JP2004172287A - Wafer carrier, inspecting wafer and method for regulating wafer insertion to wafer carrier - Google Patents

Wafer carrier, inspecting wafer and method for regulating wafer insertion to wafer carrier Download PDF

Info

Publication number
JP2004172287A
JP2004172287A JP2002335359A JP2002335359A JP2004172287A JP 2004172287 A JP2004172287 A JP 2004172287A JP 2002335359 A JP2002335359 A JP 2002335359A JP 2002335359 A JP2002335359 A JP 2002335359A JP 2004172287 A JP2004172287 A JP 2004172287A
Authority
JP
Japan
Prior art keywords
wafer
wafer carrier
carrier
transfer arm
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002335359A
Other languages
Japanese (ja)
Other versions
JP4205405B2 (en
Inventor
Takashi Hasegawa
隆史 長谷川
Toru Higuchi
徹 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002335359A priority Critical patent/JP4205405B2/en
Publication of JP2004172287A publication Critical patent/JP2004172287A/en
Application granted granted Critical
Publication of JP4205405B2 publication Critical patent/JP4205405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein a positional deviation occurs when a wafer is inserted into a wafer carrier owing to the deformation of the wafer carrier used to house and convey a plurality of Si wafers for a long period in a processing work in a clean room, the mechanical wear of a bearing built in a conveying arm, loosening of a mounting screw, etc., and the wafer is rubbed with the wafer carrier to cause particles to be generated with the result that a processing yield is lowered. <P>SOLUTION: In order to easily regulate the conveying arm so as not to rub the wafer with the wafer carrier 4 when the wafer is inserted into a predetermined step in the periodic inspection of a wafer conveying system, the conveying arm is regulated by using an inspecting wafer, the peripheral edge of which is metallized so as to easily bring the wafer carrier 4 having electrodes 7-9 provided at a wafer introducing part into contact with the electrodes 7-9. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
半導体プロセスにおいて、ウェハの搬送に用いるウェハキャリアへのウェハ挿入時、ウェハとウェハキャリアが擦れてパーティクルを生じないように搬送アームを調整する手法に関する。
【0002】
【従来の技術】
半導体装置の製造工程では、搬送のしやすさと空気中に浮遊しているパーティクルの付着を防ぐために、ウェハをウェハキャリアに入れて搬送している。図3はウェハ1がウェハキャリア4に載置されている様子を示している。ところが、ウェハ1をウェハキャリア4に挿入する際、両者が擦れるとそのことでパーティクルが発生することになる。そして、実際、半導体の高集積化に伴い、ウェハ1とウェハキャリア4との摩擦によって発生するパーティクルが問題になってきている。今後ウェハ1の大口径化とそれにともなう重量増によって、ウェハ1をウェハキャリア4に擦らずに挿入するように従来よりも厳重に管理することが重要となっている。
【0003】
図3のある一段にウェハキャリアにウェハを挿入するときの、ウェハキャリアの桟部分とウェハ周辺部の拡大図を示す。搬送アームは、露光装置やエッチング装置などで処理を終えたウェハをアームを伸ばして真空吸着や落とし込みによってウェハホルダに固定し、搬送アームを縮めて回転運動し、再び搬送アームを伸ばしてウェハキャリアの所定の段の桟と桟の間に挿入する。ウェハ挿入後、ウェハキャリアが上昇するかもしくは搬送アームが下降して、図3に示すようにウェハキャリアの桟の上にウェハがセッ卜される。
【0004】
しかし長期間使用しているうちに、搬送アームのべアリングの劣化、同期モータの同期ずれ、搬送アームの曲がり、ウェハキャリアの変形、ウェハキャリアをセットする位置のずれなどが発生する。そうするとウェハとウェハキャリアの桟あるいは内側壁が接触した状態でウェハを挿入したり、排出してしまうようになる。更に、ウェハを挿入する位置が大きくずれてしまうと、ウェハキャリア内にウェハが入らずウェハが破壊してしまう。半導体製造用の8インチウェハを入れるウェハキャリアは、例えば、下部の桟と上部の桟の間隔が1.9mmであるが桟の公差は±0.5mmもあるために、最悪ケースのマイナス公差の場合、0.72mm厚のウェハを使うときのすき間は上下それぞれでわずか0.34mmしかなく、非常に高精度な搬送精度が要求されている。
【0005】
ウェハをウェハキャリアに正確に挿入する方法としては、特開昭61‐267622に示されているようにウェハ搬送装置のウェハを載置するステージに光ファイバを用いた光反射型光電センサや静電容量型センサなどの非接触型センサを用いて、収納溝にステージを導く方法がある。この方法は、ウェハを載置したステージを溝に挿入することが目的であって、ウェハキャリアとステージが擦れることは配慮の外である。むしろ溝に沿ってステージを挿入できるように昇降機構の軸に対してステージを自由に傾動可能とする自在連結構造を採って、積極的に溝とステージが擦れる様になっている。従って、この方法では0.34mmの搬送精度でウェハを搬送することができない。
【0006】
ウェハキャリアとの擦れがウェハの裏面や側面であっても、その擦れによって発生したパーティクルは、ウェットプロセスやプラズマプロセスによってウェハの表面に回り込み、歩留りの低下を引き起こしていた。
【0007】
【発明が解決しようとする課題】
経年変化によってウェハキャリアの変形・位置ずれや搬送アームの設定位置の変化によって、ウェハキャリアとウェハが擦れを生じないように精度の高い検査点検が必要であり、しかも、人間の感覚にたよるのではなく、電気機械的に自動で調整できる方法が求められている。本発明は、搬送アームの位置決め方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
プロセスで使用するSiウェハと同じ寸法のウェハを用いて、ウェハキャリアに設けた金属電極、Siウェハ、搬送アームの経路の電気的接続を監視しつつ搬送アームに対して所定の動作を行なわしめ、一旦電気的接続を検出した時点において搬送アームの動作を停止する。この時、Siウェハとウェハキャリアが検出した位置は、所定の桟の左右どちらかの上面、所定の桟の上段にある桟の左右どちらかの下面、あるいはウェハキャリア筐体の左右どちらかの内側面の6箇所の少なくとも1箇所で接触したことになる。この情報を基に、その逆方向に搬送アームを移動して、接続信号が無くなり、更に移動して再び接続信号を生じる位置を確認して、接続信号が生じなかった中間点を搬送アームの調整済み位置とすることによって、1方向の調整が可能となる。更に、残る2方向について同様の操作を行なえば、3次元における搬送アームの調整点が求まり、更に、この操作を各段について行い、最終的にウェハキャリア毎に各段における調整点のデータを保存して調整を終了する。
【0009】
第一の発明は、ウェハを各段に挿入する際の接触を判定するために設ける電極に関するものであり、挿入すべき段の左右の桟の上面と、その桟の上段の左右の桟の下面と、桟を保持するウェハキャリア筐体の左右の内側面の計6箇所のチェックポイントを規定する。
好ましくは、金属電極を、ウェハキャリアのウェハ挿入口から、ウェハが完全にウェハキャリア内部に収納される、即ちウェハの半径よりも長い位置まで設ける。
【0010】
この6箇所の金属電極と接触するようにウェハを移動することによって、ウェハの位置を知ることができる。
第二の発明は、通常、プロセスで用いるSiウェハは裏面や側面は未処理で自然酸化膜で覆われており、そのままでは金属電極と接触しても導通はとれない。そこで、ウェハが接触したことを電気的に確認するには、接触が予想されるウェハの周縁部分と、搬送アームのウェハホルダと接触している部分のウェハ面にオーミック性のメタライズパターンを設けて、ウェハ挿入時の検査用のウェハとする。
【0011】
メタライズパターンを設けることにより、ウェハホルダを介して、ウェハのバルク結晶を経由して周縁部のメタライズパターンに到る経路の抵抗素子と見なせる。この抵抗素子が前記6箇所の金属電極と接触すれば、各電極を個別にバイアスしているので、電流が流れて、接触の有無を電気信号として捉えることができる。
【0012】
好ましくは、周縁部のメタライズパターンは、桟あるいは内側壁に接触する可能性のある部分とし、全周に設けるのではなく、左右で分断されている。
第三の発明は、第一の発明のウェハキャリアと第二の発明の検査用ウェハを用いてウェハがウェハキャリアに擦れない様に、搬送アームの挿入位置を調整することを特徴としている。
【0013】
ウェハキャリアの各段に対してウェハを3次元空間の座標のどこに設定するかは設計段階で、数値化されている。しかし、ウェハキャリアの変形や搬送アームの位置精度などは経時変化するものである。そのような変化を正確に捉えるには、三次元寸法測定を行なって、その測定値が許容範囲にあるか否かを判定する必要がある。しかし、広い範囲に渡って三次元座標を正確に求めることは困難である。
【0014】
本発明のウェハ挿入調整方法によれば、ウェハおよびウェハキャリアの現物同士の合わせ込みで座標数値を得られるので簡便に搬送アームの検査が可能となる。そしてその検査方法は、搬送装置のコンピュータに搬送アームを上下、左右の動きをさせて接触が生じた位置を記憶し、6箇所の接触座標を求める手法で、プログラム制御できるので、直接ウェハとウェハキャリアの接触を目視する必要は無く、自動化できる。
【0015】
【発明の実施の形態】
以下に本発明の一実施形態について説明する
図2には検査用ウェハのメタライズパターンを示す。図中、1はSiウェハ、2はウェハ周縁のメタライズパターン、3は裏面に設けたウェハ中央部のメタライズパターンである。Siウェハ1は8インチサイズで、数十Ωcmの比抵抗を有する。そして、メタライズパターンはタングステンあるいはモリブデンを下地とし、金を積層蒸着して、オーミック性を得る。周縁部のメタライズパターンの対向する2つのパターンが後述するウェハキャリアの左右に設けた電極と接触することで、搬送アームの調整を行なうようにする。
【0016】
図1に金属電極を埋め込んだウェハキャリアの概観構造を示す。図中、4はウェハキャリア筐体を示し、5は筐体側壁、6は桟、7は桟の上部に設けた金属電極、8は桟の下部に設けた金属電極、9は側壁内側に設けた金属電極である。金属電極が柔らかいとウェーハと接触したときにパーティクルの発生源となるので、0.5mm厚のタングステン電極を用いた。金属電極はチ夕ンでも良いし、導電性の材料であれば金属でなくても良い。25枚分ウェハを挿入する空間の上下の桟および左右のウェハキャリア筐体の内側壁の金属電極から信号線を引き出す必要があるので、キャリアとウェーハ接触検出装置(後述する)との間は152芯のフラットケーブルを用いて接続した。(ケーブルやコネクタは図示せず)
搬送アームはコンピュータによって動きを制御され、アームの取付け軸を中心とした回転角、アームの高さ、アームの回転軸からの距離の3つの数値で制御される。ウェハを所定の段に挿入するデータは各ウェハキャリア毎にコンピュータの記憶装置に用意されている。
【0017】
図4は本発明のウェハ挿入調整を行なうためのシステム構成を示す図である。図中、10はウェハキャリア、11は搬送装置、12は搬送アーム、13はウェハホルダ、14は検査用ウェハ、15は接触検出装置、16は搬送アーム制御用コンピュータである。接触検出装置15は、ウェハキャリアに設けた特定の金属電極、検査用ウェハ14の周縁部メタライズパターン、Siウェハの結晶部分、ウェハホルダ用のメタライズパターン、ウェハホルダを経由して流れる電流を負荷抵抗に流し、その両端に生じる電圧を比較回路で”0”、”1”信号に変換し、8ビットあるいは16ビットデータにエンコードしてコンピュータ16に出力する。ウェハ挿入調整の調整手順について以下に具体的に示す。
【0018】
エッチング装置や露光装置のワーキングステージに載置された検査用ウェハ14を吸着、あるいは落とし込みによって搬送アーム12のウェハホルダ13に固定し、所定の段へ挿入すべく搬送アーム12をウェハキャリア10のn段目へ近付ける。
1:搬送アーム12の回転軸からアームを伸ばして、検査用ウェハ14をウェハキャリアの中へ半分挿入して止める。
1’:工程1が完了する以前に接触を検出したら、搬送アーム12およびその制御を行なっているコンピュータ16について適切な動作を行なっているか別途検査を要する。
2:ウェハキャリア10筐体の左右どちらかの側面に設けた金属電極と接触するまで検査用ウェハ14を搬送し、接触を検出したら搬送を止める。この時の位置制御情報を記憶する。
2’:側面の金属電極9に接触する前に、n段目の桟の上部7あるいはn+1段目の桟の下部の金属電極8と接触した場合は、搬送アームの左右の送りを逆に例えば0.1mm戻し、上下方向に例えば0.1mm移動した後、再度左右方向へ移動し、側面の金属電極と接触するまでこの動作を繰り返す。そして、この時の位置制御情報を記憶する。
3:逆方向に搬送アームを移動し、対向する側面の金属電極と接触するまで搬送する。そして、この時の位置制御情報を記憶し、工程2で記憶している位置制御情報との平均値を求めて、第一の左右方向の位置制御情報として記憶する。
3’:工程3において側面の金属電極に接触する前に、n段目の桟の上部の金属電極7あるいはn+1段目の桟の下部の金属電極8と接触した場合は、工程2’と同様の処理を行ない、工程3と同様にして第一の新規左右方向の位置制御情報として記憶する。
4:工程3で得た第一の左右方向の位置制御情報に基づいて搬送アームを移動し、アームを例えば0.1mmづつ下方に移動し、n段目の桟の上部金属電極7と接触する位置制御情報を得る。
5:逆に0.1mmづつ上方に移動して、n+1段目の桟の下部金属電極8と接触する位置制御情報を得る。これと工程4の位置制御情報と平均して、第一の上下方向の位置制御情報として記憶する。
6:工程3および工程5で得た新規の左右および上下の位置制御情報を基に、奥行き方向に検査用ウェハがウェハキャリア筐体内に完全に挿入されるまで搬送アームを移動し、工程1〜5と同様の処理によって、第二の新規の左右および上下の位置制御情報を得、第一および第二の左右および上下方向の位置制御情報を平均して、今後の制御に用いる新規の左右および上下方向の位置制御情報として記憶する。
6’:所定の奥行きに達する前に6箇所の金属電極のいずれかに接触することがあった場合、1〜5工程と同様の処理を行い、その奥行き位置での左右および上下方向の中心制御位置を求め、先に求めた新規の左右および上下方向の位置制御情報と比較し、所定の奥行き位置での位置制御情報を比例関係で求めて、その差分値が所定の許容範囲内にあれば、搬送アームを所定の位置に移動して再び工程6を実施する。許容範囲を越えた場合は、搬送アーム自身の精度の見直しを行うか、ウェハキャリアについて三次元の寸法測定を行なって、制御が上手くいかない原因を調査する。
【0019】
本発明においては、絶縁性のウェハキャリアについて開示したが、導電性のウェハキャリアであっても、各金属電極が互いに絶縁分離されていれば同様の効果が得られる。
また、本発明では、金属電極を付けウェハキャリアをプロセスで使用する実施例を示したが、搬送アームを検査するための調整用治具とみなしても良い。
【0020】
以上、本発明をまとめると以下の通りである。
(付記1)複数のウェハを収納する多段の桟を設けた絶縁性のウェハキャリアにおいて、前記ウェハを載置するための前記桟の上面、前記桟の上部に位置する桟の下面、および前記多段の桟を保持するウェハキャリア筐体の内側面それぞれに金属電極を埋め込み、前記金属電極表面を露出させたことを特徴とするウェハキャリア。
(付記2)前記ウェハキャリアの桟の上面、下面および内側面に設ける前記金属電極は、前記ウェハキャリアの入口からの奥行き方向の長さが少なくともウェハの半径よりも長いことを特徴とする付記1記載のウェハキャリア。
(付記3)ウェハの周縁部の少なくとも前記ウェハキャリアの前記桟および前記内側面と接触する部分と、前記ウェハの表面あるいは裏面で前記搬送アームのウェハホールダと接触する部分に、前記ウェハに対してオーミック性を有するメタライズパターンを形成したことを特徴とする検査用ウェハ。
(付記4)前記ウェハの前記周縁部に設ける前記メタライズパターンは、リング状の一部分であって、2つ以上に分断されていることを特徴とする付記3記載の検査用ウェハ。
(付記5)前記検査用ウェハと前記ウェハキャリアを用い、前記ウェハキャリアの前記金属電極と前記検査用ウェハの前記メタライズパターンが接触することを電気的に検出して、搬送アームの調整を行なうことを特徴とするウェハ挿入調整方法。
【0021】
【発明の効果】
本発明のウェハキャリアおよび検査用ウェハを用いて搬送アームの調整手法を用いれば、従来覗き込みにくい場所で生じるウェハキャリアの桟とウェハとの擦れの有無を、コンピュータ制御で自動的に適切なウェハキャリア毎の各段毎に位置制御情報が得られるので、搬送アームおよびウェハキャリアの保守・点検を効率化し、プロセス過程で問題となるパーティクルの発生やウェハ破損事故を抑える効果がある。
【図面の簡単な説明】
【図1】金属電極を埋め込んだウェハキャリアの概観構造を示す図
【図2】メタライズパターンを設けた検査用ウェハの形状を示す図
【図3】ウェハキャリアにウェハが載置されている様子を示す図
【図4】本発明のウェハ挿入調整を行なうシステム構成を示す図
【符号の説明】
1 Siウェハ
2 周縁部メタライズパターン
3 裏面中央部メタライズパターン
4 ウェハキャリア筐体
5 側壁
6 桟
7 桟の上部に設けた金属電極
8 桟の下部に設けた金属電極
9 ウェハキャリア側壁に設けた金属電極
10 ウェハキャリア
11 搬送装置
12 搬送アーム
13 ウェハホルダ
14 検査用ウェハ
15 接触検出装置
16 搬送アーム制御用コンピュータ
[0001]
TECHNICAL FIELD OF THE INVENTION
In a semiconductor process, the present invention relates to a method of adjusting a transfer arm so that a wafer and a wafer carrier do not rub against each other when a wafer is inserted into a wafer carrier used for transferring a wafer.
[0002]
[Prior art]
In a semiconductor device manufacturing process, a wafer is transported in a wafer carrier in order to facilitate transportation and prevent particles floating in the air from adhering. FIG. 3 shows a state where the wafer 1 is mounted on the wafer carrier 4. However, when the wafer 1 is inserted into the wafer carrier 4, if both rub, the particles will be generated. In fact, particles generated due to friction between the wafer 1 and the wafer carrier 4 have become a problem as semiconductors become more highly integrated. In the future, as the diameter of the wafer 1 increases and its weight increases, it is important to manage the wafer 1 more strictly than before so that the wafer 1 is inserted into the wafer carrier 4 without rubbing.
[0003]
FIG. 4 is an enlarged view of a cross section of the wafer carrier and a peripheral portion of the wafer when a wafer is inserted into the wafer carrier at a certain stage in FIG. 3. The transfer arm stretches the arm, which has been processed by the exposure device or etching device, and secures it to the wafer holder by vacuum suction or dropping. Insert between the bars of the step. After the wafer is inserted, the wafer carrier is raised or the transfer arm is lowered, and the wafer is set on a crosspiece of the wafer carrier as shown in FIG.
[0004]
However, during use for a long period of time, deterioration of the bearing of the transfer arm, synchronization deviation of the synchronous motor, bending of the transfer arm, deformation of the wafer carrier, displacement of the position where the wafer carrier is set, and the like occur. Then, the wafer is inserted or ejected in a state where the wafer and the rail or the inner wall of the wafer carrier are in contact with each other. Furthermore, if the position for inserting the wafer is greatly shifted, the wafer will not enter the wafer carrier and will be broken. For example, a wafer carrier containing an 8-inch wafer for semiconductor manufacturing has a worst-case negative tolerance of ± 0.5 mm because the interval between the lower and upper bars is 1.9 mm, but the tolerance of the bars is ± 0.5 mm. In this case, when a wafer having a thickness of 0.72 mm is used, there is only a gap of only 0.34 mm at each of the upper and lower sides, and very high transfer accuracy is required.
[0005]
As a method of accurately inserting a wafer into a wafer carrier, a light reflection type photoelectric sensor using an optical fiber as a stage on which a wafer of a wafer transfer device is mounted as shown in JP-A-61-267622 or an electrostatic There is a method of using a non-contact type sensor such as a capacitive sensor to guide the stage into the storage groove. The purpose of this method is to insert the stage on which the wafer is mounted into the groove, and it is out of consideration that the wafer carrier and the stage are rubbed. Rather, adopting a universal connection structure that allows the stage to freely tilt with respect to the axis of the elevating mechanism so that the stage can be inserted along the groove, the groove and the stage are actively rubbed. Therefore, this method cannot transfer a wafer with a transfer accuracy of 0.34 mm.
[0006]
Even if the rubbing with the wafer carrier is on the back surface or side surface of the wafer, particles generated by the rubbing are wrapped around the surface of the wafer by a wet process or a plasma process, causing a reduction in yield.
[0007]
[Problems to be solved by the invention]
It is necessary to perform high-precision inspections and inspections so that the wafer carrier does not rub against the wafer carrier due to deformation and displacement of the wafer carrier due to aging and changes in the setting position of the transfer arm. Rather, there is a need for a method that can be adjusted automatically and electromechanically. An object of the present invention is to provide a method for positioning a transfer arm.
[0008]
[Means for Solving the Problems]
Using a wafer of the same size as the Si wafer used in the process, perform a predetermined operation on the transfer arm while monitoring the electrical connection of the metal electrode provided on the wafer carrier, the Si wafer, and the path of the transfer arm, Once the electrical connection is detected, the operation of the transfer arm is stopped. At this time, the position detected by the Si wafer and the wafer carrier is the upper surface on either the left or right of the predetermined beam, the lower surface on either the left or right of the upper beam of the predetermined beam, or the left or right of the wafer carrier housing. This means that at least one of the six positions on the side surface has come into contact. Based on this information, the transfer arm is moved in the opposite direction, the connection signal disappears, and the position where the connection signal is generated again and the connection signal is generated again is confirmed. By setting it as the completed position, adjustment in one direction is possible. Further, if the same operation is performed in the remaining two directions, the adjustment point of the transfer arm in three dimensions is obtained. Further, this operation is performed for each stage, and finally, the data of the adjustment point in each stage is stored for each wafer carrier. And finish the adjustment.
[0009]
The first invention relates to an electrode provided for determining contact when a wafer is inserted into each stage, and the upper surface of the right and left crosspieces of the stage to be inserted and the lower surface of the left and right crosspieces of the upper stage of the same. And a total of six checkpoints on the left and right inner surfaces of the wafer carrier housing holding the crosspiece.
Preferably, the metal electrode is provided from the wafer insertion opening of the wafer carrier to a position where the wafer is completely housed inside the wafer carrier, that is, a position longer than the radius of the wafer.
[0010]
By moving the wafer so as to come into contact with these six metal electrodes, the position of the wafer can be known.
According to the second invention, normally, the back surface and side surfaces of the Si wafer used in the process are untreated and covered with a natural oxide film, so that the silicon wafer does not conduct even if it comes into contact with the metal electrode as it is. Therefore, in order to electrically confirm that the wafer has come into contact, an ohmic metallized pattern is provided on the peripheral portion of the wafer where contact is expected and the wafer surface of the portion of the transfer arm that is in contact with the wafer holder, This is a wafer for inspection at the time of wafer insertion.
[0011]
By providing the metallized pattern, the resistive element can be regarded as a resistance element of a path reaching the metallized pattern at the peripheral portion via the wafer bulk crystal via the wafer holder. When the resistance element contacts the six metal electrodes, the electrodes are individually biased, so that a current flows and the presence or absence of the contact can be grasped as an electric signal.
[0012]
Preferably, the metallized pattern of the peripheral portion is a portion that may come into contact with the crosspiece or the inner wall, and is not provided on the entire circumference but is divided on the left and right.
The third invention is characterized in that the transfer position of the transfer arm is adjusted using the wafer carrier of the first invention and the inspection wafer of the second invention so that the wafer does not rub against the wafer carrier.
[0013]
Where the wafer is set in the three-dimensional space for each stage of the wafer carrier is quantified at the design stage. However, the deformation of the wafer carrier, the positional accuracy of the transfer arm, and the like change over time. In order to accurately detect such a change, it is necessary to perform three-dimensional dimension measurement and determine whether or not the measured value is within an allowable range. However, it is difficult to accurately obtain three-dimensional coordinates over a wide range.
[0014]
According to the wafer insertion adjustment method of the present invention, since the coordinate value can be obtained by aligning the actual wafer and the wafer carrier, it is possible to easily inspect the transfer arm. In this inspection method, the position of the contact is generated by moving the transfer arm up and down and left and right on the computer of the transfer device, and the contact coordinates at six locations can be obtained. There is no need to visually check the carrier contact, and the carrier can be automated.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 2 illustrating an embodiment of the present invention shows a metallized pattern of an inspection wafer. In the drawing, reference numeral 1 denotes a Si wafer, 2 denotes a metallized pattern on the periphery of the wafer, and 3 denotes a metallized pattern provided on the back surface of the central portion of the wafer. The Si wafer 1 is 8 inches in size and has a specific resistance of several tens of Ωcm. Then, the metallized pattern is made of tungsten or molybdenum as a base, and gold is laminated and deposited to obtain ohmic properties. The transfer arm is adjusted by contacting two opposing patterns of the metallized pattern on the peripheral edge with electrodes provided on the left and right sides of the wafer carrier described later.
[0016]
FIG. 1 shows an outline structure of a wafer carrier in which metal electrodes are embedded. In the figure, 4 is a wafer carrier housing, 5 is a housing side wall, 6 is a bar, 7 is a metal electrode provided on the upper portion of the bar, 8 is a metal electrode provided on a lower portion of the bar, 9 is provided on the inner side of the side wall. Metal electrode. If the metal electrode was soft, it would be a source of particles when it came into contact with the wafer, so a 0.5 mm thick tungsten electrode was used. The metal electrode may be a metal or a non-metallic material as long as it is a conductive material. Since it is necessary to draw signal lines from the upper and lower rails in the space for inserting 25 wafers and the metal electrodes on the inner walls of the left and right wafer carrier housings, there is a distance of 152 between the carrier and the wafer contact detection device (described later). The connection was made using a core flat cable. (Cables and connectors are not shown)
The movement of the transfer arm is controlled by a computer, and is controlled by three numerical values: a rotation angle about the arm mounting axis, an arm height, and a distance from the arm rotation axis. Data for inserting a wafer into a predetermined stage is prepared in a storage device of a computer for each wafer carrier.
[0017]
FIG. 4 is a diagram showing a system configuration for performing wafer insertion adjustment of the present invention. In the figure, 10 is a wafer carrier, 11 is a transfer device, 12 is a transfer arm, 13 is a wafer holder, 14 is an inspection wafer, 15 is a contact detection device, and 16 is a transfer arm control computer. The contact detection device 15 allows a current flowing through a specific metal electrode provided on the wafer carrier, a peripheral metallization pattern of the inspection wafer 14, a crystal part of the Si wafer, a metallization pattern for the wafer holder, and a current flowing through the wafer holder to flow into the load resistor. The voltage generated at both ends is converted into "0" and "1" signals by a comparison circuit, encoded into 8-bit or 16-bit data, and output to the computer 16. The adjustment procedure of the wafer insertion adjustment will be specifically described below.
[0018]
An inspection wafer 14 mounted on a working stage of an etching apparatus or an exposure apparatus is fixed to the wafer holder 13 of the transfer arm 12 by suction or dropping, and the transfer arm 12 is inserted into a predetermined stage by the transfer arm 12 of the wafer carrier 10. Get closer to your eyes.
1: The arm is extended from the rotation axis of the transfer arm 12, and the inspection wafer 14 is half inserted into the wafer carrier and stopped.
1 ': If a contact is detected before Step 1 is completed, it is necessary to separately check whether the transfer arm 12 and the computer 16 that controls the transfer arm 12 are operating properly.
2: The inspection wafer 14 is transported until it comes into contact with a metal electrode provided on one of the left and right sides of the wafer carrier 10 housing, and when the contact is detected, the transport is stopped. The position control information at this time is stored.
2 ': When the upper arm 7 of the n-th rail or the lower metal electrode 8 of the (n + 1) -th rail is contacted before contacting the metal electrode 9 on the side surface, the right and left feed of the transfer arm is reversed, for example. After returning by 0.1 mm and moving in the vertical direction by, for example, 0.1 mm, it is moved in the horizontal direction again, and this operation is repeated until it comes into contact with the metal electrode on the side surface. Then, the position control information at this time is stored.
3: The transport arm is moved in the reverse direction, and transported until it contacts the metal electrode on the opposite side. Then, the position control information at this time is stored, an average value with the position control information stored in step 2 is obtained, and the average value is stored as the first left-right direction position control information.
3 ′: When contacting the metal electrode 7 on the upper part of the n-th rail or the metal electrode 8 on the lower part of the (n + 1) -th rail before contacting the metal electrode on the side surface in step 3, the same as step 2 ′ And stores it as first new left-right direction position control information in the same manner as in step 3.
4: The transfer arm is moved based on the first left / right position control information obtained in the step 3, and the arm is moved downward by, for example, 0.1 mm at a time to come into contact with the upper metal electrode 7 of the n-th crosspiece. Obtain position control information.
5: Conversely, move upward by 0.1 mm to obtain position control information for contacting the lower metal electrode 8 of the (n + 1) -th stage rail. This is averaged with the position control information in step 4 and stored as first vertical position control information.
6: Based on the new left-right and up-down position control information obtained in Steps 3 and 5, move the transfer arm in the depth direction until the inspection wafer is completely inserted into the wafer carrier housing. 5, the second new left / right and up / down position control information is obtained, the first and second left / right and up / down position control information are averaged, and the new left / right and up / down position control information to be used for future control is obtained. It is stored as vertical position control information.
6 ′: When contact is made with any of the six metal electrodes before reaching the predetermined depth, the same processing as in steps 1 to 5 is performed, and the center control in the horizontal direction and the vertical direction at that depth position The position is obtained, compared with the previously obtained new position control information in the left, right, up and down directions, and the position control information at a predetermined depth position is obtained in a proportional relationship, and if the difference value is within a predetermined allowable range, Then, the transfer arm is moved to a predetermined position, and the step 6 is performed again. If it exceeds the allowable range, review the accuracy of the transfer arm itself or perform three-dimensional dimension measurement on the wafer carrier to investigate the cause of the failure in control.
[0019]
In the present invention, the insulating wafer carrier has been disclosed. However, the same effect can be obtained with a conductive wafer carrier as long as the metal electrodes are insulated from each other.
Further, in the present invention, the embodiment in which the metal electrode is provided and the wafer carrier is used in the process has been described, but it may be regarded as an adjusting jig for inspecting the transfer arm.
[0020]
The present invention is summarized as follows.
(Supplementary Note 1) In an insulating wafer carrier provided with a multi-stage bar for accommodating a plurality of wafers, an upper surface of the bar for mounting the wafer, a lower surface of a bar located above the bar, and the multi-stage. A metal electrode embedded in each of inner surfaces of a wafer carrier housing for holding the crosspiece, thereby exposing a surface of the metal electrode.
(Supplementary Note 2) The metal electrodes provided on the upper surface, the lower surface, and the inner side surface of the crosspiece of the wafer carrier have a length in a depth direction from an entrance of the wafer carrier longer than at least a radius of the wafer. The described wafer carrier.
(Supplementary Note 3) An ohmic contact with respect to the wafer is provided at least at a portion of the peripheral portion of the wafer that contacts the crosspiece and the inner surface of the wafer carrier and a portion of the front or rear surface of the wafer that contacts the wafer holder of the transfer arm. An inspection wafer, wherein a metallized pattern having a characteristic is formed.
(Supplementary Note 4) The inspection wafer according to Supplementary Note 3, wherein the metallized pattern provided on the peripheral portion of the wafer is a ring-shaped part and is divided into two or more pieces.
(Supplementary Note 5) Using the inspection wafer and the wafer carrier, electrically detecting that the metal electrode of the wafer carrier is in contact with the metallized pattern of the inspection wafer, and adjusting the transfer arm. A wafer insertion adjustment method characterized by the above-mentioned.
[0021]
【The invention's effect】
If the method of adjusting the transfer arm using the wafer carrier and the inspection wafer of the present invention is used, the presence or absence of rubbing between the wafer carrier rail and the wafer, which has conventionally occurred in a place where it is difficult to peep, is automatically controlled by a computer to determine the appropriate wafer. Since position control information can be obtained for each stage of each carrier, the maintenance and inspection of the transfer arm and the wafer carrier can be made more efficient, and there is an effect of suppressing generation of particles and wafer damage accidents which are problematic in the process.
[Brief description of the drawings]
FIG. 1 is a view showing an outline structure of a wafer carrier in which metal electrodes are embedded. FIG. 2 is a view showing a shape of an inspection wafer provided with a metallized pattern. FIG. 3 is a view showing a state where a wafer is mounted on a wafer carrier. FIG. 4 is a diagram showing a system configuration for performing wafer insertion adjustment of the present invention.
DESCRIPTION OF SYMBOLS 1 Si wafer 2 Peripheral part metallization pattern 3 Backside central part metallization pattern 4 Wafer carrier case 5 Side wall 6 Crosspiece 7 Metal electrode provided on the upper part of the rail 8 Metal electrode provided on the lower part of the rail 9 Metal electrode provided on the side wall of the wafer carrier Reference Signs List 10 wafer carrier 11 transfer device 12 transfer arm 13 wafer holder 14 inspection wafer 15 contact detection device 16 transfer arm control computer

Claims (3)

複数のウェハを収納する多段の桟を設けた絶縁性のウェハキャリアにおいて、前記ウェハを載置するための前記桟の上面、前記桟の上部に位置する桟の下面、および前記多段の桟を保持するウェハキャリア筐体の内側面それぞれに金属電極を埋め込み、前記金属電極表面を露出させたことを特徴とするウェハキャリア。In an insulating wafer carrier provided with a multi-stage bar for accommodating a plurality of wafers, an upper surface of the bar for mounting the wafer, a lower surface of the bar located above the bar, and holding the multi-stage bar A metal electrode embedded in each of inner surfaces of a wafer carrier housing to expose a surface of the metal electrode. ウェハの周縁部の少なくとも前記ウェハキャリアの前記桟および前記内側面と接触する部分と、前記ウェハの表面あるいは裏面で前記ウェハホールダと接触する部分に、前記ウェハに対してオーミック性を有するメタライズパターンを形成したことを特徴とする検査用ウェハ。Forming a metallized pattern having ohmic properties with respect to the wafer at least at a portion of the peripheral edge of the wafer that contacts the crosspiece and the inner surface of the wafer carrier and at a portion that contacts the wafer holder on the front or back surface of the wafer. Inspection wafer characterized by having done. 前記検査用ウェハと前記ウェハキャリアを用い、前記ウェハキャリアの前記金属電極と前記検査用ウェハの前記メタライズパターンが接触することを電気的に検出して、搬送アームの調整を行なうことを特徴とするウェハ挿入調整方法。Using the inspection wafer and the wafer carrier, electrically detecting contact between the metal electrode of the wafer carrier and the metallized pattern of the inspection wafer, and adjusting a transfer arm. Wafer insertion adjustment method.
JP2002335359A 2002-11-19 2002-11-19 Transport adjustment system and transport adjustment method Expired - Fee Related JP4205405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335359A JP4205405B2 (en) 2002-11-19 2002-11-19 Transport adjustment system and transport adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335359A JP4205405B2 (en) 2002-11-19 2002-11-19 Transport adjustment system and transport adjustment method

Publications (2)

Publication Number Publication Date
JP2004172287A true JP2004172287A (en) 2004-06-17
JP4205405B2 JP4205405B2 (en) 2009-01-07

Family

ID=32699512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335359A Expired - Fee Related JP4205405B2 (en) 2002-11-19 2002-11-19 Transport adjustment system and transport adjustment method

Country Status (1)

Country Link
JP (1) JP4205405B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031053A (en) * 2005-07-26 2007-02-08 Ckd Corp Inspecting method for non-contact supporting device
JP2007329277A (en) * 2006-06-07 2007-12-20 Oki Electric Ind Co Ltd Device and method for inspecting sheet housing, and sheet housing inspected by the inspection method
WO2014119740A1 (en) * 2013-02-04 2014-08-07 東京エレクトロン株式会社 Substrate transport device
CN112071799A (en) * 2019-06-10 2020-12-11 中微半导体设备(上海)股份有限公司 Support claw, airlock chamber and plasma processing device host platform

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031053A (en) * 2005-07-26 2007-02-08 Ckd Corp Inspecting method for non-contact supporting device
JP4700430B2 (en) * 2005-07-26 2011-06-15 シーケーディ株式会社 Non-contact support device inspection method
JP2007329277A (en) * 2006-06-07 2007-12-20 Oki Electric Ind Co Ltd Device and method for inspecting sheet housing, and sheet housing inspected by the inspection method
JP4740799B2 (en) * 2006-06-07 2011-08-03 Okiセミコンダクタ株式会社 Thin plate container inspection apparatus and inspection method thereof
WO2014119740A1 (en) * 2013-02-04 2014-08-07 東京エレクトロン株式会社 Substrate transport device
JP2014150227A (en) * 2013-02-04 2014-08-21 Tokyo Electron Ltd Substrate transfer device
KR20150115734A (en) * 2013-02-04 2015-10-14 도쿄엘렉트론가부시키가이샤 Substrate transport device
US9953853B2 (en) 2013-02-04 2018-04-24 Tokyo Electron Limited Substrate transport apparatus
KR102077363B1 (en) * 2013-02-04 2020-02-13 도쿄엘렉트론가부시키가이샤 Substrate transport device
CN112071799A (en) * 2019-06-10 2020-12-11 中微半导体设备(上海)股份有限公司 Support claw, airlock chamber and plasma processing device host platform

Also Published As

Publication number Publication date
JP4205405B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
TWI448660B (en) Apparatus and method for quantifying a bow of a wafer
KR20080038042A (en) Work holding mechanism
JP6066084B2 (en) Substrate holding device, semiconductor manufacturing device, and substrate adsorption determination method
JP4490779B2 (en) Substrate processing equipment
US8076952B2 (en) Socket for inspection
CN110622294B (en) Substrate carrying-out method
KR20160096021A (en) Peeling apparatus, peeling system, peeling method, and computer readable information storage medium
KR20130105397A (en) Probe apparatus and providing method for probe card of probe apparatus
CN112233971A (en) Wafer cleaning method and wafer cleaning device
JP4970315B2 (en) Magnetic head slider inspection apparatus and magnetic head slider inspection method
WO2021067049A1 (en) Probe systems for optically probing a device under test and methods of operating the probe systems
JP4545625B2 (en) Substrate positioning table, substrate positioning equipment, and substrate positioning method
JP2022160389A (en) Method and apparatus for erosion measurement and position calibration of moving process kit
JP2004172287A (en) Wafer carrier, inspecting wafer and method for regulating wafer insertion to wafer carrier
TWI588495B (en) Surface potential measuring apparatus and surface potential measuring method
JP2007080960A (en) Apparatus and method for adjusting transfer system
WO2014157122A1 (en) Probe device
JP2016139646A (en) Semiconductor evaluation device, semiconductor device for inspection, and method for inspecting chuck stage
JP5885701B2 (en) Semiconductor device evaluation equipment
CN108226658B (en) Static electricity detection system and method
JP5319057B2 (en) Charging potential distribution measuring system and charging potential distribution measuring device
US10190865B2 (en) Verifying end effector flatness using electrical continuity
US20190189482A1 (en) Transfer device, transfer method, and inspection system
JPH0536767A (en) Probe apparatus
EP2980840A1 (en) Probe device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040610

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4205405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees