JP2004176705A - Hydraulic power generating device - Google Patents

Hydraulic power generating device Download PDF

Info

Publication number
JP2004176705A
JP2004176705A JP2003069501A JP2003069501A JP2004176705A JP 2004176705 A JP2004176705 A JP 2004176705A JP 2003069501 A JP2003069501 A JP 2003069501A JP 2003069501 A JP2003069501 A JP 2003069501A JP 2004176705 A JP2004176705 A JP 2004176705A
Authority
JP
Japan
Prior art keywords
water
vacuum chamber
vacuum
hydraulic
hydraulic power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003069501A
Other languages
Japanese (ja)
Other versions
JP4287172B2 (en
Inventor
Mokichi Takahashi
茂吉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Techno Co Ltd
Original Assignee
Asahi Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Techno Co Ltd filed Critical Asahi Techno Co Ltd
Priority to JP2003069501A priority Critical patent/JP4287172B2/en
Publication of JP2004176705A publication Critical patent/JP2004176705A/en
Application granted granted Critical
Publication of JP4287172B2 publication Critical patent/JP4287172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic power generating device for increasing production of electricity, by utilizing conventional hydraulic power generating equipment. <P>SOLUTION: In the hydraulic power generating device, water is guided by a pipe 2 having water head difference to rotate a hydraulic turbine, so as to drive a generator (not shown in the figure) for generating electric power. The hydraulic power generating device is provided with a vacuum pump 5 for making suction force act on the water in the pipe 2 from the downstream of the hydraulic turbine 3 to increase a rotational speed of the hydraulic turbine 3. A vacuum chamber 4 communicating to the inside of the pipe 2 is disposed to the downstream of the hydraulic turbine 3, and a vacuum pump 5 is connected to the vacuum chamber 4. A drainage pump 6 is disposed to the downstream of the vacuum chamber 4 or the inside of the vacuum chamber 4 to perform drainage for securing a nearly vacuum area in the vacuum chamber 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自由落下により得られる水の力だけでなく、流水に勢いをつけた結果得られる水の力をも用いた全く新しいタイプの水力発電装置に関する。
【0002】
【従来の技術】
従来の水力発電装置としては、例えば、水力発電所に設けられるものであって、ダム堤体部を主要部とする水槽と、水槽から取水口を通じて排出される発電に用いられる流水を水車まで導く水圧管路と、水圧管路における流水により回転する水車と、水車により駆動する発電機とを備えるものが開示されている(例えば、非特許文献1参照。)。
【0003】
【非特許文献1】
土木学会編,「土木工学ハンドブックII」,第四版,技報堂出版,1993年11月20日,p.1670
【0004】
【発明が解決しようとする課題】
ところで、近年、地球温暖化防止に関して締結された京都議定書等を契機として、水力発電に関する新たな需要が喚起されてきている。
しかしながら、従来の水力発電装置では、水圧管路において取水口から水車まで十分な発電を行うための落差が必要であり、このような落差は、通常急峻な地形を利用したダム等の建設により相当の資金、資材、労働力の投入があってはじめて確保されるものであり、新たな水力発電装置の建設でもってかかる需要に応えることは事実上非常に困難である。
そこで、本発明の課題は、従来の水力発電設備を用いたまま発電量をアップさせることである。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明に係る水力発電装置は、水頭差を設けた管路により水を導いて水車を回転させることで発電機を駆動して発電する水力発電装置において、水車の下流側から管路内の水に真空吸引力を作用させて水車を増速回転させる真空吸引ポンプを設けたことを特徴としている。
【0006】
このような水力発電装置によれば、従来の水力発電設備により確保された水頭差によるだけでなく、水車の下流側から真空吸引ポンプで管路内の水に真空吸引力を作用させることにより水車を増速回転させられるので、従来の水力発電設備を用いたまま発電量がアップすることとなる。
【0007】
このような技術的手段において、真空吸引ポンプが発揮する機能を担保することとして、より確実に発電量がアップするようにする観点からすれば、水車の下流側に管路内に連通する真空室を設け、この真空室に真空吸引ポンプを接続したものであることが好ましい。
【0008】
ここで、真空室としては、管路の内部に連通するものであり、流水に勢いをつけて水車を回転させ得るものであれば、どのような構造を用いているかなどの別を問わず、配備する箇所数も適宜選定して差し支えない。
【0009】
ただし、真空室及び真空吸引ポンプが発揮する機能を担保することとして、より確実に発電量がアップするようにする観点からすれば、真空室は、管路のうち水車の下流側から上方に突出するよう管路に取り付けられるものであり、真空吸引ポンプは、真空室の内部に水を保持しながら、余りの部分をほぼ真空に維持するものであることが好ましい。
【0010】
この場合において、真空室及び真空吸引ポンプが発揮する機能を担保することとして、発電量のアップ効果がより一層確実に得られるようにする観点からすれば、真空室の下流側もしくは真空室の内部に真空室内のほぼ真空な領域を確保するための排水を行う排水ポンプを設けたものであることが好ましい。
【0011】
【発明の実施の形態】
以下、添付図面に基づいて本発明の実施の形態を詳細に説明する。
【0012】
なお、ここでは、水力発電装置が揚水式発電所において用いられる場合について説明するが、これに限られるものではなく、流込み式発電所、調整池式発電所、貯水式発電所その他の発電所において用いられる場合でも、以下の説明が妥当する。
【0013】
図1は本発明の第1の実施の形態に係る水力発電装置の全体構成を示す図(図1(a)は断面図、図1(b)は平面図)、図2は同水力発電装置の部分構成を示すブロック図である。
【0014】
なお、これらの図において、符号21は、発電に用いられた流水が放流されることとなる下部貯留池、を示している。
【0015】
本実施の形態において、水力発電装置は、図1に示すように、水頭差を設けた管路2により水槽としての上部貯水池1からの水を導いて水車3を回転させることにより発電機(図示外)を駆動して発電するものであり、水車3の下流側から管路2の内部を真空吸引して水車を増速回転させる真空吸引ポンプ5を設けたものとして構成されている。
【0016】
具体的には、この水力発電装置は、同図に示すように、揚水式発電所に設けられるものであって、上部貯水池1と、導水トンネル2a及び水圧管路2bからなる管路2と、水車3と、発電機と、真空室4と、真空吸引ポンプ5と、排水ポンプ6とを備えるものとして構成されている。
【0017】
すなわち、水力発電装置は、同図に示すように、上部貯水池1と、導水トンネル2a及び水圧管路2bからなる管路2と、水車3と、発電機とからなる従来の水力発電設備に、新たな構成要素として、真空室4と、真空吸引ポンプ5と、排水ポンプ6とを付加してなるものであり、従来の水力発電設備を用いている。
【0018】
以下、これらの各構成要素についてさらに詳細に説明する。
【0019】
(1)上部貯水池1
上部貯水池1は、図1に示すように、導水トンネル2a及び水圧管路2bからなる管路2に対して発電に用いられる水を排出させる排出口1aが設けられるものとして構成されている。
【0020】
ここで、この排出口1aは、上部貯水池1における貯留水の水面から渦流が発生しない程度の深度において配設されている(図1参照)。換言すれば、この排出口1aは、後記する真空吸引ポンプ5の発揮する機能を妨げない程度の深度において配設されている。
【0021】
すなわち、このような排出口1aによれば、発電に用いられる流水を排出するに際して管路2の内部にエアーが混入する事態が有効に回避されることとなり、これにより、発電量のアップ効果が減殺されないこととなる。
【0022】
(2)導水トンネル2a及び水圧管路2b
導水トンネル2a及び水圧管路2bからなる管路2は、図1に示すように、排出口1aからの発電に用いられる流水であってエアーが混入しないよう上流側端部から取り込まれたものを下流側端部まで導く機能を果たすものとして構成されている。
【0023】
具体的には、この導水トンネル2a及び水圧管路2bは、後記する真空吸引ポンプ5の発揮する機能を妨げない程度の密閉状態にあるものとして構成されている。
【0024】
すなわち、このような導水トンネル2a及び水圧管路2bによれば、発電に用いられる流水を通過させるに際して管路2の外部からエアーが混入する事態が有効に回避されることとなり、発電量のアップ効果が減殺されないこととなる。
【0025】
(3)水車3
水車3は、図2に示すように、水圧管路2bにおける発電に用いられる流水により回転されるものとして構成されている。
【0026】
具体的には、この水車3は、図示しないが、複数存在しており、同じく複数存在している発電機を均等な速度で駆動させる歯車列を有している。これにより、水車3が複数存在する場合において、得られた水の力を各水車3に均等に振り向けて効率的な発電を実現させることが可能となっている。
【0027】
(4)発電機
発電機は、図示しないが、水車3により駆動されるものとして構成されている。
【0028】
具体的には、この発電機は、図示しないが、複数の各水車3に対応して複数存在しており、複数の各水車3とともに効率的な発電を実現に資するものとして構成されている。
【0029】
(5)真空室4
真空室4は、図2に示すように、導水トンネル2a及び水圧管路2bの内部に連通口4aを通じて連通するものとして構成されている。
【0030】
そして、この真空室4は、同図に示すように、水圧管路2bのうち水車3の下流側から上方に突出するよう水圧管路2bに対して取り付けられるものとして構成されている。
【0031】
本実施の形態における真空室4としては、水圧管路2bのうち水車3の下流側から上方に突出する態様で設けられるものであれば、形状の別や広さを問わないが、少なくとも真空吸引ポンプ5の機能を妨げないことが必要となる。
【0032】
すなわち、この真空室4は、同図に示すように、内部に水を保持しながら、余りの部分を真空又はこれに近い状態(ここでは、真空状態における水頭が10.5となる場合において水頭が8.5以上となる場合をいう。以下同じ)に維持できる程度に、水圧管路2bのうち水車3の下流側から上方に突出している。
【0033】
(6)真空吸引ポンプ5
真空吸引ポンプ5は、図2に示すように、真空室4の内部に水を保持しながら、余りの部分を真空又はこれに近い状態に維持する機能を果たすものとして構成されている。
【0034】
具体的には、この真空吸引ポンプ5は、同図に示すように、真空室4の内部で保持される流水に係る水面よりも高い位置に配設され、吸引口を通じて真空室4の内部に連通するものとして構成されている。
【0035】
(7)排水ポンプ6
排水ポンプ6は、図2に示すように、管路2のうち真空室4の下流側において配設され、流水を下流方向に吸引して真空室4の内部のほぼ真空な領域を確保するための排水を行うものであり、吸引力の調節が可能であるものとして構成されている。
【0036】
本実施の形態において、同図に示すように、真空吸引ポンプ5の他に、排水ポンプ6を配設することとした理由は、真空吸引ポンプ5のみでは、真空室内の水位が過度に上昇して真空室4の内部のほぼ真空な領域を確保できなくなる場合も少なくないと考えられるためである。
【0037】
つまり、このような排水ポンプ6によれば、流水として用いられる水を過度に吸引してしまう事態は回避され、真空吸引ポンプ5が発揮する機能が担保されることとなり、これにより、より確実に発電量がアップすることとなる。
【0038】
次に、図1及び図2を用いて、本実施の形態に係る水力発電装置の作用について、説明する。
【0039】
まず、上部貯水池1に貯留される発電に用いられる水が、連続的に排出口1aから排出されると同時に、排出口1aを通じて上部貯水池1に連通する導水トンネル2aの上流側端部から管路2の内部に取り込まれる。取り込まれた水は、水圧管路2bの落差により流水となって水車3を回転させる。
【0040】
このとき、上部貯水池1の排出口1aが上部貯水池1における貯留水の水面から渦流が発生しない程度の深度で配設されていることから、導水トンネル2aの内部にエアーが混入することはない。
【0041】
このような状態において、真空吸引ポンプ5及び排水ポンプ6がこれらの稼働を開始する。
【0042】
すると、真空室4の内部に水が保持され、同時に余りの部分は真空又はこれに近い状態に維持される。
【0043】
このような状態において、さらに上部貯水池1の水面が大気圧によって押され、水が排出口1aを通じて導水トンネル2aの上流側端部から管路2の内部に取り込まれると、取り込まれた水は、大気圧によって押されたことに加え、導水トンネル2aの上流側端部と水圧管路2bの下流側端部との落差により流水となって水車3を増速回転させる。
【0044】
すなわち、真空室4及び真空吸引ポンプ5により上部貯水池1における水面に対して大気圧が載荷重として働いており、しかも、真空室4が水圧管路2bのうち水車3の下流側に設けられていることから、管路2における流水は、単に落差によるのみならず、大気圧により、導水トンネル2aの上流側端部から勢いを増大させて水車3を増速回転させることとなる。
【0045】
その結果、落差による水の力に加えて、流水に勢いをつけた結果増大することとなる水の力もが用いられて水力発電が行われることとなる。
【0046】
したがって、このような水力発電装置によれば、従来の水力発電装置により確保された落差によるだけでなく、真空室4及び真空吸引ポンプ5により流水に勢いをつけて大きな水の力として水力発電を行うことができるので、新たなダムやトンネルを作製しなくても、水力発電所の発電容量をアップできることとなる。また、このような水力発電装置は、大きな水頭差を必要としないため、小規模な水力発電に有効となる。
【0047】
ここで、真空室4及び真空吸引ポンプ5により上部貯水池1における水面に対して大気圧が載荷重として働くという機能に関し、模型(水頭差;H=0.5m,管路(サクションホース)の内径;φ=16mm)を使った実験を行って調べたところ、以下に示すような結果が得られた。
すなわち、自由落下のみによる場合においては、流量が17リットル/minであるのに対して、さらに真空吸引ポンプを加重した場合においては、流量が38リットル/minであるという結果が得られた。
このような実験結果によれば、真空吸引ポンプを加重した場合において管路における流水が水車に衝突するに際しては、自由落下のみによる場合における水の力に比して、約2倍以上という大きな水の力を発揮していることを確認した。
【0048】
図3は本発明の第2の実施の形態に係る水力発電装置の部分構成を示すブロック図である。本実施例の第1の実施例と異なるところは、連通孔4aを連通管4bとし、真空室4内部に排水ポンプ6を設けたことである。真空室4は、図3に示すように、導水トンネル2a及び水圧管路2bの内部に連通管4bを通じて連通している。また真空室4内部の排水ポンプ6は導水トンネル2a及び水圧管路2bの内部に連通管4cを通じて連通している。排水ポンプ6の上部には排水孔7が設けられている。
排水孔7より流入した真空室4内の水は、連通管4cより導水トンネル2a及び水圧管路2bの内部に放出される。
【0049】
本実施例によれば、真空室4内部に設けられた排水ポンプ6により、真空室4内の水位を一定に保つことができるので、第1の実施の形態と同様に、真空室4及び真空吸引ポンプ5により流水に勢いをつけて大きな水の力として水力発電を行うことができるので、水力発電所の発電容量をアップできる。
【0050】
【発明の効果】
本発明に係る水力発電装置によれば、水車の下流側から管路内の水に真空吸引力を作用させて水車を増速回転させる真空吸引ポンプを設けたため、従来の水力発電設備を用いたまま発電量がアップすることとなる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る水力発電装置の全体構成を示す図(図1(a)は断面図、図1(b)は平面図)である。
【図2】本発明の第1の実施の形態に係る水力発電装置の部分構成を示すブロック図である。
【図3】本発明の第2の実施の形態に係る水力発電装置の部分構成を示すブロック図である。
【符号の説明】
1 上部貯水池
1a 排出口
2 管路
2a 導水トンネル
2b 水圧管路
3 水車
4 真空室
4a 連通口
4b、4c 連通管
5 真空吸引ポンプ
6 排水ポンプ
7 排水孔
21 下部貯留池
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a completely new type of hydroelectric power generation device that uses not only the water force obtained by free fall but also the water force obtained as a result of energizing flowing water.
[0002]
[Prior art]
As a conventional hydroelectric power generation device, for example, a device provided in a hydroelectric power plant, a water tank having a dam embankment portion as a main portion, and running water used for power generation discharged from the water tank through an intake port to a water turbine. There is disclosed a hydraulic pressure line including a hydraulic line, a water wheel that rotates by flowing water in the hydraulic line, and a generator driven by the water wheel (for example, see Non-Patent Document 1).
[0003]
[Non-patent document 1]
The Japan Society of Civil Engineers, Civil Engineering Handbook II, 4th edition, Gihodo Shuppan, November 20, 1993, p. 1670
[0004]
[Problems to be solved by the invention]
By the way, in recent years, a new demand for hydroelectric power has been stimulated by the Kyoto Protocol and the like concluded on the prevention of global warming.
However, conventional hydraulic power generators require a head in the hydraulic pipeline to generate sufficient power from the intake to the turbine, and such a head is usually considerable due to the construction of dams, etc. using steep terrain. It can only be secured with the investment of resources, materials and labor, and it is virtually impossible to meet such demands with the construction of new hydropower plants.
Therefore, an object of the present invention is to increase the power generation amount while using the conventional hydroelectric power generation equipment.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, a hydraulic power generation device according to the present invention is a hydraulic power generation device that drives a generator by generating water by guiding water through a pipeline provided with a head difference to rotate the water turbine, thereby generating power downstream of the water turbine. It is characterized in that a vacuum suction pump for applying a vacuum suction force to water in the pipeline from the side to increase the rotation speed of the water turbine is provided.
[0006]
According to such a hydroelectric power generator, not only the head difference secured by the conventional hydroelectric power generation equipment but also a water turbine by applying a vacuum suction force to water in a pipeline by a vacuum suction pump from the downstream side of the water turbine. Can be rotated at an increased speed, so that the power generation amount can be increased while using the conventional hydroelectric power generation equipment.
[0007]
In such technical means, from the viewpoint of ensuring the function exhibited by the vacuum suction pump and increasing the power generation amount more reliably, a vacuum chamber communicating with the pipe downstream of the water turbine is provided. It is preferable that a vacuum suction pump is connected to this vacuum chamber.
[0008]
Here, as the vacuum chamber, one that communicates with the inside of the pipe line, regardless of what kind of structure is used, as long as it can rotate the water turbine by energizing the flowing water, The number of locations to be deployed may be appropriately selected.
[0009]
However, from the viewpoint of ensuring the function of the vacuum chamber and the vacuum suction pump to increase the power generation more reliably, the vacuum chamber projects upward from the downstream side of the water turbine in the pipeline. Preferably, the vacuum suction pump is adapted to maintain the remaining portion substantially at a vacuum while holding water inside the vacuum chamber.
[0010]
In this case, from the viewpoint of ensuring the function of the vacuum chamber and the vacuum suction pump to exert the effect of increasing the amount of power generation, the downstream side of the vacuum chamber or the inside of the vacuum chamber is considered. It is preferable to provide a drain pump for draining water to secure a substantially vacuum area in the vacuum chamber.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0012]
Here, the case where the hydroelectric power generator is used in a pumped-storage type power plant will be described. However, the present invention is not limited to this, and a pouring type power plant, a regulating pond type power plant, a storage type power plant and other power plants are described. The following description is valid even when used in.
[0013]
FIG. 1 is a view showing the overall configuration of a hydroelectric power generator according to a first embodiment of the present invention (FIG. 1 (a) is a sectional view, FIG. 1 (b) is a plan view), and FIG. 3 is a block diagram showing a partial configuration of FIG.
[0014]
In these figures, reference numeral 21 indicates a lower reservoir in which running water used for power generation is discharged.
[0015]
In the present embodiment, as shown in FIG. 1, the hydroelectric generator guides water from an upper reservoir 1 as a water tank through a pipe 2 having a head difference to rotate a water turbine 3 to generate a generator (shown in FIG. 1). The vacuum pump 5 drives the outside of the turbine 3 to generate power, and is provided with a vacuum suction pump 5 for vacuum-suctioning the inside of the pipeline 2 from the downstream side of the water turbine 3 to increase the speed of the turbine.
[0016]
Specifically, as shown in the figure, this hydroelectric power generation device is provided in a pumped-storage power plant, and includes an upper reservoir 1, a pipeline 2 composed of a headrace tunnel 2 a and a hydraulic pipeline 2 b, The water turbine 3, the generator, the vacuum chamber 4, the vacuum suction pump 5, and the drainage pump 6 are provided.
[0017]
That is, as shown in the figure, the hydroelectric power generation system includes a conventional hydroelectric power generation system including an upper reservoir 1, a pipeline 2 composed of a headrace tunnel 2a and a hydraulic pipeline 2b, a water turbine 3, and a generator. As a new component, a vacuum chamber 4, a vacuum suction pump 5, and a drainage pump 6 are added, and conventional hydraulic power generation equipment is used.
[0018]
Hereinafter, each of these components will be described in more detail.
[0019]
(1) Upper reservoir 1
As shown in FIG. 1, the upper reservoir 1 is configured such that a discharge port 1a for discharging water used for power generation is provided to a pipeline 2 including a water conduction tunnel 2a and a hydraulic pipeline 2b.
[0020]
Here, the discharge port 1a is provided at a depth that does not generate a vortex from the surface of the stored water in the upper reservoir 1 (see FIG. 1). In other words, the outlet 1a is disposed at a depth that does not hinder the function of the vacuum suction pump 5 described later.
[0021]
That is, according to such a discharge port 1a, it is possible to effectively avoid a situation in which air is mixed into the inside of the pipeline 2 when discharging running water used for power generation, thereby increasing the power generation amount. It will not be reduced.
[0022]
(2) Headrace tunnel 2a and hydraulic pipeline 2b
As shown in FIG. 1, the pipeline 2 composed of the water introduction tunnel 2a and the hydraulic pipeline 2b is a water flow used for power generation from the discharge port 1a, which is taken in from the upstream end so that air is not mixed. It is configured to perform the function of guiding to the downstream end.
[0023]
Specifically, the water introduction tunnel 2a and the hydraulic line 2b are configured to be in a closed state that does not hinder the function of the vacuum suction pump 5 described later.
[0024]
That is, according to such a water conveyance tunnel 2a and the hydraulic pipeline 2b, a situation in which air is mixed in from outside the pipeline 2 when passing running water used for power generation is effectively avoided, and the power generation amount is increased. The effect will not be diminished.
[0025]
(3) Water wheel 3
As shown in FIG. 2, the water wheel 3 is configured to be rotated by running water used for power generation in the hydraulic line 2b.
[0026]
More specifically, although not shown, a plurality of water turbines 3 are provided, and have a gear train for driving the plurality of power generators at an equal speed. Thereby, in the case where a plurality of water turbines 3 are present, it is possible to realize an efficient power generation by uniformly allocating the obtained water power to each of the water turbines 3.
[0027]
(4) Generator Although not shown, the generator is configured to be driven by the water turbine 3.
[0028]
Specifically, although not shown, a plurality of power generators are provided corresponding to the plurality of water turbines 3, and are configured to contribute to efficient power generation together with the plurality of water turbines 3.
[0029]
(5) Vacuum chamber 4
As shown in FIG. 2, the vacuum chamber 4 is configured to communicate with the inside of the water guide tunnel 2a and the hydraulic pipe 2b through the communication port 4a.
[0030]
The vacuum chamber 4 is configured to be attached to the hydraulic pipeline 2b so as to protrude upward from the downstream side of the water turbine 3 in the hydraulic pipeline 2b, as shown in FIG.
[0031]
As long as the vacuum chamber 4 in the present embodiment is provided in such a manner as to project upward from the downstream side of the water turbine 3 in the hydraulic pipeline 2b, the vacuum chamber 4 may have any shape or size, but at least vacuum suction It is necessary not to hinder the function of the pump 5.
[0032]
That is, as shown in the figure, the vacuum chamber 4 holds the water therein while maintaining the remaining part in a vacuum or a state close to the vacuum (here, when the water head in the vacuum state is 10.5, the water head is 10.5). Is 8.5 or more. The same applies to the following), the hydraulic pipe 2b protrudes upward from the downstream side of the water turbine 3 in the hydraulic line 2b.
[0033]
(6) Vacuum suction pump 5
As shown in FIG. 2, the vacuum suction pump 5 is configured to have a function of maintaining the remaining part in a vacuum or a state close to the vacuum while holding water inside the vacuum chamber 4.
[0034]
Specifically, the vacuum suction pump 5 is disposed at a position higher than the surface of the flowing water held inside the vacuum chamber 4 as shown in FIG. It is configured as communicating.
[0035]
(7) Drain pump 6
As shown in FIG. 2, the drainage pump 6 is disposed on the downstream side of the vacuum chamber 4 in the pipe line 2 and sucks flowing water in a downstream direction to secure a substantially vacuum area inside the vacuum chamber 4. , And the suction force can be adjusted.
[0036]
In the present embodiment, as shown in the figure, the reason why the drainage pump 6 is provided in addition to the vacuum suction pump 5 is that the water level in the vacuum chamber rises excessively with only the vacuum suction pump 5. This is because it is considered that there are many cases where it becomes impossible to secure a substantially vacuum area inside the vacuum chamber 4.
[0037]
That is, according to such a drain pump 6, a situation in which water used as running water is excessively sucked is avoided, and the function exhibited by the vacuum suction pump 5 is ensured, thereby more reliably. The amount of power generation will increase.
[0038]
Next, the operation of the hydroelectric generator according to the present embodiment will be described with reference to FIGS.
[0039]
First, water used for power generation stored in the upper reservoir 1 is continuously discharged from the outlet 1a, and at the same time, the pipeline is connected to the upstream end of the water introduction tunnel 2a communicating with the upper reservoir 1 through the outlet 1a. 2 is taken in. The taken water becomes running water due to the head of the hydraulic line 2b and rotates the water wheel 3.
[0040]
At this time, since the discharge port 1a of the upper reservoir 1 is disposed at such a depth that swirl does not occur from the surface of the stored water in the upper reservoir 1, air does not enter the inside of the water guide tunnel 2a.
[0041]
In such a state, the vacuum suction pump 5 and the drainage pump 6 start their operation.
[0042]
Then, water is held inside the vacuum chamber 4, and at the same time, the remaining portion is maintained in a vacuum or a state close thereto.
[0043]
In such a state, when the water surface of the upper reservoir 1 is further pushed by the atmospheric pressure, and the water is taken into the inside of the pipeline 2 from the upstream end of the water introduction tunnel 2a through the discharge port 1a, the taken water becomes In addition to being pushed by the atmospheric pressure, the water turbine 3 is rotated at an increased speed as flowing water due to a head drop between the upstream end of the water guide tunnel 2a and the downstream end of the hydraulic line 2b.
[0044]
That is, the atmospheric pressure acts as a load on the water surface in the upper reservoir 1 by the vacuum chamber 4 and the vacuum suction pump 5, and the vacuum chamber 4 is provided downstream of the water wheel 3 in the hydraulic line 2b. Therefore, the flowing water in the pipeline 2 is not only caused by the head but also by the atmospheric pressure, the momentum is increased from the upstream end of the water guide tunnel 2a, and the water turbine 3 is rotated at an increased speed.
[0045]
As a result, in addition to the power of the water due to the head, the power of the water that increases as a result of the momentum of the flowing water is used to perform the hydroelectric power generation.
[0046]
Therefore, according to such a hydroelectric generator, not only the head secured by the conventional hydroelectric generator but also the hydraulic power is generated by the vacuum chamber 4 and the vacuum suction pump 5 so as to urge the flowing water as a large water power. As a result, it is possible to increase the power generation capacity of the hydroelectric power plant without creating new dams and tunnels. Further, such a hydroelectric generator does not require a large head difference, and thus is effective for small-scale hydroelectric generation.
[0047]
Here, regarding the function that the atmospheric pressure acts as a load on the water surface in the upper reservoir 1 by the vacuum chamber 4 and the vacuum suction pump 5, the model (head difference; H = 0.5 m, inner diameter of a pipe (suction hose)) ; Φ = 16 mm), and the following results were obtained.
That is, the flow rate was 17 liter / min when only the free fall was performed, while the flow rate was 38 liter / min when the vacuum suction pump was further loaded.
According to such experimental results, when running water in a pipeline collides with a water turbine when a vacuum suction pump is loaded, a large amount of water, which is about twice or more as compared with the power of water when only free fall, is performed. It was confirmed that it was exerting its power.
[0048]
FIG. 3 is a block diagram showing a partial configuration of a hydroelectric power generator according to a second embodiment of the present invention. This embodiment differs from the first embodiment in that the communication hole 4a is a communication pipe 4b, and a drain pump 6 is provided inside the vacuum chamber 4. As shown in FIG. 3, the vacuum chamber 4 communicates with the inside of the water guide tunnel 2a and the hydraulic line 2b through the communication pipe 4b. The drain pump 6 inside the vacuum chamber 4 communicates with the inside of the water introduction tunnel 2a and the hydraulic line 2b through the communication pipe 4c. A drain hole 7 is provided in an upper part of the drain pump 6.
The water in the vacuum chamber 4 that has flowed in from the drain hole 7 is discharged from the communication pipe 4c into the water introduction tunnel 2a and the hydraulic line 2b.
[0049]
According to the present embodiment, the water level in the vacuum chamber 4 can be kept constant by the drain pump 6 provided inside the vacuum chamber 4, so that the vacuum chamber 4 and the vacuum Since the power can be generated by the suction pump 5 and the running water can be used to generate hydropower as large water power, the power generation capacity of the hydropower station can be increased.
[0050]
【The invention's effect】
According to the hydraulic power generator according to the present invention, since a vacuum suction pump for increasing the speed of the water turbine by applying a vacuum suction force to the water in the pipeline from the downstream side of the water turbine is provided, the conventional hydraulic power generation equipment is used. The amount of power generation will increase as it is.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of a hydroelectric power generator according to a first embodiment of the present invention (FIG. 1A is a cross-sectional view, and FIG. 1B is a plan view).
FIG. 2 is a block diagram showing a partial configuration of the hydroelectric power generator according to the first embodiment of the present invention.
FIG. 3 is a block diagram illustrating a partial configuration of a hydroelectric power generator according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Upper reservoir 1a Discharge port 2 Pipe line 2a Conveying tunnel 2b Hydraulic pipe line 3 Water wheel 4 Vacuum chamber 4a Communication port 4b, 4c Communication pipe 5 Vacuum suction pump 6 Drain pump 7 Drain hole 21 Lower reservoir

Claims (4)

水頭差を設けた管路により水を導いて水車を回転させることで発電機を駆動して発電する水力発電装置において、
前記水車の下流側から前記管路内の水に真空吸引力を作用させて前記水車を増速回転させる真空吸引ポンプを設けたことを特徴とする水力発電装置。
In a hydroelectric generator that drives a generator by generating water by guiding water through a pipeline provided with a head difference and rotating a water turbine,
A hydraulic power generator, comprising: a vacuum suction pump that applies a vacuum suction force to water in the pipeline from a downstream side of the water turbine to rotate the water turbine at an increased speed.
前記水車の下流側に前記管路内に連通する真空室を設け、
この真空室に前記真空吸引ポンプを接続したことを特徴とする請求項1に記載の水力発電装置。
A vacuum chamber communicating with the inside of the pipeline is provided on the downstream side of the water turbine,
The hydraulic power generator according to claim 1, wherein the vacuum suction pump is connected to the vacuum chamber.
前記真空室の下流側に当該真空室内のほぼ真空な領域を確保するための排水を行う排水ポンプを設けたことを特徴とする請求項2に記載の水力発電装置。3. The hydraulic power generator according to claim 2, further comprising a drainage pump that drains water to secure a substantially vacuum area in the vacuum chamber downstream of the vacuum chamber. 前記真空室の内部に当該真空室内のほぼ真空な領域を確保するための排水を行う排水ポンプを設けたことを特徴とする請求項2に記載の水力発電装置。The hydraulic power generator according to claim 2, wherein a drainage pump that drains water to secure a substantially vacuum area in the vacuum chamber is provided inside the vacuum chamber.
JP2003069501A 2002-10-03 2003-03-14 Hydroelectric generator Expired - Fee Related JP4287172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003069501A JP4287172B2 (en) 2002-10-03 2003-03-14 Hydroelectric generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002291134 2002-10-03
JP2003069501A JP4287172B2 (en) 2002-10-03 2003-03-14 Hydroelectric generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008329305A Division JP4863228B2 (en) 2002-10-03 2008-12-25 Hydroelectric generator

Publications (2)

Publication Number Publication Date
JP2004176705A true JP2004176705A (en) 2004-06-24
JP4287172B2 JP4287172B2 (en) 2009-07-01

Family

ID=32715655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003069501A Expired - Fee Related JP4287172B2 (en) 2002-10-03 2003-03-14 Hydroelectric generator

Country Status (1)

Country Link
JP (1) JP4287172B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2334965A1 (en) * 2008-09-16 2010-03-17 Domingo Gonzalez Martin Vacuum pump power plant
WO2017056004A1 (en) * 2015-09-29 2017-04-06 Kunaparaju Rambabu System for generating electric power by virtue of hydrostatic energy and method thereof
WO2021262016A1 (en) * 2020-06-23 2021-12-30 Zygmunt Nowak Method of electric energy generation and power generation system, in particular a power plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102889164A (en) * 2011-07-23 2013-01-23 大连海婷船业有限公司 Ultrahigh-efficiency hydraulic generating device and technology thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2334965A1 (en) * 2008-09-16 2010-03-17 Domingo Gonzalez Martin Vacuum pump power plant
WO2010031884A1 (en) * 2008-09-16 2010-03-25 Gonzalez Martin Domingo Vacuum pump power plant
ES2334965B1 (en) * 2008-09-16 2012-01-25 Domingo González Martín Operating process of a vacuum pumping station.
WO2017056004A1 (en) * 2015-09-29 2017-04-06 Kunaparaju Rambabu System for generating electric power by virtue of hydrostatic energy and method thereof
WO2021262016A1 (en) * 2020-06-23 2021-12-30 Zygmunt Nowak Method of electric energy generation and power generation system, in particular a power plant

Also Published As

Publication number Publication date
JP4287172B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP2013164074A (en) Hydroelectric pumped-storage
TW201344043A (en) Water turbine
JP2013538314A (en) Water turbine and hydroelectric power generation structure using the same
KR101416761B1 (en) Structure for tidal power generation
JP4621286B2 (en) Vacuum generator
JP2004176705A (en) Hydraulic power generating device
CA2930472C (en) Aerating system for hydraulic turbine
JP4863228B2 (en) Hydroelectric generator
JP2005214187A (en) Hydraulic power generation facilities
JP2005155334A (en) Hydraulic energy recovering unit
JP4669899B2 (en) Structure for water flow acceleration
JPS6146664B2 (en)
JP2013068196A (en) Hydraulic power generation apparatus
JP2017078354A (en) Power generation system
JPH03294662A (en) Sea water pumping power generator
JP7048004B2 (en) Water turbine device for small hydroelectric power generation
JP2001172948A (en) Pumped storage power plant
EP1421277A1 (en) Hydroelectric plant
RU2348830C1 (en) Method for increase of hydropower plant capacity and hydropower plant
JP2003322077A (en) Water supply device and method
KR20130047227A (en) The power system for improving energy efficiency
JPS5926393A (en) Method of filling water into dock
JP4653774B2 (en) How to prevent sediment wear on Pelton turbine
JP2004137847A (en) Seaside hydroelectric power system
JP2023021882A (en) Small hydroelectric power generation water turbine device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4287172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees