JP2004175264A - Vibration control device of railway vehicle and control method used for the same - Google Patents

Vibration control device of railway vehicle and control method used for the same Download PDF

Info

Publication number
JP2004175264A
JP2004175264A JP2002345335A JP2002345335A JP2004175264A JP 2004175264 A JP2004175264 A JP 2004175264A JP 2002345335 A JP2002345335 A JP 2002345335A JP 2002345335 A JP2002345335 A JP 2002345335A JP 2004175264 A JP2004175264 A JP 2004175264A
Authority
JP
Japan
Prior art keywords
control
actuator
vibration
traveling
railway vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002345335A
Other languages
Japanese (ja)
Other versions
JP4186105B2 (en
Inventor
Osamu Goto
修 後藤
Hisashi Negoro
尚志 根来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002345335A priority Critical patent/JP4186105B2/en
Publication of JP2004175264A publication Critical patent/JP2004175264A/en
Application granted granted Critical
Publication of JP4186105B2 publication Critical patent/JP4186105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve performance of vibration control of a railroad vehicle. <P>SOLUTION: The vibration control device is provided with an actuator mounted between a vehicle body and a truck of the railroad vehicle; a vibration sensor to detect vibration characteristics of the railroad vehicle; a position sensor to detect a traveling position of the railroad vehicle; a calculation part to calculate a control value of the actuator per a plurality of traveling conditions based on output of the vibration sensor; and a control part to select one of the plurality of the control values obtained preliminarily by the calculation part and drive and control the actuator based on the one selected control value. The control device calculates the control values preliminarily in accordance with the traveling conditions and immediately switches the control values at a time of change in the traveling conditions such as that between inside and outside of a tunnel. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、鉄道車両の車体に発生する振動を、その振動特性に応じて制御特性を変え、常に最適状態で制御する鉄道車両の振動制御装置及び制御方法に関する。
【0002】
【従来の技術】
鉄道車両に発生する振動を抑制する方法としては、車体と台車の間に振動方向に合わせて流体アクチュエータを設置し、該車体の振動に対し逆位相の制御力を発生させる方法(特開昭56−17754号公報等)が知られている。
【0003】
一方、鉄道車両が曲線路を通過する際には、車体に遠心加速度が加わるので、この影響を軽減し、振動制御能力の低下を防ぐ手段が必要で、そのための振動制御装置として特開昭57−11163号公報の「車両の振動制御装置」が提案されている。この装置は、車体と台車の間に設置された流体アクチュエータをサーボ弁で駆動し振動を抑制するものである。
【0004】
また、鉄道車両に発生する振動を抑制する装置において、車両の軌道上の位置を検知する装置を備えたものがある(特公平5−80385号公報)。この装置は、軌道の凹凸の不整データと位置とを直接関係付けたデータを、予め測定により得ておき、そのデータと車両位置を参照して予見制御を加味したフィードバック制御を行なうものである。この技術の対象は、軌道不整による車体振動だけであり、他の原因による振動は含まれていない。また、軌道の凹凸の詳細データと位置との関係について、多量のデータを予め軌道測定車等により測定しておく必要がある。そして、その多量のデータを制御装置内に記憶しておくため装置が複雑化することは避けられない。
【0005】
前記のごとく、従来の鉄道車両に発生する振動を抑制する方法としては、種々の方法が提案されており、それぞれ振動抑制に効果をあげている。また、特公平5−80385号公報の発明は、特定の原因すなわち軌道不整による振動の抑制に効果をあげている。しかし、列車の走行中に発生する周波数の異なる全ての振動に対処して振動を抑制する鉄道車両の振動制御装置は見られなかった。
【0006】
そこで、特開平8−207765号公報に示されているように、トンネル内外でアクチュエータの制御値(モード)を切り換える方法が提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、アクチュエータの制御値の演算は状態変数ベクトルx(n)に基づいて行われるため、特開平8−207765号公報に示された方法によると、トンネル内外のモード切り替えのタイミングで、初期条件x(0)=0にリセットされる。このため、アクチュエータの制御信号の値が不連続になり、鉄道車両としての乗り心地を損なう場合がある。
【0008】
本発明は、上記のような状況に鑑みてなされたものであり、鉄道車両の振動制御のパフォーマンス向上を目的とする。
【0009】
【課題を解決するための手段】
前記目的を達成するため、本発明にかかる振動制御装置は、鉄道車両の車体と台車との間に設置されたアクチュエータと;前記鉄道車両の振動特性を検出する振動センサと;前記鉄道車両の走行位置を検出する地点センサと;前記振動センサの出力に基づき、前記アクチュエータの制御値を複数の走行条件毎に算出する演算部と;前記地点センサの出力に基づき、前記演算部によって予め求められた複数の制御値の1つを選択し、これに基づいて前記アクチュエータの駆動制御を行う制御部とを備えている。要約すると、本発明の制御装置においては、予め走行条件に応じた制御値を演算しておき、トンネル内外等の走行条件が変わった時に即座に制御値の切り替えを行う。
【0010】
また、本発明の他の態様に係る制御装置は、鉄道車両の車体と台車との間に設置されたアクチュエータと;前記鉄道車両の振動特性を検出する振動センサと;前記鉄道車両の走行速度を検出する速度センサと;前記振動センサの出力に基づき、前記アクチュエータの制御値を算出する演算部と;前記速度センサの出力に基づき、前記鉄道車両が所定の速度以下の時に、前記アクチュエータの制御モードを高速走行区間用と低速走行区間用との間で切り替え、これに基づいて前記アクチュエータの駆動制御を行う制御部とを備えている。要約すると、車両が所定の速度以下の時に、新幹線区間と在来線区間のような区間の変更に伴うアクチュエータの制御モードの変更を実行する。
【0011】
本発明に係る車両制御方法は、前記鉄道車両の振動特性を検出する工程と;前記鉄道車両の走行位置を検出する工程と;前記検出された振動特性に基づき、前記アクチュエータの制御値を複数の走行条件毎に継続的に算出する工程と;前記検出された走行位置に基づき、前記予め求められた複数の制御値の1つを選択する工程と;前記選択された制御値に基づいて、前記アクチュエータの駆動制御を行う工程とを含む。
【0012】
更に、本発明の他の態様に係る車両制御方法は、前記鉄道車両の振動特性を検出する工程と;前記鉄道車両の走行速度を検出する工程と;前記検出された振動特性に基づき、前記アクチュエータの制御値を算出する工程と;前記検出された走行速度に基づき、前記鉄道車両が所定の速度以下の時に、前記アクチュエータの制御モードを高速走行区間用と低速走行区間用との間で切り替える工程と;前記選択された制御値に基づいて、前記アクチュエータの駆動制御を行う工程とを含む。
【発明の実施の形態】
【0013】
鉄道車両の走行中に、車体が左右方向に振動し乗り心地を低下させる要因としては、次の二つに大別される。
(イ)図1に示すように、軌道28の狂いに起因して、輪軸27→一次ばね系(軸ばね26)→台車枠29→二次ばね系(空気ばね4)→車体1の振動となる車両の下方からのばね系を介した振動の伝播によるもの。
(ロ)図2に示すように、車両が高速走行する場合、空気の車両回りの流れの圧力により、車体1が直接振動するもの。
【0014】
前記(イ)と(ロ)の振動形態は、主要な振動周波数が異なっており、それぞれを区分して考えることができる。すなわち、(イ)の軌道の狂いに起因するばね系の固有振動数(ヨーイング:1.5Hz、上心ローリング:1.2Hz、下心ローリング:0.8Hz付近)は、0.5〜2Hzの範囲にある。また、(ロ)の空気の流れによる周波数は、3〜6Hzの高周波側にある。
【0015】
特に、トンネル内においては、車体とトンネル内壁との間の空気の挙動により、高速走行すると車体に脈動する圧力が加わり、図3に示すように、トンネル外の振動に比べ、周波数が大きくなることがわかった。
【0016】
トンネル外での振動は、図5(A)に示すように、下心ローリング共振点a、上心ローリング共振点b及びヨーイング共振点cは周波数0.5〜2Hzの範囲にあり、低周波側の振動が主である。
【0017】
これに対し、トンネル内での振動は、図6(A)に示すように、周波数0.5〜2Hzの振動a、b、cの外に、周波数3〜6Hzの高周波側に車体の空力による振動dが加わり、振動が増加する。
【0018】
前記のごとく、トンネル外では周波数0.5〜2Hzの振動が主であるのに対し、トンネル内では低周波振動の外に3〜6Hzの高周波振動が加わることになるから、これらの周波数に注目して集中して振動制御する制御設計を行なえばよい。
【0019】
例えば、H∞制御では、周波数0.5〜2Hzに大きな比重を置いた重みWと周波数3〜6Hzに大きな比重を置いた重みWのそれぞれにより制御用データMとMを作製しておけばよい。
【0020】
したがって、トンネル外での振動に対しては、図5(B)に示すように、周波数0.5〜2Hzに大きな比重を置いた重みWにより作製された制御用データMで制御を行ない、トンネル内での振動に対しては、図6(B)に示すように、周波数0.5〜2Hzと周波数3〜6Hzの両方に大きな比重を置いた重みWとにより作製された制御用データMで制御を行なう。
【0021】
また、パンタ付き車両30においては、図4(A)に示すように、車両の高速化に伴い車高が低くなり、これに従いパンタ33を取り囲むパンタカバー34が巨大化し、走行時に受ける風圧が大きく、また後方にあってはパンタカバー34から剥離する空気流がカルマン渦32を発生し、パンタ付き車両特有の振動を起こしている。この場合の振動周波数は、例えば2Hz前後が大きくなるため、2Hzに大きな比重を置いた重みWにより制御用データMを作製する。
【0022】
更に、図4(B)に示すように、最後尾車両31では、後方に発生するカルマン渦32と、後続車両の結合がないことから、図7(A)に示すように、下心ローリング共振点a、上心ローリング共振点bに比べヨーイング共振点cが大きく(周波数1.5Hz)、これを特に強く押さえることを考慮した重みWにより制御用データMを製作すればよい。そして、図7(B)に示すように、重みW4と制御用データMにより制御する。
【0023】
前記のごとく、パッシブな車体の振動特性は、トンネルの外と内とで違うので、図5(B)、図6(B)からわかるように、H∞制御の重みW、Wを特に振動ゲインの大きい周波数に合わせて集中的に重くすることによって、制御の結果は飛躍的にその周波数で良くなる。したがって、リアルタイムで制御用データを変更できるようにしておけば、その時々の最適な制御を実施可能であることがわかる。
【0024】
また、最後尾車両についても同様で、図7(A)に示すように、パッシブな車体の振動は、他の中間車両{図5(A)}と異なる特性を有するので、最後尾車両用の制御データを備えておけばよい。ただし、進行方向が逆になった場合には先頭車両となるので、進行方向信号により最後尾車両であるか否かを判断する機能を制御装置に持たせる必要がある。更に、パンタ付き車両では、制御装置を装着する際に、パンタ付き車両用の制御データを制御器内にメモリし、使用すればよい。以上のごとくすることにより、車両位置や車両の種類に応じた最適な制御を実現できる。
【0025】
【実施例】
図8は、本発明の実施に係る車体傾斜制御装置の一例を示す。この装置は、前台車2と、後台車3と、これらの台車2,3に空気ばね4により支持された車体1と、台車2,3と車体1との間に配置された流体アクチュエータと、車両の走行位置を検出する地点検地装置6と、車体1の左右振動加速度を検知する左右振動加速度計7、8または車体1と台車2、3との間の左右相対変位を検知する左右変位計22、23と、これらの左右振動加速度計7,8または左右変位計22,23の出力及び地点検知装置6の信号から前記流体アクチュエータへの制御出力を決定する制御器9とを備えている。
【0026】
流体アクチュエータは、前台車2と後台車3との間の左右方向に設置した複動型空圧シリンダ19(前台車側)、20(後台車側)及び比例圧力制御弁15、16(前台車側)、17、18(後台車側)から構成される。制御器9は、ローパスフィルタ10と、A/D変換装置11と、制御量演算装置12と、D/A変換装置13と、増幅器14とを備えている。なお、図中、符号5は左右動ダンパ、21は空気源を示す。
【0027】
前記装置において、左右振動加速度計7,8で検知した左右振動加速度、左右変位計22、23で検知した左右相対変位が制御器9に入力される。制御器9内では、入力された左右振動加速度、左右相対変位はローパスフィルタ10を通して動揺のみを抽出され、A/D変換装置11でディジタル化される。そして、これらの検出信号は制御量演算装置12に入力される。なお,本実施例においては,左右振動加速度にて検出を実行するが,ヨーイング,ピッチング,ローリングのいずれかを検出できる角速度,角加速度センサーでも良いし,車両の走行方向に向かって前後方向か,車両に対して鉛直の振動を検知して行うことも可能である。一方、地点検知装置6から制御量演算装置12に対して地点検出信号が入力されると、トンネン内か、トンネル外か、あるいは最後尾車両か、パンタ付き車両かの判断に基づいて、それぞれに対応した制御用データA1、A2、A3、A4の1つが選定され、その制御データを基に制御出力が演算され、D/A変換装置13にてアナログ化され、増幅装置14を通して各比例圧力制御弁15、16、17、18に出力する。すると、前記制御出力に基づいて各比例圧力制御弁が給排気し、複動型空圧シリンダ19、20が駆動され、車体1の傾斜制御が行なわれる。
【0028】
制御演算装置12においては、制御用データMに基づいて以下のような行列A〜Dを予めメモリしておく。
A・・・n行n列
B・・・n行m列
C・・・r行n列
D・・・r行m列
【0029】
そして、下記のように状態変数ベクトルx(k)と行列データA〜Dに基づいて、入力データu(k)から制御出力データy(k)を算出する。
x(k+1)=Ax(k)+Bu(k)
y(k)=Cx(k)+Du(k) x(0)=0 k=0,1・・・・
【0030】
例えば、制御演算装置12においては、走行位置にかかわらず、トンネル外制御出力データとしてyを算出すると同時に、トンネル内制御出力データとしてyを算出する。
【0031】
図9は、上述した制御演算装置12の概念的な構造を示す。制御演算装置12は、トンネル内の制御用データMと状態変数ベクトルxとアクチュエータ制御出力データyを算出して記憶するデータ記憶部100aと、トンネル外の制御用データMと状態変数ベクトルxとアクチュエータ制御出力データyを算出して記憶するデータ記憶部100bと、これら記憶部100a,100bの切り替えを行う切換装置102とを備えている。切換装置102は、地点検地装置6からの信号に基づいて、D/A13に出力する信号を選択する。
【0032】
図10は、第1の実施例の動作を示すフローチャートである。通常の車両運行注においては、加速度センサによって振動特性が検出される。検出された振動特性に基づいて、トンネル内とトンネル外のアクチュエータ制御出力データを各々算出して保存する。その後、車両がトンネル内外の切り換え部に達し、トンネル直前と判断した場合には、予め保存してあるトンネル内制御出力データを用いてアクチュエータの駆動制御を開始する。一方、トンネル終端部と判断した場合には、予め保存してあるトンネル外制御出力データを用いてアクチュエータの駆動制御を開始する。
【0033】
以上のように、第1の実施例においては、トンネル内外のアクチュエータの制御値の演算を並行して行い、トンネル内外の切換地点では、即座にアクチュエータの制御モードを変更することができる。すなわち、トンネル内外のモード切り替えのタイミングで、ベクトル演算を初期条件にリセットする必要が無く、アクチュエータの制御信号の値が不連続になることを回避できる。その結果、鉄道車両としての乗り心地が向上するという効果がある。
【0034】
図11は、本発明の第2実施例に係る鉄道車両用振動制御装置に用いられる制御器の構成を示すブロック図である。図12は、図11に示す第2実施例に係る制御器内の制御演算装置の構成を示す概略説明図である。また、図13は、図10及び図11に示す第2実施例の動作を示すフローチャートである。なお、先に説明した各図に示された構成と同一又は対応するものに関しては、同一の参照符号を付し、重複した説明を省略する。
【0035】
本実施例の特徴は、車両の走行速度に基づいて高速走行区間(新幹線区間)と低速走行区間(在来線区間)との振動制御モードの切り換えを行うことにある。ここで、高速走行区間では、例えば、時速200kmで走行し、低速走行区間では、例えば、時速80kmで走行するものとする。
【0036】
図11に示すように、本実施例に係る制御器109は、上述したA/D変換器10,ローパスフィルタ11,D/A変換器13,増幅器14の他に、車速センサ104を備える。そして、制御演算装置112において、地点検地装置6及び車速センサ104の出力信号に基づいて、アクチュエータの駆動制御モードを変更する。
【0037】
図12に示すように、制御演算装置112は、新幹線区間と在来線区間の切り換えを行う切換装置114a、114bと;新幹線区間のトンネル外走行用の制御用データと状態変数ベクトルと制御出力データを保持した記憶部116aと;在来線区間の制御用データと状態変数ベクトルとトンネル外走行用の制御出力データを保持した記憶部116bと;新幹線区間の制御用データと状態変数ベクトルとトンネル内走行用の制御出力データを保持した記憶部116cと;在来線区間の制御用データと状態変数ベクトルとトンネル内走行用の制御出力データを保持した記憶部116dと;これらの記憶部を切り換える切換装置118とを備えている。
【0038】
図13に示すように、本実施例においては、車速センサ104によって検出された車速が所定の速度V0より遅い場合に、アクチュエータの制御をOFFとする。そして、地点検地装置6の検出結果により、鉄道車両が新幹線区間と在来線区間との切換箇所に達した時点で、区間に応じたアクチュエータの制御モードを選択する。ここで、例えば、車両が単に駅に到着する場合のように、車速が速度V0より遅いが、鉄道車両が新幹線区間と在来線区間との切換箇所でない場合には、アクチュエータの制御をOFFにするが、制御モードの切換は行わない。
【0039】
一方、車速センサ104によって検出された車速が所定の速度V0より速い場合には、引き続き第1実施例と同様の制御(図10)を行う。
【0040】
以上のように、本実施例においては、高速走行区間と低速走行区間との制御モードの切換を車速が低くなった時、すなわち、アクチュエータの駆動制御がOFFとなった時に行うため、アクチュエータの制御信号の値が不連続になることがない。また、地点検地装置6の出力信号に基づいて、高速走行区間と低速走行区間との制御モードの切換を行うため、不要の場所(単なる停車駅)でのモード切替を回避できる。
【0041】
なお、(1)新幹線区間;(2)在来線区間;(3)トンネル外;(4)トンネル内の4つの制御用データMと状態変数ベクトルx(n)に基づき制御出力データy(n)を予め算出し、保持しておき、地点検地装置6の検出結果に基づいて、これらを選択的に使用することも可能である。
【0042】
以上、本発明の実施例(実施形態、実施態様)について説明したが、本発明はこれらの実施例に何ら限定されるものではなく、特許請求の範囲に示された技術的思想の範疇において変更可能なものである。
【図面の簡単な説明】
【図1】図1は、軌道不整による車両ばね系を介した振動伝播を表す説明図である。
【図2】図2は、車体に直接作用する空気の流れによる空力学的力を表す説明図である。
【図3】図3は、トンネル内とトンネル外での車体に生じる振動を比較して示すグラフである。
【図4】図4(A)は、パンタ付き車両に生じる空気の流れのカルマン渦を示す編成列車の一部斜視図、(B)は最後尾車両に生じる空気の流れのカルマン渦を示す編成列車の一部斜視図である。
【図5】図5(A)は、トンネル外でのパッシブな車両の振動を示すグラフ、(B)はトンネル外でのH∞制御の重みと制御効果を示すグラフである。
【図6】図6(A)は、トンネル内でのパッシブな車両の振動を示すグラフ、(B)はトンネル内でのH∞制御の重みと制御効果を示すグラフである。
【図7】図7(A)は、最後尾車両のパッシブな車両の振動を示すグラフ、(B)は最後尾車両のH∞制御の重みと制御効果を示すグラフである。
【図8】図8は、本発明において使用する車体傾斜制御装置の制御系の一例を示す説明図である。
【図9】図9は、本発明の第1実施例に係る鉄道車両用振動制御装置に用いられる制御演算装置の概略構成を示す説明図である。
【図10】図10は、図9に示す第1実施例の動作を示すフローチャートである。
【図11】図11は、本発明の第2実施例に係る鉄道車両用振動制御装置に用いられる制御器の構成を示すブロック図である。
【図12】図12は、図11に示す第2実施例に係る制御器内の制御演算装置の構成を示す概略説明図である。
【図13】図13は、図10及び図11に示す第2実施例の動作を示すフローチャートである。
【符号の説明】
1 車体
2 前台車
3 後台車
4 空気ばね
5 左右動ダンパ
6 地点検知装置
7,8 左右振動加速度計
9,109 制御器
12,102,112 制御量演算装置
22,23 左右変位計
100a,100b,116a,116b,116c,116d 記憶部
102,114a,114b,118 切換装置
104 車速センサ
[0001]
[Industrial applications]
The present invention relates to a vibration control device and a control method for a railway vehicle that change control characteristics of vibration generated in a vehicle body of the railway vehicle in accordance with the vibration characteristics and always control the vibration in an optimal state.
[0002]
[Prior art]
As a method of suppressing the vibration generated in a railway vehicle, a method of installing a fluid actuator between a vehicle body and a bogie in accordance with the vibration direction and generating a control force having an opposite phase to the vibration of the vehicle body is disclosed in -17754 publication).
[0003]
On the other hand, a centrifugal acceleration is applied to the vehicle body when a railway vehicle passes on a curved road. Therefore, it is necessary to provide a means for reducing this effect and preventing a reduction in the vibration control capability. Japanese Patent Application Publication No. -11163 has proposed a "vibration control device for a vehicle". In this device, a fluid actuator installed between a vehicle body and a bogie is driven by a servo valve to suppress vibration.
[0004]
Further, among devices for suppressing vibration generated in railway vehicles, there is a device provided with a device for detecting a position of a vehicle on a track (Japanese Patent Publication No. 5-80385). This device obtains data directly relating irregularity data of irregularities of a track and a position by measurement in advance, and performs feedback control in consideration of a preview control by referring to the data and a vehicle position. The subject of this technique is only the vehicle body vibration due to the irregular track, and does not include the vibration due to other causes. Further, a large amount of data needs to be measured in advance by a track measuring vehicle or the like with respect to the relationship between the detailed data of the unevenness of the track and the position. Since the large amount of data is stored in the control device, it is inevitable that the device becomes complicated.
[0005]
As described above, various methods have been proposed as methods for suppressing vibrations generated in conventional railway vehicles, and each method has an effect on vibration suppression. Further, the invention of Japanese Patent Publication No. 5-80385 is effective in suppressing vibration caused by a specific cause, that is, irregularity of the orbit. However, there has been no vibration control device for a railway vehicle that copes with all vibrations having different frequencies generated during running of a train and suppresses the vibration.
[0006]
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 8-207765, a method of switching the control value (mode) of the actuator inside and outside the tunnel has been proposed.
[0007]
[Problems to be solved by the invention]
However, since the calculation of the control value of the actuator is performed based on the state variable vector x (n), according to the method disclosed in JP-A-8-207765, the initial condition x is set at the timing of mode switching inside and outside the tunnel. (0) = 0 is reset. For this reason, the value of the control signal of the actuator becomes discontinuous, which may impair ride comfort as a railway vehicle.
[0008]
The present invention has been made in view of the above situation, and aims to improve the performance of vibration control of a railway vehicle.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a vibration control device according to the present invention includes: an actuator installed between a body of a railway vehicle and a bogie; a vibration sensor for detecting vibration characteristics of the railway vehicle; A point sensor for detecting a position; a calculation unit for calculating a control value of the actuator for each of a plurality of traveling conditions based on an output of the vibration sensor; a calculation unit previously obtained by the calculation unit based on an output of the point sensor A control unit for selecting one of the plurality of control values and performing drive control of the actuator based on the selected control value. In summary, in the control device of the present invention, a control value according to the traveling condition is calculated in advance, and the control value is switched immediately when the traveling condition such as inside or outside the tunnel changes.
[0010]
Further, a control device according to another aspect of the present invention includes: an actuator installed between a body of a railway vehicle and a bogie; a vibration sensor for detecting a vibration characteristic of the railway vehicle; A speed sensor for detecting; a calculation unit for calculating a control value of the actuator based on an output of the vibration sensor; a control mode of the actuator when the railway vehicle is at a predetermined speed or less based on an output of the speed sensor. Is switched between a high-speed traveling section and a low-speed traveling section, and a control section that controls driving of the actuator based on the switching. In summary, when the speed of the vehicle is equal to or lower than a predetermined speed, the control mode of the actuator is changed according to the change of the section such as the Shinkansen section and the conventional line section.
[0011]
The vehicle control method according to the present invention includes a step of detecting a vibration characteristic of the railway vehicle; a step of detecting a traveling position of the railway vehicle; and a method of controlling a plurality of control values of the actuator based on the detected vibration characteristic. Continuously calculating for each traveling condition; selecting one of the plurality of previously determined control values based on the detected traveling position; and Performing drive control of the actuator.
[0012]
Further, a vehicle control method according to another aspect of the present invention includes a step of detecting a vibration characteristic of the railway vehicle; a step of detecting a traveling speed of the railway vehicle; and a step of detecting the actuator based on the detected vibration characteristic. And switching the control mode of the actuator between a high-speed traveling section and a low-speed traveling section when the railway vehicle is at or below a predetermined speed based on the detected traveling speed. And controlling the drive of the actuator based on the selected control value.
BEST MODE FOR CARRYING OUT THE INVENTION
[0013]
Factors that cause the vehicle body to vibrate in the left-right direction during traveling of the railway vehicle and reduce ride comfort are roughly classified into the following two factors.
(A) As shown in FIG. 1, due to the deviation of the track 28, the wheel set 27 → the primary spring system (the shaft spring 26) → the bogie frame 29 → the secondary spring system (the air spring 4) → the vibration of the vehicle body 1 Due to the propagation of vibrations from below the vehicle through a spring system.
(B) As shown in FIG. 2, when the vehicle runs at high speed, the body 1 directly vibrates due to the pressure of the flow of air around the vehicle.
[0014]
The vibration modes (a) and (b) have different main vibration frequencies, and can be considered separately. That is, the natural frequency of the spring system (yawing: 1.5 Hz, upper center rolling: 1.2 Hz, lower center rolling: around 0.8 Hz) caused by the deviation of the orbit in (a) is in the range of 0.5 to 2 Hz. It is in. The frequency due to the air flow in (b) is on the high frequency side of 3 to 6 Hz.
[0015]
In particular, in a tunnel, due to the behavior of the air between the vehicle body and the inner wall of the tunnel, the pulsating pressure is applied to the vehicle body when traveling at high speed, and as shown in FIG. 3, the frequency becomes higher than the vibration outside the tunnel. I understood.
[0016]
As shown in FIG. 5 (A), the vibration outside the tunnel has a lower center rolling resonance point a, an upper center rolling resonance point b, and a yawing resonance point c in a frequency range of 0.5 to 2 Hz. Vibration is the main.
[0017]
On the other hand, as shown in FIG. 6A, the vibration in the tunnel is caused by the aerodynamics of the vehicle body on the high frequency side of the frequency of 3 to 6 Hz in addition to the vibrations a, b, and c of the frequency of 0.5 to 2 Hz. The vibration d is applied, and the vibration increases.
[0018]
As described above, while vibrations having a frequency of 0.5 to 2 Hz are mainly generated outside the tunnel, high frequency vibrations of 3 to 6 Hz are applied in addition to low frequency vibrations inside the tunnel. Then, a control design for centrally controlling the vibration may be performed.
[0019]
For example, in the H∞ control, control data M 1 and M 2 are produced by weight W 1 having a large specific gravity at a frequency of 0.5 to 2 Hz and weight W 2 having a large specific gravity at a frequency of 3 to 6 Hz. You should leave it.
[0020]
Thus, for the vibration outside the tunnel, as shown in FIG. 5 (B), performs control with control data M 1, which is produced by the weight W 1 was placed for a large frequency 0.5~2Hz for the vibration in the tunnel, as shown in FIG. 6 (B), control made by the weight W 2 was placed for a large on both frequency 0.5~2Hz and frequency 3~6Hz performing control in data M 2.
[0021]
Further, in the vehicle 30 with a punter, as shown in FIG. 4A, the height of the vehicle decreases as the speed of the vehicle increases, and accordingly, the pant cover 34 surrounding the punter 33 becomes huge, and the wind pressure received during traveling increases. Further, at the rear, the air flow separating from the pant cover 34 generates the Karman vortex 32, causing vibration peculiar to the vehicle with the punter. Oscillation frequency in this case is, for example, because 2Hz longitudinal increases, making the control data M 3 by the weight W 3 placed great weight on 2Hz.
[0022]
Further, as shown in FIG. 4B, in the last vehicle 31, since there is no connection between the Karman vortex 32 generated behind and the following vehicle, as shown in FIG. a, large yawing resonance point c than in the upper center rolling resonance point b (frequency 1.5 Hz), may be manufactured for control data M 4 by the weight W 4 considering that suppress this particularly strong. Then, as shown in FIG. 7 (B), it is controlled by the control data M 4 and weight W4.
[0023]
As described above, the vibration characteristics of the passive vehicle body are different between outside and inside the tunnel. Therefore, as can be seen from FIGS. 5B and 6B, the weights W 1 and W 2 of the H∞ control are particularly set. By intensively weighting to a frequency at which the vibration gain is large, the result of the control is dramatically improved at that frequency. Therefore, if the control data can be changed in real time, it can be understood that optimal control at each time can be performed.
[0024]
The same applies to the last vehicle. As shown in FIG. 7A, the vibration of the passive vehicle body has different characteristics from those of the other intermediate vehicle {FIG. 5A}. What is necessary is just to have control data. However, when the traveling direction is reversed, the vehicle becomes the leading vehicle. Therefore, it is necessary to provide the control device with a function of determining whether or not the vehicle is the last vehicle based on the traveling direction signal. Furthermore, in a vehicle with a punter, when the control device is mounted, control data for the vehicle with a punter may be stored in the controller and used. By performing the above, optimal control according to the vehicle position and the type of vehicle can be realized.
[0025]
【Example】
FIG. 8 shows an example of the vehicle body inclination control device according to the embodiment of the present invention. This device includes a front bogie 2, a rear bogie 3, a vehicle body 1 supported by these bogies 2, 3 by an air spring 4, a fluid actuator disposed between the bogies 2, 3 and the vehicle body 1, A ground inspection ground device 6 for detecting the running position of the vehicle, a right and left vibration accelerometer 7 and 8 for detecting the right and left vibration acceleration of the vehicle body 1 or a right and left displacement for detecting the right and left relative displacement between the vehicle body 1 and the bogies 2 and 3 And a controller 9 for determining the control output to the fluid actuator from the outputs of the left and right vibration accelerometers 7 and 8 or the left and right displacement meters 22 and 23 and the signal of the point detection device 6. .
[0026]
The fluid actuators include double-acting pneumatic cylinders 19 (front bogie side) and 20 (rear bogie side) and proportional pressure control valves 15 and 16 (front bogie) installed in the left-right direction between the front bogie 2 and the rear bogie 3. Side), 17, 18 (rear trolley side). The controller 9 includes a low-pass filter 10, an A / D converter 11, a control amount calculator 12, a D / A converter 13, and an amplifier 14. In the drawings, reference numeral 5 denotes a left-right moving damper, and 21 denotes an air source.
[0027]
In the device, the lateral vibration acceleration detected by the lateral vibration accelerometers 7 and 8 and the relative lateral displacement detected by the lateral displacement meters 22 and 23 are input to the controller 9. In the controller 9, only the sway is extracted from the input right and left vibration acceleration and right and left relative displacement through a low-pass filter 10 and digitized by an A / D converter 11. Then, these detection signals are input to the control amount calculation device 12. In the present embodiment, the detection is performed based on the lateral vibration acceleration. However, an angular velocity or angular acceleration sensor capable of detecting any of yawing, pitching, and rolling may be used. It is also possible to detect and perform vertical vibration on the vehicle. On the other hand, when a point detection signal is input from the point detection device 6 to the control amount calculation device 12, the respective signals are determined based on the determination as to whether the vehicle is inside Tonen, outside the tunnel, the last vehicle, or the vehicle with a punter. One of the corresponding control data A1, A2, A3, and A4 is selected, a control output is calculated based on the control data, converted into an analog signal by the D / A converter 13, and passed through the amplifier 14 to each of the proportional pressure controllers. Output to valves 15,16,17,18. Then, based on the control output, each proportional pressure control valve supplies and exhausts air, the double-acting pneumatic cylinders 19 and 20 are driven, and the tilt control of the vehicle body 1 is performed.
[0028]
In the control operation device 12, the following matrices A to D are stored in advance based on the control data M.
A: n rows and n columns B: n rows and m columns C: r rows and n columns D: r rows and m columns
Then, control output data y (k) is calculated from input data u (k) based on state variable vector x (k) and matrix data A to D as described below.
x (k + 1) = Ax (k) + Bu (k)
y (k) = Cx (k) + Du (k) x (0) = 0 k = 0,1,...
[0030]
For example, the control arithmetic unit 12, regardless of the travel position, and at the same time calculates the y 1 as a tunnel outside the control output data, calculates the y 2 as a tunnel in the control output data.
[0031]
FIG. 9 shows a conceptual structure of the control operation device 12 described above. The control arithmetic unit 12 calculates and stores the control data M 1 , the state variable vector x 1, and the actuator control output data y 1 in the tunnel, the control data M 2 outside the tunnel, and the state variable includes a data storage unit 100b for computing and storing vector x 2 and the actuator control output data y 2, these storage unit 100a, and a switching device 102 for switching 100b. The switching device 102 selects a signal to be output to the D / A 13 based on a signal from the ground inspection ground device 6.
[0032]
FIG. 10 is a flowchart showing the operation of the first embodiment. In a normal vehicle operation note, a vibration characteristic is detected by an acceleration sensor. Based on the detected vibration characteristics, actuator control output data inside and outside the tunnel are calculated and stored. Thereafter, when the vehicle reaches the switching unit inside and outside the tunnel and it is determined that the vehicle is just before the tunnel, the drive control of the actuator is started using the previously stored control output data in the tunnel. On the other hand, if it is determined that the tunnel is at the end of the tunnel, the drive control of the actuator is started using the out-of-tunnel control output data stored in advance.
[0033]
As described above, in the first embodiment, the calculation of the control value of the actuator inside and outside the tunnel is performed in parallel, and the control mode of the actuator can be changed immediately at the switching point inside and outside the tunnel. That is, it is not necessary to reset the vector operation to the initial condition at the timing of mode switching inside and outside the tunnel, and it is possible to avoid that the value of the control signal of the actuator becomes discontinuous. As a result, there is an effect that the riding comfort as a railway vehicle is improved.
[0034]
FIG. 11 is a block diagram showing a configuration of a controller used in the railway vehicle vibration control device according to the second embodiment of the present invention. FIG. 12 is a schematic explanatory diagram showing the configuration of the control arithmetic unit in the controller according to the second embodiment shown in FIG. FIG. 13 is a flowchart showing the operation of the second embodiment shown in FIGS. Note that components that are the same as or correspond to the configurations shown in the respective drawings described above are denoted by the same reference numerals, and redundant description will be omitted.
[0035]
A feature of the present embodiment is that the vibration control mode is switched between a high-speed traveling section (Shinkansen section) and a low-speed traveling section (conventional line section) based on the traveling speed of the vehicle. Here, it is assumed that the vehicle travels at a speed of, for example, 200 km / h in a high-speed traveling section, and travels at a speed of, for example, 80 km / h in a low-speed traveling section.
[0036]
As shown in FIG. 11, the controller 109 according to the present embodiment includes a vehicle speed sensor 104 in addition to the above-described A / D converter 10, low-pass filter 11, D / A converter 13, and amplifier 14. Then, the control arithmetic unit 112 changes the drive control mode of the actuator based on the output signals of the ground inspection ground device 6 and the vehicle speed sensor 104.
[0037]
As shown in FIG. 12, the control arithmetic unit 112 includes switching devices 114a and 114b for switching between the Shinkansen section and the conventional line section; control data, state variable vector, and control output data for traveling outside the tunnel in the Shinkansen section. Storage unit 116a holding control data, state variable vector, and control output data for traveling outside the tunnel in a conventional line section; control data, state variable vector, and inside a tunnel in a Shinkansen section A storage unit 116c holding control output data for traveling; a storage unit 116d holding control data for a conventional line section, a state variable vector, and control output data for traveling in a tunnel; switching between these storage units Device 118.
[0038]
As shown in FIG. 13, in this embodiment, when the vehicle speed detected by the vehicle speed sensor 104 is lower than the predetermined speed V0, the control of the actuator is turned off. Then, when the railway vehicle reaches the switching point between the Shinkansen section and the conventional line section based on the detection result of the ground inspection ground device 6, the control mode of the actuator according to the section is selected. Here, for example, when the vehicle speed is lower than the speed V0 as in the case where the vehicle simply arrives at the station, but the railway vehicle is not a switching point between the Shinkansen section and the conventional line section, the control of the actuator is turned off. However, the control mode is not switched.
[0039]
On the other hand, when the vehicle speed detected by the vehicle speed sensor 104 is higher than the predetermined speed V0, control similar to that of the first embodiment (FIG. 10) is continuously performed.
[0040]
As described above, in the present embodiment, the control mode switching between the high-speed traveling section and the low-speed traveling section is performed when the vehicle speed becomes low, that is, when the drive control of the actuator is turned off. Signal values do not become discontinuous. Further, since the control mode is switched between the high-speed traveling section and the low-speed traveling section based on the output signal of the ground inspection ground device 6, it is possible to avoid the mode switching at an unnecessary place (mere stop station).
[0041]
(1) Shinkansen section; (2) Conventional line section; (3) Outside tunnel; (4) Control output data y (n) based on four control data M in tunnel and state variable vector x (n). ) Can be calculated in advance and stored, and these can be selectively used based on the detection result of the ground inspection ground device 6.
[0042]
The embodiments (embodiments, embodiments) of the present invention have been described above. However, the present invention is not limited to these embodiments, and changes may be made within the scope of the technical idea described in the appended claims. It is possible.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating vibration propagation through a vehicle spring system due to track irregularity.
FIG. 2 is an explanatory diagram showing aerodynamic force due to air flow directly acting on a vehicle body.
FIG. 3 is a graph showing a comparison between vibrations generated in a vehicle body inside and outside a tunnel;
FIG. 4 (A) is a partial perspective view of a knitting train showing a Karman vortex of an air flow generated in a vehicle with a panta, and FIG. 4 (B) is a knitting showing a Karman vortex of an air flow generated in a last vehicle. It is a partial perspective view of a train.
FIG. 5A is a graph showing a passive vehicle vibration outside a tunnel, and FIG. 5B is a graph showing weights and control effects of H∞ control outside a tunnel.
FIG. 6A is a graph showing the vibration of a passive vehicle in a tunnel, and FIG. 6B is a graph showing the weight and control effect of H∞ control in the tunnel.
7 (A) is a graph showing the vibration of a passive vehicle of the last vehicle, and FIG. 7 (B) is a graph showing the weight and control effect of H∞ control of the last vehicle.
FIG. 8 is an explanatory diagram showing an example of a control system of the vehicle body inclination control device used in the present invention.
FIG. 9 is an explanatory diagram illustrating a schematic configuration of a control arithmetic unit used in the railway vehicle vibration control device according to the first embodiment of the present invention.
FIG. 10 is a flowchart showing an operation of the first embodiment shown in FIG. 9;
FIG. 11 is a block diagram showing a configuration of a controller used in a railway vehicle vibration control device according to a second embodiment of the present invention.
FIG. 12 is a schematic explanatory diagram showing a configuration of a control operation device in a controller according to a second embodiment shown in FIG. 11;
FIG. 13 is a flowchart showing the operation of the second embodiment shown in FIGS. 10 and 11;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Body 2 Front bogie 3 Rear bogie 4 Air spring 5 Left-right motion damper 6 Point detecting device 7, 8 Left-right vibration accelerometer 9, 109 Controller 12, 102, 112 Control amount calculating device 22, 23 Left-right displacement meter 100a, 100b 116a, 116b, 116c, 116d Storage units 102, 114a, 114b, 118 Switching device 104 Vehicle speed sensor

Claims (14)

鉄道車両の車体と台車との間に設置されたアクチュエータと;
前記鉄道車両の振動特性を検出する振動センサと;
前記鉄道車両の走行位置を検出する地点センサと;
前記振動センサの出力に基づき、前記アクチュエータの制御値を複数の走行条件毎に算出する演算部と;
前記地点センサの出力に基づき、前記演算部によって予め求められた複数の制御値の1つを選択し、これに基づいて前記アクチュエータの駆動制御を行う制御部とを備えたことを特徴とする鉄道車両の振動制御装置。
An actuator installed between the body of the railway vehicle and the bogie;
A vibration sensor for detecting vibration characteristics of the railway vehicle;
A point sensor for detecting a traveling position of the railway vehicle;
A calculating unit that calculates a control value of the actuator for each of a plurality of traveling conditions based on an output of the vibration sensor;
A control unit that selects one of a plurality of control values obtained in advance by the calculation unit based on an output of the point sensor, and performs drive control of the actuator based on the selected control value. Vehicle vibration control device.
前記走行条件は、少なくともトンネル内走行とトンネル外走行とを含むことを特徴とする請求項1に記載の装置。The apparatus according to claim 1, wherein the traveling condition includes at least traveling in a tunnel and traveling outside a tunnel. 前記演算部は、状態変数ベクトルに基づいて演算を行うことを特徴とする請求項1又は2に記載の装置。The apparatus according to claim 1, wherein the operation unit performs an operation based on a state variable vector. 前記振動センサは、前記鉄道車両の走行速度に基づいて検出を行う加速度センサであることを特徴とする請求項1,2又は3に記載の装置。The apparatus according to claim 1, 2, or 3, wherein the vibration sensor is an acceleration sensor that performs detection based on a traveling speed of the railway vehicle. 前記振動特性は、前記車体の左右方向,前後方向,上下方向,ローリング、ピッチング、ヨーイングの少なくともいずれかを含むことを特徴とする請求項1,2,3又は4に記載の装置。5. The apparatus according to claim 1, wherein the vibration characteristic includes at least one of a left-right direction, a front-rear direction, a vertical direction, rolling, pitching, and yawing of the vehicle body. 前記走行条件は、高速走行区間と低速走行区間とを含むことを特徴とする請求項1,2,3,4又は5に記載の装置。The apparatus according to claim 1, 2, 3, 4, or 5, wherein the traveling condition includes a high-speed traveling section and a low-speed traveling section. 鉄道車両の車体と台車との間に設置されたアクチュエータと;
前記鉄道車両の振動特性を検出する振動センサと;
前記鉄道車両の走行速度を検出する速度センサと;
前記振動センサの出力に基づき、前記アクチュエータの制御値を算出する演算部と;
前記速度センサの出力に基づき、前記鉄道車両が所定の速度以下の時に、前記アクチュエータの制御モードを高速走行区間用と低速走行区間用との間で切り替え、これに基づいて前記アクチュエータの駆動制御を行う制御部とを備えたことを特徴とする鉄道車両の振動制御装置。
An actuator installed between the body of the railway vehicle and the bogie;
A vibration sensor for detecting vibration characteristics of the railway vehicle;
A speed sensor for detecting a running speed of the railway vehicle;
A calculation unit for calculating a control value of the actuator based on an output of the vibration sensor;
Based on the output of the speed sensor, when the railway vehicle is at or below a predetermined speed, the control mode of the actuator is switched between a high-speed traveling section and a low-speed traveling section, and the drive control of the actuator is performed based on this. And a control unit for performing the control.
前記鉄道車両の走行位置を検出する地点センサを更に備え、
前記制御部は、前記地点センサの検出結果も参照して前記切り替え制御を行うことを特徴とする請求項7に記載の振動制御装置。
The vehicle further includes a point sensor that detects a traveling position of the railway vehicle,
The vibration control device according to claim 7, wherein the control unit performs the switching control with reference to a detection result of the point sensor.
鉄道車両の車体と台車との間に設置されたアクチュエータの駆動によって実行される車両制御方法において、
前記鉄道車両の振動特性を検出する工程と;
前記鉄道車両の走行位置を検出する工程と;
前記検出された振動特性に基づき、前記アクチュエータの制御値を複数の走行条件毎に継続的に算出する工程と;
前記検出された走行位置に基づき、前記予め求められた複数の制御値の1つを選択する工程と;
前記選択された制御値に基づいて、前記アクチュエータの駆動制御を行う工程とを含むことを特徴とする車両制御方法。
In a vehicle control method executed by driving an actuator installed between a body of a railway vehicle and a bogie,
Detecting vibration characteristics of the railway vehicle;
Detecting a traveling position of the railway vehicle;
Continuously calculating a control value of the actuator for each of a plurality of traveling conditions based on the detected vibration characteristics;
Selecting one of the plurality of predetermined control values based on the detected travel position;
Performing a drive control of the actuator based on the selected control value.
前記走行条件は、少なくともトンネル内走行とトンネル外走行とを含むことを特徴とする請求項9に記載の方法。The method according to claim 9, wherein the driving conditions include at least driving in a tunnel and driving outside a tunnel. 前記アクチュエータの制御値の演算は、状態変数ベクトルに基づいて行うことを特徴とする請求項9又は10に記載の方法。The method according to claim 9, wherein the calculation of the control value of the actuator is performed based on a state variable vector. 前記走行条件は、高速走行区間と低速走行区間とを含むことを特徴とする請求項9,10又は11に記載の方法。The method according to claim 9, 10 or 11, wherein the driving condition includes a high-speed driving section and a low-speed driving section. 鉄道車両の車体と台車との間に設置されたアクチュエータの駆動によって実行される車両制御方法において、
前記鉄道車両の振動特性を検出する工程と;
前記鉄道車両の走行速度を検出する工程と;
前記検出された振動特性に基づき、前記アクチュエータの制御値を算出する工程と;
前記検出された走行速度に基づき、前記鉄道車両が所定の速度以下の時に、前記アクチュエータの制御モードを高速走行区間用と低速走行区間用との間で切り替える工程と;
前記選択された制御値に基づいて、前記アクチュエータの駆動制御を行う工程とを含むことを特徴とする車両制御方法。
In a vehicle control method executed by driving an actuator installed between a body of a railway vehicle and a bogie,
Detecting vibration characteristics of the railway vehicle;
Detecting a traveling speed of the railway vehicle;
Calculating a control value of the actuator based on the detected vibration characteristic;
A step of switching the control mode of the actuator between a high-speed traveling section and a low-speed traveling section when the railway vehicle is at or below a predetermined speed based on the detected traveling speed;
Performing a drive control of the actuator based on the selected control value.
前記鉄道車両の走行位置を検出する工程を更に含み、
前記走行位置も参照して、前記アクチュエータの制御モードを切り替えることを特徴とする請求項13に記載の方法。
The method further includes a step of detecting a traveling position of the railway vehicle,
14. The method according to claim 13, wherein the control mode of the actuator is switched with reference to the travel position.
JP2002345335A 2002-11-28 2002-11-28 Railway vehicle vibration control apparatus and control method Expired - Fee Related JP4186105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345335A JP4186105B2 (en) 2002-11-28 2002-11-28 Railway vehicle vibration control apparatus and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345335A JP4186105B2 (en) 2002-11-28 2002-11-28 Railway vehicle vibration control apparatus and control method

Publications (2)

Publication Number Publication Date
JP2004175264A true JP2004175264A (en) 2004-06-24
JP4186105B2 JP4186105B2 (en) 2008-11-26

Family

ID=32706533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345335A Expired - Fee Related JP4186105B2 (en) 2002-11-28 2002-11-28 Railway vehicle vibration control apparatus and control method

Country Status (1)

Country Link
JP (1) JP4186105B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327529A (en) * 2005-05-30 2006-12-07 Kawasaki Heavy Ind Ltd Vehicle body vibration control device and vehicle body vibration control method
JP2007131204A (en) * 2005-11-11 2007-05-31 Railway Technical Res Inst Damping device for railway vehicle
JP2009018640A (en) * 2007-07-10 2009-01-29 Kayaba Ind Co Ltd Vibration damping device for railroad vehicle
JP2010264919A (en) * 2009-05-15 2010-11-25 Nippon Sharyo Seizo Kaisha Ltd Damping device of railway vehicle
JP2010285117A (en) * 2009-06-15 2010-12-24 Hitachi Ltd Vehicular vibration control system
JP2012076565A (en) * 2010-09-30 2012-04-19 Hitachi Automotive Systems Ltd Vibration control device for railroad vehicle
JP2014012452A (en) * 2012-07-04 2014-01-23 Hitachi Ltd Vibration control device for railway vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327529A (en) * 2005-05-30 2006-12-07 Kawasaki Heavy Ind Ltd Vehicle body vibration control device and vehicle body vibration control method
JP2007131204A (en) * 2005-11-11 2007-05-31 Railway Technical Res Inst Damping device for railway vehicle
JP2009018640A (en) * 2007-07-10 2009-01-29 Kayaba Ind Co Ltd Vibration damping device for railroad vehicle
JP2010264919A (en) * 2009-05-15 2010-11-25 Nippon Sharyo Seizo Kaisha Ltd Damping device of railway vehicle
JP2010285117A (en) * 2009-06-15 2010-12-24 Hitachi Ltd Vehicular vibration control system
JP2012076565A (en) * 2010-09-30 2012-04-19 Hitachi Automotive Systems Ltd Vibration control device for railroad vehicle
JP2014012452A (en) * 2012-07-04 2014-01-23 Hitachi Ltd Vibration control device for railway vehicle

Also Published As

Publication number Publication date
JP4186105B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP4845426B2 (en) Car body vibration control device and car body vibration control method
JP5255780B2 (en) Railway vehicle vibration control device
TWI449643B (en) Braking component acceleration estimator of railway vehicle and method for estimating acceleration of vibration component
JP2008247333A (en) Vibration control device for railway vehicle
JP2007176400A (en) Vertical vibration control device for railway vehicle
KR100916382B1 (en) Position adjustment of a vehicle car body
JP4186105B2 (en) Railway vehicle vibration control apparatus and control method
JP4429955B2 (en) Vehicle vibration control device
JP6833477B2 (en) Railroad vehicle height adjustment device
JP4048391B2 (en) Railway vehicle vibration control method
JP3541967B2 (en) Vehicle body neutral position control method for railway vehicles
JP4191013B2 (en) Damping device and vehicle with damping function
JP2003320931A (en) Railcar vibration restraining device
JPH08536B2 (en) Vehicle vibration control device
JP3107133B2 (en) Railway vehicle vibration control device
JP2012153328A (en) Inter-vehicle damper device
CN107207017B (en) Vehicle damper
JP4700862B2 (en) Railway vehicle
JP5190864B2 (en) Railway vehicle vibration control device
JPH10315965A (en) Vibration controller for railroad rolling stock
JPH1194018A (en) Dynamic damper for transportation device
JP3966050B2 (en) Railway vehicle vibration control device and railway vehicle
JPH1059179A (en) Vibration control method to rolling stock
JP2000264205A (en) Vibration control device for vehicle
JP2012011860A (en) Device and method for controlling vibration of railway vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080827

R150 Certificate of patent or registration of utility model

Ref document number: 4186105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees