JP3995929B2 - Waveguide plate and high frequency device - Google Patents

Waveguide plate and high frequency device Download PDF

Info

Publication number
JP3995929B2
JP3995929B2 JP2001386214A JP2001386214A JP3995929B2 JP 3995929 B2 JP3995929 B2 JP 3995929B2 JP 2001386214 A JP2001386214 A JP 2001386214A JP 2001386214 A JP2001386214 A JP 2001386214A JP 3995929 B2 JP3995929 B2 JP 3995929B2
Authority
JP
Japan
Prior art keywords
waveguide
frequency
waveguides
plate
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001386214A
Other languages
Japanese (ja)
Other versions
JP2003188601A (en
Inventor
拓也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001386214A priority Critical patent/JP3995929B2/en
Publication of JP2003188601A publication Critical patent/JP2003188601A/en
Application granted granted Critical
Publication of JP3995929B2 publication Critical patent/JP3995929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Connection Structure (AREA)
  • Waveguides (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、UHF,VHF帯、マイクロ波帯及びミリ波帯等の高周波信号を伝送する単一もしくは複数導波管接続構造に関するものである。
【0002】
【従来の技術】
図3は、従来の導波管プレートの一例を示す上面図である。図4は、図3のA部の詳細図である。図において、1a,1bは対向する導波管プレート、2は2つの導波管プレートの当たり面、3は当たり面に掘り込みを設けることにより構成したチョーク構造、4は2つの導波管プレートの隙間、10a〜12a,10bは複数の導波管を示している。
【0003】
次に動作について説明する。導波管プレート1a及び1bは板厚方向にUHF,VHF帯、マイクロ波帯及びミリ波帯等の各周波数帯の高周波信号を導波管モードで伝送する導波管10a及び10bが対向して単一もしくは複数設けられており、例えば、図示しない高周波帯のモジュールとアンテナ、高周波モジュール同士、あるいは高周波モジュールと導波管治具などの一部に導波管接続構造として用いられ、導波管10aから10bへ高周波信号を伝送させる。この際、2つの導波管プレートの隙間4が発生した場合に、導波管10aから10bへの高周波信号の伝送特性が劣化するため、導波管プレート1bの当たり面側には、2つの導波管プレートの密着性を高めるために、例えば機械加工により当たり面2及び当たり面に掘り込みを形成したチョーク構造3(以下、チョーク構造とする)が設けられている。
【0004】
上記の当たり面は、2つの導波管プレートに単一あるいは複数設けられた導波管同士の密着性を高め、導波管内を伝送する高周波信号の良好な通過・反射特性を得るために、例えば精度の高い機械加工により形成される。しかし、十分な電気特性を得るためには、当たり面の面粗度、平坦度の要求が厳しく、非常に精度の高い機械加工が必要となり、高価な加工費がかかってしまうという問題がある。また一般に、図示のチョーク構造は導波管周囲の当たり面の密着性を高めるために用いられているが、導波管周囲の当たり面の外周寸法(図3の上面から見た場合の当たり面とチョークの境界の長さ)によって決まる特定の周波数において共振を生じて、当該周波数において2つの導波管プレート間の導波管内を伝送する高周波信号の良好な通過・反射特性が得られないという問題がある。また、図3のように同一面内に複数の導波管接続構造が設けられていた場合、上記共振によって例えば2つの導波管10b,11bの結合が生じて、隣接する導波管同士のアイソレーション特性が得られないという問題も生じる。特に、伝送線路の通過損失を低減するために、ミリ波帯(30GHz〜300GHz)では導波管が用いられるが、回路の小型化を図るために上記チョーク構造は機械加工の限界値となる数mm程度の寸法が選ばれるケースが多く、この数mmの寸法はミリ波帯の信号周波数における自由空間伝搬波長の寸法に近接してくるため、チョーク構造により共振が発生しやすい。
図5は、導波管を伝送する信号周波数f0がチョーク構造により発生する共振周波数となる場合の、伝送線路の通過および反射特性を示す図であり、S11は反射損失、S21は通過損失、S41はアイソレーションを示す。図において、信号周波数f0がチョーク構造により発生する共振周波数となる前後において、通過、反射及びアイソレーション特性が急峻に劣化するのが判る。
【0005】
【発明が解決しようとする課題】
従来の導波管プレートは以上のように構成されており、必要な電気特性を得るために、各導波管プレートの当たり面に対して機械的に非常に高い加工精度、平坦度が要求されていたため、加工費が非常に高価であるという問題があった。また、複数の導波管を同一平面内で接続する場合、隣接する導波管において結合や共振によりアイソレーション特性が得られないという問題があった。
【0006】
この発明は、上記のような問題点を解決するために為されたもので、当該構造によって発生する信号帯域での共振を避け、隣接間の導波管の結合を抑圧することができ、かつ、電気特性確保のために要求される機械加工精度を大幅に緩和させることができる導波管接続構造を得ることを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、この発明の導波管プレートは、板厚方向にミリ波帯の高周波信号を伝送させるために形成された複数の導波管を有し、当該導波管の接続端面に隙間を有して相互接続された第1、第2のプレート、を備えた導波管プレートにおいて、
上記第1のプレートは、上記各々の導波管長辺の導波管端から信号周波数における自由空間伝搬波長の概略1/4ずらした位置に、信号周波数における自由空間伝搬波長の概略1/4の幅と深さと少なくとも導波管長辺よりも大きい長さをもって、上記各々の導波管の両短辺における導波管端から端部が外側に突出するように掘り込まれた、直方体形状のチョーク構造を有したものである。
【0009】
また、この発明による高周波装置は、上記導波管プレートを搭載し、導波管プレートとの間で入力もしくは出力されるミリ波を送信または受信する手段を備えたものである。
【0010】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1を示す導波管プレートの上面図である。図において、1a,1bは対向する導波管プレート、2は2つの導波管プレートの当たり面、4は2つの導波管プレートの隙間、10a,10bはそれぞれの導波管プレートの板厚方向に形成された導波管、100はチョークを示している。
【0011】
次に動作について説明する。図1において、導波管プレート1a及び1bは板厚方向にUHF,VHF帯、マイクロ波帯及びミリ波帯等の各周波数帯の高周波信号を導波管モードで伝送する導波管10a及び10bが対向して設けられており、異なる導波管を有する筐体管の接続構造として用いられ、導波管10aから10bへ高周波信号を伝送させる。この際、2つの導波管プレートの隙間4が発生した場合に、導波管10aから10bへの高周波信号の伝送特性が劣化するため、導波管プレート1aの当たり面側には、2つの導波管10aおよび10bの接続端面において電気的に短絡とするために、導波管10bの長辺方向にチョーク100が設けられている。
【0012】
上記チョークは、導波管長辺の導波管端から信号周波数における自由空間伝搬波長の概略1/4オフセットさせた位置に、信号周波数における自由空間伝搬波長の概略1/4の幅と深さと少なくとも長辺以上の長さをもつ掘り込みを設けた構造となっており、当該構造により2つの導波管10aおよび10bの接続端面において導波管長辺の導波管端を等価的に電気的短絡点とする寸法となっている。この構造によって、2つの導波管の接続面で生じる共振を避け、良好な通過・反射特性を得ることができる。図1では、導波管長辺からのオフセット長Dが伝搬波長λの概略1/4、掘り込みの幅W、及び深さHが伝搬波長λの概略1/4、長さLが導波管長辺よりも長くなるように設定し(例えば、信号周波数が76.5GHz、伝搬波長λが3.9mmの場合、D,W,Hの長さを、各々1mm、Lを3mmとして)、上記チョーク構造により2つの導波管10aおよび10bの接続端面において導波管長辺の導波管端を等価的に信号周波数での電気的短絡点として、信号周波数付近での良好な通過・反射特性が得られるようにしている。
【0013】
実施の形態2.
図2はこの発明の実施の形態2を示す導波管プレートの上面図である。図において10a〜12a,10bはそれぞれの導波管プレートの板厚方向に形成された複数の導波管を示している。また、図1に示した例と同一部分には同一符号を付している。
【0014】
次に動作について説明する。図2において、導波管プレート1a及び1bは板厚方向にUHF,VHF帯、マイクロ波帯及びミリ波帯等の各周波数帯の高周波信号を導波管モードで伝送する導波管10a〜12a及び10b〜12bが対向して複数設けられており、例えば、図示しない同一平面内に複数の導波管を持つ高周波モジュールとアンテナ、高周波モジュール同士、あるいは高周波モジュールと導波管治具などの一部に導波管接続構造として用いられ、各々のプレートに設けられた対向する複数の導波管間の高周波信号を伝送させる。この際、2つの導波管プレートの隙間4が発生した場合に、特定の周波数おける共振による伝送特性の劣化や、導波管10b,11bの結合による隣接する導波管同士のアイソレーション特性劣化が発生するため、導波管プレート1aの当たり面側には、2つの対向する導波管同士の接続端面において電気的に短絡とするために、導波管10a〜12aの長辺方向にチョーク100が設けられている。
【0015】
上記チョークは、導波管長辺の導波管端から信号周波数における自由空間伝搬波長の概略1/4オフセットさせた位置に、信号周波数における自由空間伝搬波長の概略1/4の幅と深さと少なくとも長辺以上の長さをもつ掘り込みを設けた構造となっており、当該構造により対向する複数の導波管同士の接続端面において導波管長辺の導波管端を等価的に電気的短絡点とする寸法となっている。この構造によって、信号周波数において共振を避け、また、対向する複数の導波管同士の結合を抑圧し、良好な通過・反射、アイソレーション特性を得ることができる。
【0016】
また、複数の導波管を同一平面内に構成することで、導波管プレートとしては広い面積を要したため、従来の導波管プレートは各々の導波管同士の接続における良好な電気特性を確保するために非常に精度の高い平坦度が要求されたが、上記チョーク構造を採用することにより、機械加工精度の要求を大幅に緩和させることができ、ダイカスト成型やプレス加工などの安価な加工法で良好は電気特性を得る導波管プレートを製造することも可能である。
【0017】
実施の形態3.
この発明の実施の形態3では、実施の形態1或いは2の導波管プレートとの間で、入力もしくは出力されるミリ波やマイクロ波等の高周波電波を、送信または受信する高周波装置について述べる。この高周波装置として、例えばミリ波帯のRF信号を送信し、周囲からの反射波を受信することによって周囲に存在する物体までの距離や方向を計測するミリ波レーダや、マイクロ波の通信信号を送信する送信機或いはマイクロ波の通信信号を受信する受信機を備えたマイクロ波通信装置や、ミリ波帯の送信ビームを走査し、受信波から画像を生成して、周囲に存在する物体のビデオ画像を得るミリ波画像装置等がある。
【0018】
図1或いは図2に示した導波管プレートにおいて、高周波のRF信号を入出力する入出力端子10a〜12a,10b〜12bを、図示しないアンテナ素子等や高周波モジュールに接続する。特に、ミリ波帯(30GHz〜300GHz)ではマイクロストリップ線路などの伝送損失の多い平面線路ではなく、低損失な導波管が用いられるが、上記のように複数の導波管を有する導波管プレートをミリ波レーダやミリ波通信装置等の高周波装置の外部インタフェースとして活用することにより、導波管接続部における良好な通過・反射特性、隣接導波管のアイソレーション特性が得られるため、アレイ(送受信チャネルの複数化)化やモジュール構造の多彩化に大きく貢献できる。また、機械加工精度の要求が緩和されるために、従来の機械加工品に比べて、高周波装置全体として低コストな装置を構成することが可能である。
【0020】
【発明の効果】
この発明によれば、板厚方向にミリ波帯の高周波信号を伝送させるために形成された複数の導波管を有し、当該導波管の接続端面に隙間を有して相互接続された第1、第2のプレート、を備えた導波管プレートにおいて、上記第1のプレートは、各々の導波管長辺の導波管端から信号周波数における自由空間伝搬波長の概略1/4ずらした位置に、信号周波数における自由空間伝搬波長の概略1/4の幅と深さと少なくとも導波管長辺よりも大きい長さをもって、上記各々の導波管の両短辺における導波管端から端部が外側に突出するように掘り込まれた、直方体形状の直方体形状のチョーク構造を有することにより、信号周波数において共振を避け、また、対向する複数の導波管同士の結合を抑圧し、良好な通過・反射、アイソレーション特性を持つ導波管プレートを得ることができるとともに、ダイカスト成型やプレス加工などの安価な加工法で良好な電気特性を得る導波管プレートを製造することが可能となる
【0021】
さらにまた、より安価で安定に動作する高周波装置を得ることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を示す導波管プレートの上面図である。
【図2】 この発明の実施の形態2を示す導波管プレートの上面図である。
【図3】 従来の導波管プレートの一例を示す上面である。
【図4】 従来の導波管プレートの一例を示す上面詳細図である。
【図5】 従来の導波管プレート上に形成された導波管の接続面部における通過、反射およびアイソレーション特性の一例である。
【符号の説明】
1a,1b 導波管プレート、2 当たり面、3 従来のチョーク、4 導波管接合面の隙間、10a〜12a、10b〜12b 導波管、100 チョーク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single or multiple waveguide connection structure for transmitting high-frequency signals such as UHF, VHF band, microwave band, and millimeter wave band.
[0002]
[Prior art]
FIG. 3 is a top view showing an example of a conventional waveguide plate. FIG. 4 is a detailed view of part A in FIG. In the figure, reference numerals 1a and 1b denote opposing waveguide plates, 2 denotes a contact surface of two waveguide plates, 3 denotes a choke structure formed by digging in the contact surface, and 4 denotes two waveguide plates The gaps 10a to 12a and 10b indicate a plurality of waveguides.
[0003]
Next, the operation will be described. The waveguide plates 1a and 1b are opposed to the waveguides 10a and 10b that transmit high-frequency signals in each frequency band such as UHF, VHF band, microwave band, and millimeter wave band in a waveguide mode in the plate thickness direction. For example, a high-frequency band module and an antenna (not shown), high-frequency modules, or a part of a high-frequency module and a waveguide jig are used as a waveguide connection structure. A high frequency signal is transmitted from 10a to 10b. At this time, when the gap 4 between the two waveguide plates is generated, the transmission characteristic of the high-frequency signal from the waveguides 10a to 10b deteriorates. In order to improve the adhesiveness of the waveguide plate, for example, a contact surface 2 and a choke structure 3 (hereinafter referred to as a choke structure) formed with a digging in the contact surface are provided.
[0004]
In order to improve the adhesion between the single or plural waveguides provided on the two waveguide plates and to obtain good transmission / reflection characteristics of the high-frequency signal transmitted through the waveguide, For example, it is formed by highly accurate machining. However, in order to obtain sufficient electrical characteristics, there are strict requirements for surface roughness and flatness of the contact surface, which requires highly accurate machining, and there is a problem that expensive processing costs are required. In general, the illustrated choke structure is used to improve the adhesion of the contact surface around the waveguide. However, the outer peripheral dimensions of the contact surface around the waveguide (the contact surface as viewed from the top surface of FIG. 3). The resonance occurs at a specific frequency determined by the length of the boundary between the choke and the choke), and the high frequency signal transmitted through the waveguide between the two waveguide plates cannot be obtained at the frequency. There's a problem. Further, when a plurality of waveguide connection structures are provided in the same plane as shown in FIG. 3, for example, coupling between two waveguides 10 b and 11 b occurs due to the resonance, and adjacent waveguides are connected to each other. There also arises a problem that isolation characteristics cannot be obtained. In particular, a waveguide is used in the millimeter wave band (30 GHz to 300 GHz) in order to reduce the transmission loss of the transmission line. However, in order to reduce the size of the circuit, the choke structure is a number that is a limit value for machining. In many cases, a dimension of about mm is selected, and the dimension of several millimeters is close to the dimension of the free space propagation wavelength at the signal frequency in the millimeter wave band, so that resonance is likely to occur due to the choke structure.
FIG. 5 is a diagram showing the transmission and reflection characteristics of the transmission line when the signal frequency f 0 transmitted through the waveguide is a resonance frequency generated by the choke structure, S11 is a reflection loss, S21 is a transmission loss, S41 indicates isolation. In the figure, it can be seen that the pass, reflection, and isolation characteristics deteriorate sharply before and after the signal frequency f 0 becomes the resonance frequency generated by the choke structure.
[0005]
[Problems to be solved by the invention]
Conventional waveguide plates are configured as described above, and in order to obtain the required electrical characteristics, extremely high machining accuracy and flatness are required for the contact surface of each waveguide plate. Therefore, there is a problem that the processing cost is very expensive. Further, when a plurality of waveguides are connected in the same plane, there is a problem that isolation characteristics cannot be obtained in adjacent waveguides due to coupling or resonance.
[0006]
The present invention has been made to solve the above-described problems, can avoid resonance in the signal band generated by the structure, can suppress the coupling of waveguides between adjacent ones, and An object of the present invention is to obtain a waveguide connection structure that can greatly reduce the machining accuracy required for securing electrical characteristics.
[0008]
[Means for Solving the Problems]
To achieve the above object, waveguide plates of the present invention, have a plurality of waveguides formed in order to transmit a high-frequency signal of a millimeter wave band in the thickness direction, of the waveguide In a waveguide plate comprising first and second plates interconnected with a gap at the connecting end face ,
The first plate is approximately 1/4 of the free space propagation wavelength at the signal frequency at a position shifted from the waveguide end of the long side of each of the waveguides by approximately 1/4 of the free space propagation wavelength at the signal frequency. A rectangular parallelepiped-shaped choke that has a width and depth and at least a length longer than the long side of the waveguide, and is dug so that the ends protrude from the waveguide ends on both short sides of each waveguide. It has a structure.
[0009]
The high frequency device according to this invention, equipped with the waveguide plate, those having a means for transmitting or receiving input or output by the millimeter wave between the waveguide plates.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a top view of a waveguide plate showing Embodiment 1 of the present invention. In the figure, 1a and 1b are opposing waveguide plates, 2 is a contact surface of two waveguide plates, 4 is a gap between the two waveguide plates, and 10a and 10b are plate thicknesses of the respective waveguide plates. Waveguide 100 formed in the direction, 100 indicates a choke.
[0011]
Next, the operation will be described. In FIG. 1, waveguide plates 1a and 1b are waveguides 10a and 10b that transmit high-frequency signals in respective frequency bands such as UHF, VHF band, microwave band, and millimeter wave band in the plate thickness direction in a waveguide mode. Are used as a connection structure of housing tubes having different waveguides, and transmit high-frequency signals from the waveguides 10a to 10b. At this time, when the gap 4 between the two waveguide plates is generated, the transmission characteristic of the high-frequency signal from the waveguides 10a to 10b deteriorates. In order to electrically short-circuit the connection end faces of the waveguides 10a and 10b, a choke 100 is provided in the long side direction of the waveguide 10b.
[0012]
The choke has a width and depth of at least about 1/4 of the free space propagation wavelength at the signal frequency at a position offset from the waveguide end of the long side of the waveguide by about 1/4 of the free space propagation wavelength at the signal frequency. The structure is provided with a digging having a length equal to or longer than the long side. With this structure, the waveguide end of the long side of the waveguide is equivalently electrically short-circuited at the connection end surface of the two waveguides 10a and 10b. The dimensions are dots. With this structure, it is possible to avoid resonance that occurs at the connection surface between the two waveguides and to obtain good transmission / reflection characteristics. In FIG. 1, the offset length D from the long side of the waveguide is approximately 1/4 of the propagation wavelength λ, the digging width W and the depth H are approximately 1/4 of the propagation wavelength λ, and the length L is the waveguide length. Set to be longer than the side (for example, when the signal frequency is 76.5 GHz and the propagation wavelength λ is 3.9 mm, the lengths of D, W, and H are 1 mm and L is 3 mm, respectively), and the choke Due to the structure, the waveguide end of the long side of the waveguide is equivalently electrically short-circuited at the signal frequency at the connection end face of the two waveguides 10a and 10b, and good transmission / reflection characteristics near the signal frequency are obtained. I am trying to do it.
[0013]
Embodiment 2. FIG.
FIG. 2 is a top view of a waveguide plate showing Embodiment 2 of the present invention. In the figure, reference numerals 10a to 12a and 10b denote a plurality of waveguides formed in the thickness direction of the respective waveguide plates. The same parts as those in the example shown in FIG.
[0014]
Next, the operation will be described. In FIG. 2, waveguide plates 1a and 1b are waveguides 10a to 12a that transmit high-frequency signals in respective frequency bands such as UHF, VHF band, microwave band, and millimeter wave band in the plate thickness direction in a waveguide mode. And 10b to 12b are provided to face each other. For example, a high-frequency module and an antenna having a plurality of waveguides in the same plane (not shown), high-frequency modules, or a high-frequency module and a waveguide jig A high-frequency signal is transmitted between a plurality of opposing waveguides provided on each plate. At this time, when the gap 4 between the two waveguide plates is generated, the transmission characteristics are deteriorated due to resonance at a specific frequency, and the isolation characteristics between adjacent waveguides are deteriorated due to the coupling of the waveguides 10b and 11b. Therefore, on the contact surface side of the waveguide plate 1a, choking is performed in the long side direction of the waveguides 10a to 12a in order to electrically short-circuit the connection end surfaces of the two opposing waveguides. 100 is provided.
[0015]
The choke has a width and depth of at least about 1/4 of the free space propagation wavelength at the signal frequency at a position offset from the waveguide end of the long side of the waveguide by about 1/4 of the free space propagation wavelength at the signal frequency. It has a structure with a digging with a length longer than the long side, and the waveguide end of the long side of the waveguide is equivalently electrically short-circuited at the connecting end surface of the multiple waveguides facing each other by the structure. The dimensions are dots. With this structure, it is possible to avoid resonance at a signal frequency, suppress coupling between a plurality of opposing waveguides, and obtain good pass / reflection and isolation characteristics.
[0016]
In addition, since a plurality of waveguides are configured in the same plane, a large area is required for the waveguide plate. Therefore, the conventional waveguide plate has good electrical characteristics in the connection between the waveguides. In order to ensure high accuracy flatness was required, but by adopting the above choke structure, the requirements of machining accuracy can be greatly relaxed, and inexpensive processing such as die casting and pressing It is also possible to produce waveguide plates that obtain good electrical properties by the method.
[0017]
Embodiment 3 FIG.
In the third embodiment of the present invention, a high-frequency device that transmits or receives high-frequency radio waves such as millimeter waves and microwaves that are input to or output from the waveguide plate of the first or second embodiment will be described. As this high-frequency device, for example, a millimeter-wave radar that transmits an RF signal in the millimeter wave band and receives a reflected wave from the surroundings to measure the distance and direction to an object existing in the surroundings, or a microwave communication signal A microwave communication device equipped with a transmitter to transmit or a receiver to receive a microwave communication signal, or a video of an object existing in the surroundings by scanning a transmission beam in the millimeter wave band and generating an image from the received wave There are millimeter wave imaging devices that obtain images.
[0018]
In the waveguide plate shown in FIG. 1 or 2, input / output terminals 10 a to 12 a and 10 b to 12 b for inputting and outputting a high-frequency RF signal are connected to an antenna element or the like (not shown) or a high-frequency module. In particular, in the millimeter wave band (30 GHz to 300 GHz), a low-loss waveguide is used instead of a planar line having a large transmission loss such as a microstrip line. However, a waveguide having a plurality of waveguides as described above. By using the plate as an external interface for high-frequency devices such as millimeter-wave radar and millimeter-wave communication devices, it is possible to obtain good transmission / reflection characteristics at the waveguide connection and isolation characteristics between adjacent waveguides. This greatly contributes to the increase in the number of transmission / reception channels and the diversification of module structures. In addition, since the demand for machining accuracy is relaxed, it is possible to configure a low-cost device as a whole high-frequency device compared to conventional machined products.
[0020]
【The invention's effect】
According to the present invention, it has a plurality of waveguides formed in order to transmit a high-frequency signal of a millimeter wave band in the thickness direction, interconnected with a gap in the connection end face of the waveguide In the waveguide plate including the first and second plates, the first plate is shifted from the waveguide end of the long side of each waveguide by approximately ¼ of the free space propagation wavelength at the signal frequency . in position, with at least the waveguide long side length greater than the width and depth of approximately 1/4 of the free space propagation wavelength at the signal frequency from the waveguide end in the both short sides of the respective waveguide By having a rectangular parallelepiped-shaped choke structure dug so that the end protrudes to the outside , resonance at the signal frequency is avoided, and coupling between a plurality of opposing waveguides is suppressed, Good transmission / reflection, isolation It is possible to obtain a waveguide plate having sex, it is possible to manufacture the die-cast molding and press working inexpensive processing methods in waveguide plates to obtain good electrical characteristics such as.
[0021]
Furthermore, it is possible to obtain a high-frequency device that is more inexpensive and operates stably.
[Brief description of the drawings]
FIG. 1 is a top view of a waveguide plate showing Embodiment 1 of the present invention.
FIG. 2 is a top view of a waveguide plate showing a second embodiment of the present invention.
FIG. 3 is a top view showing an example of a conventional waveguide plate.
FIG. 4 is a detailed top view showing an example of a conventional waveguide plate.
FIG. 5 is an example of transmission, reflection, and isolation characteristics at a connection surface portion of a waveguide formed on a conventional waveguide plate.
[Explanation of symbols]
1a, 1b Waveguide plate, 2 Contact surface, 3 Conventional choke, 4 Gap between waveguide interface, 10a-12a, 10b-12b Waveguide, 100 choke

Claims (2)

板厚方向にミリ波帯の高周波信号を伝送させるために形成された複数の導波管をそれぞれ有し、当該導波管の接続端面に隙間を有して相互接続された第1、第2のプレート、を備えた導波管プレートにおいて、
上記第1のプレートは、上記各々の導波管長辺の導波管端から信号周波数における自由空間伝搬波長の概略1/4ずらした位置に、信号周波数における自由空間伝搬波長の概略1/4の幅と深さと少なくとも導波管長辺よりも大きい長さをもって、上記各々の導波管における両短辺の導波管端から端部が外側に突出するように掘り込まれた、直方体形状のチョーク構造を有したことを特徴とする導波管プレート。
Formed in order to transmit a high-frequency signal of a millimeter wave band in the thickness direction a plurality of waveguides to possess respectively, first interconnected with a gap in the connection end face of the waveguide, the second A waveguide plate comprising:
The first plate is approximately 1/4 of the free space propagation wavelength at the signal frequency at a position shifted from the waveguide end of the long side of each of the waveguides by approximately 1/4 of the free space propagation wavelength at the signal frequency. has a width and depth at least the waveguide length greater than the long side, the ends of the waveguide end of both short sides of the respective waveguide is engraved so as to protrude outward, a rectangular parallelepiped shape A waveguide plate characterized by having a choke structure.
上記請求項1に記載の導波管プレートを搭載し、導波管プレートとの間で入力もしくは出力されるミリ波やマイクロ波等の高周波信号を送信または受信する手段を備えた高周波装置。A high-frequency device equipped with the waveguide plate according to claim 1 and provided with means for transmitting or receiving a high-frequency signal such as a millimeter wave or a microwave input to or output from the waveguide plate.
JP2001386214A 2001-12-19 2001-12-19 Waveguide plate and high frequency device Expired - Fee Related JP3995929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386214A JP3995929B2 (en) 2001-12-19 2001-12-19 Waveguide plate and high frequency device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386214A JP3995929B2 (en) 2001-12-19 2001-12-19 Waveguide plate and high frequency device

Publications (2)

Publication Number Publication Date
JP2003188601A JP2003188601A (en) 2003-07-04
JP3995929B2 true JP3995929B2 (en) 2007-10-24

Family

ID=27595425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386214A Expired - Fee Related JP3995929B2 (en) 2001-12-19 2001-12-19 Waveguide plate and high frequency device

Country Status (1)

Country Link
JP (1) JP3995929B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009317A1 (en) 2008-02-19 2009-09-17 DENSO CORPORATION, Kariya-shi High frequency element arrangement with waveguide

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833026B2 (en) * 2006-10-31 2011-12-07 三菱電機株式会社 Waveguide connection structure
US8358180B2 (en) 2007-09-27 2013-01-22 Kyocera Corporation High frequency module comprising a transition between a wiring board and a waveguide and including a choke structure formed in the wiring board
JP4527760B2 (en) * 2007-10-26 2010-08-18 三菱電機株式会社 Antenna device
JP2009267713A (en) * 2008-04-24 2009-11-12 Mitsubishi Electric Corp Waveguide block
US8680954B2 (en) 2008-08-29 2014-03-25 Nec Corporation Waveguide, waveguide connection structure and waveguide connection method
JP4825250B2 (en) * 2008-09-10 2011-11-30 三菱電機株式会社 Waveguide bend
CN102414911A (en) * 2009-04-28 2012-04-11 三菱电机株式会社 Waveguide conversion portion connection structure, method of fabricating same, and antenna device using this connection structure
JP5419548B2 (en) * 2009-05-28 2014-02-19 三菱電機株式会社 Waveguide choke structure
JP5289401B2 (en) * 2010-09-09 2013-09-11 三菱電機株式会社 Waveguide plate
EP2819238A4 (en) 2012-02-21 2015-11-04 Nec Corp Connection structure for antenna apparatus and wireless communications apparatus
JP2014204349A (en) 2013-04-08 2014-10-27 三菱電機株式会社 Waveguide structure
JP6278850B2 (en) * 2014-06-27 2018-02-14 三菱電機株式会社 Waveguide connection structure and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009317A1 (en) 2008-02-19 2009-09-17 DENSO CORPORATION, Kariya-shi High frequency element arrangement with waveguide
US8330563B2 (en) 2008-02-19 2012-12-11 Denso Corporation High-frequency member assembly with waveguide

Also Published As

Publication number Publication date
JP2003188601A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
US8159316B2 (en) High-frequency transmission line connection structure, circuit board, high-frequency module, and radar device
JP3995929B2 (en) Waveguide plate and high frequency device
JP3498597B2 (en) Dielectric line conversion structure, dielectric line device, directional coupler, high frequency circuit module, and transmission / reception device
US7002429B2 (en) Nonreflective waveguide terminator and waveguide circuit
WO2018016632A1 (en) Diplexer and transmitting and receiving system
JP3923891B2 (en) Connection structure of cavity waveguide and dielectric waveguide
JP3279242B2 (en) Different type non-radiative dielectric line converter structure and device
JP4712841B2 (en) Waveguide / stripline converter and high-frequency circuit
JP3846585B2 (en) Waveguide bend, waveguide plate and high frequency device
US6445355B2 (en) Non-radiative hybrid dielectric line transition and apparatus incorporating the same
KR100471049B1 (en) non-radiative dielectric waveguide mixer using a ring hybrid coupler
JP2710894B2 (en) Filter / antenna device
WO2004021505A1 (en) Line converter, high-frequency module, and communication device
CN114156624A (en) Millimeter wave broadband low-loss directional coupler based on gap waveguide structure
US10651524B2 (en) Planar orthomode transducer
JP3259637B2 (en) Transceiver
CN113612000B (en) Rectangular waveguide I-shaped isolation network double-microstrip converter
KR100563937B1 (en) Wideband Mixer for NRD Waveguide Circuit
JP2002217613A (en) Transmission line, integrated circuit and transmitting/ receiving device
JP6343222B2 (en) Circuit board
CN115764225A (en) Waveguide power divider
JP2003163502A (en) Transmission line and transmitter-receiver
CN117199839A (en) Circularly polarized frequency division antenna device
KR20030090238A (en) Non Radiative Dielectric Waveguide Mixer with Mode Conversion Reflector
JP2001044714A (en) Dielectric line and radio equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051102

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3995929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees