JP4048391B2 - Railway vehicle vibration control method - Google Patents

Railway vehicle vibration control method Download PDF

Info

Publication number
JP4048391B2
JP4048391B2 JP32942497A JP32942497A JP4048391B2 JP 4048391 B2 JP4048391 B2 JP 4048391B2 JP 32942497 A JP32942497 A JP 32942497A JP 32942497 A JP32942497 A JP 32942497A JP 4048391 B2 JP4048391 B2 JP 4048391B2
Authority
JP
Japan
Prior art keywords
damper
control
vehicle body
vibration
damping force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32942497A
Other languages
Japanese (ja)
Other versions
JPH11139310A (en
Inventor
佳之 丸山
尚志 根来
浩一 佐々木
博之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP32942497A priority Critical patent/JP4048391B2/en
Publication of JPH11139310A publication Critical patent/JPH11139310A/en
Application granted granted Critical
Publication of JP4048391B2 publication Critical patent/JP4048391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道車両が左右方向に変位する際、ストッパ当たりを防止して振動制御する方法に関する。
【0002】
【従来の技術】
鉄道車両の車体と台車の間は、ばねやダンパ等の緩衝器で連結されており、車体は台車に対し左右方向の変位が許容されている。しかし、その左右方向変位は、建築限界を侵さないように台車との間に左右方向の動きを規制するため左右動ストッパが装着されている。そして、車体と左右動ストッパとの間には、通常ストッパの左右側に均等の隙間が設けられている。
【0003】
通常、車両の走行中に車体振動が発生すると、直線区間では車体と左右動ストッパとの隙間により、台車から車体への直接振動の伝達は防止されているが、曲線区間では超過遠心力により高速時は外軌側へ、低速時は内軌側へ定常変位を生じ、隙間が左右均等でなくなり、左右動ストッパに接触しやすくなる。そして、左右動ストッパに接触し続けるか、または左右動ストッパに衝撃的に当たる場合には台車振動が直接車体へ伝達され、乗客の乗り心地を悪くする。
【0004】
前記ストッパ当たりによる乗り心地の低下を防止するため、従来は左右動ストッパの左右の隙間を更に拡大する方法、左右動ストッパの材質を柔らかくして接触時の衝撃を緩和する方法、及び空気ばねの左右剛性を高くして車体の変位を抑制する方法等が行われているが、いずれもなんらかの欠点がある。また、これらの欠点を改善したものとして、振動制御装置を有する車両において、曲線通過時の検知信号により求めた制御出力を前記振動制御装置内の流体アクチュエータに出力して車体を中立位置に保持する方法(特開平8−26110号公報参照)が提案されている。
【0005】
【発明が解決しようとする課題】
前記振動制御装置内の流体アクチュエータを使って曲線通過時の車体を中立位置に保持する方法によれば、曲線区間通過時も直線区間走行時と同様の乗り心地が得られるが、振動制御のための流体アクチュエータを併用するため、本来の制御効果の低下や消費エネルギーの増加を来たす恐れがある。
【0006】
本発明は、前記従来法に見られる欠点を排除するため、振動制御用の流体アクチュエータを併用することなく、曲線通過時のストッパ当たりを防止し得る鉄道車両の振動制御方法を提供するものである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の鉄道車両の振動制御方法は、車体の静荷重を支持する空気ばねを備えた鉄道車両の車体と台車との間に、車体の進行方向に交差する左右方向の変位を規制するストッパと、振動制御用の流体アクチュエータとを有し、前記流体アクチュエータに供給される作動流体を制御するための制御弁、車体の振動を検知するための検知機構及び該検知機構の出力から前記制御弁への制御入力を決定する制御器とを備えた鉄道車両の振動制御装置において、左右方向に作動する減衰力切り替え可能なダンパを前記流体アクチュエータに併設し、曲線通過を検知するセンサの検知信号をもとに、直線走行時はダンパを低減衰状態に保持し、曲線通過時はダンパを高減衰状態に切り替えて制御することによりストッパ当たりを防止することを特徴とする。
【0008】
また、前記振動制御方法において、ダンパの減衰力に見合った制御データを選択して制御演算を行いダンパの減衰力の切り替えを行なうことを特徴とする。
【0009】
【発明の実施の形態】
車体に設置した加速度センサにより車体に作用している左右振動加速度を検出し、0.5Hz程度のローパスフィルタを用いて定常成分(超過遠心加速度)を検出するか、あるいは角度検出機構により台車のボギー角を検出して、その検出信号を制御器に入力して、直線区間走行か曲線区間通過かを判断するなどの方法により、直線走行区間と曲線走行区間で台車と車体の間に設けた左右動ダンパの減衰力を切り替える。その左右動ダンパの減衰力は、曲線区間通過時は鉄道車両用として一般的に使用されている20kgf/cm/s程度か、あるいは少しかための30kgf/cm/s程度を使用し、直線区間走行時は曲線区間通過時の半分の10kgf/cm/s程度を使用するように切り替える。
【0010】
前記のごとく、鉄道車両が曲線区間を通過する際は、左右動ダンパの減衰力は通常どおりか、またはそれより高い状態で、振動制御が行われるので、振幅が押えられストッパ当たりを防止できる。また、鉄道車両が直線区間を走行する際は、左右動ダンパの減衰力は曲線区間通過時の半分程度に低く押さえているため、振動制御用のアクチュエータに対し抵抗として働く左右動ダンパの影響を少なくすることにより、振動制御装置の制振効果を高め、同時に消費エネルギーの節約ができる。更に、ストッパ当たりの防止を左右動ダンパの減衰力の切り替えのみで行なうため、振動制御用のアクチュエータが発生する駆動力が少なくてすみ、消費エネルギーも節減できる。そして、車両は曲線区間においても直線区間と同様にストッパ当たりを防止して走行できるから、曲線区間通過時の乗り心地を低下させることがない。
【0011】
【実施例】
本発明の実施例を図面に基づいて説明する。図1は、本発明を実施するための振動制御装置を備えた車両の説明図である。車体7は空気ばね9により台車8に支持されており、車体7と台車8の間には、複動式空気圧シリンダ4とストッパ5のストッパ当たりを防止するための、減衰力の切り替えが可能な左右動ダンパ3が設置される。その減衰力の切り替えは、車体に設けた加速度センサ1で検知した車体振動の検知信号を制御器2に入力して、ここでデータと比較して曲線区間か直線区間かを判断し、その結果に基づいて制御信号を左右動ダンパ3に入力して行われる。また、作動流体として空気を使用する場合、前記複動式空気圧シリンダ4への空気の供給は制御弁6を介して行われるが、加速度センサ1で検知した車体振動の検知信号を制御器2に入力して、ここで制御量を演算し、図示しない空気源から送られる空気を制御弁6で制御して供給するように構成される。
【0012】
前記減衰力の切り替えが可能な左右動ダンパ3の一例を図2に示す。ダンパ内には2つの絞り10、11があって、減衰力を発生させるが、さらに油室とシリンダ左室との間に電磁弁12が設けられており、この電磁弁12の開閉により発生する減衰力の切り替えができる構造からなる。
【0013】
前記装置において、加速度センサ1で車体の振動を検知し、制御器2で制御量を演算して、空気源から送られる空気を制御弁6で制御することにより、複動式空気圧シリンダ4に力を発生させると共に、加速度センサ1で検知した加速度の大きさや振動数によって車体の振動が抑制される。
【0014】
前記振動制御の動作と同時に、加速度センサ1で検知した検知信号が制御器2に入力されると、データと比較して曲線区間か直線区間かを判断し、曲線区間の場合には減衰力が大きくなるように、また直線区間の場合には減衰力が小さくなるように、制御信号が左右動ダンパ3に出力され、減衰力の切り替えが行われる。
【0015】
また、予め制御器2にダンパの減衰力に対応した制御データを入力しておき、曲線区間通過かどうかを判断して、曲線通過中なら高減衰用制御データを選択し、また曲線通過中でない場合には低減衰用制御データを選択して制御演算を行い減衰力の切り替えが行うことができる。前記した左右動ダンパの減衰力切り替え制御のフローチャートを図3に示す。
【0016】
また、使用する制御データに関しては、図4に示すように、一般に減衰が小さい場合には、減衰が高い場合に比べ共振周波数が低くなり、応答は共振付近で大きく、高周波域では小さくなる。そこで、制御については、低減衰用の制御データとしては、低周波域での高減衰用の制御データは、比較的高減衰域での制御効果が得られるように設定する。例えば、制御則としてH∞制御を用いるならば、低減衰用制御データでは共振周波数付近の制御重みを大きくし、高減衰用の制御データとしては高周波側での制御重みを大きくしたデータを使用する。
【0017】
【発明の効果】
本発明の実施によれば、車体振動制御用アクチュエータを併用することなく、曲線区間通過時のストッパ当たりを防止することができ、乗り心地を低下することがない。また、特開平8−26110号公報に開示された従来の方法では、流体アクチュエータにより車体の中立位置への保持のため500kgf程度の出力が必要となるが、これは振動制御自体に必要とされる出力と同程度か、やや大きい値となっており、消費エネルギーの著しい増加が発生する。また、場合によっては、振動制御に必要となる出力が十分に得られなくなる恐れがあり、アクチュエータの大型化が必要となることもある。一方、本発明では、ダンパの減衰力による車体振幅の低減によりストッパ当たりを回避するため流体アクチュエータを使用する方法に対して外部からエネルギーを投入する必要がないため、消費エネルギーを低減できる。
【図面の簡単な説明】
【図1】本発明の実施による鉄道車両の振動制御装置の一例を示す説明図である。
【図2】本発明の実施における左右動ダンパの一例を示す説明図である。
【図3】本発明の実施による左右動ダンパの減衰力の切り替え制御のフローチャートである。
【図4】制御データの減衰力の違いによる振動を比較して示すグラフである。
【符号の説明】
1 加速度センサ
2 制御器
3 左右動ダンパ
4 複動式空気圧シリンダ
5 ストッパ
6 制御弁
7 車体
8 台車
9 空気ばね
10、11 絞り
12 電磁弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling vibration by preventing contact with a stopper when a railway vehicle is displaced in the left-right direction.
[0002]
[Prior art]
The body of the railway vehicle and the carriage are connected by a shock absorber such as a spring or a damper, and the body is allowed to be displaced in the left-right direction with respect to the carriage. However, a left-right movement stopper is mounted in order to restrict the movement in the left-right direction between the vehicle and the carriage so that the displacement in the left-right direction does not violate the building limit. A regular gap is provided between the vehicle body and the left and right moving stopper on the left and right sides of the normal stopper.
[0003]
Normally, when vehicle vibration occurs while the vehicle is running, the transmission of direct vibration from the carriage to the vehicle body is prevented in the straight section due to the gap between the vehicle body and the left and right movement stopper, but in the curved section high speed due to excess centrifugal force At times, a steady displacement occurs on the outer gauge side, and at low speeds on the inner gauge side, the gaps are not even on the left and right sides, and the left and right movement stoppers are easily contacted. And when it contacts with a left-right movement stopper or it hits a left-right movement stopper shockingly, a trolley vibration is directly transmitted to a vehicle body, and a passenger's riding comfort is worsened.
[0004]
In order to prevent a decrease in ride comfort due to the stopper, a conventional method of further expanding the left and right clearances of the left and right movement stopper, a method of softening the material of the left and right movement stopper to mitigate impact at the time of contact, and an air spring A method of suppressing the displacement of the vehicle body by increasing the left-right rigidity has been performed, but all have some drawbacks. Further, as an improvement of these drawbacks, in a vehicle having a vibration control device, a control output obtained from a detection signal at the time of passing a curve is output to a fluid actuator in the vibration control device to hold the vehicle body in a neutral position. A method (see JP-A-8-26110) has been proposed.
[0005]
[Problems to be solved by the invention]
According to the method of using the fluid actuator in the vibration control device to hold the vehicle body in the neutral position when passing the curve, the same riding comfort as when traveling in the straight section can be obtained even when passing the curved section. Because of the combined use of the fluid actuator, there is a risk of lowering the original control effect and increasing energy consumption.
[0006]
The present invention provides a railroad vehicle vibration control method capable of preventing contact with a stopper when passing a curve without using a fluid actuator for vibration control in order to eliminate the disadvantages found in the conventional method. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a vibration control method for a railway vehicle according to the present invention includes a lateral direction that intersects a traveling direction of a vehicle body between a vehicle body and a carriage of a railway vehicle that includes an air spring that supports a static load of the vehicle body. a stopper for regulating the displacement, and a fluid actuator for vibration control, the control valve for controlling a hydraulic fluid supplied to the fluid actuator, detection knowledge Organization and said for detecting vibration of the vehicle body In a vibration control device for a railway vehicle including a controller that determines a control input to the control valve from an output of a detection mechanism, a damper capable of switching a damping force that operates in the left-right direction is attached to the fluid actuator, and passes through a curve. based on the detection signal of the sensor for detecting a running straight holds the damper in the low attenuation state, per the stopper by at curving controls switches the damper in the high attenuation state Characterized in that it prevented.
[0008]
Further, in the vibration control method, the control data corresponding to the damping force of the damper is selected and a control calculation is performed to switch the damping force of the damper.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The left and right vibration acceleration acting on the vehicle body is detected by an acceleration sensor installed on the vehicle body, and a steady component (excessive centrifugal acceleration) is detected using a low-pass filter of about 0.5 Hz, or the bogie of the carriage is detected by an angle detection mechanism. By detecting the angle and inputting the detection signal to the controller to determine whether the vehicle is traveling in a straight section or passing through a curved section, the left and right Switches the damping force of the dynamic damper. The damping force of the left and right dynamic damper is about 20 kgf / cm / s, which is generally used for railway vehicles when passing through the curved section, or about 30 kgf / cm / s, which is a little used, and the straight section When traveling, it is switched to use about 10 kgf / cm / s, which is half of the curve section passing.
[0010]
As described above, when the railway vehicle passes through the curved section, the vibration control is performed in a state where the damping force of the left and right motion damper is normal or higher, so that the amplitude is suppressed and the stopper contact can be prevented. Also, when the railway vehicle travels in a straight section, the damping force of the left and right motion damper is suppressed to about half that when passing through the curved section, so the influence of the left and right motion damper acting as a resistance to the vibration control actuator is reduced. By reducing it, the vibration control effect of the vibration control device can be enhanced, and at the same time, energy consumption can be saved. Further, since the contact with the stopper is prevented only by switching the damping force of the left and right dynamic damper, the driving force generated by the vibration control actuator can be reduced, and energy consumption can be reduced. And since a vehicle can drive | work in a curve section like the straight section, preventing hit | damage to a stopper, the riding comfort at the time of a curve section passage is not reduced.
[0011]
【Example】
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of a vehicle provided with a vibration control device for carrying out the present invention. The vehicle body 7 is supported on the carriage 8 by an air spring 9, and the damping force can be switched between the vehicle body 7 and the carriage 8 to prevent the double-acting pneumatic cylinder 4 and the stopper 5 from coming into contact with each other. A left-right motion damper 3 is installed. The damping force is switched by inputting a vehicle body vibration detection signal detected by the acceleration sensor 1 provided on the vehicle body to the controller 2 and comparing it with the data to determine whether it is a curved section or a straight section. The control signal is input to the left and right motion damper 3 based on the above. When air is used as the working fluid, the air is supplied to the double-acting pneumatic cylinder 4 via the control valve 6, and the vehicle body vibration detection signal detected by the acceleration sensor 1 is sent to the controller 2. The control amount is input and the control amount is calculated here, and the air sent from the air source (not shown) is controlled by the control valve 6 and supplied.
[0012]
An example of the left and right dynamic damper 3 capable of switching the damping force is shown in FIG. There are two throttles 10 and 11 in the damper to generate a damping force. Further, an electromagnetic valve 12 is provided between the oil chamber and the cylinder left chamber, and is generated by opening and closing the electromagnetic valve 12. It consists of a structure that can switch the damping force.
[0013]
In the apparatus, the acceleration sensor 1 detects the vibration of the vehicle body, the controller 2 calculates the control amount, and the air sent from the air source is controlled by the control valve 6, so that the force is applied to the double-acting pneumatic cylinder 4. And the vibration of the vehicle body is suppressed by the magnitude and frequency of the acceleration detected by the acceleration sensor 1.
[0014]
When the detection signal detected by the acceleration sensor 1 is input to the controller 2 simultaneously with the vibration control operation, it is determined whether it is a curve section or a straight section compared with the data. A control signal is output to the left and right dynamic damper 3 so that the damping force is increased so that the damping force is reduced in the case of a straight section, and the damping force is switched.
[0015]
Further, control data corresponding to the damping force of the damper is input to the controller 2 in advance, and it is determined whether or not the curve section is passed. If the curve is passing, the high damping control data is selected, and the curve is not passing. In this case, the damping force can be switched by selecting control data for low damping and performing control calculation. FIG. 3 shows a flowchart of the damping force switching control of the left and right dynamic damper.
[0016]
Regarding the control data to be used, as shown in FIG. 4, when the attenuation is generally small, the resonance frequency is lower than when the attenuation is high, and the response is large near the resonance and small in the high frequency region. Therefore, as for the control data for low attenuation, the control data for high attenuation in the low frequency range is set so that the control effect in the relatively high attenuation range can be obtained. For example, if H∞ control is used as the control law, the control weight near the resonance frequency is increased in the low attenuation control data, and the control weight on the high frequency side is increased as the control data for high attenuation. .
[0017]
【The invention's effect】
According to the embodiment of the present invention, the stopper contact at the time of passing through the curved section can be prevented without using a vehicle body vibration control actuator together, and the riding comfort is not lowered. Further, in the conventional method disclosed in Japanese Patent Laid-Open No. 8-26110, an output of about 500 kgf is required for holding the vehicle body in the neutral position by the fluid actuator, which is necessary for vibration control itself. It is almost the same as or slightly larger than the output, resulting in a significant increase in energy consumption. In some cases, the output required for vibration control may not be sufficiently obtained, and the size of the actuator may need to be increased. On the other hand, in the present invention, it is not necessary to input energy from the outside to the method of using the fluid actuator in order to avoid the stopper contact by reducing the vehicle body amplitude due to the damping force of the damper, so that energy consumption can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of a railcar vibration control apparatus according to an embodiment of the present invention.
FIG. 2 is an explanatory view showing an example of a left-right motion damper in the embodiment of the present invention.
FIG. 3 is a flowchart of switching control of a damping force of a left and right dynamic damper according to an embodiment of the present invention.
FIG. 4 is a graph showing a comparison of vibration due to a difference in damping force of control data.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Acceleration sensor 2 Controller 3 Left-right motion damper 4 Double acting pneumatic cylinder 5 Stopper 6 Control valve 7 Car body 8 Carriage 9 Air springs 10, 11 Restriction 12 Solenoid valve

Claims (2)

車体の静荷重を支持する空気ばねを備えた鉄道車両の車体と台車との間に、車体の進行方向に交差する左右方向の変位を規制するストッパと、振動制御用の流体アクチュエータとを有し、前記流体アクチュエータに供給される作動流体を制御するための制御弁、車体の振動を検知するための検知機構及び該検知機構の出力から前記制御弁への制御入力を決定する制御器とを備えた鉄道車両の振動制御装置において、左右方向に作動する減衰力切り替え可能なダンパを前記流体アクチュエータに併設し、曲線通過を検知するセンサの検知信号をもとに、直線走行時はダンパを低減衰状態に保持し、曲線通過時はダンパを高減衰状態に切り替えて制御することによりストッパ当たりを防止することを特徴とする鉄道車両の振動制御方法。Between the vehicle body of a railway vehicle equipped with an air spring that supports the static load of the vehicle body and the carriage, there is a stopper that regulates the displacement in the left-right direction intersecting the traveling direction of the vehicle body, and a fluid actuator for vibration control a control valve for controlling a hydraulic fluid supplied to the fluid actuator, and from the output of the detection knowledge Organization and the detection mechanism for detecting vibration of the vehicle body controller for determining a control input to said control valve In a vibration control device for a railway vehicle equipped with a damper for switching the damping force that operates in the left-right direction, the damper is attached to the fluid actuator, and the damper is used during straight running based on the detection signal of the sensor that detects the passage of a curve. A vibration control method for a railway vehicle characterized in that the stopper is prevented from hitting by maintaining a low damping state and controlling the damper by switching to a high damping state when passing through a curve. ダンパの減衰力に見合った制御データを選択して制御演算を行い減衰力の切り替えを行なうことを特徴とする請求項1記載の鉄道車両の振動制御方法。  2. The vibration control method for a railway vehicle according to claim 1, wherein the control data corresponding to the damping force of the damper is selected and a control calculation is performed to switch the damping force.
JP32942497A 1997-11-12 1997-11-12 Railway vehicle vibration control method Expired - Fee Related JP4048391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32942497A JP4048391B2 (en) 1997-11-12 1997-11-12 Railway vehicle vibration control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32942497A JP4048391B2 (en) 1997-11-12 1997-11-12 Railway vehicle vibration control method

Publications (2)

Publication Number Publication Date
JPH11139310A JPH11139310A (en) 1999-05-25
JP4048391B2 true JP4048391B2 (en) 2008-02-20

Family

ID=18221244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32942497A Expired - Fee Related JP4048391B2 (en) 1997-11-12 1997-11-12 Railway vehicle vibration control method

Country Status (1)

Country Link
JP (1) JP4048391B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501380B2 (en) * 2003-09-09 2010-07-14 住友金属工業株式会社 Railway vehicle vibration control system
JP4845426B2 (en) * 2005-05-30 2011-12-28 川崎重工業株式会社 Car body vibration control device and car body vibration control method
JP4832124B2 (en) * 2006-03-13 2011-12-07 公益財団法人鉄道総合技術研究所 Articulated rail vehicle and method for reducing lateral pressure in articulated rail vehicle
JP4842723B2 (en) * 2006-07-04 2011-12-21 ピー・エス・シー株式会社 Vehicle-mounted fluid pressure control device
JP5255780B2 (en) * 2007-03-30 2013-08-07 川崎重工業株式会社 Railway vehicle vibration control device
JP5181323B2 (en) * 2007-03-30 2013-04-10 日立オートモティブシステムズ株式会社 Railway vehicle vibration control system
JP2010285117A (en) * 2009-06-15 2010-12-24 Hitachi Ltd Vehicular vibration control system
JP5326094B2 (en) * 2009-07-22 2013-10-30 カヤバ工業株式会社 Actuator
JP5427079B2 (en) * 2010-03-23 2014-02-26 カヤバ工業株式会社 Vibration control device for railway vehicles
JP5427082B2 (en) * 2010-03-24 2014-02-26 カヤバ工業株式会社 Vibration control device for railway vehicles
JP5812591B2 (en) * 2010-09-30 2015-11-17 日立オートモティブシステムズ株式会社 Railway vehicle vibration control system
JP5662881B2 (en) * 2011-06-20 2015-02-04 カヤバ工業株式会社 Vibration control device for railway vehicles
JP5503680B2 (en) * 2012-03-14 2014-05-28 カヤバ工業株式会社 Vibration control device for railway vehicles
JP5874584B2 (en) * 2012-08-29 2016-03-02 新日鐵住金株式会社 Railway vehicle anti-sway control device

Also Published As

Publication number Publication date
JPH11139310A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
JP4048391B2 (en) Railway vehicle vibration control method
JP5255780B2 (en) Railway vehicle vibration control device
JPH08175193A (en) Active type engine mount device
JP5704306B2 (en) Railway vehicle vibration control system
JP4845426B2 (en) Car body vibration control device and car body vibration control method
JP2007176400A (en) Vertical vibration control device for railway vehicle
JPH0443027B2 (en)
KR101300893B1 (en) Vibration restraint apparatus for railroad car
JPH06278606A (en) Vehicle vibration control device
JP3541967B2 (en) Vehicle body neutral position control method for railway vehicles
JP4429955B2 (en) Vehicle vibration control device
JPH0220472A (en) Suspension system for car
EP0736438B1 (en) A railway vehicle with variable trim body
JP2006321431A (en) Yaw damper device for railway vehicle
JP5051363B2 (en) Railway vehicle vibration control system
JP2006137294A (en) Vibration control device for railway vehicle
JP4070677B2 (en) Railway vehicle
JP6673073B2 (en) Yaw damper device for railway vehicles
JPH0781563A (en) Vibration damping for railroad rolling stock
JP2012179970A (en) Suspension control device
JP4799039B2 (en) Railway vehicle body tilting device
JP4771727B2 (en) Wheel load fluctuation suppression device
JP2000103334A (en) Side vibration damper for vehicle
JP5812591B2 (en) Railway vehicle vibration control system
JPH075076B2 (en) Railway vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees