JP3541967B2 - Vehicle body neutral position control method for railway vehicles - Google Patents

Vehicle body neutral position control method for railway vehicles Download PDF

Info

Publication number
JP3541967B2
JP3541967B2 JP18623594A JP18623594A JP3541967B2 JP 3541967 B2 JP3541967 B2 JP 3541967B2 JP 18623594 A JP18623594 A JP 18623594A JP 18623594 A JP18623594 A JP 18623594A JP 3541967 B2 JP3541967 B2 JP 3541967B2
Authority
JP
Japan
Prior art keywords
vehicle body
vehicle
neutral position
controller
bogie
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18623594A
Other languages
Japanese (ja)
Other versions
JPH0826110A (en
Inventor
智志 小泉
敏明 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
East Japan Railway Co
Original Assignee
Sumitomo Metal Industries Ltd
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, East Japan Railway Co filed Critical Sumitomo Metal Industries Ltd
Priority to JP18623594A priority Critical patent/JP3541967B2/en
Publication of JPH0826110A publication Critical patent/JPH0826110A/en
Application granted granted Critical
Publication of JP3541967B2 publication Critical patent/JP3541967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、鉄道車両の車体の左右方向定常変位に対する車体の中立位置を維持するための鉄道車両の車体中立位置制御装置及び車体中立位置制御方法に関する。
【0002】
【従来の技術】
鉄道車両の車体と台車の間は、ばねやダンパ等の緩衝器で連結されており、車体は台車に対し左右方向の変位が許容されている。しかし、その左右方向変位は建築限界を侵さないように台車との間に左右方向の動きを規制するため左右動ストッパが装着されている。そして、車体と左右動ストッパとの間には、通常ストッパの左右側に均等の隙間が設けられている。
【0003】
通常、車両の走行中に車体振動が発生すると、直線区間では車体と左右動ストッパとの隙間により、台車から車体への直接振動の伝達は防止されているが、曲線区間では超過遠心力により高速時は外軌側へ、低速時は内軌側へ定常変位を生じ、隙間が左右均等でなくなり、左右動ストッパに接触しやすくなる。そして、左右動ストッパに接触し続けるか、または左右動ストッパに衝撃的に当たる場合には、台車振動が直接車体へ伝達し、乗客の乗り心地を悪くする。
【0004】
前記のストッパ当たりによる乗り心地の低下を防止するため、従来は左右動ストッパとの間の隙間を更に拡大するか、または左右動ストッパ自体の材質をより柔らかくし、車体との接触時の衝撃を緩和する等の技術や、空気ばねの左右剛性を高くして車体の変位を抑制する方法が取られていた。
【0005】
【発明が解決しようとする課題】
前記従来技術により、車体と左右動ストッパとの間の隙間を更に拡大する方法は、建築限界のため拡大に制約を受け、十分な効果があがらない。また、左右動ストッパ自体の材質をより柔らかくすると、その分たわみが大きくなり、そのたわみにより建築限界を侵す危険がある。更に、空気ばねの左右剛性を高くする方法では、台車振動が車体に伝達されやすくなり、乗客の乗り心地を悪くする。
【0006】
この発明は、曲線区間通過時において車体と左右動ストッパとの間の左右隙間が均等となるように車体の左右方向の動きを制御することにより、曲線区間においても直線区間と同様の乗り心地が得られる鉄道車両の車体中立位置制御装置及び制御方法を提供するものである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、例えば鉄道車両の台車上にばねによって支持された車体と台車の間の左右方向に設置した流体アクチュエータと、車体の左右振動加速度または車体と台車との間の左右相対変位あるいは台車の左右振動加速度を検知するセンサと、該センサの出力及び地点検知信号から前記流体アクチュエータへの制御出力を決定する制御器からなる装置を使用して、この発明の実施により鉄道車両が曲線路を通過する際に車体が中立位置を維持できるようにする。
【0008】
1 鉄道車両の車体中立位置制御方法、路線の地点検知装置からの曲線信号が制御器に入力されると、前後台車に設けた車体または台車の左右振動加速度計で検知した左右振動加速度または車体と台車とのあいだの左右相対変位を制御器に入力し、該制御器内で前記左右振動加速度または車体と台車との間の左右相対変位からローパスフィルタを用いて抽出した定常成分にゲインを掛けて得た制御出力を流体アクチュエータに出力し、車体の中立位置を保持する。
【0009】
また、第2の鉄道車両の車体中立位置制御方法、路線の地点検知装置からの曲線信号を得ることなく、車体の左右振動加速度または車体と台車との間の左右相対変位あるいは台車の左右振動加速度を検知するセンサからの検知信号を制御器に入力し、該制御器内で前記検知信号からローパスフィルタを用いて抽出した曲線通過時の定常成分にゲインを掛けて得た制御出力を流体アクチュエータに出力し、車体の中立位置を保持する。
【0010】
更に、第3の鉄道車両の車体中立位置制御方法、列車の進行方向に対し前方車両の振動状況を予見信号として制御車両の制御器に入力し、該制御器内で前記予見信号からローパスフィルタを用いて抽出した定常成分にゲインを掛けて得た制御出力を前方車両と制御車両との距離に基づく遅延時間を加味して流体アクチュエータに出力し、車体の中立位置を保持する。
【0011】
【作用】
路線の地点検知装置からの曲線信号が制御器に入力する場合には、曲線信号が制御器に入力している間、車体に作用している左右振動加速度を、車体に設置した振動検知センサである左右振動加速度計にて検出し、ローパスフィルタを用いて定常成分(超過遠心加速度)を抽出する。そして、前記定常成分にフィードバックゲインを掛けたものを制御出力として流体アクチュエータに出力し、流体アクチュエータを駆動して車体の中立位置を保持する。その結果、車両は曲線区間においても直線区間と同様に車体を中立位置に保持したまま走行できるため、乗客の乗り心地を低下させることがない。
【0012】
定常成分を抽出する方法としては、前記方法の外に、車体の定常変差を車体と台車の間に設置した振動検知センサである左右変位計にて検出し、ローパスフィルタを用いて定常成分を抽出する方法、または台車の振動加速度を台車に設置した振動検知センサである左右振動検知計にて検出し、ローパスフィルタを用いて定常成分を抽出する方法がある。
【0013】
路線の地点検知装置からの地点検知信号を用いない場合には、直線路あるいは曲線路にかかわらず常時前記振動検知センサにて左右振動加速度を検出し、前記のフィードバック制御をおこなうが、ローパスフィルタを使用するため、超過遠心力による定常成分が発生する曲線区間を通過するときのみ制御することになる。
【0014】
また、列車の進行方向に対し前方車両の振動状況を予見信号として制御車両の制御器に入力し、該制御器内で前記予見信号から抽出した定常成分を利用して車体の中立位置を制御することができる。この場合、制御車両の振動は、前方車両の振動検出より遅れて発生するから、前方車両と制御車両との距離に基づいて遅延時間を求め、これを制御器に入力して制御信号の出力を遅らせる必要がある。
【0015】
なお、前記流体アクチュエータは、単体で給気または排気を可能とする比例圧力制御弁と、複動型空圧シリンダで構成される。
【0016】
前記のごとく、曲線区間において車体を中立位置に制御することにより、車体と台車のストッパ当たりが防止され、曲線区間通過時も直線区間走行時と同様の乗り心地が得られる。
【0017】
【実施例】
実施例1
本発明の鉄道車両の車体中立位置制御方法を実施するための装置の一例を図1に示す。
鉄道車両の台車上に空気ばね4によって支持された車体1と前台車2、後台車3の間の左右方向に設置した複動型空圧シリンダ19(前台車側)、20(後台車側)及び比例圧力制御弁15、16(前台車側)、17、18(後台車側)からなる流体アクチュエータと、車体1の左右振動加速度を検知する左右振動加速度計7、8または車体1と台車2、3との間の左右相対変位を検知する左右変位計22、23あるいは前台車2、後台車3の左右振動加速度を検知する振動加速度計24、25と、これらの左右振動加速度計または左右変位計の出力及び地点検知信号6から前記流体アクチュエータへの制御出力を決定する制御器9からなる。5は左右動ダンパ、21は空気源である。
【0018】
実施例2
路線の地点検知装置からの地点検知信号を用い、車体の左右振動加速度により車体の中立位置を制御する場合を図1及び図2に基づいて説明する。
図1に示すように、地点検知信号6により、曲線信号が制御器9に入力されると、車体の左右振動加速度計7、8で検知した左右振動加速度が制御器9に入力される。制御器9内では、入力された左右振動加速度がA/D変換装置10でディジタル化され、ローパスフィルタ11を通して定常成分のみを抽出する。次いで、制御量演算装置12でその定常成分にゲインを掛けたものを制御出力とし、D/A変換装置13にてアナログ化され、増幅装置14を通して各比例圧力制御弁15、16、17、18に出力する。すると、前記制御出力に基づいて各比例圧力制御弁が給排気し、複動型空圧シリンダ19、20が駆動され、車体1を車体中立位置に保持する。この場合の処理の流れを図2のブロック図に示す。
【0019】
前記のごとく車体の中立位置制御を行なった場合の曲線通過時の振動波形を従来装置による場合の曲線通過時の振動波形と比較して図4に示す。図(a)は本発明の実施による場合の振動波形であるが、曲線区間に進入すると振動加速度が大きくなるがその値はほぼ一定の範囲で滑らかに変化しており、車体と台車間の相対変位はストッパ隙間内の小さい範囲にあり、ストッパ当たりは皆無である。一方、図(b)に示す従来装置による場合は、左右振動加速度は曲線区間に進入すると振動加速度は大きく、かつ鋭く変化し、車体と台車間の相対変位はストッパ隙間の最大位置付近で激しく変動し、ストッパ当たりが頻繁に発生していることがわかる。
【0020】
実施例3
路線の地点検知装置からの地点検知信号を用いないで、車体の左右振動加速度により車体の中立位置を制御する場合を図1及び図2に基づいて説明する。
車両の走行中直線と曲線の区別なく、車体の左右振動加速度計7、8で検知した左右振動加速度が制御器9に入力される。制御器9内では、入力された左右振動加速度がA/D変換装置10でディジタル化され、ローパスフィルタ11を通過すると、通常直線区間での振動成分は遮断され、制御信号としては出力されない。
【0021】
曲線区間になるとローパスフィルタ11を通して定常成分のみを抽出する。次いで、制御量演算装置12でその定常成分が不感帯設定値以上の場合、定常成分にゲインを掛けたものを制御出力とし、不感帯設定値以下の場合には制御しない。制御出力は、D/A変換装置13にてアナログ化され、増幅装置14を通して各比例圧力制御弁15、16、17、18に出力する。すると、前記制御出力に基づいて各比例圧力制御弁が給排気し、複動型空圧シリンダ19、20が駆動され、車体1を車体中立位置に保持する。この場合の処理の流れを図2のブロック図に示す。
【0022】
実施例4
路線の地点検知装置からの地点検知信号を用い、車体と台車との間の左右相対変位により車体の中立位置を制御する場合を図1に基づいて説明する。
図1に示すように、地点検知信号6により、曲線信号が制御器9に入力されると、車体と台車との間に設けた左右変位計22、23より車体と台車との間の左右相対変位が制御器9に入力される。制御器9内ではA/D変換装置10で相対変位がディジタル化され、ローパスフィルタ11により振動成分は遮断され、定常成分のみが抽出される。次いで、制御量演算装置12でその定常成分にゲインを掛けたものを制御出力とし、D/A変換装置13にてアナログ化され、増幅装置14を通して各比例圧力制御弁15、16、17、18に出力する。すると、前記制御出力に基づいて各比例圧力制御弁が給排気し、複動型空圧シリンダ19、20が駆動され、車体1を車体中立位置に保持する。
【0023】
実施例5
路線の地点検知装置からの地点検知信号を用いないで、車体と台車との間の左右相対変位により車体の中立位置を制御する場合を図1に基づいて説明する。
図1に示すように、左右変位計22、23より車体と台車との間の左右相対変位が制御器9に入力される。制御器9内ではA/D変換装置10で相対変位がディジタル化され、ローパスフィルタ11により振動成分は遮断され、定常成分のみが抽出される。ここで、直線区間では定常成分はないので、制御は行なわれないことになる。
【0024】
次いで、制御量演算装置12で、その定常成分が不感帯設定値以上の場合、定常成分にゲインを掛けたものを制御出力とし、不感帯設定値以下の場合には制御しない。制御出力は、D/A変換装置13にてアナログ化され、増幅装置14を通して各比例圧力制御弁15、16、17、18に出力する。すると、前記制御出力に基づいて各比例圧力制御弁が給排気し、複動型空圧シリンダ19、20が駆動され、車体1を車体中立位置に保持する。
【0025】
実施例6
路線の地点検知装置からの地点検知信号を用い、台車の左右振動加速度により車体の中立位置を制御する場合を図1に基づいて説明する。
図1に示すように、地点検知信号6により、曲線信号が制御器9に入力されると、台車2、3に設置した振動加速度計24、25により検出した台車の左右振動加速度を制御器9に入力する。
【0026】
制御器9内では、入力された左右振動加速度がA/D変換装置10でディジタル化され、ローパスフィルタ11を通して定常成分のみを抽出する。次いで、制御量演算装置12でその定常成分にゲインを掛けたものを制御出力とし、D/A変換装置13にてアナログ化され、増幅装置14を通して各比例圧力制御弁15、16、17、18に出力する。すると、前記制御出力に基づいて各比例圧力制御弁が給排気し、複動型空圧シリンダ19、20が駆動され、車体1を車体中立位置に保持する。
【0027】
実施例7
路線の地点検知装置からの地点検知信号を用いないで、台車の左右振動加速度により車体の中立位置を制御する場合を図1に基づいて説明する。
車両の走行中直線と曲線の区別なく、台車の左右振動加速度計24、25で検知した左右振動加速度が制御器9に入力される。
【0028】
制御器9内では、入力された左右振動加速度がA/D変換装置10でディジタル化され、ローパスフィルタ11を通して振動成分は遮断され、定常成分のみを抽出する。次いで、制御量演算装置12でその定常成分にゲインを掛けたものを制御出力とし、D/A変換装置13にてアナログ化され、増幅装置14を通して各比例圧力制御弁15、16、17、18に出力する。すると、前記制御出力に基づいて各比例圧力制御弁が給排気し、複動型空圧シリンダ19、20が駆動され、車体1を車体中立位置に保持する。
【0029】
実施例8
請求項4の発明の実施例を図5、図6に基づいて説明する。
列車の進行方向に対し前方車両Bの車体の左右振動加速度計26から左右振動加速度を予見信号として制御車両Aの制御器9に入力し、該制御器9内で前記予見信号から定常成分が抽出されたとき、前方車両Bと制御車両Aとの距離Lと車両速度Sに基づく遅延時間t(t=L/S)を加味して、制御車両Aの左右振動加速度計から抽出した定常成分にゲインを掛けて得た制御出力を、比例圧力制御弁15〜18に出力し、各比例圧力制御弁の給排気により、複動型空圧シリンダ19、20が駆動され、車体1を車体中立位置に保持する。
前記、前方車両Bの車体の左右振動加速度計26は、前方車両Bの後台車側に設け、制御車両Aの前台車2側の車体の左右振動加速度計7との距離をLとした場合について説明したが、制御車両Aの後台車3側の車体の左右振動加速度計8との距離をLとする場合もある。また前記車体の左右振動加速度計26を前方車両Bの前台車側に設け、制御車両Aの前台車2側の車両振動加速度計7との距離をLとすることもある。
なお、前記予見信号としては、車体の左右振動加速度計のほか、台車の左右振動加速度計または車体と台車の間の左右変位計からの検出信号を利用することができる。この場合の処理の流れを図3のブロック図に示す。
【0030】
【発明の効果】
この発明は、曲線区間通過時に車体と左右動ストッパとの間の左右隙間が均等となるように車体の左右方向の動きを規制して、車体を中立位置に制御することにより、車体と台車のストッパ当たりが防止され、曲線区間通過時も直線区間走行時と同様の乗り心地が得られる。
【図面の簡単な説明】
【図1】この発明の鉄道車両の車体中立位置制御方法を実施するための装置の概略を示す説明図である。
【図2】この発明の実施例2〜7の車体の中立位置制御方法における処理の流れを示すブロック図である。
【図3】この発明の実施例8による車体の中立位置制御方法における処理の流れを示すブロック図である。
【図4】図(a)はこの発明の実施例1により車体の中立位置制御を行なった場合の曲線通過時の振動波形を示すグラフ、図(b)は従来装置による場合の曲線通過時の振動波形を示すグラフである。
【図5】請求項3の発明を実施するための装置例の概要を示す説明図である。
【図6】請求項3の発明実施するための車体の中立位置制御装置の概略を示す説明図である。
[0001]
[Industrial applications]
The present invention relates to a vehicle body neutral position control device and a vehicle body neutral position control method for maintaining a vehicle body neutral position with respect to a lateral displacement of a vehicle body of a railway vehicle.
[0002]
[Prior art]
The vehicle body of the railway vehicle and the bogie are connected by a shock absorber such as a spring or a damper, and the vehicle body is allowed to move in the left-right direction with respect to the bogie. However, a left-right movement stopper is provided to restrict the left-right movement with respect to the bogie so that the left-right displacement does not violate the construction limit. In addition, a uniform gap is provided between the vehicle body and the left and right movement stopper on the left and right sides of the normal stopper.
[0003]
Normally, when vehicle body vibration occurs while the vehicle is running, the transmission of direct vibration from the bogie to the vehicle body is prevented in the straight section by the gap between the body and the lateral movement stopper, but in the curved section, high speed is caused by excess centrifugal force. At the time, steady displacement occurs on the outer rail side, and at low speed, on the inner rail side. Then, if the vehicle continues to contact the lateral movement stopper or hits the lateral movement stopper in a shocking manner, the bogie vibration is directly transmitted to the vehicle body, thereby deteriorating the ride comfort of the passenger.
[0004]
Conventionally, in order to prevent a reduction in ride comfort due to the stopper hitting, the gap between the left and right movement stopper is further enlarged or the material of the left and right movement stopper itself is made more soft so that the impact at the time of contact with the vehicle body is reduced. Techniques, such as relaxation, and a method of suppressing the displacement of the vehicle body by increasing the lateral rigidity of the air spring have been taken.
[0005]
[Problems to be solved by the invention]
The method of further increasing the gap between the vehicle body and the lateral movement stopper according to the above-described prior art is limited in enlargement due to architectural limitations, and cannot provide a sufficient effect. Further, if the material of the left and right movement stopper itself is made softer, the deflection is increased correspondingly, and there is a risk that the deflection may impair the building limit. Further, in the method of increasing the right and left rigidity of the air spring, the bogie vibration is easily transmitted to the vehicle body, thereby deteriorating the ride comfort of the passenger.
[0006]
The present invention controls the left-right movement of the vehicle body so that the left-right gap between the vehicle body and the left-right movement stopper is equalized when passing through the curved section, so that the same riding comfort as in the straight section can be obtained even in the curved section. An object of the present invention is to provide a vehicle body neutral position control device and a control method for a railway vehicle that can be obtained.
[0007]
[Means for Solving the Problems]
To achieve the above object, for example, the left and right relative between the fluid actuator installed in the left-right direction between the vehicle body and bogie supported by a spring on the carriage of the railway vehicle, the vehicle body lateral vibration acceleration or the vehicle body and the bogie a sensor for detecting a lateral vibration acceleration of the displacement or truck, by using the Ru device name from the controller for determining a control output from the output and the point detection signal of the sensor to the fluid actuator, rail vehicles by practice of the invention The vehicle body can maintain a neutral position when passing through a curved road.
[0008]
The first method of controlling the vehicle body neutral position of a railway vehicle is that , when a curve signal from a route point detecting device is input to a controller, a lateral vibration acceleration detected by a lateral vibration accelerometer of a vehicle body or a bogie provided on front and rear bogies. Alternatively, the left and right relative displacement between the vehicle body and the bogie is input to a controller, and a gain is added to a stationary component extracted by using a low-pass filter from the left and right vibration acceleration or the left and right relative displacement between the vehicle body and the bogie in the controller. Is output to the fluid actuator, and the neutral position of the vehicle body is maintained.
[0009]
In addition, the vehicle body neutral position control method of the second railway vehicle is characterized in that the lateral vibration acceleration of the vehicle body, the relative displacement between the vehicle and the bogie, or the lateral vibration of the bogie are obtained without obtaining a curve signal from the point detection device on the route. a detection signal from a sensor for detecting acceleration input to the controller, the controller within the sensing signal from the time of the extracted curve passage using a low-pass filter steady component fluid control output obtained by multiplying the gain Output to the actuator to maintain the neutral position of the vehicle.
[0010]
Further, the third method of controlling the vehicle body neutral position of the railway vehicle is to input a vibration state of a vehicle ahead in the traveling direction of the train as a preview signal to a controller of the control vehicle, and to perform a low-pass filter from the preview signal in the controller. And outputs a control output obtained by multiplying the steady component extracted by using the gain to the fluid actuator in consideration of a delay time based on the distance between the vehicle in front and the control vehicle, thereby maintaining the neutral position of the vehicle body.
[0011]
[Action]
When the curve signal from the route point detection device is input to the controller, while the curve signal is input to the controller, the lateral vibration acceleration acting on the vehicle body is detected by the vibration detection sensor installed on the vehicle body. It is detected by a certain lateral vibration accelerometer, and a steady component (excess centrifugal acceleration) is extracted using a low-pass filter. Then, a value obtained by multiplying the steady component by the feedback gain is output to the fluid actuator as a control output, and the fluid actuator is driven to maintain the neutral position of the vehicle body. As a result, the vehicle can run while holding the vehicle body at the neutral position in the curved section as in the straight section, and therefore, the riding comfort of the passenger is not reduced.
[0012]
As a method of extracting a steady component, in addition to the above-described method, a steady variation of a vehicle body is detected by a lateral displacement meter, which is a vibration detection sensor installed between the vehicle body and a bogie, and the steady component is detected using a low-pass filter. There is a method of extracting, or a method of detecting the vibration acceleration of the bogie with a left-right vibration detector, which is a vibration detection sensor installed on the bogie, and extracting a steady component using a low-pass filter.
[0013]
When the point detection signal from the point detection device of the route is not used, the vibration detection sensor constantly detects the left-right vibration acceleration regardless of the straight road or the curved road, and performs the feedback control. For use, control is performed only when the vehicle passes through a curved section in which a steady component due to excessive centrifugal force occurs.
[0014]
Further, the vibration state of the vehicle ahead in the traveling direction of the train is input to the controller of the control vehicle as a preview signal, and the neutral position of the vehicle body is controlled in the controller using a steady component extracted from the preview signal. be able to. In this case, since the vibration of the control vehicle occurs later than the detection of the vibration of the preceding vehicle, a delay time is obtained based on the distance between the preceding vehicle and the control vehicle, and this is input to the controller to output the control signal. I need to delay it.
[0015]
The fluid actuator is composed of a proportional pressure control valve capable of supplying or exhausting air alone and a double-acting pneumatic cylinder.
[0016]
As described above, by controlling the vehicle body to the neutral position in the curved section, it is possible to prevent the vehicle body and the bogie from hitting the stopper, and to obtain the same riding comfort when passing through the curved section as when traveling in a straight section.
[0017]
【Example】
Example 1
FIG. 1 shows an example of an apparatus for implementing the method of controlling a vehicle body neutral position of a railway vehicle according to the present invention.
Double-acting pneumatic cylinders 19 (front bogie side), 20 (rear bogie side) installed in the left-right direction between body 1 and front bogie 2 and rear bogie 3 supported by air spring 4 on the bogie of railway car And a fluid pressure actuator composed of proportional pressure control valves 15, 16 (front bogie side), 17, 18 (rear bogie side), and a lateral vibration accelerometer 7, 8 for detecting lateral vibration acceleration of the vehicle body 1, or a vehicle body 1 and a vehicle 2 , 3 or the left and right displacement meters 22, 23 or the front bogie 2, the vibration accelerometers 24, 25 for detecting the left and right vibration acceleration of the rear bogie 3, and these lateral vibration accelerometers or lateral displacement The controller 9 determines the control output to the fluid actuator from the output of the meter and the point detection signal 6. Reference numeral 5 denotes a left-right motion damper, and reference numeral 21 denotes an air source.
[0018]
Example 2
A case where the neutral position of the vehicle body is controlled by the lateral vibration acceleration of the vehicle body using a point detection signal from the point detection device of the route will be described with reference to FIGS.
As shown in FIG. 1, when the curve signal is input to the controller 9 by the point detection signal 6, the left and right vibration acceleration detected by the left and right vibration accelerometers 7 and 8 of the vehicle body is input to the controller 9. In the controller 9, the input right and left vibration acceleration is digitized by an A / D converter 10, and only a steady component is extracted through a low-pass filter 11. Next, the control amount calculation device 12 multiplies the steady component by a gain to obtain a control output, which is converted into an analog signal by a D / A conversion device 13 and passed through an amplification device 14 to each of the proportional pressure control valves 15, 16, 17, 18. Output to Then, based on the control output, each proportional pressure control valve supplies and exhausts air, and the double-acting pneumatic cylinders 19 and 20 are driven to hold the vehicle body 1 at the vehicle body neutral position. The processing flow in this case is shown in the block diagram of FIG.
[0019]
FIG. 4 shows a comparison between the vibration waveform at the time of passing the curve when the neutral position control of the vehicle body is performed as described above and the vibration waveform at the time of passing the curve according to the conventional device. FIG. 5A shows a vibration waveform according to the embodiment of the present invention. When entering a curved section, the vibration acceleration increases, but the value changes smoothly within a substantially constant range. The displacement is in a small range within the stopper gap and there is no contact with the stopper. On the other hand, in the case of the conventional device shown in FIG. 2B, when entering the curved section, the lateral vibration acceleration is large and sharply changes, and the relative displacement between the vehicle body and the bogie fluctuates sharply near the maximum position of the stopper gap. However, it can be seen that the stopper contact frequently occurs.
[0020]
Example 3
The case where the neutral position of the vehicle body is controlled by the lateral vibration acceleration of the vehicle body without using the point detection signal from the point detection device on the route will be described with reference to FIGS.
The left and right vibration acceleration detected by the left and right vibration accelerometers 7 and 8 of the vehicle body is input to the controller 9 without distinction between a straight line and a curved line while the vehicle is running. In the controller 9, the input right-and-left vibration acceleration is digitized by the A / D converter 10, and when passing through the low-pass filter 11, the vibration component in a normal straight section is cut off, and is not output as a control signal.
[0021]
In the curved section, only the stationary component is extracted through the low-pass filter 11. Next, when the steady-state component is equal to or greater than the dead zone set value, the control amount calculation device 12 sets a value obtained by multiplying the steady component by a gain as a control output. The control output is converted into an analog signal by the D / A converter 13 and output to the respective proportional pressure control valves 15, 16, 17 and 18 through the amplifier 14. Then, based on the control output, each proportional pressure control valve supplies and exhausts air, and the double-acting pneumatic cylinders 19 and 20 are driven to hold the vehicle body 1 at the vehicle body neutral position. The processing flow in this case is shown in the block diagram of FIG.
[0022]
Example 4
A case in which the neutral position of the vehicle body is controlled by the relative left and right displacement between the vehicle body and the bogie using the point detection signal from the route point detection device will be described with reference to FIG.
As shown in FIG. 1, when a curve signal is input to the controller 9 by the point detection signal 6, the left and right displacement meters 22 and 23 provided between the vehicle body and the bogie determine the relative position between the vehicle body and the bogie. The displacement is input to the controller 9. In the controller 9, the relative displacement is digitized by the A / D converter 10, the vibration component is cut off by the low-pass filter 11, and only the steady component is extracted. Next, the control amount calculation device 12 multiplies the steady component by a gain to obtain a control output, which is converted into an analog signal by a D / A conversion device 13 and passed through an amplification device 14 to each of the proportional pressure control valves 15, 16, 17, 18. Output to Then, based on the control output, each proportional pressure control valve supplies and exhausts air, and the double-acting pneumatic cylinders 19 and 20 are driven to hold the vehicle body 1 at the vehicle body neutral position.
[0023]
Example 5
The case where the neutral position of the vehicle body is controlled by the relative displacement between the vehicle body and the bogie without using the point detection signal from the route point detection device will be described with reference to FIG.
As shown in FIG. 1, the right and left relative displacement between the vehicle body and the bogie is input to the controller 9 from the left and right displacement meters 22 and 23. In the controller 9, the relative displacement is digitized by the A / D converter 10, the vibration component is cut off by the low-pass filter 11, and only the steady component is extracted. Here, since there is no stationary component in the straight section, no control is performed.
[0024]
Next, when the steady-state component is equal to or larger than the dead zone set value, the control amount calculation device 12 sets a value obtained by multiplying the steady component by a gain as a control output, and does not perform control when the steady component is equal to or smaller than the dead zone set value. The control output is converted into an analog signal by the D / A converter 13 and output to the respective proportional pressure control valves 15, 16, 17 and 18 through the amplifier 14. Then, based on the control output, each proportional pressure control valve supplies and exhausts air, and the double-acting pneumatic cylinders 19 and 20 are driven to hold the vehicle body 1 at the vehicle body neutral position.
[0025]
Example 6
A case where the neutral position of the vehicle body is controlled by the lateral vibration acceleration of the bogie using the point detection signal from the point detection device on the route will be described with reference to FIG.
As shown in FIG. 1, when the curve signal is input to the controller 9 by the point detection signal 6, the controller 9 determines the lateral vibration acceleration of the bogie detected by the vibration accelerometers 24 and 25 installed on the bogies 2 and 3. To enter.
[0026]
In the controller 9, the input right and left vibration acceleration is digitized by an A / D converter 10, and only a steady component is extracted through a low-pass filter 11. Next, a product obtained by multiplying the gain of the steady-state component by the control amount calculating device 12 is used as a control output, converted into an analog signal by the D / A converter 13, and passed through the amplifier 14 to each of the proportional pressure control valves 15, 16, 17, 18. Output to Then, based on the control output, each proportional pressure control valve supplies and exhausts air, and the double-acting pneumatic cylinders 19 and 20 are driven to hold the vehicle body 1 at the vehicle body neutral position.
[0027]
Example 7
A case where the neutral position of the vehicle body is controlled by the lateral vibration acceleration of the bogie without using the point detection signal from the line point detection device will be described with reference to FIG.
The left and right vibration accelerations detected by the bogie's left and right vibration accelerometers 24 and 25 are input to the controller 9 without distinction between a straight line and a curve while the vehicle is running.
