JP2004172688A - Waveguide bend, waveguide plate, and high frequency apparatus - Google Patents

Waveguide bend, waveguide plate, and high frequency apparatus Download PDF

Info

Publication number
JP2004172688A
JP2004172688A JP2002333035A JP2002333035A JP2004172688A JP 2004172688 A JP2004172688 A JP 2004172688A JP 2002333035 A JP2002333035 A JP 2002333035A JP 2002333035 A JP2002333035 A JP 2002333035A JP 2004172688 A JP2004172688 A JP 2004172688A
Authority
JP
Japan
Prior art keywords
waveguide
plate
cavity
bend
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002333035A
Other languages
Japanese (ja)
Other versions
JP3846585B2 (en
Inventor
Takuya Suzuki
拓也 鈴木
Tsutomu Tamaki
努 田牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002333035A priority Critical patent/JP3846585B2/en
Publication of JP2004172688A publication Critical patent/JP2004172688A/en
Application granted granted Critical
Publication of JP3846585B2 publication Critical patent/JP3846585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waveguide bend capable of remarkably reducing machining precision being a requirement to ensure required electric characteristics such as a low loss over a broadband frequency range and an excellent pass characteristic causing less phase change and decreasing the manufacturing cost and having a structure of eliminating the restriction on the working caused by the structure. <P>SOLUTION: The waveguide bend has cavities directed outwardly from one corner or both corners of a waveguide whose guide axial direction is different at a waveguide corner part at which a propagation direction of electromagnetic waves in the waveguide are converted from a traveling direction into the different pipe axial direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、導波管ベンドに関し、特にマイクロ波帯及びミリ波帯等の導波管給電回路、導波管を用いて信号の送受信を行う高周波モジュールなどに用いる導波管回路に関するものである。
【0002】
【従来の技術】
従来の導波管ベンドは、互いに管軸方向が異なる導波管の接続部において、導波管内の電磁波の伝搬方向を曲げ、方向に沿って不要な反射を生じさせることなくスムーズに伝搬させるために、導波管を所望の角度で曲げ形成し、その曲げ部の外側内面を階段状のステップ面を形成している(例えば特許文献1参照)。
【0003】
また、上記と同等の効果を得られるように曲げ部の外側内面をテーパ状に形成したものもある(例えば、非特許文献1)。
【0004】
しかしながら、上記のような導波管曲げ部のステップ面は、導波管の管軸に対して並行及び垂直な面を交互に連続させた複数段の階段面を切削する必要があり、高い加工精度が要求される。上記のような回路をマイクロ波帯、ミリ波帯で作る場合は、その波長が小さくなっていくため、これに伴い導波管およびステップ面の寸法も小さくなってくる。
例えば、Wバンド(75GHz〜110GHz)での導波管寸法は、2.54mm×1.27mm(WR−10)となり、この周波数帯における導波管ステップ面は、1.27mmを複数段に分割した微小な階段面(例えば、3段の場合、0.3mm〜0.4mm)に切削する高精度な加工が必要になる。
【0005】
また、2枚の導体板を用いて、切削加工などにより一方の導体板に水平方向へ伝送する単一あるいは複数の導波管溝を形成し、上記導体板およびもう一方の導体板に導波管溝の両端から上下面方向に伝送する導波管を形成して、これらの2枚の導体版を張り合わせて、一方の導波管から他方の導波管へ高周波信号を伝える導波管プレートにおいて、上記各々の水平方向と上下面方向の導波管が直交するコーナー部へ上記の導波管ベンドを構成しようとした場合、ステップ面は導波管溝を形成した導体板へ形成する必要がある。
この場合、一方のコーナー部へステップ面を形成することは可能であるが、上下面方向に導波管を有する側のコーナー部に対しては、導波管溝を形成した側からステップ面の加工は不可能であり、かつ反対側からの加工は上下面方向に形成した導波管内を通して切削加工となるため、非常に精度が要求され、加工が困難である。
【0006】
さらに、上記のような複数の導波管をより安価に形成するための加工方法として、従来から使われている射出成型などが考えられるが、当該構造のように導波管の内壁から突出したステップ面の加工は、抜き構造のみ形成可能な射出成型では成型不可能である。
【0007】
【特許文献1】
特開平9−246801号公報(第2−4頁、第1図)
【非特許文献1】
GEORGE L.RAGAN,”MICROWAVE TRANSMISSION CIRCUITS”,
1948 McGRAW−HILL,p203−207
【0008】
【発明が解決しようとする課題】
従来の導波管ベンドは、以上のように構成されており、必要な電気特性を得るために、各導波管曲げ部のステップ面の加工に対して機械的に非常に高い加工精度、面精度が要求されていたため、加工費が非常に高価であるという問題があった。また、導波管ベンドとして導波管内壁を突出させる構成となっているために、低コスト化が期待できる射出成型などの加工方法を採用できないという加工上の制約も多かった。
【0009】
この発明は、上記のような問題点を解決するために成されたものであり、広帯域な周波数範囲に渡って低損失で、位相変化の少ない良好な通過特性など、必要な電気特性確保のために要求される機械加工精度や製造コストを大幅に低減させることができ、かつ当該構造によって受ける加工上の制約を無くすことが可能な構造を持つ導波管ベンドを得ることを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、この発明に係る導波管ベンドは、導波管内の電磁波の伝搬方向を進行方向から異なる管軸方向に変換する導波管コーナー部において、管軸方向が異なる導波管のいずれか一方、あるいは双方のコーナーから外側に向けてキャビティを有したものである。
【0011】
また、この発明に係る導波管プレートは、2枚の導体板を用いて上下面方向から水平方向に高周波信号を伝送させるために形成した単一あるいは複数の導波管を有し、上記各々の導波管コーナー部に面方向か水平方向に形成された導波管のどちらか一方、あるいは双方のコーナーから外側に向けてキャビティを有したものである。
【0012】
また、この発明に係る高周波装置は、上記導波管プレートを搭載し、導波管プレートとの間で入力もしくは出力されるミリ波やマイクロ波等の高周波信号を送信または受信する手段を備えたものである。
【0013】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態1を示す導波管ベンドの斜視図である。図において、導波管1と導波管2は管軸が直交しており、2つの導波管接続部において、導波管のいずれか一方、あるいは双方のコーナー部外側導体壁端面を延長させてキャビティ5を形成している。また、図2(a)〜(d)は、切削加工などにより、2つの金属板4a,4b内に形成した導波管及び導波管ベンドをH面の中心で切断した各種形態による断面図、図3(a)は図2の断面詳細図を示しており、切削加工などにより金属板4a,4bに導波管1,2を形成し、導波管接続部において、導波管のいずれか一方、あるいは双方のコーナー部外側導体壁端面6を延長させて形成したキャビティ5を形成している。また、図3(b)では導波管コーナー部に励振される電界(定在波)の分布を示している。図中の導波管1と2は直角(管軸が直交となるように)に曲げを形成した例を示している。
【0014】
次に動作について説明する。一般に曲折した導波管接続部では、伝送系のインピーダンスに対して不整合となる直列インダクタンスと並列容量が付加されるために反射が生じる。この導波管曲げ部の外側内面を図3のC−C部に示すように、導波管寸法に対して適当な寸法Lcを持つ1段あるいは複数段のステップ面3を形成し、その導体壁面(電気的な短絡面)の位置を変化させ、伝送系のインピーダンスに対して反射の生じないような直列インダクタンスと並列容量を持たせることにより、導波管内を伝送する広帯域な周波数範囲にわたって反射を抑制し、かつ低損失で位相変化の少ない導波管伝送系を形成することが可能である。
【0015】
図1及び図2(a)〜(d)において、導波管1および2の接続部において、導波管のどちらか一方、あるいは双方のコーナー部外側導体壁端面6を延長させて形成したキャビティ5,5a〜5dを設けているが、上記キャビティ5,5a〜5dはいずれも上記のステップ面と等価的な役割を果たしている。
すなわち、図3(b)において、マイクロ波、ミリ波などの電磁波は伝送系において導波管内波長の1/2の周期で一定の分布(定在波分布)を示すため、キャビティ5は導体壁端面6を短絡面とし、この位置からキャビティ内の管内波長の1/2ごとに仮想的な電気的短絡面を形成する。
【0016】
図3(a)のキャビティ寸法(導波管1の内壁端面からキャビティ導体端面6までの距離L)は、この仮想的な電気的短絡面が上記のステップ面で形成した短絡面C−C(導波管1の内壁端面から距離Lcだけ突出した位置)と同等となるように選ばれており、キャビティ内の管内波長の1/2の長さからLc分だけ短い長さとなっている。このため、キャビティ5によって導波管曲げ部ではステップ面と等価な直列インダクタンスと並列容量が得られ、導波管1から導波管2へ伝搬する電磁波の方向を曲げ、所望信号帯域内では不要な反射を生じさせることなく、スムーズに電磁波を伝搬させることができる。
【0017】
キャビティ寸法は上記Lが最小の長さとなるが、Lに管内波長の1/2の整数倍を加えた場合も同様に短絡面が形成されるため、ほぼ同等の特性が得られる。また、キャビティ形状は、図3では金属板4a側にのみ直方体のキャビティ5を形成する例を示しているが、図2(a)〜(d)の5a〜5dに示すようにキャビティ形状は、仮想的な電気的短絡面が図中のC−C部と等価になるように選ばれれば、どのような形状であっても良い。
【0018】
さらに、図においてはE面の導波管ベンドを用いた構成を示しているが、H面の導波管ベンドを構成する場合も仮想的な電気的短絡面となる寸法を持つキャビティを構成により実現可能である。
【0019】
上記のような導波管ベンド構成とすることで、導波管モードとして伝送する広帯域な周波数範囲にわたって反射を抑圧することが可能であり、低損失で、位相変化の少ない導波管伝送系を形成することができる。
【0020】
また、上記導波管ベンドは従来の導波管曲げ部のステップ面のように、微小で複雑な構造をしていないため、高精度な切削加工が不要である。
【0021】
さらに、2つの金属板4a,4bを用いて導波路を形成する場合、それぞれに金属板に成形する導波管はすべて抜き構造となっているため、プレス加工や射出成型による製造も可能であり、大幅な製造コストの低減が期待できる。
【0022】
実施の形態2.
図4は、この発明の実施の形態2を示す導波管プレートの斜視図である。図5は、図4のD−D部における導波管プレートの断面図である。図において、導波管プレート4a,4bは上下面方向にマイクロ波帯及びミリ波帯等の各周波数帯の高周波信号を導波管モードで伝送する導波管1a,1bおよび水平方向に伝送する導波管2が複数設けられており、例えば、同一平面内に複数の導波管を持つ高周波デバイス10と平面アンテナ11とをそれぞれ導波管接続するインタフェースとして用いられ、各々のプレートに設けられた対向する複数の導波管間との高周波信号を伝送させる。
【0023】
なお、図5においては、高周波デバイスと平面アンテナとの接続例を示しているが、高周波モジュール同士、あるいは高周波モジュールと導波管治具などの一部となる導波管接続構造としても用いることが可能である。この際、互いに管軸方向が異なる導波管1a及び導波管2、導波管1bおよび導波管2を接続し、所望信号帯域内では不要な反射を生じさせることなく、スムーズに電磁波を伝搬させるため、その曲げ部の外側内面にテーパ面7および、キャビティ5a,5bが設けられている。
【0024】
キャビティ5a,5bは、実施の形態1で示した図1〜図3の導波管ベンドと同様にキャビティ端を短絡面とし、この位置から自由空間波長の1/2ごとに仮想的な電気的短絡面を形成する。
キャビティ寸法は、この仮想的な電気的短絡面が導波管曲げ部のステップ面と同等となるように選ばれており、キャビティによって導波管曲げ部ではステップ面と等価な直列インダクタンスと並列容量が得られるため、導波管1から導波管2へ伝搬する電磁波の方向を曲げ、導波管モードとして伝送する広帯域な周波数範囲にわたって反射を抑圧し、低損失で、位相変化の少ない導波管伝送系を形成することができる。
【0025】
また、複数の導波管伝送系を同一平面内に構成することで、一括して伝送線路の加工・成型が可能であるため、大幅な製造コストの低減が可能である。
【0026】
さらに、上記キャビティを用いた導波管ベンド構成により機械加工精度の要求を大幅に緩和させることができ、ダイカスト成型やプレス加工などの安価な加工法で良好な電気特性を得る導波管プレートを製造することも可能である。
【0027】
実施の形態3.
この発明の実施の形態3では、実施の形態2の導波管プレートとの間で、入力もしくは出力されるミリ波やマイクロ波等の高周波電波を、送信または受信する高周波装置について述べる。この高周波装置として、例えばミリ波帯のRF信号を送信し、周囲からの反射波を受信することによって周囲に存在する物体までの距離や方向を計測するミリ波レーダや、マイクロ波の通信信号を送信する送信機或いはマイクロ波の通信信号を受信する受信機を備えたマイクロ波通信装置や、ミリ波帯の送信ビームを走査し、受信波から画像を生成して、周囲に存在する物体のビデオ画像を得るミリ波画像装置等がある。
【0028】
図5に示した導波管プレートにおいて、高周波のRF信号を入出力する入出力端子1a,1b,2を、平面アンテナ11や高周波デバイス10等に接続する。特に、ミリ波帯(30GHz〜300GHz)などの伝送損失が問題となる周波数帯においては、上記のように複数の導波管を有する導波管プレートを小型・集積化された高周波パッケージから平面アンテナなどの外部インタフェースとして活用することで、高周波パッケージ内の伝送線路として通常用いられるマイクロストリップ線路やトリプレート線路などの平面線路に比べて、大幅な線路損失の低減を図ることが可能であり、アレイ(送受信チャネルの複数化)化やモジュール構造の多彩化に大きく貢献できる。
また、機械加工精度の要求が緩和されるために、従来の機械加工品に比べて、高周波装置全体として低コストな装置を構成することが可能である。
【0029】
【発明の効果】
この発明によれば、導波管内の電磁波の伝搬方向を進行方向から異なる管軸方向に変換する導波管コーナー部において、管軸方向が異なる導波管のいずれか一方、あるいは双方のコーナーから外側に向けてキャビティを有したことにより、広帯域な周波数範囲にわたって低損失で、位相変化の少ない良好な通過特性を持つと共に、機械加工精度や製造コストを大幅に低減可能な導波管ベンドを得ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1を示す導波管ベンドの斜視図である。
【図2】この発明の実施の形態1を示す導波管ベンドの断面図である。
【図3】この発明の実施の形態1を示す導波管ベンドの断面詳細図およびコーナー部の電界(定在波)分布である。
【図4】この発明の実施の形態2を示す導波管プレートの斜視図である。
【図5】この発明の実施の形態2を示す導波管プレートの斜視図である。
【符号の説明】
1,1a,1b 上下面方向に進行する導波管、
2 導波管1,1a,1bに管軸が直交する導波管、3 階段状のステップ面、
4a,4b 各導波管を形成するための金属板、
5,5a〜5d キャビティ、6 キャビティ5の導体壁端面、7 テーパ面、
10 マイクロ波・ミリ波帯の高周波デバイス、
11 マイクロ波・ミリ波帯の平面アンテナ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a waveguide bend, and more particularly, to a waveguide circuit used for a waveguide feed circuit for a microwave band, a millimeter wave band, or the like, a high-frequency module for transmitting and receiving signals using a waveguide, and the like. .
[0002]
[Prior art]
Conventional waveguide bends are designed to bend the propagation direction of electromagnetic waves in the waveguide at the connection part of the waveguides whose pipe axis directions are different from each other, and to smoothly propagate the electromagnetic wave along the direction without causing unnecessary reflection. In addition, the waveguide is bent at a desired angle, and the inner surface outside the bent portion is formed as a stepped step surface (for example, see Patent Document 1).
[0003]
In addition, there is also one in which an outer inner surface of a bent portion is formed in a tapered shape so as to obtain the same effect as described above (for example, Non-Patent Document 1).
[0004]
However, the step surface of the waveguide bending portion as described above needs to cut a plurality of step surfaces in which planes parallel and perpendicular to the waveguide axis of the waveguide are alternately continued, and high processing is required. Precision is required. When the circuit as described above is manufactured in the microwave band or the millimeter wave band, the wavelength becomes smaller, and accordingly, the dimensions of the waveguide and the step surface also become smaller.
For example, the waveguide size in the W band (75 GHz to 110 GHz) is 2.54 mm × 1.27 mm (WR-10), and the waveguide step surface in this frequency band divides 1.27 mm into a plurality of stages. It is necessary to perform high-precision processing for cutting a small step surface (for example, 0.3 mm to 0.4 mm in the case of three steps).
[0005]
Also, by using two conductor plates, a single or a plurality of waveguide grooves for transmitting in the horizontal direction are formed in one of the conductor plates by cutting or the like, and a waveguide is formed in the conductor plate and the other conductor plate. A waveguide for transmitting a high-frequency signal from one waveguide to the other is formed by forming a waveguide for transmission in the vertical direction from both ends of the pipe groove and bonding these two conductor plates together. In the case where the waveguide bend is to be formed at a corner where the horizontal and vertical waveguides are orthogonal to each other, it is necessary to form the step surface on the conductor plate on which the waveguide groove is formed. There is.
In this case, it is possible to form the step surface on one corner, but on the corner having the waveguide in the vertical direction, the step surface is formed from the side where the waveguide groove is formed. Processing is impossible, and processing from the opposite side is performed by cutting through a waveguide formed in the upper and lower surfaces, so that extremely high precision is required and processing is difficult.
[0006]
Further, as a processing method for forming the plurality of waveguides at a lower cost as described above, injection molding or the like which has been conventionally used can be considered, but it is protruded from the inner wall of the waveguide as in the structure. Processing of the step surface cannot be performed by injection molding that can form only a punched structure.
[0007]
[Patent Document 1]
JP-A-9-246801 (pages 2-4, FIG. 1)
[Non-patent document 1]
GEORGE L. RAGAN, "MICROWAVE TRANSMISSION CIRCUITS",
1948 McGRAW-HILL, p203-207
[0008]
[Problems to be solved by the invention]
The conventional waveguide bend is configured as described above. In order to obtain the required electrical characteristics, the machining of the step surface of each waveguide bending portion is performed with extremely high processing accuracy and surface. Since precision was required, there was a problem that processing cost was very expensive. In addition, since the waveguide bend has a configuration in which the inner wall of the waveguide is projected, there are many processing restrictions that a processing method such as injection molding that can be expected to reduce costs cannot be adopted.
[0009]
The present invention has been made to solve the above-described problems, and has a low loss over a wide frequency range, a good pass characteristic with a small phase change, and the like, to secure necessary electric characteristics. It is an object of the present invention to obtain a waveguide bend having a structure capable of greatly reducing the machining accuracy and manufacturing cost required for the structure and eliminating the processing restrictions imposed by the structure.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a waveguide bend according to the present invention has a different tube axis direction at a waveguide corner portion that converts the propagation direction of an electromagnetic wave in a waveguide from a traveling direction to a different tube axis direction. The waveguide has a cavity extending outward from one or both corners of the waveguide.
[0011]
Further, the waveguide plate according to the present invention has a single or a plurality of waveguides formed for transmitting a high-frequency signal in a horizontal direction from an upper and lower surface direction using two conductor plates. Has a cavity extending outward from one or both corners of the waveguide formed in the planar or horizontal direction at the waveguide corner.
[0012]
Further, the high-frequency device according to the present invention is provided with the above-mentioned waveguide plate mounted thereon, and means for transmitting or receiving a high-frequency signal such as a millimeter wave or a microwave input or output to or from the waveguide plate. Things.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a perspective view of a waveguide bend showing the first embodiment of the present invention. In the drawing, the waveguide axes of a waveguide 1 and a waveguide 2 are orthogonal to each other, and at one of two waveguide connecting portions, one or both corners of the waveguides are extended to extend the end surfaces of the outer conductor wall. Thus, the cavity 5 is formed. FIGS. 2A to 2D are cross-sectional views of various forms in which the waveguide and the waveguide bend formed in the two metal plates 4a and 4b are cut at the center of the H plane by cutting or the like. 3 (a) shows a detailed cross-sectional view of FIG. 2, in which the waveguides 1 and 2 are formed on metal plates 4a and 4b by cutting or the like, and any one of the waveguides is connected at the waveguide connection portion. The cavity 5 is formed by extending one or both corner outer conductor wall end surfaces 6. FIG. 3B shows the distribution of the electric field (standing wave) excited at the waveguide corner. The waveguides 1 and 2 in the drawing show an example in which a bend is formed at a right angle (so that the tube axes are orthogonal).
[0014]
Next, the operation will be described. Generally, in a bent waveguide connection portion, reflection occurs because a series inductance and a parallel capacitance that are mismatched with respect to the impedance of the transmission system are added. As shown in the section C-C of FIG. 3, the outer inner surface of the waveguide bending portion is formed with one or more step surfaces 3 having an appropriate dimension Lc with respect to the waveguide dimension. By changing the position of the wall surface (electrically short-circuited surface) and providing a series inductance and a parallel capacitance that do not cause reflection to the impedance of the transmission system, reflection occurs over a wide frequency range of transmission within the waveguide. , And a waveguide transmission system with low loss and little phase change can be formed.
[0015]
In FIGS. 1 and 2 (a) to 2 (d), a cavity formed by extending the end face 6 of the outer conductor wall at one or both corners of the waveguide at the connection between the waveguides 1 and 2. Although the cavities 5, 5a to 5d are provided, each of the cavities 5, 5a to 5d plays a role equivalent to the step surface.
That is, in FIG. 3B, since electromagnetic waves such as microwaves and millimeter waves show a constant distribution (standing wave distribution) in a transmission system with a period of の of the wavelength in the waveguide, the cavity 5 is formed by a conductor wall. The end face 6 is used as a short-circuit plane, and a virtual electric short-circuit plane is formed from this position every half of the guide wavelength in the cavity.
[0016]
The cavity dimension (distance L from the inner wall end face of the waveguide 1 to the cavity conductor end face 6) in FIG. 3A is determined by the short-circuit plane CC ( (A position protruding from the inner wall end surface of the waveguide 1 by a distance Lc), and is shorter than the length of a half of the guide wavelength in the cavity by Lc. For this reason, the cavity 5 provides a series inductance and a parallel capacitance equivalent to the step surface at the waveguide bending portion, and bends the direction of the electromagnetic wave propagating from the waveguide 1 to the waveguide 2 and is unnecessary within the desired signal band. Electromagnetic waves can be propagated smoothly without causing significant reflection.
[0017]
Although the above-mentioned L is the minimum length of the cavity, a short-circuit surface is similarly formed when L is added to an integral multiple of 内 of the guide wavelength, so that substantially the same characteristics can be obtained. The cavity shape is shown in FIG. 3 as an example in which a rectangular parallelepiped cavity 5 is formed only on the metal plate 4a side. However, as shown in FIGS. 2 (a) to 2 (d), the cavity shape is Any shape may be used as long as the virtual electric short-circuit surface is selected so as to be equivalent to the C-C portion in the figure.
[0018]
Further, in the figure, the configuration using the waveguide bend on the E-plane is shown, but when the waveguide bend on the H-plane is also configured, a cavity having a dimension serving as a virtual electrical short-circuit surface is formed. It is feasible.
[0019]
By adopting the waveguide bend configuration as described above, it is possible to suppress reflection over a wide frequency range to be transmitted as a waveguide mode, and to realize a waveguide transmission system with low loss and small phase change. Can be formed.
[0020]
Further, since the waveguide bend does not have a minute and complicated structure unlike the step surface of a conventional waveguide bending portion, high-precision cutting is not required.
[0021]
Further, when a waveguide is formed by using two metal plates 4a and 4b, the waveguides formed on the respective metal plates are all punched out structures, so that it is possible to manufacture by press working or injection molding. A significant reduction in manufacturing costs can be expected.
[0022]
Embodiment 2 FIG.
FIG. 4 is a perspective view of a waveguide plate according to the second embodiment of the present invention. FIG. 5 is a cross-sectional view of the waveguide plate taken along the line DD in FIG. In the figure, waveguide plates 4a and 4b transmit high-frequency signals in each frequency band such as a microwave band and a millimeter wave band in the upper and lower plane directions in the waveguide mode and in the horizontal direction. A plurality of waveguides 2 are provided. For example, the waveguides 2 are used as interfaces for connecting the high-frequency device 10 having a plurality of waveguides in the same plane and the planar antenna 11 to each other, and provided on each plate. A high-frequency signal is transmitted between the plurality of opposed waveguides.
[0023]
Although FIG. 5 shows an example of connection between the high-frequency device and the planar antenna, the high-frequency module may also be used as a waveguide connection structure that is part of a high-frequency module and a waveguide jig. Is possible. At this time, the waveguides 1a and 2 and the waveguides 1b and 2 whose tube axis directions are different from each other are connected, and electromagnetic waves can be smoothly transmitted without causing unnecessary reflection within a desired signal band. For propagation, a tapered surface 7 and cavities 5a and 5b are provided on the inner surface outside the bent portion.
[0024]
The cavities 5a and 5b have a short-circuit surface at the cavity end, similarly to the waveguide bends of FIGS. 1 to 3 shown in the first embodiment. Form a short circuit surface.
The dimensions of the cavity are selected so that this virtual electrical short-circuit surface is equivalent to the step surface of the waveguide bend. The cavity has a series inductance and a parallel capacitance equivalent to the step surface at the waveguide bend. Is obtained, the direction of the electromagnetic wave propagating from the waveguide 1 to the waveguide 2 is bent, the reflection is suppressed over a wide frequency range transmitted as the waveguide mode, and the waveguide having low loss and little phase change is obtained. A tube transmission system can be formed.
[0025]
In addition, by configuring a plurality of waveguide transmission systems in the same plane, it is possible to collectively process and mold the transmission lines, thereby enabling a significant reduction in manufacturing cost.
[0026]
In addition, the waveguide bend configuration using the above cavity can greatly ease the requirement of machining accuracy, and a waveguide plate that can obtain good electrical characteristics by an inexpensive processing method such as die casting or pressing. It is also possible to manufacture.
[0027]
Embodiment 3 FIG.
In a third embodiment of the present invention, a high-frequency device that transmits or receives high-frequency radio waves such as millimeter waves and microwaves that are input or output to and from the waveguide plate of the second embodiment will be described. As this high-frequency device, for example, a millimeter-wave radar that transmits a millimeter-wave band RF signal and measures a distance and a direction to an object existing in the surroundings by receiving a reflected wave from the surroundings, and a microwave communication signal. A microwave communication device equipped with a transmitter for transmitting or a receiver for receiving a microwave communication signal, or scanning a millimeter wave band transmission beam, generating an image from the received wave, and video of an object present in the surroundings There is a millimeter-wave imaging device for obtaining an image.
[0028]
In the waveguide plate shown in FIG. 5, input / output terminals 1a, 1b, and 2 for inputting and outputting a high-frequency RF signal are connected to the planar antenna 11, the high-frequency device 10, and the like. In particular, in a frequency band where transmission loss is a problem, such as a millimeter wave band (30 GHz to 300 GHz), a waveguide plate having a plurality of waveguides is converted from a small and integrated high-frequency package to a planar antenna as described above. By utilizing it as an external interface such as a microstrip line or a triplate line that is usually used as a transmission line in a high-frequency package, it is possible to significantly reduce the line loss, (Multiple transmission / reception channels) and diversification of module structure.
Further, since the requirement for machining accuracy is eased, it is possible to configure a low-cost device as a whole high-frequency device as compared with a conventional machined product.
[0029]
【The invention's effect】
According to the present invention, in a waveguide corner portion that changes the propagation direction of an electromagnetic wave in a waveguide from a traveling direction to a different tube axis direction, the waveguide axis direction differs from one or both corners of the different waveguides. Having a cavity toward the outside provides a waveguide bend that has low loss over a wide frequency range, has good transmission characteristics with little phase change, and can greatly reduce machining accuracy and manufacturing cost. be able to.
[Brief description of the drawings]
FIG. 1 is a perspective view of a waveguide bend showing Embodiment 1 of the present invention.
FIG. 2 is a sectional view of a waveguide bend showing the first embodiment of the present invention.
FIG. 3 is a detailed sectional view of a waveguide bend and an electric field (standing wave) distribution at a corner portion according to the first embodiment of the present invention.
FIG. 4 is a perspective view of a waveguide plate according to a second embodiment of the present invention.
FIG. 5 is a perspective view of a waveguide plate according to a second embodiment of the present invention.
[Explanation of symbols]
1, 1a, 1b waveguides traveling in the upper and lower direction,
2 waveguides whose waveguide axes are orthogonal to waveguides 1, 1a and 1b, 3 stepped step surfaces,
4a, 4b a metal plate for forming each waveguide;
5, 5a-5d cavity, 6 conductor wall end surface of cavity 5, 7 taper surface,
10 Microwave and millimeter wave band high frequency devices,
11 Microwave and millimeter wave band planar antenna.

Claims (6)

導波管内の電磁波の伝搬方向を進行方向から異なる管軸方向に変換する導波管コーナー部において、管軸方向が異なる導波管のいずれか一方、あるいは双方のコーナー部から外側に向けてキャビティを有することを特徴とする導波管ベンド。At the waveguide corner where the propagation direction of the electromagnetic wave in the waveguide is changed from the traveling direction to a different tube axis direction, the cavity is directed outward from one or both corners of the waveguide with different tube axis directions. A waveguide bend comprising: 上記キャビティは、球形、楕円形、立方体、直方体のいずれか、あるいはこれらの組合せによって構成される形状であることを特徴とする請求項1に記載の導波管ベンド。The waveguide bend according to claim 1, wherein the cavity has a shape formed by any one of a spherical shape, an elliptical shape, a cubic shape, a rectangular parallelepiped shape, or a combination thereof. 上記キャビティは、キャビティ内の管内波長の1/2以下の寸法であることを特徴とする請求項1または請求項2に記載の導波管ベンド。3. The waveguide bend according to claim 1, wherein the cavity has a dimension equal to or less than 1/2 of a guide wavelength in the cavity. 2枚の導体板を用いて、一方の導体板に水平方向へ伝送する単一あるいは複数の導波管溝を形成し、上記導体板およびもう一方の導体板に上記導波管溝の両端から上下面方向に伝送する導波管を形成し、上記2枚の導体版を張り合わせて、上下面の異なる位置の導波管口を有し、上記導波管溝を通して高周波信号を伝送する導波管プレートにおいて、
上記夫々の水平方向と上下面方向の導波管が直交するコーナー部のいずれか一方、あるいは双方のコーナー部から外側に向けてキャビティを有することを特徴とする導波管プレート。
Using two conductor plates, one or more waveguide grooves for transmitting in the horizontal direction are formed in one conductor plate, and the conductor plate and the other conductor plate are formed from both ends of the waveguide groove. A waveguide for transmitting in the upper and lower direction is formed, and the two conductor plates are bonded to each other, and have waveguide openings at different positions on upper and lower surfaces, and a waveguide for transmitting a high-frequency signal through the waveguide groove. In the tube plate,
A waveguide plate having a cavity extending outward from one or both corners of the waveguides in the horizontal direction and the upper and lower surface directions orthogonal to each other.
上記導波管プレートは、射出成型あるいはプレス加工によって作られることを特徴とする請求項4に記載の導波管プレート。The waveguide plate according to claim 4, wherein the waveguide plate is made by injection molding or press working. 請求項4または請求項5に記載の導波管プレートを搭載し、これらの導波管プレートとの間で入力もしくは出力されるミリ波やマイクロ波等の高周波信号を送信または受信する手段を備えたことを特徴とする高周波装置。A means for mounting the waveguide plate according to claim 4 or 5 and transmitting or receiving a high-frequency signal such as a millimeter wave or a microwave input or output between the waveguide plate and the waveguide plate. Radio frequency device characterized by the above-mentioned.
JP2002333035A 2002-11-18 2002-11-18 Waveguide bend, waveguide plate and high frequency device Expired - Fee Related JP3846585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333035A JP3846585B2 (en) 2002-11-18 2002-11-18 Waveguide bend, waveguide plate and high frequency device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333035A JP3846585B2 (en) 2002-11-18 2002-11-18 Waveguide bend, waveguide plate and high frequency device

Publications (2)

Publication Number Publication Date
JP2004172688A true JP2004172688A (en) 2004-06-17
JP3846585B2 JP3846585B2 (en) 2006-11-15

Family

ID=32697854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333035A Expired - Fee Related JP3846585B2 (en) 2002-11-18 2002-11-18 Waveguide bend, waveguide plate and high frequency device

Country Status (1)

Country Link
JP (1) JP3846585B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080130A1 (en) * 2005-01-31 2006-08-03 Murata Manufacturing Co., Ltd. Waveguide horn antenna, antenna device, and radar device
WO2007091470A1 (en) 2006-02-06 2007-08-16 Mitsubishi Electric Corporation High frequency module
JP2010199992A (en) * 2009-02-25 2010-09-09 Toshiba Corp Waveguide device
JP2011147081A (en) * 2010-01-18 2011-07-28 Shimada Phys & Chem Ind Co Ltd Waveguide connection method
JP2013098621A (en) * 2011-10-28 2013-05-20 Nippon Pillar Packing Co Ltd Waveguide
EP3460901A1 (en) * 2017-09-20 2019-03-27 Nokia Shanghai Bell Co. Ltd. Waveguide assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080130A1 (en) * 2005-01-31 2006-08-03 Murata Manufacturing Co., Ltd. Waveguide horn antenna, antenna device, and radar device
WO2007091470A1 (en) 2006-02-06 2007-08-16 Mitsubishi Electric Corporation High frequency module
US8040286B2 (en) 2006-02-06 2011-10-18 Mitsubishi Electric Corporation High frequency module
JP2010199992A (en) * 2009-02-25 2010-09-09 Toshiba Corp Waveguide device
JP2011147081A (en) * 2010-01-18 2011-07-28 Shimada Phys & Chem Ind Co Ltd Waveguide connection method
JP2013098621A (en) * 2011-10-28 2013-05-20 Nippon Pillar Packing Co Ltd Waveguide
EP3460901A1 (en) * 2017-09-20 2019-03-27 Nokia Shanghai Bell Co. Ltd. Waveguide assembly

Also Published As

Publication number Publication date
JP3846585B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JP4111237B2 (en) Waveguide corner and radio equipment
JP3884725B2 (en) Waveguide device
JP4516883B2 (en) Non-contact transition element between waveguide and microstrip feed line
JP3498597B2 (en) Dielectric line conversion structure, dielectric line device, directional coupler, high frequency circuit module, and transmission / reception device
US7002429B2 (en) Nonreflective waveguide terminator and waveguide circuit
US20170025726A1 (en) Waveguide bend and wireless device
JP2023551774A (en) antenna device
CN110854549A (en) Antenna array and communication system
JP3995929B2 (en) Waveguide plate and high frequency device
JP3279242B2 (en) Different type non-radiative dielectric line converter structure and device
JP3846585B2 (en) Waveguide bend, waveguide plate and high frequency device
EP1469548A1 (en) Microwave duplexer comprising dielectric filters, a T-junction, two coaxial ports and one waveguide port
JP4712841B2 (en) Waveguide / stripline converter and high-frequency circuit
EP1492193A1 (en) High frequency module and antenna device
JP3485054B2 (en) Different type non-radiative dielectric line converter structure and device
KR100471049B1 (en) non-radiative dielectric waveguide mixer using a ring hybrid coupler
CN113097722B (en) Common-caliber double-frequency transmission line capable of working in microwave/millimeter wave frequency band
CN114156624A (en) Millimeter wave broadband low-loss directional coupler based on gap waveguide structure
WO2004021505A1 (en) Line converter, high-frequency module, and communication device
Hitzler et al. Wideband low-cost hybrid coupler for mm-wave frequencies
US10651524B2 (en) Planar orthomode transducer
CN114759335B (en) Orthogonal mode coupler and dual linear polarization feed source
CN114583429B (en) Waveguide conversion structure, waveguide feed network and antenna system
CN111244593B (en) Directional coupler and microwave device
CN105811115A (en) Dielectric substrate integrated dielectric resonator antenna

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060815

R151 Written notification of patent or utility model registration

Ref document number: 3846585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees