかどうかを測定できる。つまり、この方法によれば円錐状もしくは角錐状の突起1の半頂角αとのずれを測定することが可能となる。例えば面方位が〈100〉面の単結晶シリコン基板を水酸化ナトリウムなどのアルカリ水溶液でエッチングすると、表面に凹凸が形成されて基板の表面の反射を低減させることができる。これはシリコンの結晶方位によるエッチング速度の違いを利用したもので、エッチング速度の遅い〈111〉面でエッチングがとまるため、表面に凹凸を形成することができる。シリコンの〈111〉面は〈100〉面と27.37°の角度で存在する面であることから、本来半頂角aは35.26°となる。この角度をαとして光源2とカメラ3の位置を決めることにより、半頂角αのずれの発生を検知することができる。
【0021】
図1および図2には、1つの円錐状もしくは角錐状の突起1しか記載していないが、本発明は表面に円錐状もしくは角錐状の突起1を多数有する基板の凹凸形状の検査を可能にするものである。つまり、例えば15cm×15cmのようにある一定の面積をもった基板の表面に形成された突起1の形状およびその突起1の形状の均一性を短時間に測定することが可能になる。これは基板の全面に平行光を照射し、その基板の全面を画像として平面で取り込むことにより可能になる。このようにすることにより、基板の全面の状態を数値で管理できることになる。
【0022】
また、例えばこの画像に面内分布を表示させる機能を付加することにより、面内の形状分布を検査することが可能になる。つまり、カメラ3で測定した基板表面の輝度を突起1の形状の面内分布として表示装置(不図示)に表示する。したがって、この方法によれば、突起形状が所定値以上の面内分布があるものを排除することができ、例えば太陽電池の製造工程では反射率の低いシリコン基板を次工程に流すことができ、検査工程を迅速かつ正確に行うことができる。さらに、一度局所的にSEM観察や分光感度測定を行い理想状態を確認しておけば、その測定点と同一面の他の部分との違いや、他の面との違いを数値として得ることが可能になり、短時間でのより正確な検査を行うことが可能となる。
【0023】
【発明の効果】
以上のように、請求項1に係る基板の検査方法によれば、円錐状もしくは角錐状の錐面の母線に対する入射角θの延長線上から光を照射して反射光を反射角θの延長線上で受光することから、基板の表面の形状を簡易な方法で短時間に検査することができる。
【0024】
また、請求項2に係る基板の検査方法によれば、基板を基準面上に載置し、この基準面から前記半頂角α+βの延長線上から光を照射して反射光を前記半頂角α−β(β=β)の延長線上に設置したカメラで受光することから、基板の表面の形状を簡易な方法で短時間に検査することができるとともに、形成予定形状とのずれを検知することが可能となる。
【0025】
また、請求項3に係る基板の検査装置によれば、円錐状もしくは角錐状の錐面の母線に対する入射角θの延長線上に光源を設置するとともに、この光源の反射光の反射角θの延長線上にカメラを設置したことから、基板の表面の形状を簡易な方法で短時間に検査することができる。
【0026】
また、請求項4に係る基板の検査装置によれば、基板を基準面上に載置し、この基準面から前記半頂角α+βの延長線上に光源を設置するとともに、上記基準面から上記半頂角α−β(β=β)の延長線上にカメラを設置したことから、基板の表面の形状を簡易な方法で短時間に検査することができるとともに、形成予定形状とのずれを検知することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る基板の検査方法を説明するための図である。
【図2】本発明に係る基板の検査装置を説明するための図である。
【符号の説明】
1・・・円錐状もしくは角錐状の突起、2・・・光源、3・・・カメラ、4・・・基準面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for inspecting a substrate, and more particularly, to a method and an apparatus for inspecting a substrate suitable as an inspecting method and an inspecting apparatus for a substrate having many fine protrusions on its surface.
[0002]
2. Description of the Related Art
A solar cell converts light energy such as sunlight radiated to the surface into electric energy. Various attempts have been made in the past to improve the conversion efficiency into electric energy. One of the techniques is a technique for reducing the reflection of light applied to the surface of the substrate. By reducing the reflection of the applied light, conversion efficiency into electric energy can be increased.
[0003]
In the case where a solar cell element is formed using a silicon substrate, if the surface of the substrate is etched with an aqueous alkali solution such as sodium hydroxide, unevenness is formed on the surface, so that reflection on the surface of the substrate can be reduced.
[0004]
For example, when a single crystal silicon substrate having a <100> plane orientation is used, irregularities called a texture structure are formed on the surface of the substrate by such a method. If the irregularities cannot be formed uniformly on the surface, the reflectance of the solar cell surface cannot be effectively reduced, and the electrical characteristics will not be improved.
[0005]
Therefore, to inspect the shape, observation was performed using, for example, an SEM. However, in recent years, in order to suppress the production cost of the solar cell, the substrate to be used has been increased in size. For example, it takes a long time to observe the entire surface of the substrate using a device having a small observation area such as an SEM. In mass production, it is difficult to perform SEM observation of each substrate one by one. Conventionally, visual inspection has been performed, but there has been a problem that the inspection results vary depending on the observer.
[0006]
The present invention has been made in view of such conventional problems, and inspects the in-plane distribution of the shape of unevenness formed on the surface of a large-area substrate in a short time, or reduces the unevenness of the shape of unevenness. It is an object of the present invention to provide a method and an apparatus for performing a quantitative inspection by time.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a method for inspecting a substrate according to claim 1 is a method for inspecting a substrate having a large number of conical or pyramid-shaped protrusions on a surface, the method comprising: characterized in that by irradiating light from the extended line of the corner theta 1 receives light reflected by the extension of the reflection angle theta 2.
[0008]
According to a second aspect of the present invention, in the method for inspecting a substrate having a large number of conical or pyramid-shaped protrusions having a half-vertical angle α on the surface, the substrate is placed on a reference surface. Then, light is emitted from an extension of the half-vertical angle α + β 1 , and reflected light is received by a camera installed on an extension of the half-vertical angle α−β 22 = β 1 ).
[0009]
The inspection device substrate according to claim 3, in the inspection device for the substrate having a large number of conical or pyramidal protrusions on the surface, on an extension of the incident angle theta 1 with respect to the generatrix of the conical or pyramidal conical surface in addition to installing the light source, characterized in that a camera installed on the extension of the reflection angle theta 2 of the reflected light of the light source.
[0010]
According to a fourth aspect of the present invention, there is provided a substrate inspection apparatus having a large number of conical or pyramid-shaped protrusions having a half apex angle α on a surface thereof, wherein the substrate is placed on a reference surface. , A light source is installed on an extension of the half apex angle α + β 1 , and a camera is installed on an extension of the half apex angle α−β 22 = β 1 ) from the reference plane.
[0011]
In the substrate inspection apparatus, the luminance of the substrate surface measured by the camera can be displayed on a display device as an in-plane distribution of the shape of the protrusion.
[0012]
Further, in the substrate inspection apparatus, it is preferable that the light source is a halogen lamp.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a substrate inspection method and an inspection apparatus according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a view for explaining an inspection method and an inspection apparatus according to the present invention. In the figure, reference numeral 1 denotes a conical or pyramidal projection, 2 denotes a light source, and 3 denotes a camera.
[0014]
The light source 2 is placed on the extension of the conical or pyramidal incident angle theta 1 angle relative to the generatrix m conical surfaces of the protrusions 1. The light source 2 desirably emits parallel light. When the object to be measured is silicon, a halogen lamp is suitable.
[0015]
Further, the camera 3 is installed on an extension of the reflection angle θ 22 = θ 1 ) of the reflected light of the light source 2. This camera 3 can measure the luminance by digitizing it. Further, it is also possible to use a device which can measure not only the luminance but also the color by numerical values. The parallel light emitted from the light source 2 to the conical or pyramidal projection 1 at the incident angle θ 1 is reflected at the reflection angle θ 2 , and the reflected light is measured by the camera 3.
[0016]
When the generatrix m of the cone surface of the conical or pyramidal projection 1 is a straight line, the incident angle θ 1 and the reflection angle θ 2 are equal, but the generatrix m of the cone surface is partially curved or bent. Are not necessarily equal. Also, when there are a large number of conical or pyramidal projections 1 on the surface of the substrate, if there is a projection 1 having an incident angle θ 1 different from the conical surface of another projection 1, that projection 1 It can be detected that the shape of the projection 1 is abnormal by comparison with the reflected light. That is, according to this method, it is possible to inspect whether the shape of the protrusion 1 is partially abnormal or whether there is any protrusion 1 whose shape is abnormal compared to many protrusions 1. Therefore, in the present invention, the angle of incidence θ 1 with respect to the conical surface refers to the angle of incidence with respect to the bus of the conical or pyramid-shaped projection 1, and the angle of reflection θ 2 is the predetermined angle of cone or pyramid. This refers to the angle of incidence of the projection 1 with respect to the generating line.
[0017]
FIG. 2 is a diagram for explaining another substrate inspection method and inspection device according to the present invention. 2, 1 is a conical or pyramidal projection, 2 is a light source, 3 is a camera, and 4 is a reference plane. Around the angle of the half apex angle alpha of conical or pyramidal protrusions 1 from the reference plane 4, it is placed a light source 2 on the extension of the half apex angle alpha + beta 1 angle. Further, the camera 3 is installed on an extension of the half apex angle α-β 22 = β 1 ).
[0018]
Also at this time, it is desirable that the light source 2 emits parallel light, and the camera 3 can measure the luminance of the reflected light.
[0019]
When the generating line m of the conical or pyramidal projection 1 is a straight line, β 1 and β 2 at a predetermined angle from the reference plane 4 with respect to the half apex angle α are equal, but the generating line m of the conical surface is partially It is not always the same when it is curved or bent. Further, when there are a large number of conical or pyramidal projections 1 on the surface of the substrate, if there is a projection 1 having an incident angle θ 1 different from the generatrix m of the other projections 1, the projection 1 will Means that the luminance of the reflected light is different, and it can be detected that the shape of the projection 1 is abnormal by comparison with the reflected light of the other projections 1. Therefore, in the present invention, the half vertex angle α refers to the half vertex angle of the conical or pyramid-shaped projection 1 set in advance.
[0020]
In this method, it is possible to measure whether each projection is a designed projection. That is, according to this method, it is possible to measure the deviation from the half apex angle α of the conical or pyramidal projection 1. For example, when a single crystal silicon substrate having a <100> plane orientation is etched with an aqueous alkali solution such as sodium hydroxide, unevenness is formed on the surface, so that reflection on the surface of the substrate can be reduced. This utilizes the difference in the etching rate depending on the crystal orientation of silicon. Since the etching stops on the <111> plane where the etching rate is low, irregularities can be formed on the surface. Since the <111> plane of silicon exists at an angle of 27.37 ° with the <100> plane, the half apex angle a is originally 35.26 °. By determining the position of the light source 2 and the camera 3 with this angle as α, it is possible to detect the occurrence of the deviation of the half apex angle α.
[0021]
1 and 2 show only one conical or pyramid-shaped projection 1, the present invention enables inspection of the unevenness of a substrate having a large number of conical or pyramid-shaped projections 1 on its surface. Is what you do. That is, for example, the shape of the protrusion 1 formed on the surface of the substrate having a certain area such as 15 cm × 15 cm and the uniformity of the shape of the protrusion 1 can be measured in a short time. This is made possible by irradiating the entire surface of the substrate with parallel light and capturing the entire surface of the substrate as an image in a plane. By doing so, the state of the entire surface of the substrate can be managed by numerical values.
[0022]
Further, for example, by adding a function of displaying an in-plane distribution to this image, it is possible to inspect the in-plane shape distribution. That is, the luminance of the substrate surface measured by the camera 3 is displayed on a display device (not shown) as an in-plane distribution of the shape of the protrusion 1. Therefore, according to this method, it is possible to eliminate those having a protrusion shape having an in-plane distribution equal to or more than a predetermined value. For example, in a manufacturing process of a solar cell, a silicon substrate having a low reflectance can be flowed to the next process, The inspection process can be performed quickly and accurately. Furthermore, once the ideal state has been confirmed by local SEM observation and spectral sensitivity measurement, the difference between the measurement point and other parts on the same surface and the difference from the other surface can be obtained as numerical values. It is possible to perform more accurate inspection in a short time.
[0023]
【The invention's effect】
As described above, according to the substrate inspection method according to the first aspect , light is irradiated from an extension of the incident angle θ 1 with respect to the generatrix of the conical or pyramid-shaped pyramid, and the reflected light is reflected at the reflection angle θ 2 . Since the light is received on the extension line, the shape of the surface of the substrate can be inspected in a short time by a simple method.
[0024]
Further, according to the inspection method of a substrate according to claim 2, the substrate is placed on the reference plane, the half apex reflected light by irradiating light from the half apex angle alpha + beta 1 on an extension line from the reference plane Since the light is received by the camera installed on the extension of the angle α-β 22 = β 1 ), the shape of the substrate surface can be inspected in a short time by a simple method, and the The displacement can be detected.
[0025]
According to the substrate inspection apparatus of the third aspect, the light source is installed on an extension of the incident angle θ 1 with respect to the generating line of the conical or pyramid-shaped pyramid, and the reflection angle θ 2 of the reflected light of the light source is set. Since the camera is installed on an extension of the above, the shape of the surface of the substrate can be inspected in a short time by a simple method.
[0026]
Further, according to the inspection apparatus for a substrate according to claim 4, together with the substrate is placed on a reference plane, placing the light source on the extension of the half apex angle alpha + beta 1 from the reference plane, said from the reference plane Since the camera is installed on an extension of the half apex angle α-β 22 = β 1 ), the shape of the substrate surface can be inspected in a short time by a simple method, and the The displacement can be detected.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a substrate inspection method according to the present invention.
FIG. 2 is a view for explaining a substrate inspection apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Conical or pyramid-shaped protrusion, 2 ... Light source, 3 ... Camera, 4 ... Reference plane

Claims (6)

表面に円錐状もしくは角錐状の突起を多数有する基板の検査方法において、前記円錐状もしくは角錐状の錐面の母線に対する入射角θの延長線上から光を照射して反射光を反射角θの延長線上で受光することを特徴とする基板の検査方法。In the inspection method of a substrate having a large number of conical or pyramidal protrusions on the surface, the reflection angle by irradiating light reflected light from the extended line of the incident angle theta 1 with respect to the generatrix of the conical or pyramidal conical surface theta 2 A method for inspecting a substrate, wherein the light is received on an extension of the substrate. 表面に半頂角αの円錐状もしくは角錐状の突起を多数有する基板の検査方法において、前記基板を基準面上に載置し、この基準面から前記半頂角α+βの延長線上から光を照射して反射光を前記半頂角α−β(β=β)の延長線上に設置したカメラで受光することを特徴とする基板の検査方法。In the inspection method of a substrate having a large number of conical or pyramidal projections half apex angle alpha on the surface, placing the substrate onto the reference plane, the light from the half apex angle alpha + beta 1 on an extension line from the reference plane A method for inspecting a substrate, comprising irradiating and receiving reflected light with a camera installed on an extension of the half-vertical angle α-β 22 = β 1 ). 表面に円錐状もしくは角錐状の突起を多数有する基板の検査装置において、前記円錐状もしくは角錐状の錐面の母線に対する入射角θの延長線上に光源を設置するとともに、この光源の反射光の反射角θの延長線上にカメラを設置したことを特徴とする基板の検査装置。In the testing apparatus of the substrate having a large number of conical or pyramidal protrusions on the surface, as well as installing a light source on an extension line of the incident angle theta 1 with respect to the generatrix of the conical or pyramidal conical surface, the reflected light of the light source inspection device for the substrate, wherein a camera installed on the extension of the reflection angle theta 2. 表面に半頂角αの円錐状もしくは角錐状の突起を多数有する基板の検査装置において、前記基板を基準面上に載置し、この基準面から前記半頂角α+βの延長線上に光源を設置するとともに、前記基準面から前記半頂角α−β(β=β)の延長線上にカメラを設置したことを特徴とする基板の検査装置。In a substrate inspection apparatus having a large number of conical or pyramidal projections having a half vertex angle α on its surface, the substrate is placed on a reference plane, and a light source is placed on an extension of the half vertex angle α + β 1 from the reference plane. A substrate inspection apparatus, wherein the camera is installed on an extension of the half-vertical angle α-β 22 = β 1 ) from the reference plane. 前記カメラで測定した前記基板表面の輝度を前記突起の形状の面内分布として表示装置に表示することを特徴とする請求項3または4に記載の基板の検査装置。The substrate inspection apparatus according to claim 3, wherein the luminance of the substrate surface measured by the camera is displayed on a display device as an in-plane distribution of the shape of the protrusion. 前記光源がハロゲンランプであることを特徴とする請求項3ないし5のいずれかに記載の基板の検査装置。The substrate inspection apparatus according to any one of claims 3 to 5, wherein the light source is a halogen lamp.
JP2002341451A 2002-11-25 2002-11-25 Inspection method and inspection device for substrate Pending JP2004177185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341451A JP2004177185A (en) 2002-11-25 2002-11-25 Inspection method and inspection device for substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341451A JP2004177185A (en) 2002-11-25 2002-11-25 Inspection method and inspection device for substrate

Publications (1)

Publication Number Publication Date
JP2004177185A true JP2004177185A (en) 2004-06-24

Family

ID=32703809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341451A Pending JP2004177185A (en) 2002-11-25 2002-11-25 Inspection method and inspection device for substrate

Country Status (1)

Country Link
JP (1) JP2004177185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514155A (en) * 2003-12-12 2007-05-31 シェル・ゾラール・ゲーエムベーハー Pyramid size measurement on textured surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514155A (en) * 2003-12-12 2007-05-31 シェル・ゾラール・ゲーエムベーハー Pyramid size measurement on textured surface

Similar Documents

Publication Publication Date Title
US9752869B2 (en) Systems and methods for performing machine vision using diffuse structured light
US7705978B2 (en) Method and apparatus for inspection of multi-junction solar cells
EP3080568B1 (en) Apparatus and method for profiling a beam of a light emitting semiconductor device
EP1816463A1 (en) Method and apparatus for inspection of semiconductor devices
CN104808586A (en) Coating machine
CN102113106A (en) Apparatus for detecting micro-cracks in wafers and method therefor
TW200829909A (en) Device for detecting foreign object on flat panel display
CN108225630B (en) Optical material stress measuring system
JP2004177185A (en) Inspection method and inspection device for substrate
JP3943819B2 (en) Thin film thickness measuring method and apparatus using the same
Kokka et al. Fisheye camera method for spatial non-uniformity corrections in luminous flux measurements with integrating spheres
AU2004299652B2 (en) Measuring pyramid size on a textured surface
EP1662227B1 (en) Optical method and device for texture quantification of photovoltaic cells
JP2002329879A (en) Method for detecting defect in solar battery array
JP2006292668A (en) Surface inspection device and surface inspection method
JP2000002514A (en) Film thickness measuring apparatus, alignment sensor and alignment apparatus
CN211528226U (en) Screen appearance defect on-line measuring device
JP2006322871A (en) Inspection method of coating irregularity and its program
CN209559740U (en) OLED screen raised grain defect detection device
CN103151283A (en) Method and device for detecting crystalline orientation of polycrystalline silicon wafer
EP3702754A1 (en) Method for measuring undissolved material in polymer solution
CN112234942B (en) Solar simulator nonuniformity detection method and photochromic plate
CN110243510A (en) A kind of stress mornitoring instrument of novel transparent material
TWI273233B (en) Device of inspecting defects after breaking display panel and inspection method thereof
JP4617953B2 (en) Application unevenness detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403