[0028]
In the controller 9, the input right-and-left vibration acceleration is digitized by the A / D converter 10, the vibration component is cut off through the low-pass filter 11, and only the steady component is extracted. Next, the control amount calculation device 12 multiplies the steady component by a gain to obtain a control output, which is converted into an analog signal by a D / A conversion device 13 and passed through an amplification device 14 to each of the proportional pressure control valves 15, 16, 17, 18. Output to Then, based on the control output, each proportional pressure control valve supplies and exhausts air, and the double-acting pneumatic cylinders 19 and 20 are driven to hold the vehicle body 1 at the vehicle body neutral position.
[0029]
Example 8
An embodiment of the invention will be described with reference to FIGS.
The right and left vibration acceleration is input as a preview signal to the controller 9 of the control vehicle A from the left and right vibration accelerometer 26 of the vehicle body of the preceding vehicle B in the traveling direction of the train, and a steady component is extracted from the preview signal in the controller 9. In this case, taking into account the distance L between the preceding vehicle B and the control vehicle A and the delay time t (t = L / S) based on the vehicle speed S, the steady component extracted from the lateral vibration accelerometer of the control vehicle A is calculated. The control output obtained by multiplying the gain is output to the proportional pressure control valves 15 to 18, and the double-acting pneumatic cylinders 19 and 20 are driven by the supply and exhaust of each proportional pressure control valve, and the vehicle body 1 is moved to the vehicle neutral position. To hold.
The above-mentioned lateral vibration accelerometer 26 of the vehicle body of the front vehicle B is provided on the rear bogie side of the front vehicle B, and the distance from the lateral vibration accelerometer 7 of the vehicle body on the front bogie 2 side of the control vehicle A is L. As described above, the distance between the right and left vibration accelerometer 8 of the vehicle body on the rear bogie 3 side of the control vehicle A may be L. Further, the left and right vibration accelerometer 26 of the vehicle body may be provided on the front bogie side of the front vehicle B, and the distance from the vehicle vibration accelerometer 7 on the front bogie 2 side of the control vehicle A may be L.
Note that, as the preview signal, a detection signal from a lateral vibration accelerometer of a bogie or a lateral displacement meter between the vehicle body and a bogie can be used in addition to the lateral vibration accelerometer of the vehicle body. The processing flow in this case is shown in the block diagram of FIG.
[0030]
【The invention's effect】
The present invention regulates the left and right movement of the vehicle body so that the left and right gaps between the vehicle body and the left and right movement stoppers become equal when passing through a curved section, and controls the vehicle body to a neutral position. Stoppage of the stopper is prevented, and the same riding comfort as when traveling in a straight section can be obtained when passing through a curved section.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram schematically showing an example of an apparatus for implementing a vehicle body neutral position control method for a railway vehicle according to the present invention.
FIG. 2 is a block diagram illustrating a flow of processing in a vehicle body neutral position control method according to Embodiments 2 to 7 of the present invention.
FIG. 3 is a block diagram showing a processing flow in a vehicle body neutral position control method according to an eighth embodiment of the present invention.
FIG. 4A is a graph showing a vibration waveform at the time of passing a curve when the neutral position control of the vehicle body is performed according to the first embodiment of the present invention, and FIG. It is a graph which shows a vibration waveform.
FIG. 5 is an explanatory diagram showing an outline of an example of an apparatus for carrying out the invention of claim 3 ;
FIG. 6 is an explanatory diagram schematically showing a neutral position control device of a vehicle body for implementing the invention of claim 3 .

Claims (3)

路線の地点検知装置からの曲線信号が制御器に入力されると、前後台車に設けた車体または台車の左右振動加速度計で検知した左右振動加速度または車体と台車との間の左右相対変位を制御器に入力し、該制御器内で前記左右振動加速度または車体と台車との間の左右相対変位からローパスフィルタを用いて抽出した定常成分にゲインを掛けて得た制御出力を流体アクチュエータに出力し、車体の中立位置を保持することを特徴とする鉄道車両の車体中立位置制御方法。When the curve signal from the route point detection device is input to the controller, the controller controls the lateral vibration acceleration detected by the lateral vibration accelerometer of the vehicle or the bogie provided on the front and rear bogies or the relative lateral displacement between the vehicle and the bogie. The controller outputs a control output obtained by multiplying a gain to a stationary component extracted by using a low-pass filter from the left-right vibration acceleration or the left-right relative displacement between the vehicle body and the bogie in the controller to the fluid actuator. A method for controlling a neutral position of a vehicle body of a railway vehicle, wherein the neutral position of the vehicle body is maintained. 車体の左右振動加速度または車体と台車との間の左右相対変位あるいは台車の左右振動加速度を検知するセンサからの検知信号を制御器に入力し、該制御器内で前記検知信号からローパスフィルタを用いて抽出した曲線通過時の定常成分にゲインを掛けて得た制御出力を流体アクチュエータに出力し、車体の中立位置を保持することを特徴とする鉄道車両の車体中立位置制御方法。A detection signal from a sensor for detecting the lateral vibration acceleration of the vehicle body or the lateral relative displacement between the vehicle body and the bogie or the lateral vibration acceleration of the bogie is input to a controller, and a low-pass filter is used from the detection signal in the controller. body neutral position control method for a railway vehicle extracted at curving of the control output which is obtained by multiplying the gain in the steady component output to the fluid actuator, characterized by holding the body of the neutral position Te. 列車の進行方向に対し前方車両の振動状況を予見信号として制御車両の制御器に入力し、該制御器内で前記予見信号からローパスフィルタを用いて抽出した定常成分にゲインを掛けて得た制御出力を、前方車両と制御車両との距離と車両速度に基づく遅延時間を加味して流体アクチュエータに出力し、車体の中立位置を保持することを特徴とする鉄道車両の車体中立位置制御方法。A control obtained by inputting a vibration state of a vehicle ahead in the traveling direction of the train as a preview signal to a controller of a control vehicle, and multiplying a steady component extracted from the preview signal using a low-pass filter by a gain in the controller. A vehicle body neutral position control method for a railway vehicle, comprising: outputting an output to a fluid actuator in consideration of a delay time based on a distance between a preceding vehicle and a control vehicle and a vehicle speed to maintain a neutral position of the vehicle body.
JP18623594A 1994-07-15 1994-07-15 Vehicle body neutral position control method for railway vehicles Expired - Fee Related JP3541967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18623594A JP3541967B2 (en) 1994-07-15 1994-07-15 Vehicle body neutral position control method for railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18623594A JP3541967B2 (en) 1994-07-15 1994-07-15 Vehicle body neutral position control method for railway vehicles

Publications (2)

Publication Number Publication Date
JPH0826110A JPH0826110A (en) 1996-01-30
JP3541967B2 true JP3541967B2 (en) 2004-07-14

Family

ID=16184725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18623594A Expired - Fee Related JP3541967B2 (en) 1994-07-15 1994-07-15 Vehicle body neutral position control method for railway vehicles

Country Status (1)

Country Link
JP (1) JP3541967B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI449642B (en) * 2010-08-25 2014-08-21 Nippon Steel & Sumitomo Metal Corp Vibration Suppression Device for Railway Vehicles

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3637027B2 (en) * 2002-03-18 2005-04-06 川崎重工業株式会社 Railway vehicle vibration control system
JP4501380B2 (en) * 2003-09-09 2010-07-14 住友金属工業株式会社 Railway vehicle vibration control system
JP4832124B2 (en) * 2006-03-13 2011-12-07 公益財団法人鉄道総合技術研究所 Articulated rail vehicle and method for reducing lateral pressure in articulated rail vehicle
JP5255780B2 (en) * 2007-03-30 2013-08-07 川崎重工業株式会社 Railway vehicle vibration control device
JP5181323B2 (en) * 2007-03-30 2013-04-10 日立オートモティブシステムズ株式会社 Railway vehicle vibration control system
JP5894844B2 (en) * 2012-04-12 2016-03-30 公益財団法人鉄道総合技術研究所 Damping control device and damping control method
JP5522549B2 (en) * 2012-05-28 2014-06-18 日立オートモティブシステムズ株式会社 Railway vehicle vibration control system
KR101611589B1 (en) 2014-06-03 2016-04-12 한국철도기술연구원 Break device of train and method thereof
JP2017039375A (en) * 2015-08-19 2017-02-23 公益財団法人鉄道総合技術研究所 Centering device of railway vehicle
JP6864490B2 (en) * 2017-02-10 2021-04-28 川崎重工業株式会社 Vibration control device for railway vehicles
JP7473359B2 (en) * 2020-02-27 2024-04-23 日本車輌製造株式会社 Vibration control devices for railway vehicles
CN112810651B (en) * 2021-01-14 2022-05-31 中车长春轨道客车股份有限公司 Control method of anti-rolling device of railway vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI449642B (en) * 2010-08-25 2014-08-21 Nippon Steel & Sumitomo Metal Corp Vibration Suppression Device for Railway Vehicles

Also Published As

Publication number Publication date
JPH0826110A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
JP3541967B2 (en) Vehicle body neutral position control method for railway vehicles
KR910006828B1 (en) Vibration control apparatus for vehicles
JP5255780B2 (en) Railway vehicle vibration control device
JP4845426B2 (en) Car body vibration control device and car body vibration control method
JP2008247333A (en) Vibration control device for railway vehicle
JPH09226576A (en) Axle steering device for rolling stock truck
JP4048391B2 (en) Railway vehicle vibration control method
JPH08536B2 (en) Vehicle vibration control device
JP2009040081A (en) Vibration component acceleration estimation device and vibration component acceleration estimation method
JP4186105B2 (en) Railway vehicle vibration control apparatus and control method
JP3107133B2 (en) Railway vehicle vibration control device
JP6864490B2 (en) Vibration control device for railway vehicles
JP5215611B2 (en) Tilt control system for railway vehicles
JP3529366B2 (en) Railcar body tilt control system
JP2018012373A (en) Yaw damper device for railway vehicle
JPH1059179A (en) Vibration control method to rolling stock
JP4501380B2 (en) Railway vehicle vibration control system
JPH08192744A (en) Vibration controller for vehicle
JPH11268647A (en) Vibration controller for rolling stock
JPH06199236A (en) Meandering control device for bogie of rolling stock
JPH06239232A (en) Vibration control device for railway rolling stock
JPH07309235A (en) Vibration controller for rolling stock
JP3226956B2 (en) Railway vehicle vibration control device
JP2009040077A (en) Vehicle body tilting control system of railway rolling stock
JPH06247299A (en) Rolling stock vibration controlling device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees