JP2004177175A - X線断層像検査装置による電力機器の検査方法 - Google Patents

X線断層像検査装置による電力機器の検査方法 Download PDF

Info

Publication number
JP2004177175A
JP2004177175A JP2002341253A JP2002341253A JP2004177175A JP 2004177175 A JP2004177175 A JP 2004177175A JP 2002341253 A JP2002341253 A JP 2002341253A JP 2002341253 A JP2002341253 A JP 2002341253A JP 2004177175 A JP2004177175 A JP 2004177175A
Authority
JP
Japan
Prior art keywords
tomographic image
ray
power device
ray tomographic
inspecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002341253A
Other languages
English (en)
Other versions
JP4118657B2 (ja
Inventor
Tetsuaki Fukamachi
哲昭 深町
Osamu Hattori
修 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Kokusai Electric Inc
Original Assignee
Kansai Electric Power Co Inc
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Kokusai Electric Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2002341253A priority Critical patent/JP4118657B2/ja
Publication of JP2004177175A publication Critical patent/JP2004177175A/ja
Application granted granted Critical
Publication of JP4118657B2 publication Critical patent/JP4118657B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】電力機器の劣化の原因は、電力機器を構成する材料自体に発生するマイグレーション、クラック、ピンホールが原因と予測されているが、実際に使用電力機器でこれらの欠陥を直接観察したり、その成長過程や進行状況を把握することが困難であり、寿命予測も難しいものとなっていた。
【解決手段】電力機器用X線断層像検査装置において、上記電力機器の製造初期の所定部位のX線断層像データとその時の撮像条件を蓄積し、所定時間経過後に上記電力機器の上記所定部位を上記撮像条件と同じ条件で撮影したX線断層像データを蓄積し、上記製造初期の所定部位のX線断層像データと上記所定時間経過後の上記所定部位の撮影したX線断層像データとを比較し、上記比較結果より所定の判定基準に基づき、上記電力機器の劣化を検査するX線断層像検査装置による電力機器の検査方法。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は、X線断層像検査装置を用いた電力機器の検査方法に関し、特に、電力機器等の高電圧機器及び重量のある電力機器を非破壊により検査し、電力機器等の保守ならびに事故防止のための電力機器の検査方法に関するものである。
【0002】
【従来の技術】
各家庭、公共事業体、工場等へ供給される電力は、人里離れた発電所で発電され、昇圧され、市街地の近くの変電設備に送られ、ここで降圧され、更に、柱上変圧器で降圧され配電される。このような配電設備は、公共性が高く、このような配電設備に使用されている電力機器、例えば変圧器、碍子、避雷針部品等が万一故障すると、故障時の被害が極めて大きいことは言うまでもない。従って、故障を未然に防ぐためには、使用電力機器の寿命を、安全性を見込んで事前に設定し、それら電力機器が実際に劣化しているかどうかに関係無く交換を行っているのが現状である。例えば、高電圧トランスの場合、製造メーカの交換寿命は、5年と指定され、5年で交換を余儀なくされていた。また、このように使用電力機器の寿命を、安全性を見込んで事前に設定したとしても、これら電力機器の劣化の進行が予想したよりも早く、設定した寿命前に故障に到ることもあり、広範囲な停電事故を引き起こす原因にもなっていた。
【0003】
このような電力機器の劣化の原因は、製造メーカや電力会社等で日夜究明の努力がなされているが、未だ明らかにはなっていない。また、原因究明のため、使用電力機器を直接検査することも考えられるが、例えば、使用電圧が3,000Vの高圧で使用され、また、総重量も200Kg以上もの重さがあり、簡単に検査を行うこともできないという問題もある。従って、従来、製造メーカの指定する期間で交換する以外に方法がなく、使用電力機器の交換コストも高いものとなっていた。
【0004】
また、半導体等の欠陥を検査するX線断層像撮影装置は、従来から知られている(例えば、特許文献1参照)。しかし、従来の半導体等の欠陥を検査するX線断層像撮影装置は、検査対象物が極めて小さく、かつ、微細な内部構造の欠陥を検査する装置であって、大型で、重量の重い電力機器のような対象物を検査する装置は皆無であった。
【0005】
【特許文献1】
特開平5−312735号公報(第3−5頁、図1−5)
【0006】
【発明が解決しようとする課題】
本発明者らの研究によれば、このような電力機器の劣化の原因は、電力機器を構成する材料自体の劣化に起因することを見出した。この材料自体の劣化要因としては、変圧器を構成する巻き線の銅部材が絶縁樹脂の中に菌糸状に成長するマイグレーションや絶縁樹脂の中に発生するクラック、ピンホールが原因と予測されているが、実際に使用電力機器のマイグレーション、クラックあるいはピンホールを直接観察したり、その成長過程や進行状況を把握することが困難であり、寿命予測も難しいものとなっていた。
【0007】
本発明の目的は、X線により電力機器の劣化を直接観察し、劣化状態を検査することのできる電力機器の検査方法を提供することである。
【0008】
本発明の他の目的は、非破壊で電力機器の劣化を観察し、電力機器の保守ならびに事故防止のための電力機器の検査方法を提供することである。
【0009】
本発明の他の目的は、電力機器の保守、点検を可能にする電力機器の検査方法を提供することである。
【0010】
本発明の更に他の目的は、電力機器の寿命予測を行なえる電力機器の検査方法を提供することである。
【0011】
【課題を解決するための手段】
本発明のX線断層像検査装置による電力機器の検査方法は、垂直軸の回りに回転すると共に電力機器を搭載する載置台と、X線を発生すると共に、上記X線の光軸が上記垂直軸に対して傾斜するように配置されたX線発生部と、上記載置台に載置された電力機器を透過したX線像を光学像に変換する手段と、上記載置台の回転と同期して上記光学像を回転する手段と、上記回転された光学像を電気信号に変換する手段と、上記電気信号を処理してX線断層像を得る制御装置からなる電力機器用X線断層像検査装置において、上記電力機器の製造初期の所定部位のX線断層像データとその時の撮像条件を蓄積し、所定時間経過後に上記電力機器の上記所定部位を上記撮像条件と同じ条件で撮影したX線断層像データを蓄積し、上記製造初期の所定部位のX線断層像データと上記所定時間経過後の上記所定部位の撮影したX線断層像データとを比較し、上記比較結果より所定の判定基準に基づき、上記電力機器の劣化を検査するX線断層像検査装置による電力機器の検査方法で実現される。
【0012】
また、本発明のX線断層像検査装置による電力機器の検査方法において、所定の判定基準は、少なくともマイグレーション、クラックあるいはピンホールの内のいずれか1つの判定基準であるX線断層像検査装置による電力機器の検査方法により実現される。
【0013】
また、本発明のX線断層像検査装置による電力機器の検査方法において、上記電力機器の所定部位を上記撮像条件と同じ条件で撮影したX線断層像データを少なくとも2回以上記録し、上記電力機器のX線断層像データの比較結果から劣化の状況および上記電力機器の寿命を予測するX線断層像検査装置による電力機器の検査方法で達成される。
【0014】
また、本発明のX線断層像検査装置による電力機器の検査方法において、更に、上記電力機器と同種の別の電力機器の所定部位を上記撮像条件と同じ条件で撮影したX線断層像データを記録し、上記別の電力機器の所定部位のX線断層像データと上記電力機器の所定部位のX線断層像データとを比較し、上記電力機器の劣化の状況を検査することを特徴とするX線断層像検査装置による電力機器の検査方法で達成される。
【0015】
【発明の実施の形態】
本発明を説明する前に、本発明に使用されるラミノグラフィ方式のX線断層撮影の原理を図2に従って説明する。図2において、固定されたX線源21から放射状にX線22が発生する。撮影対象となる対象物23は、光軸24に対して傾斜した回転軸25の回りに回転する。検出器26は、回転軸25と平行な回転軸27の回りに対象物23と同期して回転する。光軸24と回転軸25の交点を含み、かつ、回転軸25に垂直な平面(以下焦点面と称する)28の投影像は、検出器26により静止した像として検出されるが、焦点面28以外の投影像は、回転している像として検出されるため、ぼやけて検出器26に検出される。このため、焦点面28以外、即ち、焦点面28から離れた構造体の撮影像は、ぼけて検出され、焦点面28上のX線断層像のみが鮮明に検出される。
【0016】
次に、上記X線断層撮影の原理を用いた本発明に使用するX線断層像検査装置の原理的構成を図3を用いて説明する。図3において、31は、X線を発生するX線管、32は、X線を発生するX線発生点、33は、X線管31から発生されたX線で、円錐状に照射されることを模擬的に示している。34は、撮像面35の中心位置とX線発生点32とを結ぶX線33の光軸を示す。36は、X軸、Y軸方向の移動機構で、X線の光軸34に撮影したい対象物(試料)の部位の位置ぎめを行なうためのXYテーブルである。37は、試料台であり、回転軸38を回転軸として回転する回転テーブルである。この回転軸38は、図2に示す回転軸25に対応する。なお、XYテーブル36および回転テーブル37には、断層面を変えるための回転面に垂直な方向の移動機構(図示せず)および幾何学的拡大を行う移動機構(図示せず)が設けられている。
【0017】
39は、撮影したい対象物であって、回転テーブル37の上に固定されている。40は、撮影したい対象物39の断層面を示し、X線の光軸34と回転テーブル37の回転軸38の交点を含む撮像面35に平行な平面である。なお、この断層面40は、上述した垂直な方向の移動機構により対象物39の断層像を撮影したい部位に移動することができ、また、XYテーブル36により対象物のX方向、Y方向の対象物の断層像を撮影したい部位に移動することができるように構成されている。
【0018】
41は、蛍光倍増管である。撮像面35は、X線蛍光物質で形成されており、X線のエネルギーの強弱を可視光に変換する機能を有るが、この撮像面35で変換される可視光は、微弱なため、蛍光倍増管41で光の強さを増幅する機能を有する。また、撮像面35は、電力機器のような大型の対象物、例えば、高圧トランスを対象とするような場合には、視野範囲のできるだけ大きいものが望まれる。現状では、蛍光面サイズが300mmφのものが市販されているので、これを使用できる。なお、このようなX線に感度を持つ撮像面35を含む蛍光倍増管41は、X線イメージインテンシファイアと呼ばれる。
【0019】
42は、像回転プリズムであり、像回転プリズムの回転軸43を回転軸として像回転プリズム42は回転する。なお、回転軸43は、図2に示す回転軸27に対応するが、回転速度と方向は、回転軸38に対して等速逆方向に回転している。従って、像回転プリズム42は、試料台である回転テーブル37と等速逆方向に回転し、かつ回転テーブル37の回転軸38と像回転プリズム42の回転軸43は、平行に保たれるように構成されている。
【0020】
44は、映像蓄積型の撮像装置、例えば、テレビカメラで、撮像面35に投射された対象物39の断層像が蛍光倍増管41で増幅され、像回転プリズム42で像回転され、対象物39の断層像がテレビカメラに撮影される。テレビカメラ44で撮影された断層像は、映像信号に変換され、伝送路45を経由して制御装置46、例えば、制御用計算機に入力される。制御装置46では、テレビカメラ44で撮影された断層像が映像信号として制御装置46の内部の記録装置(図示せず)に記録されると共に、必要により表示装置47に対象物の断層像が表示される。また、制御装置46は、対象物39の位置決めや断層像を撮影する対象物の部位を調節するために、XYテーブル36、回転テーブル37、断層面を変えるための回転面に垂直な方向の移動機構(図示せず)および幾何学的拡大を行う移動機構(図示せず)等を制御する機能を有している。更に、制御装置46は、後述するようにX線管31から対象物39に照射されるX線の強度、波長を制御するために管電圧、管電流が調整できるように構成されている。
【0021】
而して、図3に示す構成において、対象物の断層像が撮影できる理由を以下に説明する。図2で説明したように、X線管31のX線発生点32から放射状にX線33が放射され、撮影対象となる対象物39を照射する。X線33の光軸34と回転テーブル37の回転軸38の交点を含む対象物39の断層面40(焦点面)の断層像が撮像面35に投影される。撮像面35に投影された断層像は、蛍光倍増管41で増幅され、上記回転テーブル37と等速逆方向に回転する像回転プリズム42で断層像を逆回転させテレビカメラ44に入射される。ここで回転軸38に対してX線33の光軸34は、傾斜しているため、撮像面35への断層面40の投影像は、テレビカメラ44により撮影される断層像は、静止した像として撮影されるが、断層面40以外の投影像は、回転している像として検出されるため、ぼやけた断層像として検出される。
【0022】
次に、本発明の実施例を説明する前に、本発明の電力用機器の検査方法に上述したX線断層像検査装置が極めて適していることについて説明する。X線は、加速された電子ビームが金属のターゲットに衝突する際に発生する電磁波で、その波長は、0.0001Å〜10Å(1Å=1×10−10m)の範囲にある。従って、X線は、可視光線や紫外線よりも非常に短い波長を持っているため、X線断層像撮影法による非破壊検査に極めて適している。しかし、従来、X線断層像撮影法による非破壊検査が使用される分野は、半導体の欠陥検査や配線パターンの検査というような微細な部品の検査であった。
【0023】
それに対して、本発明が適用される電力用機器は、上述したように、変圧器、碍子、避雷針部品等の極めて大きく、また、重量のあるもので、このようなものにX線断層像撮影法による非破壊検査装置が使用できるかどうかの知見は、皆無であった。本発明者らは、実験を繰り返し、以下のような知見を得た。即ち、X線の線質には、物質の透過しやすさを表現する度合いがあり、軟X線は、物質を透過しにくく、減衰が大きいX線で、波長は長い。硬いX線は、物質を透過しやすく、減衰が小さいX線であるが、波長は短い。この関係は、表1の通りである。
【0024】
【表1】
Figure 2004177175
上記の特性からX線による投影を行なう際には、次のように考えられる。投影する対象物が薄かったり、質量の軽い対象物の場合、硬いX線を用いると減衰が少なく、対象物の厚さの差が出にくいコントラストのない撮影像となる。逆に、対象物が厚く、質量の重い物質の場合に軟X線を用いるとX線が透過しない。従って、X線による投影撮影を行なう場合、対象となる電力機器によってX線を発生させる管電圧を適切に選定する必要があることが見出され、電力機器である変圧器に使用されている絶縁樹脂の内部の状態、即ち、マイグレーション、クラックあるいはピンホール等を観察するには、軟X線領域を用いるのが効果的であることをつきとめた。
【0025】
実験によると、X線を発生するX線管の管電流と管電圧に対するX線の強度との関係は、図4、図5に示す通りである。図4は、管電流が一定の場合のX線の強さ(I)と波長λとの関係を示す図、図5は、管電圧が一定の場合のX線の強さ(I)と波長λとの関係を示す図である。図4から明らかなように、管電圧を高くすると波長の短い硬いX線が多くなり(図4の斜線で示す部分)、対象物を透過した時に減衰が少なくコントラストの弱い透過画像になり、断層像としては不適である。従って、図5に示すように透過する対象物の種類により管電圧を設定したら管電流を調節してX線強度を変え、観察しやすい透過象の明るさを調節する必要があることを示している。従って、本発明者らは、この知見にしたがい、図3に示す制御装置46によりX線管の管電圧および管電流を制御して、軟X線を発生する管電圧(図5に示す)に設定し、管電流を調整することによりX線強度を変え、観察しやすい断層像を得るように調節した。
【0026】
次に、本発明に使用するX線断層像検査装置を図8を用いて説明する。80は、X線81を放射状に発生するX線管で、変圧器を構成する樹脂絶縁部材のマイグレーション、クラックあるいはピンホール等を観察するために軟X線を発生するX線管である。82は、撮像ユニットで、詳細は、省略してあるが、図3に示す撮像面35、蛍光倍増管41、像回転プリズム42および映像蓄積型の撮像装置44から構成されている。84は、XYテーブルでこの上に高圧トランスのような重量物である検査対象物が載置され、対象物体をX方向、Y方向に移動するのに用いられる。84は、回転軸受け機構部でXYテーブル83およびXYテーブルに載せられた検査対象物を回転軸85(図2の回転軸25に相当する)を中心にして回転させるものである。なお、駆動部分等は省略されて示してある。86は、床のような土台であり、200Kg以上もある高圧変圧器の非破壊検査のためのX線断層像検査装置を設置するに十分な強度を持つよう構成されている。87は、土台86に設けられた穴部で、撮像ユニット82を配置するためのものである。88は、床面を示す。特に、回転軸受け機構部84でXYテーブル83およびXYテーブルに載せられた電力機器のような重量物を回転軸85を中心にして回転させるものであるため、極めて安定に回転させられるように回転軸受け機構部84、XYテーブル83は、床面88と共に、ほぼ水平に配置される。
【0027】
而して、このX線断層像検査装置は、X線管80を土台86の上方に配置し、撮像ユニット82は、土台86に設けられた穴部87内部に配置される。検査対象物を載置する試料台(XYテーブル83に相当する)は、この間に配置するが、本装置の場合、極めて重量の大きい変圧器等を載置するため、試料台が床面またはそれと同等な強度を持つ架台の上に設置するものとする。
【0028】
また、試料台の回転軸受け機構84は、床面に埋め込まれる構造とし、XYテーブル83は、床面上を移動する機構とする。これは、重量物を測定対象とするために工夫された構造であり、重量物の取付、重量を支える試料台、即ち、XYテーブル83、回転軸受け機構84の制作を容易にするためである。撮像ユニット82は、床面88より下に配置され、撮像ユニット82の像回転プリズム(図3の像回転プリズム42に対応する)と試料台の回転軸85を一致させるためのXY方向の調整機構(図示せず)を持つ。
【0029】
以上のように本発明に使用するX線断層像検査装置は、上述したように構成されているので、変圧器のような重量物の内部を非破壊で容易に検査できるX線断層像検査装置を実現することができ、従来非破壊で検査が不可能であった変圧器の内部の絶縁物の欠陥、例えば、マイグレーション、クラックあるいはピンホール等を容易に検査できるようになった。
【0030】
次に、本発明の一実施例について説明する。本実施例においては、図8に示すX線断層像検査装置の試料台83上に、例えば、検査すべき高圧変圧器を載置し、これにX線管80から軟X線を照射した場合の検査方法について説明する。図6は、試料台83上に載置された高圧変圧器の一部分、即ち、エポキシモールド変圧器の一部分の断面形状を示す。図6において、61は、エポキシモールド変圧器の一部分の断面を示し、62は、ブロック分割された銅線のコイルブロック、63は、コイル部分を絶縁するためにモールドされたエポキシ樹脂層である。64は、エポキシモールド変圧器の一部分61の円形部分の拡大図を示すもので、65は、銅線、66は、エポキシ樹脂層である。このエポキシモールド変圧器をX線で透視したときの断層像写真を図1、7および9に示す。なお、本検査においては、図3で説明したと同様に、X線管80の管電圧、管電流は、制御装置(図8では図示せず。図3の制御装置46に対応する。)で調整される。
【0031】
図7は、本発明により撮影したX線断層像写真で、X線管80の管電圧70KV、管電流80μAで透視した場合のエポキシモールド変圧器の一部分の断層像写真である。図7において、71は、銅線、72は、エポキシ樹脂層で、2層に見える部分は、樹脂の種類が異なるためである。図9は、図7の一部拡大図である。この写真からも分かるように、銅線の周辺部に樹脂が流れたような形跡が認められる。これはモールド形成時に、エポキシ樹脂を注入したときにできたものと考えられる。図7および図9から分かるように、このエポキシモールド変圧器のX線断層像写真では、マイグレーション、クラックあるいはピンホール等の内部欠陥は見当たらない。従って、劣化や欠陥のないエポキシモールド変圧器であることがわかる。
【0032】
而して、図1は、X線管80の管電圧70KV、管電流80μAで透視した場合のエポキシモールド変圧器の一部分の断層像写真の拡大図である。図において、1は、銅(Cu)からなる導電配線材であり、2は、エポキシ樹脂であり、導電材料1間を絶縁している。3は、マイグレーションで、高温多湿の環境下で銅が菌糸状に成長し、絶縁樹脂の中を伸びている状態が観察される。4は、絶縁樹脂を形成する際に生じた樹脂の流れを示すものである。5は、クラックで、経年変化により、樹脂の乾燥、膨張収縮の繰り返しで、樹脂の流れにそって発生したものと考えられる。図1から明らかなように、高圧変圧器の内部のエポキシ樹脂のマイグレーションやクラックが非破壊で、検査が可能であることがわかる。従って、このX線断層像検査方法を利用すれば、電力機器の劣化状態を定期的に検査し、電力機器の保守、寿命予測および事故の予防をすることが可能である。
【0033】
以下検査方法の一実施例について図10を用いて説明する。図10は、電力機器等の製品を製造工場等から出荷し、変電所等の現地に据え付け、その後、保守点検のために定期的に検査する方法のフローを示している。図10の左の欄は、出荷工場でのステップ、中央のデータサーバーの欄は、例えば、電力会社、保守点検サービス会社あるいは製造メーカ等の中にある管理部門のコンピュータ室の処理ステップ、右の欄は、変電所等の現地での処理ステップを示している。
【0034】
まず、検査方法のフローが開始100から始まり、初期データ作成101(ステップ1)に進む。このステップ1は、工場出荷時の製品検査時に各製品について前もって定められた保守点検項目に従って初期データの作成が行なわれる。
ステップ1:初期データの作成。初期データを作成し、データサーバー102に記録し、保管される。この初期データは、電力機器、例えば、高圧変圧器の出荷時の欠陥のないデータである。図8に示すX線断層像検査装置を用いて、高圧変圧器の出荷時に撮影する。撮影条件としては、検査画像、撮影日、撮影条件等、即ち、管電圧、管電流、積分回数、濃淡調整データ、撮影位置(XY座標、角度等)等、月あるいは年単位で同じ場所を撮影し、再現性よく比較することができるように定めることが必要である。このためには、図3の制御部46内の処理部および記録部が使用される。なお、撮影個所は、過去の経験から劣化が進むと考えられる場所に限定することが望ましい。その方が撮影時間も短く、またデータサーバー102の記録容量も少なくてすむ。このようにして撮影されたX線断層像は、撮影条件と共に、例えば、表2のようなテーブルにしてデータサーバー102に保管される。
【0035】
【表2】
Figure 2004177175
表2のテーブルについて説明する。撮影個所A、B、・・・Nは、例えば、図6に示すエポキシモールド変圧器のX線断層像撮影場所を示す。出荷時検査データは、製品を出荷する時点で、それぞれの撮影場所のX線断層像を図8のX線断層像検査装置で撮影した時のX線断層像写真である。例えば、写真A−1は、図9に示すX線断層像写真である。写真B−1、・・・・写真N−1も同様に、エポキシモールド変圧器の他の部位のX線断層像写真である。また、同時に、撮影条件のエリアには、撮影条件として、前述したような管電圧、管電流、積分回数、濃淡調整データ、撮影位置等を記録する。例えば、出荷時の写真A−1が撮影された撮影条件、即ち、管電圧70KV、管電流80μA等が記録される。
【0036】
検査終了した製品は、変電所等の現地に運ばれ据付け(103)られ、運用(104)が開始される。所定期間経過後に、定期検査データ作成105(ステップ2)が行われる。なお、この定期検査までに破損したものについては、破損106、検査データ修正107のステップにより、データサーバー102のデータが修正され、また、破損した電力機器は、破棄され、新しい電力機器と交換される。
【0037】
ステップ2:第1回検査データの収集。これは、運用中の定期検査であり、第1回検査データが、収集される。第1回検査データとしては、例えば、出荷5年後に同一のエポキシモールド変圧器をそれぞれの部位で、同一の撮影条件で撮影したX線断層像写真であり、第1回の検査データがデータサーバー102のテーブル表2に記録される。写真A−2は、エポキシモールド変圧器の撮影場所Aで、写真A−1と同じ条件で撮影したX線断層像写真である。例えば、図1に示すX線断層像写真がこれに相当する。表2に示す第2回検査データは、更に、3〜5年後の検査が必要な場合に、その時点の検査データが蓄積される場所である。なお、出荷時のX線断層像写真の撮像位置と第1回の検査データのX線断層像写真とは、撮像場所をほとんど同じにする必要があり、撮像条件を同じにしたとしても位置的に若干ずれる場合がある。従って、より精度を上げるためには、出荷時のX線断層像写真の画像と第1回の検査データのX線断層像写真の画像とを比較し、位置的に合致するかどうかを判定して、第1回の検査データのX線断層像写真を撮像するのが望ましい。
【0038】
次に、現品データとの比較108(ステップ3およびステップ4)では、同一製品の初期データと第1回検査データとが比較され、劣化の状況が判定される。
【0039】
ステップ3:画像比較。X線断層像写真の比較が行なわれる。製品の変化の判定は、出荷時に撮影した出荷時検査データの写真と第1回検査データの写真の比較により行なわれる。例えば、写真A−1(図9に示す)と写真A−2(図1に示す)との比較で行なわれる。比較方法には、種々の方法があるが、画像処理として良く知られた方法は、画像を画素(ピクセル)単位に分割し、画素単位に、輝度レベルで比較する方法、また、画像を複数のエリアに分割し、エリア毎に輝度レベルを比較する方法、あるいは画像のヒストグラムを算出し、ヒストグラムの形状を比較する方法が用いられる。あるいは検査制度を高めるために、これらを組み合わせて用いられる。比較の結果、写真A−1と写真A−2との間に、違いが生じた場合には、エポキシモールド変圧器を構成する物質に変化があったことが検出される。
【0040】
ステップ4:劣化の判定:上記画像比較から、例えば、輝度のレベル、ヒストグラムの形状が30%以上変化している場合は、劣化があったとして高圧変圧器を交換する等の対策をする。なお、どの程度の変化があれば、電力機器の交換が必要か否かの判定は、種々の実験データ、出荷時のデータおよび数年後の製品の検査データを蓄積し、これらを分析して、判断する必要があることは勿論であるが、本発明者らの検査データによれば、マイグレーション、クラック、ピンホールは次のようにして検出される。
【0041】
マイグレーションの検出:写真A−1と写真A−2を比較すると明らかなように、マイグレーション3は、樹脂中を成長するひげ状のもので、線材と同じ銅部材であり、樹脂部分より暗い画像となる。従って、比較画像の輝度レベルにより、判定できる。また、劣化の程度の判断としては、マイグレーション3の長さが導電配線部材1間の距離の50%を超える長さに成長すれば、高圧変圧器は、劣化し、交換時期である。
【0042】
クラックの検出:写真A−1と写真A−2を比較するが、明るさの補正が必要である。明るさの補正は、ヒストグラムの一致を取る際に、最も一致が取れた時の明るさ方向のオフセットを利用する。そして検出されるデータの内、一定面積以上のクラックがあれば交換する。あるいは、クラックは、樹脂が割れてできたもので、空気層と考えられ、樹脂部分の輝度レベルより明るい輝度レベルとなる。従って、差画像の輝度レベルを検出することで、クラックの判断ができるので、一定面積以上のクラックがあれば劣化と判断できる。
【0043】
ピンホールの検出:クラックの検出と同様であるが、形状が円形のものをピンホールと判定する。
【0044】
以上のようにして判定された結果により、電力機器の継続運用の可否判断110が行なわれ、まだ十分に運用に耐えるものについては、引き続き運用され、劣化しているものについては、破棄111に進み、新しいものと交換される。
【0045】
なお、図10においては、更に、現品外のデータとの比較109(ステップ5およびステップ6)が設けられている。これは、上述した現品データとの比較108とは別に、同種の別の電力機器、本例の場合は、前に検査した別のエポキシモールド変圧器の劣化データをデータサーバー102に保存しておき、前に検査した別のエポキシモールド変圧器の劣化データであるX線断層像写真と上記第1回の検査データのX線断層像写真とを比較し、劣化を判定する。勿論、現品外のデータとの比較109(ステップ5およびステップ6)は、必ずしも必要ではないが、劣化の判定の精度を高めるためには、必要なステップである。
【0046】
ステップ5:画像比較。ここでは、前に検査した別のエポキシモールド変圧器の劣化データであるX線断層像写真と上記第1回の検査データのX線断層像写真とを、例えば目視で比較し、両者に変化があるか否かを判断する。
【0047】
ステップ6:劣化の判定。ここではステップ5の画像比較から劣化の状況が把握される。即ち、過去の劣化の状況を示す写真と第1回の検査データのX線断層像写真とを目視で比較すれば、劣化の状況が一目で把握でき、高圧変圧器の劣化の判断が極めて容易となる。
【0048】
以上のようにして、マイグレーション、クラック、ピンホールの検出が、非破壊により行なえる。なお、差画像により検出されるものの内、樹脂の流れと思われるものも検出されるが、これは、目視にて判断される。勿論、画像が完全に一致していれば検出はされないし、また、適宜検出レベルに閾値を設けることにより除去できることは言うまでもない。
【0049】
以上説明したように、本発明のX線断層像検査方法は、非破壊で電力機器のような重量物の検査を行なうことができることが分かる。また、検査結果からマイグレーション、クラック、ピンホールの成長過程等を検査できるため、電力機器等の劣化の程度を判定することが可能となった。
【0050】
なお、X線断層像検査装置の制御部(図示せず)は、撮像ユニット82で撮像されたX線透過画像を蓄積装置に蓄積する機能の他に、必要に応じて、電子データとして解析し、高圧変電機器の材料劣化を解析する機能や、解析結果を保存あるいは管理する機能も有していることは言うまでもない。また、X線透過画像の電子データは、公衆回線(例えば、ADSL)により電力会社等の基地局に送ることも可能である。
【0051】
以上、本発明について詳細に説明したが、本発明は、ここに記載されたX線断層像検査方法に限定されるものではなく、上記以外に、非破壊により電力機器等の内部を検査する装置や方法に広く適応することが出来ることは言うまでも無い。
【0052】
【発明の効果】
以上説明したように、従来、電力機器等の高電圧機器、重量物の内部の劣化を直接検査する方法がなく、また、電力機器の劣化の原因が絶縁樹脂のマイグレーション、クラックあるいはピンホール等によるものと考えられていたが、これを直接検査する方法が今まで実現されていなかった。本発明は、電力機器の劣化を非破壊で直接観察することのできる電力機器用X線断層像検査方法を実現し、定期的に電力機器の検査が可能となり、使用電力機器の交換コストも安く、しかも大事故を未然に防ぐことができ、また、電力機器の寿命予測についても、種々の実験データ、出荷時のデータおよび数年後の製品の検査データを蓄積し、これらを分析して、判断することにより可能となる等極めて有用なX線断層像検査方法を実現した。
【図面の簡単な説明】
【図1】本発明の一実施例のX線断層像を示す図である。
【図2】本発明の原理を説明するための図である。
【図3】本発明に使用するX線断層像検査装置の原理的構成を示す図である。
【図4】本発明に使用するX線断層像検査装置の動作を説明するための管電流一定の場合のX線強度を示す図である。
【図5】本発明に使用するX線断層像検査装置の動作を説明するための管電圧一定の場合のX線強度を示す図である。
【図6】本発明の検査に使用された高圧トランスの一部の断面図を示す図である。
【図7】本発明の検査方法による断層像の一例を示す図である。
【図8】本発明に使用するX線断層像検査装置の一実を示す図である。
【図9】本発明の検査方法による断層像の一例を示す図である。
【図10】本発明の一実施例を示す図である。
【符号の説明】
1:導電配線材、2:絶縁樹脂、3:マイグレーション、4:樹脂の流れ、5:クラック、31、80:X線管、32:X線発生点、34:光軸、35:撮像面、36:XY移動機構、37:回転テーブル、38、81:回転テーブルの回転軸、39:対象物、40:断層面、41:蛍光倍増管、42:像回転プリズム、43:像回転プリズムの回転軸、44:映像蓄積型の撮像装置、46:制御装置、47:表示装置、86:土台、87:土台にあけられた穴部、88:床面。

Claims (4)

  1. 垂直軸の回りに回転すると共に電力機器を搭載する載置台と、X線を発生すると共に、上記X線の光軸が上記垂直軸に対して傾斜するように配置されたX線発生部と、上記載置台に載置された電力機器を透過したX線像を光学像に変換する手段と、上記載置台の回転と同期して上記光学像を回転する手段と、上記回転された光学像を電気信号に変換する手段と、上記電気信号を処理してX線断層像を得る制御装置からなる電力機器用X線断層像検査装置において、上記電力機器の製造初期の所定部位のX線断層像データとその時の撮像条件を蓄積し、所定時間経過後に上記電力機器の上記所定部位を上記撮像条件と同じ条件で撮影したX線断層像データを蓄積し、上記製造初期の所定部位のX線断層像データと上記所定時間経過後の上記所定部位の撮影したX線断層像データとを比較し、上記比較結果より所定の判定基準に基づき、上記電力機器の劣化を検査することを特徴とするX線断層像検査装置による電力機器の検査方法。
  2. 請求項1記載のX線断層像検査装置による電力機器の検査方法において、上記所定の判定基準は、少なくともマイグレーション、クラックあるいはピンホールの内のいずれか1つの判定基準であることを特徴とするX線断層像検査装置による電力機器の検査方法。
  3. 請求項1記載のX線断層像検査装置による電力機器の検査方法において、上記電力機器の所定部位を上記撮像条件と同じ条件で撮影したX線断層像データを少なくとも2回以上記録し、上記電力機器のX線断層像データの比較結果から劣化の状況および上記電力機器の寿命を予測することを特徴とするX線断層像検査装置による電力機器の検査方法。
  4. 請求項1記載のX線断層像検査装置による電力機器の検査方法において、更に、上記電力機器と同種の別の電力機器の所定部位を上記撮像条件と同じ条件で撮影したX線断層像データを記録し、上記別の電力機器の所定部位のX線断層像データと上記電力機器の所定部位のX線断層像データとを比較し、上記電力機器の劣化の状況を検査することを特徴とするX線断層像検査装置による電力機器の検査方法。
JP2002341253A 2002-11-25 2002-11-25 X線断層像検査装置による電力機器の検査方法 Expired - Lifetime JP4118657B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341253A JP4118657B2 (ja) 2002-11-25 2002-11-25 X線断層像検査装置による電力機器の検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341253A JP4118657B2 (ja) 2002-11-25 2002-11-25 X線断層像検査装置による電力機器の検査方法

Publications (2)

Publication Number Publication Date
JP2004177175A true JP2004177175A (ja) 2004-06-24
JP4118657B2 JP4118657B2 (ja) 2008-07-16

Family

ID=32703671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341253A Expired - Lifetime JP4118657B2 (ja) 2002-11-25 2002-11-25 X線断層像検査装置による電力機器の検査方法

Country Status (1)

Country Link
JP (1) JP4118657B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192308A (ja) * 2008-02-13 2009-08-27 Kansai Electric Power Co Inc:The 電解コンデンサの劣化診断装置および劣化診断方法
JP2011169711A (ja) * 2010-02-18 2011-09-01 Nagoya Electric Works Co Ltd 放射線検査処理装置、放射線検査処理方法および放射線検査処理プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192308A (ja) * 2008-02-13 2009-08-27 Kansai Electric Power Co Inc:The 電解コンデンサの劣化診断装置および劣化診断方法
JP2011169711A (ja) * 2010-02-18 2011-09-01 Nagoya Electric Works Co Ltd 放射線検査処理装置、放射線検査処理方法および放射線検査処理プログラム

Also Published As

Publication number Publication date
JP4118657B2 (ja) 2008-07-16

Similar Documents

Publication Publication Date Title
KR100978326B1 (ko) 불균일 실리콘 웨이퍼의 표면 검사 방법 및 표면 검사 장치
EP1081742B1 (en) Charged particle beam evaluation method
US6873680B2 (en) Method and apparatus for detecting defects using digital radiography
JP2016095300A (ja) 疲労試験装置
US5874309A (en) Method for monitoring metal corrosion on integrated circuit wafers
JP4118657B2 (ja) X線断層像検査装置による電力機器の検査方法
JP2005091199A (ja) 内部構造観察方法とその装置及び内部構造観察用試料ホルダー
CN106252259A (zh) 依靠激光结晶设施的Mura量化系统与依靠激光结晶设施的Mura量化方法
CN112697830A (zh) 基于x射线激发荧光的晶体缺陷密度空间分布测试系统与方法
JP4728148B2 (ja) X線検出器診断装置およびx線検出器診断方法
JP2013185960A (ja) デジタル・ラジオグラフィ検査の調整方法
JP4157754B2 (ja) 電力機器用x線断層像検査装置
JP2007242287A (ja) X線出力器診断装置およびx線出力器診断方法
CN205246559U (zh) 一种碲锌镉晶片腐蚀形貌的快速成像装置
JP2006030008A (ja) 電力ケーブルおよび接続部の欠陥検出方法
JP2008311364A (ja) 半導体検査装置
KR100812536B1 (ko) 위상차 x-선 래디오그래피 영상을 이용한 triso피복입자연료 피복층 두께 비파괴 측정방법 및 그 장치
CN105372266A (zh) 一种碲锌镉晶片腐蚀形貌的快速成像装置及方法
JP2011075401A (ja) インライン基板検査装置の光学系校正方法及びインライン基板検査装置
JP3690786B2 (ja) X線断層撮像装置
JP2006098270A (ja) 交流回転機の保全方法
JPH11118870A (ja) 高電圧電気機器の絶縁試験法および絶縁試験装置
JP2007155993A (ja) 電子写真用感光体劣化加速試験方法及び電子写真用感光体劣化加速試験機
Robinson et al. X-ray image processing for high voltage cable inspection
Robinson Automated high voltage cable joint inspection using x-ray techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

R150 Certificate of patent or registration of utility model

Ref document number: 4118657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term