JP2004177169A - Measuring apparatus for capacitor characteristics - Google Patents

Measuring apparatus for capacitor characteristics Download PDF

Info

Publication number
JP2004177169A
JP2004177169A JP2002341053A JP2002341053A JP2004177169A JP 2004177169 A JP2004177169 A JP 2004177169A JP 2002341053 A JP2002341053 A JP 2002341053A JP 2002341053 A JP2002341053 A JP 2002341053A JP 2004177169 A JP2004177169 A JP 2004177169A
Authority
JP
Japan
Prior art keywords
capacitor
temperature
measuring
terminal
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002341053A
Other languages
Japanese (ja)
Other versions
JP4120366B2 (en
Inventor
Naoki Kinoshita
直樹 木下
Toshihiro Ishii
俊宏 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002341053A priority Critical patent/JP4120366B2/en
Publication of JP2004177169A publication Critical patent/JP2004177169A/en
Application granted granted Critical
Publication of JP4120366B2 publication Critical patent/JP4120366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring apparatus for capacitor characteristics capable of preventing variations in measurement values in the temperature differences between a capacitor and measuring terminals and controlling temperature by a simple structure at low costs. <P>SOLUTION: The capacitor characteristics measuring apparatus for measuring electrical characteristics by bringing the measuring terminals 5 and 6 into contact with the capacitor C is provided with a blowing fan (temperature control means) 10 for performing control in such a way that the temperature difference at a contact part at least at contact between the capacitor C and the measuring terminal 6 may lie within a prescribed range. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、コンデンサに測定端子を当接させることにより電気的特性を測定するようにした特性測定装置に関する。
【0002】
【従来の技術】
一般に、コンデンサの漏洩電流を測定して良品,不良品の選別を行なう場合、コンデンサの各電極に測定端子を当接させた状態で直流電圧を印加して行なうようにしている。
【0003】
このような測定方法の場合、例えばコンデンサの自己発熱によって、測定値が変動するという問題がある。そこで測定値の変動を防止するための方法として、従来、例えば温度,風量を調節した温調ガスを電子部品の周辺や該電子部品に直接吹き付けることにより電子部品の温度を調節するようにした方法が提案されている(例えば、特許文献1,2参照)。
【0004】
【特許文献1】
特開2000−71746号公報
【0005】
【特許文献2】
特開2000−171520号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来方法のように、単に電子部品の温度,あるいはその周辺温度を調節するだけの方法では、特にコンデンサの漏洩電流を測定する場合には、測定値に変化が生じ易く、電気的特性を精度よく測定できないという問題がある。
【0007】
また、上記従来方法による場合は、温度センサからの温度テータに基づいて空気を冷却あるいは加熱するための設備,及び温度制御を行なうための制御機構が必要であり、コスト高になるという問題がある。
【0008】
本発明は、上記従来の状況に鑑みてなされたもので、低コストかつ簡単な構造でコンデンサの漏洩電流を測定する際の測定値の変動を防止できるコンデンサの特性測定装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
本件発明者らは、コンデンサの漏洩電流の測定値に変動が生じる原因について検討したところ、図9に示すように、コンデンサCと測定端子Tとの温度差が起因していることを見出した。即ち、コンデンサCと測定端子Tとに温度差が生じた状態で、測定端子TをコンデンサCに接触させると両者の間で熱の受け渡しが行われる。一般にコンデンサは温度に応じた容量値特性を有していることから、コンデンサの温度変化に応じて容量値も変化する。このような測定端子TとコンデンサCとの間で熱移動が生じているときに直流電圧を印加すると、コンデンサの容量が変化している最中に漏洩電流を測定することとなり、漏洩電流測定中にコンデンサの電荷の移動が生じ、その結果正しい漏洩電流を測定することができなくなるものと考えられる。この傾向は特に、高速でかつ連続してコンデンサの微小な漏れ電流を測定する場合に顕著である。
【0010】
そこで、請求項1の発明は、コンデンサに測定端子を当接させることにより電気的特性を測定するようにしたコンデンサの特性測定装置において、上記コンデンサと上記測定端子との当接時における温度差を所定範囲内に管理する温度管理手段を備えたことを特徴としている。
【0011】
ここで、上記温度管理を行なうとは、図8に示すように、例えば送風機構20を用いて、特にコンデンサCと測定端子Tとの当接部を冷却あるいは加熱して両者の当接部を略同じ温度にするということであり、温度管理を行なうための媒体としては気体,液体等を用いることが可能である。
【0012】
請求項2の発明は、請求項1において、上記温度管理手段は、送風ファンにより上記コンデンサと測定端子との当接部に向って送風することにより上記温度差を管理することを特徴としている。
【0013】
請求項3の発明は、請求項1又は2において、上記温度管理手段は、上記温度差を0.1〜3度の範囲内に管理することを特徴としている。
【0014】
請求項4の発明は、請求項1ないし3の何れかにおいて、上記温度管理手段は、少なくともコンデンサの容量値,当接時間に応じて送風速度を管理することを特徴としている。この場合、具体的には、コンデンサの容量値が大きいほど、また当接時間が短いほど送風速度を大きくする。
【0015】
【発明の作用効果】
請求項1の発明に係る特性測定装置によれば、コンデンサと測定端子との当接部の温度差が所定範囲内となるように温度管理を行なうようにしたので、両者の温度差が小さくなり、熱の受け渡しによるコンデンサの容量の変化を抑制できる。その結果、コンデンサの漏洩電流を正確に測定することができる。
【0016】
請求項2の発明では、送風ファンにより当接部に送風することにより温度差を管理するようにしたので、簡単な構造で両者の温度差を小さくすることができ、従来の温度センサ,冷却,加熱装置,あるいは温度制御装置を不要にでき、低コストでかつ簡単な構造で温度管理を行なうことができる。
【0017】
請求項3の発明では、温度差が0.1〜3度の範囲となるように管理したので、熱の受け渡しをほとんどなくすことができ、両者の温度差をより小さく管理することができ、大容量のコンデンサの場合でも漏洩電流を精度よく管理することかできる。
【0018】
請求項4の発明では、コンデンサの容量値,当接時間に応じて送風速度を管理するようにしたので、両者の温度差をより小さく管理することができ、測定精度をさらに向上できる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。
【0020】
図1及び図2は、本発明の第1実施形態によるコンデンサの特性測定装置を説明するための概略構成図である。
【0021】
本実施形態の特性測定装置1は、固定テーブル2の前面2aに配設された4連マルチ式の搬送テーブル3を間歇的に回転駆動することにより、コンデンサCを測定部4に搬送し、該測定部4にてコンデンサCの漏洩電流を測定して良品と不良品の選別を行い、この後、コンデンサCを部品取り出し部9に搬送し、外部に排出するように構成されている。なお、図1において、11はワーク投入ホッパ,12はワーク振分け搬送部,13はワーク移載部をそれぞれ示している。
【0022】
上記搬送テーブル3にはコンデンサCが収納される収納部3aが周方向に所定間隔毎に形成されており、該収納部3a内に供給されたコンデンサCは不図示の真空吸引により位置決め保持されている。上記コンデンサCは直方体状のセラミック体の両端面部に電極を形成したチップ型のもので、該電極が前,後方向を向くように収納配置されている。
【0023】
上記固定テーブル2の測定部4に臨む部分には固定端子5が配置されており、該固定端子5の搬送テーブル3を挟んだ前方には可動端子6が進退可能に配設されている。この可動端子6,固定端子5には直流電圧源7,漏洩電流検出回路8が接続されている。
【0024】
上記測定部4の固定端子5上にコンデンサCが搬送されると、可動端子6が前進してコンデンサCの前側電極に当接するとともに、後側電極を固定端子5に押しつける。この状態で直流電圧を印加して漏洩電流を測定する。
【0025】
そして、上記測定部4には温度管理手段としての送風ファン10か配設されている。この送風ファン10は、搬送テーブル3の正面,すなわち可動端子6が設置されている側に搬送テーブル3に向かって配置されており、該送風ファン10からの冷却風を、特にコンデンサCと可動端子6とに向けて吹き付ける。この場合に上記コンデンサCと可動端子6との当接部の温度差が0.1〜3度の範囲となるようにその風速及び風量が調整される。
【0026】
ここで、上記固定端子5とコンデンサCの後側電極とは該コンデンサCが測定部4に搬送される同時に当接し、両者間で熱の移動が開始されることから、可動端子6が前進してコンデンサCの前側電極に当接するまでの間に固定端子5とコンデンサCとの温度差はほとんど無視することが可能となるほど小さくなる。即ち、温度差による熱移動はコンデンサに測定端子が接触した瞬間が最も大きく、この後は時間の経過に伴って熱移動が減少して小さくなる。なお、コンデンサCと固定端子5との当接部についても冷却風を吹き付けるようにすればより一層効果的である。
【0027】
本実施形態装置によりコンデンサCの漏洩電流を測定するには、まず送風ファン10を回転駆動して冷却風を送風し、この状態で搬送テーブル3によりコンデンサCを測定部4に搬送する。そしてコンデンサCの後側電極が固定端子5に当接すると、可動端子6が前進して前側電極に当接する。この状態で直流電圧を印加して漏洩電流を測定する。この一連の動作中、送風ファン10による冷却風によって特にコンデンサCと可動端子6との当接部が冷却され、両者の温度差が小さくなる。
【0028】
このように本実施形態によれば、送風ファン10の冷却風によりコンデンサCと可動端子6とを両者の温度差が0.1〜3度の範囲内となるように温度管理を行なうようにしたので、コンデンサCと可動端子6との温度差を極めて小さくすることができ、熱の受け渡しによるコンデンサの容量の変化を抑制できる。その結果、コンデンサCの漏洩電流の測定精度を高めることができる。
【0029】
上記送風ファン10により冷却風を送風してコンデンサCと可動端子6との温度差を最小にする構造を採用したので、送風ファン10を追加するだけの簡単な構造で温度管理を行なうことができ、従来の温度センサ,冷却,加熱装置,あるいは温度制御装置を用いる場合に比べてコストを低減できる。
【0030】
本実施形態では、コンデンサCと可動端子6との当接部の温度差を0.1〜3度の範囲に管理したので、特に高速でかつ連続してコンデンサCの微小な漏れ電流を測定する場合に有効である。
【0031】
またコンデンサCの容量値,当接時間に応じて送風速度,送風量を管理するようにしても良く、このようにすれば両者の温度差をより小さく管理することができ、測定精度をさらに向上できる。
【0032】
図3は、本実施形態装置の効果を確認するために行った実験結果を示す図である。この実験では、多数のコンデンサを連続して測定するとともに、送風ファンにより冷却風を所定風速で送風し、測定開始時の電流値を測定するとともに、測定開始から10分経過毎の電流値の変動を測定して行った。また、比較するために、コンデンサの周辺温度を管理するために循環空冷した場合、及び冷却をしなかった場合についても同様に電流の変動を測定した。
【0033】
同図からも明らかなように、冷却しない場合には、10分経過後では40%を越える電流値の変動が生じている。また循環空冷した場合には、10分経過後には15%程度の電流値の変動が生じている。これに対して本実施形態では、10分経過しても5%程度の電流値の変動となっており、温度差を小さくすることによって測定値の精度が大幅に改善されていることが分かる。
【0034】
図4は、コンデンサ−測定端子間の温度差と風圧との関係を示す特性図である。これは、3.2mm×1.6mmのコンデンサを、熱抵抗×熱容量の値が約2になる測定端子とを搭載した特性測定装置を用い、送風ファン10の風量1m/minとして、コンデンサの特性測定においてコンデンサと測定端子との許容温度差を調べた。その結果、2.7μFのコンデンサでは許容温度差は1℃、10μFのコンデンサでは許容温度差は0.33℃であることがわかった。
【0035】
また10μFのコンデンサを上記条件で測定し、送風ファン10の風圧を変化させてコンデンサと測定端子との温度差を測定した。その結果、図4から、10μFのコンデンサを誤差なく測定するためには、送風ファン10の風圧を約24Pa以上にする必要があることがわかる。
【0036】
なお、上記第1実施形態では、送風ファン10を搬送テーブル3の正面側に配置した場合を説明したが、本発明の送風ファン10は、図5に示すように、搬送テーブル3の側方に配置してもよい。
【0037】
図6及び図7は、本発明の第2実施形態による特性測定装置を説明するための図である。
【0038】
本第2実施形態の特性測定装置は、搬送テーブル15の外周縁部にコンデンサCが収納される収納凹部15aを周方向に所定間隔毎に形成し、測定部4の下側に一対の測定端子16,16を昇降可能に配置し、上側にストッパ17を配設した構造となっている。そして各測定端子16を上昇させてコンデンサCを押し上げるとともに、ストッパ17に押し付け、この状態で直流電圧を印加して漏洩電流の測定を行なうように構成されている。
【0039】
そして、上記測定部4には送風管18が配置されている。この送風管18には不図示の送風ファンが接続されており、該送風管18から冷却空気を吹きつけることにより、コンデンサCと各測定端子16との当接部を同時に冷却し、両者の温度差をなくすようにしている。
【0040】
本実施形態においても、コンデンサCと各測定端子16との温度差を極めて小さくすることができ、上記第1実施形態と同様にコンデンサの漏洩電流を正確に測定することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態によるコンデンサの特性測定装置の全体図である。
【図2】上記特性測定装置の概略構成図である。
【図3】上記実施形態の効果を確認するために行った実験結果を示す特性図である。
【図4】上記実施形態の効果を確認するために行った実験結果を示す特性図である。
【図5】上記第1実施形態の変形例を示す概略構成図である。
【図6】本発明の第2実施形態による特性測定装置の概略構成図である。
【図7】上記特性測定装置のIV−IV 線断面図である。
【図8】本発明の作用効果を説明するための図である。
【図9】本発明の成立過程を説明するための図である。
【符号の説明】
1 特性測定装置
5,6 固定,可動端子(測定端子)
10 送風ファン(温度管理手段)
16 測定端子
18 空気配管(温度管理手段)
C コンデンサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a characteristic measuring device configured to measure an electric characteristic by bringing a measuring terminal into contact with a capacitor.
[0002]
[Prior art]
Generally, when a good product or a defective product is selected by measuring a leakage current of a capacitor, a DC voltage is applied while a measuring terminal is in contact with each electrode of the capacitor.
[0003]
In the case of such a measuring method, there is a problem that the measured value fluctuates due to, for example, self-heating of the capacitor. Therefore, as a method for preventing fluctuations in measured values, conventionally, for example, a method in which the temperature of an electronic component is adjusted by directly spraying a temperature-regulated gas whose temperature and air volume have been adjusted around the electronic component or on the electronic component has been adjusted. (For example, see Patent Documents 1 and 2).
[0004]
[Patent Document 1]
JP 2000-71746 A [0005]
[Patent Document 2]
JP 2000-171520 A
[Problems to be solved by the invention]
However, a method of simply adjusting the temperature of an electronic component or its surrounding temperature, as in the above-described conventional method, tends to cause a change in the measured value, particularly when measuring the leakage current of a capacitor. There is a problem that cannot be measured accurately.
[0007]
In addition, in the case of the above-described conventional method, equipment for cooling or heating the air based on the temperature data from the temperature sensor and a control mechanism for performing temperature control are required, and there is a problem that the cost is increased. .
[0008]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional circumstances, and has as its object to provide a capacitor characteristic measuring device capable of preventing a fluctuation of a measured value when measuring a capacitor leakage current with a low-cost and simple structure. And
[0009]
[Means for Solving the Problems]
The inventors of the present invention have studied the cause of the fluctuation in the measured value of the leakage current of the capacitor, and have found that the temperature difference between the capacitor C and the measurement terminal T is caused as shown in FIG. That is, when the measuring terminal T is brought into contact with the capacitor C in a state where a temperature difference occurs between the capacitor C and the measuring terminal T, heat is transferred between the two. Generally, a capacitor has a capacitance value characteristic according to a temperature, and therefore, the capacitance value also changes according to a temperature change of the capacitor. If a DC voltage is applied while heat transfer occurs between the measurement terminal T and the capacitor C, the leakage current is measured while the capacitance of the capacitor is changing. It is considered that the transfer of the charge of the capacitor occurs at this time, and as a result, the correct leakage current cannot be measured. This tendency is particularly remarkable when measuring a small leakage current of the capacitor at high speed and continuously.
[0010]
Therefore, an invention of claim 1 is a capacitor characteristic measuring device which measures an electrical characteristic by bringing a measuring terminal into contact with a capacitor, wherein a temperature difference at the time of contact between the capacitor and the measuring terminal is measured. It is characterized by comprising a temperature management means for managing the temperature within a predetermined range.
[0011]
Here, performing the temperature control means, as shown in FIG. 8, for example, using a blower mechanism 20 to cool or heat the contact portion between the capacitor C and the measurement terminal T, and to change the contact portion between the two. That is, the temperatures are set to be substantially the same, and a gas, a liquid, or the like can be used as a medium for performing the temperature management.
[0012]
A second aspect of the present invention is characterized in that, in the first aspect, the temperature management means manages the temperature difference by blowing air toward a contact portion between the capacitor and the measurement terminal by a blower fan.
[0013]
The invention of claim 3 is characterized in that, in claim 1 or 2, the temperature management means manages the temperature difference within a range of 0.1 to 3 degrees.
[0014]
According to a fourth aspect of the present invention, in any one of the first to third aspects, the temperature management means manages the air blowing speed at least according to a capacitance value of the capacitor and a contact time. In this case, specifically, as the capacitance value of the capacitor is larger and the contact time is shorter, the blowing speed is increased.
[0015]
Effects of the Invention
According to the characteristic measuring device of the first aspect of the present invention, the temperature is controlled such that the temperature difference between the contact portion of the capacitor and the measuring terminal is within a predetermined range. In addition, a change in the capacity of the capacitor due to heat transfer can be suppressed. As a result, the leakage current of the capacitor can be accurately measured.
[0016]
According to the second aspect of the present invention, the temperature difference is controlled by blowing air to the contact portion by the blower fan. Therefore, the temperature difference between the two can be reduced with a simple structure, and the conventional temperature sensor, cooling, A heating device or a temperature control device can be dispensed with, and the temperature can be controlled with a low-cost and simple structure.
[0017]
According to the third aspect of the present invention, since the temperature difference is controlled to be in the range of 0.1 to 3 degrees, the transfer of heat can be almost eliminated, and the temperature difference between the two can be controlled to be smaller. Even in the case of a capacitor having a large capacity, the leakage current can be managed accurately.
[0018]
According to the fourth aspect of the present invention, since the blowing speed is controlled according to the capacitance value and the contact time of the capacitor, the temperature difference between the two can be controlled to be smaller, and the measurement accuracy can be further improved.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0020]
FIG. 1 and FIG. 2 are schematic configuration diagrams for explaining a capacitor characteristic measuring device according to a first embodiment of the present invention.
[0021]
The characteristic measuring device 1 of the present embodiment transports the capacitor C to the measuring unit 4 by intermittently rotating the four-table multi-purpose transport table 3 disposed on the front surface 2a of the fixed table 2, and transports the capacitor C to the measuring unit 4. The measuring unit 4 measures the leakage current of the capacitor C to select a non-defective product from a non-defective product, and then conveys the capacitor C to the component take-out unit 9 and discharges the capacitor C to the outside. In FIG. 1, reference numeral 11 denotes a work input hopper, 12 denotes a work distribution / transport unit, and 13 denotes a work transfer unit.
[0022]
Storage portions 3a for storing the capacitors C are formed at predetermined intervals in the circumferential direction on the transport table 3, and the capacitors C supplied into the storage portions 3a are positioned and held by vacuum suction (not shown). I have. The capacitor C is a chip type in which electrodes are formed on both end surfaces of a rectangular parallelepiped ceramic body, and is housed and arranged so that the electrodes face forward and backward.
[0023]
A fixed terminal 5 is disposed at a portion of the fixed table 2 facing the measuring section 4, and a movable terminal 6 is disposed in front of the fixed terminal 5 with the transport table 3 interposed therebetween so as to be able to advance and retreat. A DC voltage source 7 and a leakage current detection circuit 8 are connected to the movable terminal 6 and the fixed terminal 5.
[0024]
When the capacitor C is conveyed onto the fixed terminal 5 of the measuring section 4, the movable terminal 6 moves forward and contacts the front electrode of the capacitor C, and presses the rear electrode against the fixed terminal 5. In this state, a DC voltage is applied to measure the leakage current.
[0025]
The measurement unit 4 is provided with a blower fan 10 as a temperature management unit. The blower fan 10 is disposed toward the transfer table 3 on the front side of the transfer table 3, that is, on the side where the movable terminals 6 are installed, and sends cooling air from the blower fan 10 to the condenser C and the movable terminal 3 in particular. Spray toward 6. In this case, the wind speed and air volume are adjusted so that the temperature difference between the contact portion between the capacitor C and the movable terminal 6 is in the range of 0.1 to 3 degrees.
[0026]
Here, the fixed terminal 5 and the rear electrode of the capacitor C come into contact at the same time when the capacitor C is conveyed to the measuring section 4 and the movement of heat starts between the two, so that the movable terminal 6 moves forward. Thus, the temperature difference between the fixed terminal 5 and the capacitor C before contacting the front electrode of the capacitor C becomes so small that it can be almost ignored. That is, the heat transfer due to the temperature difference is greatest at the moment when the measuring terminal comes into contact with the capacitor, and thereafter, the heat transfer decreases with time and decreases. In addition, it is more effective to blow the cooling air to the contact portion between the capacitor C and the fixed terminal 5.
[0027]
In order to measure the leakage current of the capacitor C by the present embodiment, first, the blower fan 10 is driven to rotate to blow cooling air, and in this state, the capacitor C is transported to the measuring unit 4 by the transport table 3. When the rear electrode of the capacitor C contacts the fixed terminal 5, the movable terminal 6 moves forward and contacts the front electrode. In this state, a DC voltage is applied to measure the leakage current. During this series of operations, the contact portion between the capacitor C and the movable terminal 6 is particularly cooled by the cooling air from the blower fan 10, and the temperature difference between the two is reduced.
[0028]
As described above, according to the present embodiment, the temperature of the condenser C and the movable terminal 6 is controlled by the cooling air of the blower fan 10 so that the temperature difference between the two is within the range of 0.1 to 3 degrees. Therefore, the temperature difference between the capacitor C and the movable terminal 6 can be made extremely small, and a change in the capacitance of the capacitor due to transfer of heat can be suppressed. As a result, the measurement accuracy of the leakage current of the capacitor C can be improved.
[0029]
Since the structure in which the cooling fan is blown by the blower fan 10 to minimize the temperature difference between the capacitor C and the movable terminal 6 is adopted, the temperature can be controlled with a simple structure simply by adding the blower fan 10. The cost can be reduced as compared with the case where a conventional temperature sensor, a cooling / heating device, or a temperature control device is used.
[0030]
In the present embodiment, since the temperature difference between the contact portions of the capacitor C and the movable terminal 6 is controlled in the range of 0.1 to 3 degrees, the minute leakage current of the capacitor C is measured at high speed and continuously. It is effective in the case.
[0031]
Further, the blowing speed and the blowing amount may be controlled according to the capacitance value and the contact time of the capacitor C. In this case, the temperature difference between the two can be controlled to be smaller, and the measurement accuracy is further improved. it can.
[0032]
FIG. 3 is a diagram illustrating the results of an experiment performed to confirm the effects of the device according to the present embodiment. In this experiment, a large number of capacitors were measured continuously, cooling air was blown at a predetermined wind speed by a blower fan, and the current value at the start of measurement was measured. Was measured. For comparison, current fluctuations were measured in the same manner when circulating air was cooled to control the temperature around the capacitor and when cooling was not performed.
[0033]
As is apparent from FIG. 6, when the cooling is not performed, the fluctuation of the current value exceeding 40% occurs after 10 minutes. In the case of circulating air cooling, a change in current value of about 15% occurs after 10 minutes. On the other hand, in the present embodiment, the current value fluctuates by about 5% even after 10 minutes have passed, and it can be seen that the accuracy of the measured value is greatly improved by reducing the temperature difference.
[0034]
FIG. 4 is a characteristic diagram showing the relationship between the temperature difference between the capacitor and the measurement terminal and the wind pressure. This is achieved by using a characteristic measuring apparatus equipped with a 3.2 mm × 1.6 mm capacitor and a measuring terminal having a thermal resistance × heat capacity value of about 2, and setting the air flow rate of the blower fan 10 to 1 m 3 / min. In the characteristic measurement, the allowable temperature difference between the capacitor and the measuring terminal was examined. As a result, it was found that the allowable temperature difference was 1 ° C. for the 2.7 μF capacitor and 0.33 ° C. for the 10 μF capacitor.
[0035]
Also, a 10 μF capacitor was measured under the above conditions, and the temperature difference between the capacitor and the measurement terminal was measured by changing the wind pressure of the blower fan 10. As a result, it can be seen from FIG. 4 that the air pressure of the blower fan 10 needs to be about 24 Pa or more in order to measure a 10 μF capacitor without error.
[0036]
In the first embodiment, the case where the blower fan 10 is arranged on the front side of the transfer table 3 has been described. However, the blower fan 10 of the present invention is arranged on the side of the transfer table 3 as shown in FIG. It may be arranged.
[0037]
6 and 7 are views for explaining a characteristic measuring device according to the second embodiment of the present invention.
[0038]
In the characteristic measuring device of the second embodiment, storage recesses 15a for storing the capacitors C are formed at predetermined intervals in the circumferential direction on the outer peripheral edge of the transfer table 15, and a pair of measurement terminals are formed below the measurement unit 4. 16 and 16 are arranged so as to be able to move up and down, and a stopper 17 is arranged on the upper side. Then, each measuring terminal 16 is raised to push up the capacitor C, and at the same time, is pressed against the stopper 17, and in this state, a DC voltage is applied to measure the leakage current.
[0039]
An air pipe 18 is arranged in the measuring section 4. A blower fan (not shown) is connected to the blower tube 18, and by blowing cooling air from the blower tube 18, the contact portion between the condenser C and each of the measurement terminals 16 is simultaneously cooled, and the temperature of both of them is reduced. I try to get rid of the difference.
[0040]
Also in the present embodiment, the temperature difference between the capacitor C and each of the measurement terminals 16 can be made extremely small, and the leakage current of the capacitor can be accurately measured as in the first embodiment.
[Brief description of the drawings]
FIG. 1 is an overall view of a capacitor characteristic measuring device according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of the characteristic measuring device.
FIG. 3 is a characteristic diagram showing the results of an experiment performed to confirm the effects of the embodiment.
FIG. 4 is a characteristic diagram showing the results of an experiment performed to confirm the effects of the embodiment.
FIG. 5 is a schematic configuration diagram showing a modification of the first embodiment.
FIG. 6 is a schematic configuration diagram of a characteristic measuring device according to a second embodiment of the present invention.
FIG. 7 is a sectional view taken along line IV-IV of the characteristic measuring device.
FIG. 8 is a diagram for explaining the operation and effect of the present invention.
FIG. 9 is a diagram for explaining a process of establishing the present invention.
[Explanation of symbols]
1 Characteristics measuring devices 5, 6 Fixed and movable terminals (measurement terminals)
10. Ventilation fan (temperature management means)
16 Measurement terminal 18 Air piping (Temperature control means)
C capacitor

Claims (4)

コンデンサに測定端子を当接させることにより電気的特性を測定するようにしたコンデンサの特性測定装置において、上記コンデンサと上記測定端子との少なくとも当接時における当接部の温度差を所定範囲内に管理する温度管理手段を備えたことを特徴とするコンデンサの特性測定装置。In a capacitor characteristic measuring device configured to measure an electrical characteristic by bringing a measuring terminal into contact with a capacitor, a temperature difference of a contact portion between the capacitor and the measuring terminal at least at the time of contact is set within a predetermined range. An apparatus for measuring characteristics of a capacitor, comprising a temperature management means for managing the temperature. 請求項1において、上記温度管理手段は、送風ファンにより上記コンデンサと測定端子との当接部に向って送風することにより上記温度差を管理することを特徴とするコンデンサの特性測定装置。2. The capacitor characteristic measuring device according to claim 1, wherein the temperature management means manages the temperature difference by blowing air toward a contact portion between the capacitor and the measurement terminal by a blower fan. 請求項1又は2において、上記温度管理手段は、上記温度差を0.1〜3度の範囲内に管理することを特徴とするコンデンサの特性測定装置。3. The capacitor characteristic measuring device according to claim 1, wherein the temperature management unit manages the temperature difference within a range of 0.1 to 3 degrees. 請求項1ないし3の何れかにおいて、上記温度管理手段は、少なくともコンデンサの容量値,当接時間に応じて送風速度を管理することを特徴とするコンデンサの特性測定装置。4. The capacitor characteristic measuring device according to claim 1, wherein the temperature management means manages the air blowing speed according to at least a capacitance value and a contact time of the capacitor.
JP2002341053A 2002-11-25 2002-11-25 Capacitor characteristic measurement device Expired - Lifetime JP4120366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341053A JP4120366B2 (en) 2002-11-25 2002-11-25 Capacitor characteristic measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341053A JP4120366B2 (en) 2002-11-25 2002-11-25 Capacitor characteristic measurement device

Publications (2)

Publication Number Publication Date
JP2004177169A true JP2004177169A (en) 2004-06-24
JP4120366B2 JP4120366B2 (en) 2008-07-16

Family

ID=32703528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341053A Expired - Lifetime JP4120366B2 (en) 2002-11-25 2002-11-25 Capacitor characteristic measurement device

Country Status (1)

Country Link
JP (1) JP4120366B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002391A (en) * 2009-06-20 2011-01-06 Murata Mfg Co Ltd Characteristic measuring device for electronic component
WO2014175014A1 (en) * 2013-04-25 2014-10-30 株式会社村田製作所 Electronic component testing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002391A (en) * 2009-06-20 2011-01-06 Murata Mfg Co Ltd Characteristic measuring device for electronic component
WO2014175014A1 (en) * 2013-04-25 2014-10-30 株式会社村田製作所 Electronic component testing device
JP5987977B2 (en) * 2013-04-25 2016-09-07 株式会社村田製作所 Electronic component testing equipment
US10060970B2 (en) 2013-04-25 2018-08-28 Murata Manufacturing Co., Ltd. Electronic component testing device

Also Published As

Publication number Publication date
JP4120366B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
KR0155994B1 (en) Heat treatment method and apparatus of samples
TW297986B (en)
US6406545B2 (en) Semiconductor workpiece processing apparatus and method
CN101600328B (en) Temperature control unit for electronic component, detection apparatus and handler apparatus
TWI619140B (en) Plasma processing device
JPS59127847A (en) Electrostatic chucking unit for sputtering device
US20070284085A1 (en) Plasma processing apparatus, electrode unit, feeder member and radio frequency feeder rod
CN101908459A (en) Mounting table mechanism and plasma processing apparatus
US6970007B2 (en) Semiconductor device low temperature test apparatus using electronic cooling element
US20230238261A1 (en) Temperature change rate control device, method, and semiconductor process apparatus
JP2004177169A (en) Measuring apparatus for capacitor characteristics
KR100463583B1 (en) Method of processing a ceramic capacitor
JP3931357B2 (en) Manufacturing method of semiconductor device
JP5522012B2 (en) Capacitance element characteristic measuring method and characteristic measuring apparatus
US11946813B2 (en) Battery module detecting high temperature of battery cell and method for detecting high temperature of battery cell
JP4859156B2 (en) Temperature characteristic test equipment
US20100090711A1 (en) System and method for testing an electrostatic chuck
JP2000252267A (en) Lower electrode structure and plasma process device using the same
JP3027500B2 (en) Electronic component supply method and apparatus in electronic component electrical characteristic measuring device
JP2004119630A (en) Wafer temperature adjustment apparatus
US6843926B2 (en) In-situ measurement of wafer position on lower electrode
JPH10127072A (en) Electrostatic attraction device and electrostatic attraction measurement method
JPH07211599A (en) Aging inspection apparatus for capacitor
JP3882246B2 (en) Electrolytic capacitor aging method
JP4239518B2 (en) Method of setting heat return condition of porcelain capacitor and method of manufacturing porcelain capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4120366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

EXPY Cancellation because of completion of term