【0001】
【発明の属する技術分野】
本発明は、表面防汚性および両面帯電防止性を有し、光学部材表面保護用として好適なポリエステルフィルムに関する。
【0002】
【従来の技術】
ポリエチレンテレフタレートあるいはポリエチレンナフタレートに代表されるポリエステルフィルムは、機械的強度、寸法安定性、平坦性、耐熱性、耐薬品性、光学特性等に優れ、コストパフォーマンスにも優れるため、各種の用途において基材として使用されている。
その用途の一例として、偏光板等の光学部材の表面を傷、汚染から保護する保護フィルムがあり、ポリエステルフィルム基材に粘着剤を塗布したフィルムが使用されているが、ポリエステルフィルムは摩擦、粘着層剥離等の際に帯電しやすく、光学部材の保護フィルムとして利用する各工程で、摩擦帯電あるいは剥離帯電が発生し、異物や塵埃の付着、静電気放電障害等の問題が発生する。
【0003】
また、貼りつけた保護フィルムについては、再剥離作業工程、検査工程等の手作業の工程において、保護フィルム表面が油脂、はみ出しあるいは転着した粘着剤等で汚染されやすく、耐汚染性の表面特性が必要とされている。
表面保護フィルムに対する帯電防止性付与について、一般的には、表面には帯電防止性樹脂を塗布する方法が行われている(特許文献1)。また、粘着剤面に対する帯電防止性付与については、粘着剤層中に帯電防止剤を添加する方法、帯電防止性樹脂層を設けた基材に粘着剤を塗布する方法等が考えられているが、コスト、品質を含めて有効には実施されていない(特許文献1〜3)。
【0004】
これは、必要とされる帯電防止性を得るためには、粘着層中に多量の帯電防止成分を含有させる必要があり、再剥離性粘着剤の塗料特性が変化し、本来の性状を失うこと、あるいは、粘着剤層より帯電防止成分が被着体に経時移行し、被着体を汚しやすい等の理由による。
一方、これらの問題点を総合的に解消するには、基材ポリエステルフィルムに不足している機能を個々付与する必要があり、このため、塗布加工を個々の要求に対して行うと、それぞれの問題を解消するための加工工程が増えることとなって、コストパフォーマンスを悪くする
【0005】
【特許文献1】特開平6−123806号公報
【特許文献2】特開2000−80336号公報
【特許文献3】特開2001−275410号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記実情に鑑みなされたものであって、その解決課題は、片面側は防汚性を有し、その裏面側には再剥離性粘着剤層を有し、かつ、両面共に帯電防止性を有する保護フィルムを低コストで提供することにある。
【0007】
【課題を解決するための手段】
本発明者は上記実情に鑑み、検討を重ねた結果、特定の構成を有するフィルムが保護フィルムでとして有用であることを見いだし、本発明を完成するに至った。
すなわち、本発明の要旨は、ポリエステルフィルムを基材とし、その両面に樹脂層を有し、一方の樹脂層表面に粘着層を有するフィルムであって、露出する樹脂層表面の水滴接触角が80度以上であり、表面に10kV直流電圧を印加した時の飽和帯電が両面ともに2kV以下であり、印加停止後の飽和帯電量の半減時間が両面ともに15秒以下であることを特徴とする光学部材表面保護用フィルムに存する。
【0008】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明において用いるポリエステルとは、例えば、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものである。芳香族ジカルボン酸としては、テレフタル酸、2,6−ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4−シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリエチレン−2,6−ナフタレンジカルボキシレート(PEN)等が例示される。
【0009】
また、ポリエステルは、ホモポリエステルであっても共重合ポリエステルであってもよい。共重合ポリエステルの場合は、通常30モル%以下の第三成分を含有した共重合体である。
かかる共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸、アジピン酸、セバシン酸、アゼライン酸および、オキシカルボン酸の一種または、二種以上が挙げられ、グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、1,4−シクロヘキサンジメタノール、ネオペンチルグリコール等の一種または二種以上が挙げられる。
【0010】
本発明で用いるポリエステルは、溶融重合反応で得られたものであっても、また溶融重合後、一度チップ化したポリエステルを固相重合したものであってもよい。
また本発明においては、異種のポリエステルを共押出積層した構造を有するフィルムであってもよい。
【0011】
本発明で用いるポリエステルには、本発明の要旨を損なわない範囲であれば、帯電防止剤を配合してもよい。また、必要に応じ、フィルムの滑り性や耐摩耗性を改良する目的などのために、ポリエステルに対し、不活性な無機または有機の微粒子などを微量配合することもできる。
配合する粒子としては、酸化ケイ素、アルミナ、炭酸カルシウム、リン酸カルシウム、カオリン、酸化チタン、硫酸バリウム、フッ化リチウム、タルク、架橋高分子微粉体等を挙げることができる。
【0012】
これらの粒子は、単独あるいは2成分以上を同時に使用してもよく、その含有量は、通常1重量%以下、好ましくは0.01〜1重量%、さらに好ましくは0.02〜0.5重量%の範囲である。粒子の含有量が少ない場合には、フィルム表面が平坦化し、フィルム製造工程における巻き特性が劣る傾向があり、また、粒子の含有量が1重量%を超える場合には、フィルム表面の粗面化の度合いが大きくなりすぎて、フィルムがヘージーとなり、透明性が望まれる保護フィルムの用途としては望ましくない場合がある。
【0013】
ポリエステルフィルム中に含有される粒子の平均粒径としては、特に限定はないが、通常0.02〜5μmの範囲であり、好ましくは0.02〜3μm、さらに好ましくは0.02〜2μmの範囲である。
本発明のポリエステルフィルムの製造方法の例として、ポリエチレンテレフタレートを用いた例を示すが、使用するポリエステルにより製造条件は異なり、本発明は必ずしもこれに限定されない。
常法に従って、テレフタル酸とエチレングリコールからエステル化し、または、テレフタル酸ジメチルとエチレングリコールをエステル交換により、ビス−β−ヒドロキシエチルテレフタレート(BHT)を得る。次にこのBHTを重合槽に移行しながら、真空下で280℃に加熱して重合反応を進めポリエステルを得る。
【0014】
このポリエステル原料を、押出機を用いて口金から溶融シートとして押出し、冷却ロールで冷却固化して未延伸シートを得る。この未延伸シートをロールまたは、テンター方式の延伸機により一段目の延伸を行う。延伸温度は、通常70〜120℃、好ましくは80〜110℃であり、延伸倍率は、通常2.5〜7倍、好ましくは3.0〜6倍である。次いで、一段目の延伸方向と直交する方向に延伸を行う。延伸温度は、通常70〜120℃、好ましくは80〜115℃であり、延伸倍率は、通常3.0〜6倍、好ましくは3.5〜5倍である。引き続き、130℃〜250℃の範囲の温度で30%以内の弛緩下で熱処理を行い、二軸延伸フィルムを得る。
【0015】
本発明のフィルムの基材としてのポリエステルフィルムの厚さは、一般的には、25〜50μmのものが使用される。
本発明のフィルムに樹脂層を設ける方法としては、例えば、▲1▼未延伸シート表面に塗液を塗布して乾燥する方法、▲2▼一軸延伸フィルム表面に塗布液を塗布して乾燥する方法、▲3▼二軸延伸フィルム表面に塗布液を塗布して乾燥する方法等が挙げられるが、縦横逐次延伸法にて両面塗布を同時に行うには▲2▼の方法、縦横同時延伸法の場合は▲1▼の方法が望ましい。何れにしても、本発明のフィルムの樹脂層の少なくとも一方は、フィルム製造工程内で設けられたものであることが好ましい。
【0016】
樹脂層を構成する成分としては、帯電防止樹脂や導電性樹脂等任意の帯電防止能を持つ高分子等から適宜選択することができる。
この帯電防止剤としては、例えば、第4級アンモニウム塩、ピリジニウム塩、第1〜3級アミノ基等のカチオン性官能基を有するカチオン性帯電防止剤、スルホン酸塩基、硫酸エステル塩基、リン酸エステル塩基、ホスホン酸塩基等のアニオン性官能基を有するアニオン系帯電防止剤、アミノ酸系、アミノ硫酸エステル系等の両性帯電防止剤、ポリオール系、ポリグリセリン系、ポリエチレングリコール系等のノニオン性官能基を有する帯電防止剤等の各種高分子型帯電防止剤が挙げられ、また、第3級アミノ基や第4級アンモニウム基を有し、電離放射線により重合可能なモノマーやオリゴノマー、例えば、N,N−ジアルキルアミノアルキル(メタ)アクリレートモノマー、それらの第4級化合物等の重合性帯電防止剤、さらにポリアニリン、ポリピロール、ポリチオフェンなどの導電性ポリマー等も使用できる。これらの中でも、第4級アンモニウム塩型カチオン性官能基を有する高分子型帯電防止剤が好ましい。
【0017】
本発明のフィルムの樹脂層を構成するために使用するバインダーとしては、ポリエステル類、ポリウレタン類、アクリル樹脂類、ポリビニル樹脂類、ポリオレフィン類などの熱可塑性樹脂および/または熱硬化性アクリル樹脂、メラミン樹脂、エポキシ樹脂、シリコーンアクリル共重合体樹脂、シリコーン−ウレタン系樹脂などの熱硬化性樹脂を例示することができる。
本発明においては、樹脂層の耐溶剤性をより改良するために、架橋剤として、メチロール化あるいはアルコキシメチル化したメラミン系化合物、尿素系化合物、エポキシ系化合物、イソシアネート系化合物、カルボジイミド化合物、オキサゾリン系化合物、シランカップリング剤系化合物から選ばれた少なくとも1種類を含有することが好ましい。
【0018】
樹脂層表面の防汚性を向上させるため、ポリオレフィン類,シリコン系樹脂等をバインダー成分中に含ませることが好ましい。
上述の層を構成する、帯電防止剤,バインダー、架橋剤の量比は、その選択される化合物よって最適値が異なるため特に規定するものではないが、下記の層特性を満足する量比であることが好ましい。
樹脂層中の帯電防止剤の含有量は、通常5重量%以上、好ましくは10〜90%の範囲であり、帯電防止剤がイオン性官能基を有する化合物の重合体である場合は、15〜90重量%、さらには20〜90重量%の範囲とすることが好ましい。
【0019】
帯電防止剤の比率が少なすぎると、十分な帯電防止効果を達成することが難しくなり、また帯電防止剤の比率が多くなりすぎると、アルコール類、MEK等の有機溶剤に対する耐溶剤性が悪くなる場合がある。
本発明のフィルムにおいて、樹脂層の厚みは、通常0.001〜0.5μm、好ましくは0.01〜0.1μm、特に好ましくは0.02〜0.07μmの範囲である。樹脂層の厚みが0.001μm未満であると、十分な帯電防止効果が得られなくなることがあり、他方0.5μmを超えると、インラインコート性が悪くなるとともに、経済的メリットに欠ける傾向がある。
【0020】
本発明のフィルムを構成する樹脂層は、フィルム製膜ラインでのインラインコートを適用するため、水性塗液を塗布して形成することとなるが、少量の有機溶剤を含有した水性塗液を塗布して形成することも可能である。
用いる有機溶剤としては、エタノール、イソプロパノール、エチレングリコール、グリセリン等のアルコール類、エチルセロソルブ、t−ブチルセロソルブ、プロピレングリコールモノメチルエーテル、テトラヒドロフラン等のエーテル類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル等のエステル類、ジメチルエタノールアミン等のアミン類等を例示することができる。これらは単独、もしくは複数を組み合わせて用いることができ、水性塗液に必要に応じて有機溶剤を適宜選択し、含有させることで、塗液の安定性、塗布性あるいは塗膜特性を助けることができる。
【0021】
本発明において用いる塗液の固形分濃度は、通常30重量%以下であり、5〜15重量%、特に1〜10重量%の範囲が好ましい。塗液の固形分濃度が薄くなると、塗布はじきが生じやすくなる等の塗布面状の均一性に問題が生じやすくなる。また、塗液の固形分濃度が30重量%を超えると、塗布液の粘度が高くなる傾向にあり、このため塗布外観が悪化することがある。
本発明において、樹脂層の塗液を適宜選択して基材フィルムの両面に設けることとなるが、少なくとも片面側は、防汚性と帯電防止性を付与する塗液を使用することが好ましい。
【0022】
基材フィルムへの塗液の塗布方法としては、ロールコート法、グラビアコート法、マイクログラビアコート法、リバースコート法、バーコート法、ロールブラッシュ法、エアーナイフコート法、カーテンコート法、ダイコート法などの任意の塗布方法を適宜、単独または組み合わせて適用するとよい。
粘着剤層の塗布に関しては、両面インラインコートによって得られたフィルムの一方の樹脂層面に、粘着剤塗布機にて粘着剤を塗布後、乾燥炉に通して粘着剤層を乾燥・硬化させ巻き取る。
【0023】
巻き取る際の粘着を防止するため、乾燥・硬化後の粘着面に離型性を有するセパレータフィルムを貼りあわせて、セパレーター付きフィルムロールとして巻き取ることが好ましい。パレータフィルムとしては、厚み25〜38μmのポリエステルフィルム基材の片面に各種硬化型シリコーン樹脂塗液を塗布し、乾燥・硬化させたものが使用でき、この場合のシリコン離型層の厚みは一般的には0.05〜0.2μmのものが使用される。
粘着剤層の乾燥後の厚みは、5〜35μmにすることが適当であり、好ましくは10〜30μm、さらに好ましくは15〜25μmである。
【0024】
粘着層については、種々のアクリル酸エステルあるいはメタアクリル酸エステルを主成分とし、さらにはこれに種々のモノマーを共重合させたものが多く利用され、これにイソシアネート系硬化剤等を加えて硬化処理を行うことで形成することがでるが、再剥離性を有する粘着剤層としては弱粘着タイプのものを選定するのが好ましい。ただし、弱粘着タイプの粘着剤層の場合、厚みが5μm以下では、粘着力が不足し、セパレーターの浮き、粘着性不良等のトラブルを招きやすい。また、40μm以上となると、帯電防止面に対する粘着剤の被覆厚が厚くなりすぎるため、結果的に粘着剤面に対する帯電防止効果が出なくなる。
【0025】
本発明のフィルムの露出する樹脂層表面の水滴接触角は、80度以上である必要がある。水滴接触角が80度未満では、防汚性が劣る。ここで言う防汚性とは、表面が汚れにくいあるいは汚れても汚れを容易に落とすことができることである。
さらに、本発明のフィルムは、表面に10kV直流電圧を印加した時の飽和帯電が両面ともに2kV以下、好ましくは1kV以下であり、印加停止後の飽和帯電量の半減時間が両面ともに15秒以下、好ましくは10秒以下である。飽和帯電量が2KVを超えるものは、瞬間的静電放電が大きく、放電障害が大きく好ましくない。また、電荷の半減期が15秒を超えるものは、帯電防止効果がおとり好ましくない。
【0026】
【実施例】
以下、本発明を実施例によりさらに詳細に説明するが、本発明は、その要旨を越えない限り、以下の実施例に限定されるものではない。なお、本発明における特性の測定方法は下記のとおりである。
【0027】
(1)飽和帯電および電荷減衰半減期
シシド静電気(株)製 STATIC HONESTMETER TYPE H−0110にて、直流10kVの電圧を距離20mmから帯電が飽和するまで印加し、帯電が飽和したときの帯電量を計測して飽和帯電量(kV)とした。帯電が飽和後、印加を止め、印加停止から帯電量が半減するまでの時間を計測し、この時間を電荷減衰半減期とした。
【0028】
(2)水滴接触角
協和界面科学(株)製 接触角計(CONTACT−ANGLE METER)を使用し、フィルム表面に蒸留水を滴下した時の水滴/フィルム表面の接触角を測定した。
【0029】
(3)防汚性
フィルムの表面に、粘着層面をこすりつけた後、付着した粘着層成分を、エタノールを染みこませたシート状コットンで拭き取り、拭き取り後の結果を、以下の基準で評価した。
〇:防汚・帯電防止層表面に粘着剤の付着がしにくく、また、付着した粘着剤を容易にふき取ることができる。拭き取った後の防汚・帯電防止層表面にシミ、汚れ跡等の外観変化が認められない。
△:粘着剤の付着、拭き取り性、あるいは表面外観変化について、〇と×の中間。
×:粘着剤が付着しやすく、また、付着した粘着剤がとれにくい。拭き取った表面の外観にシミ、汚れ跡が残る。
【0030】
本発明の実施例で用いた塗布剤成分は以下のとおりである。
[帯電防止層成分]
帯電防止剤(A1):ポリジアリルジメチルアンモニウムクロライド(平均分子量:約30000)
水性樹脂(B1):水性アクリル樹脂(日本カーバイド工業社製、ニカゾール A−08)
水性樹脂(B2):部分ケン化型ポリビニルアルコール(ケン化度:約88モル%)
水性樹脂(B3):酸化ポリエチレン水分散体(ジョンソンポリマー社製,ジョンワックス26)
架橋剤(C1):メトキシメチロールメラミン(大日本インキ社製、ベッカミン J101)
【0031】
実施例1
極限粘度0.65dl/gのポリエチレンテレフタレート(平均粒径約2.4μmのシリカ粒子を0.05%含有)のペレットを180℃で熱風乾燥結晶化後、押出し機に供給し、280〜300℃の温度でTダイからシート状に溶融押し出しし、静電密着法を併用し、鏡面冷却ドラム上にキャスト・急冷し、厚さ約720μmの未延伸フィルムとし、引き続いて、このフィルムを85℃で長手(縦)方向に3.7倍延伸し、一軸延伸フィルムとした。
この一軸延伸フィルムに、以下の配合よりなる塗液▲1▼および塗液▲4▼を製膜工程横延伸前の段階で両面塗布装置を用いてそれぞれ表面側/裏面側に約5μm(wet厚)塗布した。
【0032】
塗液▲1▼:4級アンモニウム塩型カチオン性高分子帯電防止剤(A1)、酸化ポリエチレン水分散体(B3)およびメラミン系化合物(C1)を、40/40/20(固形分換算重量比)の比率で混合し、イオン交換水で固形分濃度3重量%に希釈調製した塗布液
塗液▲4▼:4級アンモニウム塩型カチオン性高分子帯電防止剤(A1)、アクリル樹脂(B1)およびメラミン系化合物(C1)を40/40/20(固形分換算重量比)の比率で混合し、イオン交換水で固形分濃度3重量%に希釈調製した塗布液
【0033】
引き続き横延伸ゾーンにて110〜150℃で横方向に3.9倍延伸し、230℃で熱処理・固定を行い、厚さ38μmの両面塗布二軸延伸ポリエステルフィルムを得た。
得られた両面塗布フィルムの塗液▲1▼により形成されて塗膜面に、粘着剤として以下の粘着剤を塗布し後、130℃で1分間、乾燥・硬化させ、乾燥後塗布厚み20μmの粘着剤層を有する表面保護フィルムを得た。
この表面保護フィルムの特性を下記表2に示す。
粘着剤組成:アクリル系粘着剤(帝国化学株式会社製、SG−800)およびイソシアネート硬化剤(日本ポリウレタン株式会社製、コロネートHL)を100/10(固形分換算重量比)の比率で混合した塗布液
【0034】
実施例2〜3、比較例1〜4
塗液▲1▼▲4▼を下記表1に記載の組成物に変更する以外は実施例1と同じ方法で保護フィルムを作成した。
変更した塗液の塗布構成ならびに、作成された保護フィルムの特性を表2に示す。
比較例5
インラインコートを行わず、無塗布のポリエステルフィルムを実施例1と同じ方法で製膜し、保護フィルムを作成した。
【0035】
【表1】
【0036】
【表2】
【0037】
上記表中、面−2が粘着剤層側であり、面−1はその反対面である。
実施例1〜3においては、塗液中に適宜、防汚成分ならびに帯電防止成分を調合し、かつ、製膜時両面インラインコートを行うことにより、低コストで、目的とする防汚・帯電防止保護フィルムが得られた。
比較例1、比較例2においては、塗液中に防汚成分が無いか、また、少な過ぎるために、低コストの両面帯電防止保護フィルムが得られたものの防汚特性が得られていない。比較例3においては、帯電防止成分が不足しているため帯電防止性が弱い。比較例4は粘着剤層が厚すぎるため、粘着剤層側の帯電防止効果が悪くなっている。
【0038】
【発明の効果】
以上詳述したように、本発明による保護フィルムは、実用的に有用な表面防汚性ならびに両面帯電防止特性有し、かつ、コスト性にも優れており、その工業的価値は高い。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polyester film having surface antifouling properties and antistatic properties on both sides and suitable for protecting the surface of optical members.
[0002]
[Prior art]
Polyester films typified by polyethylene terephthalate or polyethylene naphthalate are excellent in mechanical strength, dimensional stability, flatness, heat resistance, chemical resistance, optical properties, etc., and are excellent in cost performance. Used as a material.
As an example of the application, there is a protective film for protecting the surface of an optical member such as a polarizing plate from scratches and contamination, and a film obtained by applying an adhesive to a polyester film substrate is used. It is easily charged at the time of delamination or the like, and in each process used as a protective film for an optical member, frictional charging or peeling charging occurs, causing problems such as adhesion of foreign matter and dust, and electrostatic discharge failure.
[0003]
In addition, the attached protective film is likely to be contaminated with oil, grease, protruding or transferred adhesive, etc. in the manual steps such as re-peeling work step, inspection step, etc. Is needed.
With respect to imparting an antistatic property to a surface protective film, generally, a method of applying an antistatic resin to the surface is performed (Patent Document 1). Further, with regard to imparting the antistatic property to the pressure-sensitive adhesive surface, a method of adding an antistatic agent in the pressure-sensitive adhesive layer, a method of applying the pressure-sensitive adhesive to a substrate provided with an antistatic resin layer, and the like are considered. It has not been effectively implemented, including cost, quality, and the like (Patent Documents 1 to 3).
[0004]
This is because, in order to obtain the required antistatic properties, it is necessary to include a large amount of antistatic components in the adhesive layer, and the coating properties of the removable adhesive will change and lose their original properties. Alternatively, the reason is that the antistatic component migrates to the adherend over time from the pressure-sensitive adhesive layer, and the adherend is easily stained.
On the other hand, in order to solve these problems comprehensively, it is necessary to individually provide the missing functions to the base polyester film. The number of processing steps to solve the problem is increased, and the cost performance is deteriorated.
[Patent Document 1] JP-A-6-123806 [Patent Document 2] JP-A-2000-80336 [Patent Document 3] JP-A-2001-275410
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned circumstances, and a problem to be solved is that one side has antifouling properties, the back side has a removable adhesive layer, and both sides are charged. An object of the present invention is to provide a protective film having prevention properties at low cost.
[0007]
[Means for Solving the Problems]
The present inventor has conducted various studies in view of the above-mentioned circumstances, and as a result, has found that a film having a specific structure is useful as a protective film, and has completed the present invention.
That is, the gist of the present invention is a film having a polyester film as a base material, having a resin layer on both surfaces thereof and an adhesive layer on one resin layer surface, and having a water droplet contact angle of 80% on the exposed resin layer surface. Or more, the saturation charge when a 10 kV DC voltage is applied to the surface is 2 kV or less for both surfaces, and the half time of the saturation charge after stopping the application is 15 seconds or less for both surfaces. Exists in surface protection film.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
The polyester used in the present invention is, for example, one obtained by polycondensing an aromatic dicarboxylic acid and an aliphatic glycol. Examples of the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid, and examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol. Representative polyesters include polyethylene terephthalate (PET), polyethylene-2,6-naphthalenedicarboxylate (PEN), and the like.
[0009]
Further, the polyester may be a homopolyester or a copolyester. In the case of a copolyester, it is usually a copolymer containing 30 mol% or less of a third component.
Examples of the dicarboxylic acid component of the copolymerized polyester include one or more of isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, azelaic acid, and oxycarboxylic acid. As the glycol component, one or more of ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol and the like can be mentioned.
[0010]
The polyester used in the present invention may be one obtained by a melt polymerization reaction, or one obtained by solid-state polymerization of a polyester which has been formed into chips after melt polymerization.
Further, in the present invention, a film having a structure in which different kinds of polyesters are coextruded and laminated may be used.
[0011]
The polyester used in the present invention may contain an antistatic agent as long as the gist of the present invention is not impaired. If necessary, a small amount of inert inorganic or organic fine particles may be blended with the polyester for the purpose of improving the slipperiness and abrasion resistance of the film.
Examples of the particles to be blended include silicon oxide, alumina, calcium carbonate, calcium phosphate, kaolin, titanium oxide, barium sulfate, lithium fluoride, talc, and crosslinked polymer fine powder.
[0012]
These particles may be used alone or in combination of two or more components. The content is usually 1% by weight or less, preferably 0.01 to 1% by weight, more preferably 0.02 to 0.5% by weight. % Range. When the content of the particles is small, the film surface tends to be flattened and the winding characteristics in the film manufacturing process tend to be inferior. When the content of the particles exceeds 1% by weight, the film surface is roughened. Is too large, the film becomes hazy, and it may not be desirable for use of a protective film in which transparency is desired.
[0013]
The average particle size of the particles contained in the polyester film is not particularly limited, but is usually in the range of 0.02 to 5 μm, preferably 0.02 to 3 μm, and more preferably 0.02 to 2 μm. It is.
As an example of the method for producing the polyester film of the present invention, an example using polyethylene terephthalate will be described. However, the production conditions differ depending on the polyester used, and the present invention is not necessarily limited to this.
According to a conventional method, bis-β-hydroxyethyl terephthalate (BHT) is obtained by esterifying terephthalic acid with ethylene glycol or transesterifying dimethyl terephthalate with ethylene glycol. Next, while transferring the BHT to the polymerization tank, the BHT is heated to 280 ° C. under vacuum to proceed the polymerization reaction to obtain a polyester.
[0014]
This polyester raw material is extruded as a molten sheet from a die using an extruder, and cooled and solidified by a cooling roll to obtain an unstretched sheet. This unstretched sheet is stretched in a first stage by a roll or a tenter type stretching machine. The stretching temperature is usually 70 to 120 ° C, preferably 80 to 110 ° C, and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times. Next, stretching is performed in a direction orthogonal to the stretching direction of the first stage. The stretching temperature is usually from 70 to 120 ° C., preferably from 80 to 115 ° C., and the stretching ratio is usually from 3.0 to 6 times, preferably from 3.5 to 5 times. Subsequently, heat treatment is performed at a temperature in the range of 130 ° C. to 250 ° C. under a relaxation of 30% or less to obtain a biaxially stretched film.
[0015]
The thickness of the polyester film as a substrate of the film of the present invention is generally 25 to 50 μm.
Examples of the method for providing a resin layer on the film of the present invention include: (1) a method of applying a coating liquid to the surface of an unstretched sheet and drying; and (2) a method of applying a coating liquid to the surface of a uniaxially stretched film and drying. And (3) a method in which a coating solution is applied to the surface of a biaxially stretched film and dried, etc., and the like. The method of (1) is desirable. In any case, at least one of the resin layers of the film of the present invention is preferably provided in the film manufacturing process.
[0016]
As a component constituting the resin layer, a polymer having an arbitrary antistatic ability such as an antistatic resin or a conductive resin can be appropriately selected.
Examples of the antistatic agent include a quaternary ammonium salt, a pyridinium salt, a cationic antistatic agent having a cationic functional group such as a tertiary to tertiary amino group, a sulfonate group, a sulfate group, and a phosphate group. Bases, anionic antistatic agents having anionic functional groups such as phosphonate groups, amino acid-based, aminosulfonate-based amphoteric antistatic agents, polyol-based, polyglycerin-based, polyethylene glycol-based nonionic functional groups. And various polymer-type antistatic agents such as antistatic agents having a tertiary amino group or a quaternary ammonium group and polymerizable by ionizing radiation, such as N, N- Dialkylaminoalkyl (meth) acrylate monomers, polymerizable antistatic agents such as quaternary compounds, and polyaniline Emissions, polypyrrole, conductive polymers such as polythiophene can be used. Among them, a polymer type antistatic agent having a quaternary ammonium salt type cationic functional group is preferable.
[0017]
Examples of the binder used for forming the resin layer of the film of the present invention include thermoplastic resins such as polyesters, polyurethanes, acrylic resins, polyvinyl resins, and polyolefins and / or thermosetting acrylic resins, and melamine resins. And thermosetting resins such as epoxy resin, silicone acrylic copolymer resin, and silicone-urethane resin.
In the present invention, in order to further improve the solvent resistance of the resin layer, as a crosslinking agent, methylolated or alkoxymethylated melamine-based compound, urea-based compound, epoxy-based compound, isocyanate-based compound, carbodiimide compound, oxazoline-based It is preferable to contain at least one selected from a compound and a silane coupling agent-based compound.
[0018]
In order to improve the antifouling property of the resin layer surface, it is preferable to include a polyolefin, a silicon-based resin, or the like in the binder component.
The amount ratio of the antistatic agent, the binder, and the cross-linking agent constituting the above-mentioned layer is not particularly defined because the optimum value differs depending on the selected compound, but is a ratio that satisfies the following layer characteristics. Is preferred.
The content of the antistatic agent in the resin layer is usually 5% by weight or more, preferably in the range of 10 to 90%. When the antistatic agent is a polymer of a compound having an ionic functional group, it is 15 to 15%. It is preferably 90% by weight, more preferably 20 to 90% by weight.
[0019]
If the ratio of the antistatic agent is too small, it is difficult to achieve a sufficient antistatic effect, and if the ratio of the antistatic agent is too large, the solvent resistance to organic solvents such as alcohols and MEK deteriorates. There are cases.
In the film of the present invention, the thickness of the resin layer is usually in the range of 0.001 to 0.5 μm, preferably 0.01 to 0.1 μm, and particularly preferably 0.02 to 0.07 μm. When the thickness of the resin layer is less than 0.001 μm, a sufficient antistatic effect may not be obtained. On the other hand, when the thickness exceeds 0.5 μm, the in-line coating property is deteriorated and the economical merit tends to be lacking. .
[0020]
The resin layer constituting the film of the present invention is formed by applying an aqueous coating liquid to apply in-line coating in a film forming line, but applying an aqueous coating liquid containing a small amount of an organic solvent. It is also possible to form them.
Examples of the organic solvent used include alcohols such as ethanol, isopropanol, ethylene glycol and glycerin, ethers such as ethyl cellosolve, t-butyl cellosolve, propylene glycol monomethyl ether and tetrahydrofuran, ketones such as acetone and methyl ethyl ketone, and esters such as ethyl acetate. And amines such as dimethylethanolamine. These can be used alone or in combination of two or more, and by appropriately selecting and containing an organic solvent as necessary in the aqueous coating liquid, it is possible to assist the stability of the coating liquid, coating properties or coating film properties. it can.
[0021]
The solid content concentration of the coating liquid used in the present invention is usually 30% by weight or less, preferably 5 to 15% by weight, particularly preferably 1 to 10% by weight. If the solid content concentration of the coating liquid is low, problems tend to occur in the uniformity of the coated surface, such as easy application repelling. Further, when the solid content concentration of the coating liquid exceeds 30% by weight, the viscosity of the coating liquid tends to increase, and thus the appearance of the coating may deteriorate.
In the present invention, the coating liquid for the resin layer is appropriately selected and provided on both sides of the base film, but it is preferable to use a coating liquid imparting antifouling property and antistatic property on at least one side.
[0022]
Examples of the method of applying the coating liquid to the base film include a roll coating method, a gravure coating method, a microgravure coating method, a reverse coating method, a bar coating method, a roll brushing method, an air knife coating method, a curtain coating method, a die coating method, and the like. May be applied alone or in combination as appropriate.
Regarding the application of the pressure-sensitive adhesive layer, the pressure-sensitive adhesive is applied to one resin layer surface of the film obtained by the double-sided in-line coating with a pressure-sensitive adhesive applicator, and then passed through a drying furnace to dry and harden the pressure-sensitive adhesive layer and take up the film. .
[0023]
In order to prevent sticking at the time of winding, it is preferable to attach a separator film having releasability to the dried and cured adhesive surface and wind the film as a film roll with a separator. As the parator film, a film obtained by applying various curable silicone resin coating liquids on one surface of a polyester film substrate having a thickness of 25 to 38 μm, followed by drying and curing can be used. In this case, the thickness of the silicone release layer is generally Used is 0.05 to 0.2 μm.
The thickness of the pressure-sensitive adhesive layer after drying is suitably from 5 to 35 μm, preferably from 10 to 30 μm, and more preferably from 15 to 25 μm.
[0024]
The adhesive layer is mainly composed of various acrylic acid esters or methacrylic acid esters as main components and further copolymerized with various monomers. This is cured by adding an isocyanate-based curing agent and the like. However, it is preferable to select a weak adhesive type as the adhesive layer having removability. However, in the case of a weakly adhesive type pressure-sensitive adhesive layer, if the thickness is 5 μm or less, the adhesive strength is insufficient, and problems such as lifting of the separator and poor adhesion are likely to occur. On the other hand, when the thickness is 40 μm or more, the coating thickness of the pressure-sensitive adhesive on the antistatic surface becomes too large, and as a result, the antistatic effect on the pressure-sensitive adhesive surface is not obtained.
[0025]
The contact angle of the water droplet on the exposed resin layer surface of the film of the present invention needs to be 80 degrees or more. If the water droplet contact angle is less than 80 degrees, the antifouling property is poor. The antifouling property referred to herein means that the surface is hardly soiled or even if the surface is soiled, the soil can be easily removed.
Furthermore, the film of the present invention has a saturation charge of 2 kV or less, preferably 1 kV or less on both surfaces when a 10 kV DC voltage is applied to the surface, and a half-time of the saturated charge amount after the application is stopped is 15 seconds or less on both surfaces. Preferably it is 10 seconds or less. If the saturated charge amount exceeds 2 KV, instantaneous electrostatic discharge is large, and discharge failure is large, which is not preferable. Further, those having a half-life of electric charge of more than 15 seconds have an unfavorable antistatic effect.
[0026]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention. In addition, the measuring method of the characteristic in this invention is as follows.
[0027]
(1) Saturation charge and charge decay half-life A half-life of Sisido Electrostatic Co., Ltd., a static voltage of 10 kV is applied from a distance of 20 mm until the charge is saturated by applying a static voltage of 10 kV, and the charge amount when the charge is saturated is measured. The measured value was taken as the saturation charge (kV). After the charging was saturated, the application was stopped, and the time from when the application was stopped to when the amount of charge was reduced by half was measured, and this time was defined as the charge decay half-life.
[0028]
(2) Water Drop Contact Angle Using a contact angle meter (CONTACT-ANGLE METER) manufactured by Kyowa Interface Science Co., Ltd., the contact angle of water droplet / film surface when distilled water was dropped on the film surface was measured.
[0029]
(3) After the adhesive layer surface was rubbed on the surface of the antifouling film, the adhered adhesive layer component was wiped off with a sheet cotton impregnated with ethanol, and the result after the wiping was evaluated according to the following criteria.
〇: Adhesive does not easily adhere to the surface of the antifouling / antistatic layer, and the adhered adhesive can be easily wiped off. No change in appearance such as stains or stain marks is observed on the surface of the antifouling / antistatic layer after wiping.
Δ: Intermediate between Δ and X for adhesion of adhesive, wiping property, or change in surface appearance.
×: The adhesive is easily adhered, and the adhered adhesive is hard to be removed. Stains and stain marks remain on the appearance of the wiped surface.
[0030]
The coating agent components used in the examples of the present invention are as follows.
[Antistatic layer component]
Antistatic agent (A1): polydiallyldimethylammonium chloride (average molecular weight: about 30,000)
Water-based resin (B1): water-based acrylic resin (Nippon Carbide Industrial Co., Ltd., Nicazole A-08)
Aqueous resin (B2): partially saponified polyvinyl alcohol (degree of saponification: about 88 mol%)
Aqueous resin (B3): Aqueous dispersion of polyethylene oxide (John Wax 26, manufactured by Johnson Polymer)
Cross-linking agent (C1): methoxymethylol melamine (Dainippon Ink Co., Ltd., Beckamine J101)
[0031]
Example 1
A pellet of polyethylene terephthalate having an intrinsic viscosity of 0.65 dl / g (containing 0.05% of silica particles having an average particle size of about 2.4 μm) was crystallized by drying with hot air at 180 ° C., and then supplied to an extruder. At a temperature of T, and extruded in a sheet form from a T-die, combined with an electrostatic adhesion method, cast and quenched on a mirror cooling drum to obtain an unstretched film having a thickness of about 720 μm. The film was stretched 3.7 times in the longitudinal (longitudinal) direction to obtain a uniaxially stretched film.
A coating solution (1) and a coating solution (4) each having the following composition were applied to the uniaxially stretched film by a double-side coating apparatus at a stage before the film-forming step of lateral stretching by about 5 μm (wet thickness). ) Was applied.
[0032]
Coating liquid (1): A quaternary ammonium salt type cationic polymer antistatic agent (A1), an aqueous dispersion of polyethylene oxide (B3) and a melamine compound (C1) were added in a ratio of 40/40/20 (weight ratio in terms of solids). ) And diluted with ion-exchanged water to a solid concentration of 3% by weight. Coating solution (4): Quaternary ammonium salt type cationic polymer antistatic agent (A1), acrylic resin (B1) And a melamine compound (C1) mixed at a ratio of 40/40/20 (weight ratio in terms of solid content), and diluted with ion-exchanged water to a solid content concentration of 3% by weight to prepare a coating solution.
Subsequently, the film was stretched 3.9 times in the transverse direction at 110 to 150 ° C. in the transverse stretching zone, and heat-treated and fixed at 230 ° C. to obtain a 38 μm-thick double-sided biaxially stretched polyester film.
The following pressure-sensitive adhesive is applied as a pressure-sensitive adhesive to the surface of the coating film formed by the coating solution (1) of the obtained double-sided coating film, and then dried and cured at 130 ° C. for 1 minute. A surface protective film having an adhesive layer was obtained.
The properties of this surface protective film are shown in Table 2 below.
Adhesive composition: Acrylic adhesive (SG-800, Teikoku Chemical Co., Ltd.) and isocyanate hardener (Coronate HL, Nippon Polyurethane Co., Ltd.) mixed at a ratio of 100/10 (weight ratio in terms of solid content). Liquid
Examples 2-3, Comparative Examples 1-4
A protective film was prepared in the same manner as in Example 1 except that the coating liquids (1) and (4) were changed to the compositions shown in Table 1 below.
Table 2 shows the coating composition of the changed coating liquid and the characteristics of the produced protective film.
Comparative Example 5
Without performing in-line coating, an uncoated polyester film was formed in the same manner as in Example 1 to form a protective film.
[0035]
[Table 1]
[0036]
[Table 2]
[0037]
In the above table, surface-2 is the pressure-sensitive adhesive layer side, and surface-1 is the opposite surface.
In Examples 1 to 3, the antifouling component and the antistatic component are appropriately prepared in the coating liquid, and the target antifouling / antistatic process is performed at low cost by performing a double-sided inline coating during film formation. A protective film was obtained.
In Comparative Examples 1 and 2, the coating liquid did not contain any antifouling components or was too small, so that a low-cost double-sided antistatic protective film was obtained, but the antifouling properties were not obtained. In Comparative Example 3, the antistatic property was weak because the antistatic component was insufficient. In Comparative Example 4, since the pressure-sensitive adhesive layer was too thick, the antistatic effect on the pressure-sensitive adhesive layer side was poor.
[0038]
【The invention's effect】
As described in detail above, the protective film according to the present invention has practically useful surface antifouling properties and double-sided antistatic properties, is also excellent in cost performance, and has high industrial value.