JP2004172160A - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
JP2004172160A
JP2004172160A JP2002332702A JP2002332702A JP2004172160A JP 2004172160 A JP2004172160 A JP 2004172160A JP 2002332702 A JP2002332702 A JP 2002332702A JP 2002332702 A JP2002332702 A JP 2002332702A JP 2004172160 A JP2004172160 A JP 2004172160A
Authority
JP
Japan
Prior art keywords
light emitting
bump
led chip
linear expansion
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002332702A
Other languages
Japanese (ja)
Inventor
Kazumasa Kurokawa
和雅 黒川
Akira Niiobi
亮 新帯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002332702A priority Critical patent/JP2004172160A/en
Publication of JP2004172160A publication Critical patent/JP2004172160A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which can prevent breakdown by fatigue of a bump even when the environmental temperature difference for use is large. <P>SOLUTION: A space between an LED chip 2 and lead frames 3, 4 is filled with an underfill 7 in place of the transparent resin 9, which is smaller in the line expansion coefficient than the transparent resin 9, or more preferably is equivalent in the line expansion coefficient to the Au bump. Therefore, the light emitting element 1 which can surely prevent breakdown with fatigue of the Au bump 6 can be provided by making smaller the compressed stress or tensile stress generated on the Au bump 6 due to the difference between the line expansion coefficients of the Au bump 6 and underfill 7 than that of the light emitting element of the prior art, even if the environmental temperature changes to a large extent during use of the light emitting element 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、発光素子に関するものであり、たとえば車両の計器等の照明用光源として用いて好適である。
【0002】
【従来の技術】
従来の発光素子は、通電により発光するLEDチップと、導電部材であるリードフレームとを備え、LEDチップの電極がリードフレームにハンダバンプあるいはAuバンプ等より電気的に接続され、LEDチップ、リードフレームおよびハンダバンプが透明樹脂内に封入される構造になっている。そして、リードフレームの一部は透明樹脂の外側に延出され、これを介して、LEDチップが外部と電気的に接続される。
【0003】
【発明が解決しようとする課題】
従来の発光素子において、透明樹脂として、一般にはエポキシ樹脂が用いられている。エポキシ樹脂の線膨張係数は70PPM/℃〜140PPM/℃である。一方、LEDチップとリードフレームとの接続している、たとえばAuバンプの線膨張係数は14PPM/℃である。すなわち、Auバンプの線膨張係数と、それを覆うエポキシ樹脂の線膨張係数との間に大きな差がある。
【0004】
たとえば、発光素子が車両の計器盤の照明用光源として用いられた場合、計器盤の温度は、真夏の炎天下駐車中、あるいは冬季暖房使用中にはかなりの高温になる。一方、冬季夜間駐車中においては0℃以下になることもあり得る。したがって、車両に用いた場合の環境温度差は100℃以上となることもある。
【0005】
このため、発光素子の使用中において環境温度が大きく変化する場合、周囲のエポキシ樹脂の膨張・収縮によってAuバンプに圧縮応力あるいは引っ張り応力が発生し、さらに、この応力が繰返し作用すると、Auバンプが疲労破断する可能性がある。
【0006】
本発明は、上記問題点に鑑みなされたものであり、その目的は、使用環境温度差が大きい場合においてバンプの疲労破断を防止できる発光素子を提供することにある。
【0007】
【課題を解決するための手段】
本発明は上記目的を達成するため、以下の技術的手段を採用する。
【0008】
本発明の請求項1に記載の発光素子は、LEDチップと、導電部材とを備え、LEDチップの電極と導電部材とはバンプ構造により電気的に接続され、LEDチップと導電部材間にバンプを覆うように樹脂が充填され、LEDチップおよび樹脂が透明樹脂で覆われる発光素子であって、バンプの線膨張係数は透明樹脂の線膨張係数より小さく、且つ樹脂の線膨張係数は透明樹脂の線膨張係数より小さい構成としている。すなわち、従来の発光素子においては、バンプは直接透明樹脂に覆われているが、本発明の請求項1に記載の発光素子では、バンプを樹脂で覆い、さらにその外側を透明樹脂で覆っている。これにより、バンプの線膨張係数とバンプを直接覆う部材の線膨張係数との差を従来の発光素子の場合よりも小さくして、発光素子の周囲温度が変化した場合にバンプに生じる圧縮あるいは引っ張り応力を低減することができる。したがって、使用環境温度差が大きい場合においてもバンプの疲労破断を防止できる発光素子を実現できる。
【0009】
請求項2に記載の発光素子は、樹脂の線膨張係数はバンプの線膨張係数と同等としている。これにより、バンプの線膨張係数とバンプを直接覆う樹脂の線膨張係数との差をほとんどなくして、発光素子の周囲温度が変化した場合にバンプに生じる圧縮あるいは引っ張り応力をほとんど0とすることができる。したがって、使用環境温度差が大きい場合においてもバンプの疲労破断を確実に防止できる発光素子を実現できる。
【0010】
請求項3に記載の発光素子は、LEDチップの発光面の外周に光反射ケースを配置する構成としている。これにより、LEDチップから発射される光を高効率出所定方向に向けて照射することができる。
【0011】
請求項4に記載の発光素子は、樹脂にフィラーを含有させた構成としている。これにより、容易に樹脂の線膨張係数を小さくすることができる。また、フィラーの含有率を変えることにより樹脂の線膨張係数を所望の値に調整することができる。
【0012】
請求項5に記載の発光素子は、導電部材は金属製リードフレームまたはプリント基板である構成としている。これにより、発光素子を容易に外部と電気的に接続することができる。
【0013】
【発明の実施の形態】
以下、本発明による発光素子を、図面に基づいて説明する。
【0014】
(第1実施形態)
図1は、本発明の第1実施形態による発光素子1の断面図であり、図2のI−I線断面図である。
【0015】
図2は、本発明の第1実施形態による発光素子1の平面図であり、図1中のII矢視図である。
【0016】
発光素子1は、たとえば自動車のコンビネーションメータ(図示せず)の文字盤(図示せず)あるいは指針(図示せず)を発光表示させるための光源として用いられている。
【0017】
以下、発光素子1の構成について詳細に説明する。
【0018】
LEDチップ2は、半導体からなり、P−N接合部(図示せず)を有している。また、図1、図2に示すように、LEDチップ2のP型領域(図示せず)には電極21が、N型領域(図示せず)には電極22がそれぞれ設けられている。電極21を直流電源の+極に、電極22を−極に接続すると、P型領域とN型領域の接合面が発光して、図1の上方に光が照射される。
【0019】
導電部材であるリードフレーム3、4は、たとえば燐青銅の薄板よりなり、その厚さは、たとえば0.2mm程度である。リードフレーム3、4のLEDチップ側(図1における上側)表面31、41にはAg(銀)メッキが施され、リードフレーム3、4の表面31、41を除く全面にはSn(錫)メッキが施されている。リードフレーム3、4は、図1に示すように、それぞれ表面31、41において、LEDチップ2の電極21、22にAu(金)バンプ6を介して電気的に接続されて、LEDチップ2を外部と接続するための配線の機能を果たしている。また、リードフレーム3、4は、絶縁材料、たとえば樹脂からなるリードフレームホルダ5に保持固定されている。
【0020】
LEDチップ2とリードフレーム3、4との間の空間には、樹脂であるアンダーフィル7がAuバンプ6を覆うように充填されている。アンダーフィル7は、たとえばエポキシ樹脂にフィラーとしてたとえば粉末状のガラス(図示せず)を均一に混入させたものである。
【0021】
光反射ケースである反射筒8は、たとえば樹脂等から両端が開口する略筒状に形成されている。反射筒8は、図1に示すように、その一端側においてリードフレーム3、4の上面にLEDチップ2を取囲むように取り付けられている。反射筒8は、LEDチップ2から放射状に出射される光を図1の上方に向けて反射して、図1の上方向における照度を高める機能を果たしている。
【0022】
反射筒8の内側には、図1に示すように、LEDチップ2およびアンダーフィル7を覆うように透明樹脂9が充填されている。透明樹脂9は、たとえばエポキシ樹脂が用いられ、これによりLEDチップ2を埃や水分等から保護している。
【0023】
次に、本発明の第1実施形態による発光素子1の特徴である、アンダーフィル7の作用・効果について説明する。
【0024】
従来の発光素子の場合、アンダーフィル7は無く、LEDチップとリードフレームとの間の空間には、LEDチップの発光面側に充填される透明樹脂、たとえばエポキシ樹脂が回り込んで充填されている。したがって、LEDチップの電極とリードフレームとを接続しているAuバンプも透明樹脂により覆われている。
【0025】
ところで、エポキシ樹脂の線膨張係数は70PPM/℃〜140PPM/℃であり、Auバンプの線膨張係数は14PPM/℃である。すなわち、Auバンプの線膨張係数と、それを覆うエポキシ樹脂の線膨張係数との間に大きな差がある。
【0026】
このため、発光素子の使用中において環境温度が大きく変化すると、周囲のエポキシ樹脂の膨張・収縮によってAuバンプに圧縮応力あるいは引っ張り応力が発生し、さらに、この応力が繰返し作用するとAuバンプが疲労破断する可能性があるという問題があった。
【0027】
これに対し、本発明の第1実施形態による発光素子1においては、LEDチップ2とリードフレーム3、4との間の空間には、透明樹脂9に替えてアンダーフィル7が充填されている。このアンダーフィル7は、エポキシ樹脂にフィラーとして粉末状のガラス(図示せず)を均一に混入させたものである。ガラスの線膨張係数は略1PPM/℃とエポキシ樹脂に比べて遥かに小さいため、フィラーを添加することによりアンダーフィル7の線膨張係数を小さくすることができる。
【0028】
本発明の第1実施形態による発光素子1の場合、体積で50%のフィラーを添加し、それにより、アンダーフィル7の線膨張係数は約25PPM/℃に低下している。すなわち、Auバンプ6の線膨張係数と、それを覆うアンダーフィル7の線膨張係数との差を、従来の発光素子に比べて小さくしている。したがって、発光素子1の使用中において環境温度が大きく変化しても、Auバンプ6の線膨張係数とアンダーフィル7の線膨張係数との差によりAuバンプ6に生じる圧縮応力あるいは引っ張り応力の大きさを従来の発光素子の場合より小さくできるので、Auバンプ6が疲労破断することを確実に防止することができる。
【0029】
なお、以上説明した、本発明の第1実施形態による発光素子1においては、アンダーフィル7に添加するフィラーとして粉末状のガラスを用いているが、粉末状のガラスに限る必要は無く、線膨張係数が小さく且つ非導電性の材料であれば他の材質であってもよい。たとえば、各種セラミックス等でもよい。さらに、アンダーフィル7のベースとなる樹脂をエポキシ樹脂としているが、他の材質を用いてもよい。
【0030】
また、Auバンプ6に生じる圧縮応力あるいは引っ張り応力の大きさを小さくする、あるいはほとんど生じさせないためには、アンダーフィル7の線膨張係数をAuバンプ6の線膨張係数にできるだけ近づける、あるいはほぼ等しくすればよい。一方、フィラーの添加量を多くすればアンダーフィル7の線膨張係数は小さくできるが、アンダーフィル7の流動性も悪化する、つまり生産工程においてLEDチップ2とリードフレーム3、4との間への流れ込み性が悪化する。したがって、線膨張係数および流動性の両者が適切な値となるように、フィラーの添加割合、フィラー材質が設定される。
【0031】
次に、本発明の第1実施形態による発光素子1の製造方法について簡単に説明する。
【0032】
先ず、LEDチップ2の電極21、22を、Auバンプ6を介してリードフレーム3、4にそれぞれ接続する。
【0033】
次に、反射筒8をリードフレーム3、4に接着等により固定する。
【0034】
次に、LEDチップ2とリードフレーム3、4を水平にセットして、LEDチップ2とリードフレーム3、4との間へアンダーフィル7をポッティングする。このとき、アンダーフィル7は、毛細管現象によりLEDチップ2とリードフレーム3、4との間へ浸入してAuバンプ6を覆う。ここで、ポッティングされるアンダーフィル7量は、ポッティング完了後においてアンダーフィル7の上面71の図1における上下方向位置がLEDチップ2の上面23と下面24の中間となるように設定される。アンダーフィル7量が多すぎると、LEDチップ2の上面23を部分的に覆い、発光面積が減少してしまい、一方、少なすぎるとAuバンプ6が部分的に露出し、その部分が透明樹脂9で覆われてAuバンプ6に圧縮応力あるいは引っ張り応力が生じてしまう。
【0035】
最後に、反射筒8の内側に、LEDチップ2およびアンダーフィル7を覆うように透明樹脂9を注入する。以上で、本発明の第1実施形態による発光素子1が完成する。
【0036】
以上説明したように、本発明の第1実施形態による発光素子1においては、LEDチップ2とリードフレーム3、4との間の空間に、透明樹脂9の替わりに、線膨張係数が透明樹脂9よりも小さい、より望ましくは、線膨張係数がAuバンプと同等であるようなアンダーフィル7を充填している。これにより、発光素子1の使用中において環境温度が大きく変化しても、Auバンプ6の線膨張係数とアンダーフィル7の線膨張係数との差によりAuバンプ6に生じる圧縮応力あるいは引っ張り応力の大きさを、従来の発光素子の場合より小さくして、Auバンプ6が疲労破断することを確実に防止することができる。
【0037】
図3には、本発明の第1実施形態による発光素子1の変形例の部分斜視外観図を示す。なお、図3においては、分かり易さのために、アンダーフィル7、反射筒8、透明樹脂9を省略している。
【0038】
上述の、本発明の第1実施形態による発光素子1においては、LEDチップ2の個数を1個としているが、図3に示すように、複数個としてもよい。この場合、複数個のLEDチップ2を、図3に示すように直線状に配置すれば、たとえば、指針計器における指針に適用して、自発光指針を容易に実現することができる。
【0039】
(第2実施形態)
図4に、本発明の第2実施形態による発光素子1の断面図を示す。
【0040】
本発明の第2実施形態による発光素子1においては、導電部材として、リードフレーム3、4に替えてプリント基板10を用いている。
【0041】
LEDチップ2の電極21、22は、図4に示すように、プリント基板10の導電パタン101、102にAuバンプ6を介してそれぞれ接続されている。そして、LEDチップ2とプリント基板10の間には、第1実施形態の場合と同様に、アンダーフィル7が充填されている。
【0042】
本発明の第2実施形態による発光素子1においても、第1実施形態の場合と同様に、Auバンプ6が疲労破断することを確実に防止することができる。
【0043】
なお、以上説明した、本発明の第1実施形態および第2実施形態による発光素子においては、LEDチップ2とリードフレーム3、4、あるいはプリント基板10との接続にAuバンプ6を用いているが、他のバンプ構造、たとえば、はんだバンプを使用してもよい。この場合も、アンダーフィル7へのフィラーの添加割合を調整してアンダーフィル7の線膨張係数を使用するバンプの線膨張係数に近い値に、またはほぼ同等な値に設定すれば、使用過程においてバンプが疲労破断することを確実に防止できる発光素子を提供できる。
【0044】
また、以上説明した、本発明の第1実施形態および第2実施形態による発光素子においては、発光素子1の光照射方向に指向性を与えるために反射筒8を設けているが、反射筒8を設けない構成としてもよい。
【0045】
また、本発明の第1実施形態および第2実施形態による発光素子1において、透明樹脂9にエポキシ樹脂を用いているが、他の樹脂であってもよい。
【0046】
また、本発明の第1実施形態および第2実施形態による発光素子1において、LEDチップ2の発光色は何色であってもよい。また、LEDチップ2を複数個配置する場合には、複数個のLEDチップ2の発光色を同色で統一しても、あるいは複数種類を混在させてもどちらでもよい。
【図面の簡単な説明】
【図1】本発明の第1実施形態による発光素子1の断面図であり、図2のI−I線断面図である。
【図2】本発明の第1実施形態による発光素子1の平面図であり、図1中のII矢視図である。
【図3】本発明の第1実施形態による発光素子1の変形例の部分斜視外観図である。
【図4】本発明の第2実施形態による発光素子1の断面図である。
【符号の説明】
1 発光素子
2 LEDチップ
21 電極
22 電極
23 上面
24 下面
3 リードフレーム(導電部材)
4 リードフレーム(導電部材)
5 リードフレームホルダ
6 Auバンプ(バンプ)
7 アンダーフィル(樹脂)
71 上面
8 反射筒(光反射ケース)
9 透明樹脂
10 プリント基板(導電部材)
101 導電パタン(導電部材)
102 導電パタン(導電部材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting element, and is suitable for use as, for example, a light source for illumination such as an instrument of a vehicle.
[0002]
[Prior art]
A conventional light emitting device includes an LED chip that emits light when energized, and a lead frame that is a conductive member, and the electrodes of the LED chip are electrically connected to the lead frame via solder bumps or Au bumps, and the LED chip, the lead frame, and the like. The structure is such that solder bumps are sealed in a transparent resin. Then, a part of the lead frame is extended outside the transparent resin, and the LED chip is electrically connected to the outside via this.
[0003]
[Problems to be solved by the invention]
In a conventional light emitting device, an epoxy resin is generally used as a transparent resin. The linear expansion coefficient of the epoxy resin is 70 PPM / ° C to 140 PPM / ° C. On the other hand, the linear expansion coefficient of the connection between the LED chip and the lead frame, for example, the Au bump is 14 PPM / ° C. That is, there is a large difference between the linear expansion coefficient of the Au bump and the linear expansion coefficient of the epoxy resin covering the Au bump.
[0004]
For example, when the light-emitting element is used as a light source for illuminating a dashboard of a vehicle, the temperature of the dashboard becomes considerably high when the vehicle is parked under hot sunshine in summer or when heating is used in winter. On the other hand, it may be 0 ° C. or less during winter night parking. Therefore, the environmental temperature difference when used in a vehicle may be 100 ° C. or more.
[0005]
For this reason, when the ambient temperature changes greatly during use of the light emitting element, a compressive stress or a tensile stress is generated on the Au bump due to expansion and contraction of the surrounding epoxy resin. Fatigue failure may occur.
[0006]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a light emitting device that can prevent fatigue fracture of a bump when a use environment temperature difference is large.
[0007]
[Means for Solving the Problems]
The present invention employs the following technical means to achieve the above object.
[0008]
The light emitting device according to claim 1 of the present invention includes an LED chip and a conductive member, and the electrode of the LED chip and the conductive member are electrically connected by a bump structure, and a bump is formed between the LED chip and the conductive member. A light-emitting element in which resin is filled so as to cover the LED chip and the resin is covered with the transparent resin, wherein the coefficient of linear expansion of the bump is smaller than the coefficient of linear expansion of the transparent resin, and the coefficient of linear expansion of the resin is the linear expansion coefficient of the transparent resin. The configuration is smaller than the expansion coefficient. That is, in the conventional light emitting element, the bump is directly covered with the transparent resin, but in the light emitting element according to claim 1 of the present invention, the bump is covered with the resin, and the outside is further covered with the transparent resin. . As a result, the difference between the coefficient of linear expansion of the bump and the coefficient of linear expansion of the member directly covering the bump is made smaller than in the case of the conventional light emitting element, and the compression or pulling generated on the bump when the ambient temperature of the light emitting element changes. Stress can be reduced. Therefore, it is possible to realize a light emitting element that can prevent the fatigue fracture of the bump even when the temperature difference in the use environment is large.
[0009]
In the light emitting device according to the second aspect, the linear expansion coefficient of the resin is equal to the linear expansion coefficient of the bump. As a result, the difference between the coefficient of linear expansion of the bump and the coefficient of linear expansion of the resin directly covering the bump is almost eliminated, and the compression or tensile stress generated in the bump when the ambient temperature of the light emitting element changes is almost zero. it can. Therefore, it is possible to realize a light-emitting element that can surely prevent the fatigue fracture of the bump even when the use environment temperature difference is large.
[0010]
The light emitting element according to claim 3 has a configuration in which a light reflecting case is arranged on the outer periphery of the light emitting surface of the LED chip. Thereby, the light emitted from the LED chip can be irradiated in a predetermined direction with high efficiency.
[0011]
The light emitting element according to claim 4 has a configuration in which a resin contains a filler. Thereby, the linear expansion coefficient of the resin can be easily reduced. Further, by changing the content of the filler, the coefficient of linear expansion of the resin can be adjusted to a desired value.
[0012]
In the light emitting device according to the fifth aspect, the conductive member is a metal lead frame or a printed board. Thus, the light-emitting element can be easily electrically connected to the outside.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a light emitting device according to the present invention will be described with reference to the drawings.
[0014]
(1st Embodiment)
FIG. 1 is a sectional view of the light emitting device 1 according to the first embodiment of the present invention, and is a sectional view taken along line II of FIG.
[0015]
FIG. 2 is a plan view of the light emitting device 1 according to the first embodiment of the present invention, and is a view taken in the direction of the arrow II in FIG.
[0016]
The light emitting element 1 is used as a light source for emitting and displaying a dial (not shown) or a pointer (not shown) of a combination meter (not shown) of an automobile, for example.
[0017]
Hereinafter, the configuration of the light emitting element 1 will be described in detail.
[0018]
The LED chip 2 is made of a semiconductor and has a PN junction (not shown). As shown in FIGS. 1 and 2, an electrode 21 is provided in a P-type region (not shown) of the LED chip 2, and an electrode 22 is provided in an N-type region (not shown). When the electrode 21 is connected to the positive pole of the DC power supply and the electrode 22 is connected to the negative pole, the junction surface between the P-type region and the N-type region emits light, and light is irradiated upward in FIG.
[0019]
The lead frames 3 and 4, which are conductive members, are made of, for example, a thin plate of phosphor bronze, and have a thickness of, for example, about 0.2 mm. Ag (silver) plating is applied to the LED chip side (upper side in FIG. 1) surfaces 31 and 41 of the lead frames 3 and 4, and Sn (tin) plating is applied to the entire surface except the surfaces 31 and 41 of the lead frames 3 and 4. Is given. As shown in FIG. 1, the lead frames 3 and 4 are electrically connected to the electrodes 21 and 22 of the LED chip 2 via Au (gold) bumps 6 on the surfaces 31 and 41, respectively. It has the function of wiring to connect to the outside. The lead frames 3 and 4 are held and fixed to a lead frame holder 5 made of an insulating material, for example, a resin.
[0020]
The space between the LED chip 2 and the lead frames 3 and 4 is filled with an underfill 7 made of resin so as to cover the Au bump 6. The underfill 7 is obtained by, for example, uniformly mixing powdery glass (not shown) as a filler into an epoxy resin, for example.
[0021]
The reflecting cylinder 8 as a light reflecting case is formed in a substantially cylindrical shape with both ends opened from, for example, resin. As shown in FIG. 1, the reflecting tube 8 is attached to the upper surfaces of the lead frames 3 and 4 at one end so as to surround the LED chip 2. The reflecting cylinder 8 has a function of reflecting light emitted radially from the LED chip 2 upward in FIG. 1 and increasing illuminance in the upward direction in FIG.
[0022]
As shown in FIG. 1, the inside of the reflecting tube 8 is filled with a transparent resin 9 so as to cover the LED chip 2 and the underfill 7. As the transparent resin 9, for example, an epoxy resin is used, thereby protecting the LED chip 2 from dust, moisture, and the like.
[0023]
Next, the operation and effect of the underfill 7, which is a feature of the light emitting device 1 according to the first embodiment of the present invention, will be described.
[0024]
In the case of the conventional light emitting element, there is no underfill 7, and the space between the LED chip and the lead frame is filled with a transparent resin, for example, an epoxy resin, which fills the light emitting surface side of the LED chip. . Therefore, the Au bump connecting the electrode of the LED chip and the lead frame is also covered with the transparent resin.
[0025]
Incidentally, the linear expansion coefficient of the epoxy resin is 70 PPM / ° C. to 140 PPM / ° C., and the linear expansion coefficient of the Au bump is 14 PPM / ° C. That is, there is a large difference between the linear expansion coefficient of the Au bump and the linear expansion coefficient of the epoxy resin covering the Au bump.
[0026]
For this reason, if the ambient temperature changes greatly during use of the light emitting device, expansion or contraction of the surrounding epoxy resin generates a compressive stress or a tensile stress on the Au bump. There was a problem that there is a possibility.
[0027]
On the other hand, in the light emitting element 1 according to the first embodiment of the present invention, the space between the LED chip 2 and the lead frames 3 and 4 is filled with an underfill 7 instead of the transparent resin 9. The underfill 7 is obtained by uniformly mixing powdery glass (not shown) as a filler in an epoxy resin. Since the linear expansion coefficient of glass is about 1 PPM / ° C., which is much smaller than that of epoxy resin, the linear expansion coefficient of the underfill 7 can be reduced by adding a filler.
[0028]
In the case of the light emitting device 1 according to the first embodiment of the present invention, a filler of 50% by volume is added, whereby the coefficient of linear expansion of the underfill 7 is reduced to about 25 PPM / ° C. That is, the difference between the linear expansion coefficient of the Au bump 6 and the linear expansion coefficient of the underfill 7 that covers the Au bump 6 is smaller than that of the conventional light emitting device. Therefore, even if the environmental temperature changes greatly during use of the light emitting element 1, the magnitude of the compressive stress or the tensile stress generated in the Au bump 6 due to the difference between the linear expansion coefficient of the Au bump 6 and the linear expansion coefficient of the underfill 7 Can be made smaller than in the case of the conventional light emitting element, so that the fatigue fracture of the Au bump 6 can be reliably prevented.
[0029]
In the light emitting device 1 according to the first embodiment of the present invention described above, powdery glass is used as the filler added to the underfill 7. However, the filler is not limited to powdery glass, and is not limited to powdery glass. Other materials may be used as long as they have a small coefficient and are non-conductive. For example, various ceramics may be used. Furthermore, although the resin serving as the base of the underfill 7 is an epoxy resin, other materials may be used.
[0030]
Also, in order to reduce or hardly generate the magnitude of the compressive stress or the tensile stress generated in the Au bump 6, the linear expansion coefficient of the underfill 7 should be as close as possible to or approximately equal to the linear expansion coefficient of the Au bump 6. Just fine. On the other hand, if the amount of the filler added is increased, the coefficient of linear expansion of the underfill 7 can be reduced, but the fluidity of the underfill 7 also deteriorates, that is, the flow between the LED chip 2 and the lead frames 3 and 4 in the production process is reduced. Poor inflow property. Therefore, the filler addition ratio and filler material are set so that both the linear expansion coefficient and the fluidity have appropriate values.
[0031]
Next, the method for manufacturing the light emitting device 1 according to the first embodiment of the present invention will be briefly described.
[0032]
First, the electrodes 21 and 22 of the LED chip 2 are connected to the lead frames 3 and 4 via the Au bumps 6, respectively.
[0033]
Next, the reflecting cylinder 8 is fixed to the lead frames 3 and 4 by bonding or the like.
[0034]
Next, the LED chip 2 and the lead frames 3 and 4 are set horizontally, and the underfill 7 is potted between the LED chip 2 and the lead frames 3 and 4. At this time, the underfill 7 penetrates between the LED chip 2 and the lead frames 3 and 4 to cover the Au bump 6 by a capillary phenomenon. Here, the amount of the underfill 7 to be potted is set such that the vertical position of the upper surface 71 of the underfill 7 in FIG. 1 is intermediate between the upper surface 23 and the lower surface 24 of the LED chip 2 after the completion of the potting. If the amount of the underfill 7 is too large, the upper surface 23 of the LED chip 2 is partially covered and the light emitting area is reduced. On the other hand, if the amount is too small, the Au bumps 6 are partially exposed and the transparent resin 9 Then, a compressive stress or a tensile stress is generated on the Au bump 6.
[0035]
Finally, a transparent resin 9 is injected into the reflection tube 8 so as to cover the LED chip 2 and the underfill 7. Thus, the light emitting device 1 according to the first embodiment of the present invention is completed.
[0036]
As described above, in the light emitting device 1 according to the first embodiment of the present invention, the space between the LED chip 2 and the lead frames 3 and 4 has the linear expansion coefficient of the transparent resin 9 instead of the transparent resin 9. The underfill 7 having a smaller linear expansion coefficient than that of the Au bump is preferably filled. As a result, even if the environmental temperature changes greatly during use of the light emitting element 1, the magnitude of the compressive stress or the tensile stress generated in the Au bump 6 due to the difference between the linear expansion coefficient of the Au bump 6 and the linear expansion coefficient of the underfill 7 The size of the Au bump 6 can be made smaller than that of the conventional light emitting element, and the Au bump 6 can be reliably prevented from being broken by fatigue.
[0037]
FIG. 3 is a partial perspective external view of a modification of the light emitting device 1 according to the first embodiment of the present invention. Note that, in FIG. 3, the underfill 7, the reflecting cylinder 8, and the transparent resin 9 are omitted for easy understanding.
[0038]
In the above-described light emitting device 1 according to the first embodiment of the present invention, the number of LED chips 2 is one, but may be plural as shown in FIG. In this case, if the plurality of LED chips 2 are arranged in a straight line as shown in FIG. 3, the self-luminous pointer can be easily realized by, for example, applying to a pointer in a pointer instrument.
[0039]
(2nd Embodiment)
FIG. 4 is a sectional view of the light emitting device 1 according to the second embodiment of the present invention.
[0040]
In the light emitting device 1 according to the second embodiment of the present invention, a printed circuit board 10 is used instead of the lead frames 3 and 4 as the conductive member.
[0041]
The electrodes 21 and 22 of the LED chip 2 are connected to the conductive patterns 101 and 102 of the printed circuit board 10 via the Au bumps 6 as shown in FIG. The space between the LED chip 2 and the printed circuit board 10 is filled with the underfill 7 as in the case of the first embodiment.
[0042]
Also in the light emitting device 1 according to the second embodiment of the present invention, similarly to the case of the first embodiment, it is possible to reliably prevent the Au bumps 6 from being fractured by fatigue.
[0043]
In the light emitting devices according to the first and second embodiments of the present invention described above, the Au bumps 6 are used to connect the LED chip 2 to the lead frames 3, 4 or the printed circuit board 10. Other bump structures, for example, solder bumps, may be used. Also in this case, if the addition ratio of the filler to the underfill 7 is adjusted and the coefficient of linear expansion of the underfill 7 is set to a value close to or approximately equal to the coefficient of linear expansion of the bump to be used, It is possible to provide a light-emitting element that can surely prevent a fatigue fracture of a bump.
[0044]
Further, in the light emitting devices according to the first and second embodiments of the present invention described above, the reflecting tube 8 is provided in order to give directivity to the light irradiation direction of the light emitting device 1. May be omitted.
[0045]
Further, in the light emitting device 1 according to the first embodiment and the second embodiment of the present invention, an epoxy resin is used for the transparent resin 9, but another resin may be used.
[0046]
Further, in the light emitting device 1 according to the first embodiment and the second embodiment of the present invention, the emission color of the LED chip 2 may be any color. When a plurality of LED chips 2 are arranged, the emission colors of the plurality of LED chips 2 may be unified with the same color, or a plurality of types may be mixed.
[Brief description of the drawings]
FIG. 1 is a sectional view of a light emitting device 1 according to a first embodiment of the present invention, which is a sectional view taken along line II of FIG.
FIG. 2 is a plan view of the light emitting device 1 according to the first embodiment of the present invention, which is a view taken in the direction of arrow II in FIG.
FIG. 3 is a partial perspective external view of a modification of the light emitting device 1 according to the first embodiment of the present invention.
FIG. 4 is a sectional view of a light emitting device 1 according to a second embodiment;
[Explanation of symbols]
Reference Signs List 1 light emitting element 2 LED chip 21 electrode 22 electrode 23 upper surface 24 lower surface 3 lead frame (conductive member)
4 Lead frame (conductive member)
5 Lead frame holder 6 Au bump (bump)
7 Underfill (resin)
71 Top surface 8 Reflection tube (light reflection case)
9 Transparent resin 10 Printed circuit board (conductive member)
101 Conductive pattern (conductive member)
102 Conductive pattern (conductive member)

Claims (5)

LEDチップと、
導電部材とを備え、
前記LEDチップの電極と前記導電部材とはバンプ構造により電気的に接続され、
前記LEDチップと前記導電部材間に前記バンプを覆うように樹脂が充填され、
前記LEDチップおよび前記樹脂が透明樹脂で覆われる発光素子であって、
前記バンプの線膨張係数は前記透明樹脂の線膨張係数より小さく、且つ前記樹脂の線膨張係数は前記透明樹脂の線膨張係数より小さいことを特徴とする発光素子。
An LED chip,
And a conductive member,
The electrode of the LED chip and the conductive member are electrically connected by a bump structure,
A resin is filled between the LED chip and the conductive member so as to cover the bump,
A light emitting element in which the LED chip and the resin are covered with a transparent resin,
The light emitting device according to claim 1, wherein a linear expansion coefficient of the bump is smaller than a linear expansion coefficient of the transparent resin, and a linear expansion coefficient of the resin is smaller than a linear expansion coefficient of the transparent resin.
前記樹脂の線膨張係数は前記バンプの線膨張係数と同等であること特徴とする請求項1に記載の発光素子。The light emitting device according to claim 1, wherein a linear expansion coefficient of the resin is equal to a linear expansion coefficient of the bump. 前記LEDチップの発光面の外周に光反射ケースを配置することを特徴とする請求項1または請求項2に記載の発光素子。The light emitting device according to claim 1, wherein a light reflecting case is arranged on an outer periphery of a light emitting surface of the LED chip. 前記樹脂にフィラーを含有させたことを特徴とする請求項1ないし請求項3のいずれかに記載の発光素子。The light emitting device according to claim 1, wherein the resin contains a filler. 前記導電部材は金属製リードフレームまたはプリント基板であることを特徴とする請求項1ないし請求項4のいずれかに記載の発光素子。The light emitting device according to any one of claims 1 to 4, wherein the conductive member is a metal lead frame or a printed circuit board.
JP2002332702A 2002-11-15 2002-11-15 Light emitting element Pending JP2004172160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002332702A JP2004172160A (en) 2002-11-15 2002-11-15 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332702A JP2004172160A (en) 2002-11-15 2002-11-15 Light emitting element

Publications (1)

Publication Number Publication Date
JP2004172160A true JP2004172160A (en) 2004-06-17

Family

ID=32697646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332702A Pending JP2004172160A (en) 2002-11-15 2002-11-15 Light emitting element

Country Status (1)

Country Link
JP (1) JP2004172160A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344971A (en) * 2005-06-09 2006-12-21 Philips Lumileds Lightng Co Llc Method for removing growth substrate of semiconductor light emitting device
JP2007189501A (en) * 2006-01-13 2007-07-26 Matsushita Electric Ind Co Ltd Electronic component
JP2008085356A (en) * 2006-09-28 2008-04-10 Philips Lumileds Lightng Co Llc Process for preparing semiconductor device in order to mount the same
CN101436633B (en) * 2007-11-12 2011-03-30 三垦电气株式会社 Semiconductor luminescent device
KR101047603B1 (en) * 2009-03-10 2011-07-07 엘지이노텍 주식회사 Light emitting device package and its manufacturing method
WO2011099384A1 (en) 2010-02-09 2011-08-18 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
JP2012506140A (en) * 2008-10-17 2012-03-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device
US8610156B2 (en) 2009-03-10 2013-12-17 Lg Innotek Co., Ltd. Light emitting device package
JP2014022581A (en) * 2012-07-19 2014-02-03 Nichia Chem Ind Ltd Light emitting device, and method of manufacturing the same
JP2014036127A (en) * 2012-08-09 2014-02-24 Nichia Chem Ind Ltd Light emitting device
JP2014140070A (en) * 2014-04-14 2014-07-31 Hitachi Chemical Co Ltd Thermosetting resin composition for light reflection, optical semiconductor mounting board using the same, manufacturing method of the same and optical semiconductor device
JP2014216527A (en) * 2013-04-26 2014-11-17 京セラ株式会社 Light irradiation module and printer
US9123867B2 (en) 2011-01-28 2015-09-01 Nichia Corporation Light emitting device
KR20160046198A (en) * 2014-10-20 2016-04-28 엘지이노텍 주식회사 A light emitting device package
US9773959B2 (en) 2008-09-09 2017-09-26 Nichia Corporation Optical-semiconductor device and method for manufacturing the same
US9812624B2 (en) 2008-01-17 2017-11-07 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US10043951B2 (en) 2016-06-14 2018-08-07 Samsung Electronics Co., Ltd. Light emitting device package and method of manufacturing the same
JP2019091898A (en) * 2018-12-25 2019-06-13 日亜化学工業株式会社 Method for manufacturing light-emitting device
CN110058434A (en) * 2019-04-26 2019-07-26 电子科技大学中山学院 Electrically-driven surface plasmon polariton light source structure
WO2024091071A1 (en) * 2022-10-27 2024-05-02 서울반도체주식회사 Light-emitting diode package

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344971A (en) * 2005-06-09 2006-12-21 Philips Lumileds Lightng Co Llc Method for removing growth substrate of semiconductor light emitting device
JP2007189501A (en) * 2006-01-13 2007-07-26 Matsushita Electric Ind Co Ltd Electronic component
JP2008085356A (en) * 2006-09-28 2008-04-10 Philips Lumileds Lightng Co Llc Process for preparing semiconductor device in order to mount the same
US9899578B2 (en) 2006-09-28 2018-02-20 Lumileds Llc Process for preparing a semiconductor structure for mounting
CN101436633B (en) * 2007-11-12 2011-03-30 三垦电气株式会社 Semiconductor luminescent device
US10950770B2 (en) 2008-01-17 2021-03-16 Nichia Corporation Method for producing an electronic device
US9812624B2 (en) 2008-01-17 2017-11-07 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US11652197B2 (en) 2008-01-17 2023-05-16 Nichia Corporation Method for producing an electronic device
US10573795B2 (en) 2008-01-17 2020-02-25 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US10164163B2 (en) 2008-09-09 2018-12-25 Nichia Corporation Optical-semiconductor device with bottom surface including electrically conductive members and light-blocking base member therebetween, and method for manufacturing the same
KR20190038777A (en) * 2008-09-09 2019-04-09 니치아 카가쿠 고교 가부시키가이샤 Light emitting device
KR102205837B1 (en) 2008-09-09 2021-01-21 니치아 카가쿠 고교 가부시키가이샤 Light emitting device
KR20200062150A (en) * 2008-09-09 2020-06-03 니치아 카가쿠 고교 가부시키가이샤 Light emitting device
KR102117909B1 (en) 2008-09-09 2020-06-02 니치아 카가쿠 고교 가부시키가이샤 Light emitting device
US11271144B2 (en) 2008-09-09 2022-03-08 Nichia Corporation Optical-semiconductor device including a wavelength converting member and method for manufacturing the same
US9773959B2 (en) 2008-09-09 2017-09-26 Nichia Corporation Optical-semiconductor device and method for manufacturing the same
KR101845194B1 (en) * 2008-09-09 2018-04-03 니치아 카가쿠 고교 가부시키가이샤 Optical semiconductor device and manufacturing method thereof
KR101966243B1 (en) 2008-09-09 2019-04-08 니치아 카가쿠 고교 가부시키가이샤 Optical semiconductor device
KR20180037609A (en) * 2008-09-09 2018-04-12 니치아 카가쿠 고교 가부시키가이샤 Optical semiconductor device
JP2012506140A (en) * 2008-10-17 2012-03-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device
US8258538B2 (en) 2009-03-10 2012-09-04 Lg Innotek Co., Ltd. Light emitting device package
US9318677B2 (en) 2009-03-10 2016-04-19 Lg Innotek Co., Ltd. Light emitting device package
US8610156B2 (en) 2009-03-10 2013-12-17 Lg Innotek Co., Ltd. Light emitting device package
KR101047603B1 (en) * 2009-03-10 2011-07-07 엘지이노텍 주식회사 Light emitting device package and its manufacturing method
US8987775B2 (en) 2009-03-10 2015-03-24 Lg Innotek Co., Ltd. Light emitting device package
KR101763972B1 (en) * 2010-02-09 2017-08-01 니치아 카가쿠 고교 가부시키가이샤 Light emitting device
US10230034B2 (en) 2010-02-09 2019-03-12 Nichia Corporation Light emitting device and method for manufacturing light emitting device
JP5996871B2 (en) * 2010-02-09 2016-09-21 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
WO2011099384A1 (en) 2010-02-09 2011-08-18 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
US9887329B2 (en) 2010-02-09 2018-02-06 Nichia Corporation Light emitting device and method for manufacturing light emitting device
CN102754229B (en) * 2010-02-09 2016-07-06 日亚化学工业株式会社 The manufacture method of light-emitting device and light-emitting device
CN102754229A (en) * 2010-02-09 2012-10-24 日亚化学工业株式会社 Light emitting device and method for manufacturing light emitting device
JP2015228512A (en) * 2010-02-09 2015-12-17 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
EP2535954A1 (en) * 2010-02-09 2012-12-19 Nichia Corporation Light emitting device and method for manufacturing light emitting device
EP3547380A1 (en) 2010-02-09 2019-10-02 Nichia Corporation Light emitting device
EP2535954A4 (en) * 2010-02-09 2015-04-15 Nichia Corp Light emitting device and method for manufacturing light emitting device
US9196805B2 (en) 2010-02-09 2015-11-24 Nichia Corporation Light emitting device and method for manufacturing light emitting device
US9123867B2 (en) 2011-01-28 2015-09-01 Nichia Corporation Light emitting device
US9412918B2 (en) 2012-07-19 2016-08-09 Nichia Corporation Light emitting device and method of manufacturing the same
JP2014022581A (en) * 2012-07-19 2014-02-03 Nichia Chem Ind Ltd Light emitting device, and method of manufacturing the same
CN108878623A (en) * 2012-08-09 2018-11-23 日亚化学工业株式会社 Light emitting device
US10109777B2 (en) 2012-08-09 2018-10-23 Nichia Corporation Light emitting device
JP2014036127A (en) * 2012-08-09 2014-02-24 Nichia Chem Ind Ltd Light emitting device
US9709223B2 (en) 2012-08-09 2017-07-18 Nichia Corporation Light emitting device
JP2014216527A (en) * 2013-04-26 2014-11-17 京セラ株式会社 Light irradiation module and printer
JP2014140070A (en) * 2014-04-14 2014-07-31 Hitachi Chemical Co Ltd Thermosetting resin composition for light reflection, optical semiconductor mounting board using the same, manufacturing method of the same and optical semiconductor device
KR102301869B1 (en) 2014-10-20 2021-09-15 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 A light emitting device package
KR20160046198A (en) * 2014-10-20 2016-04-28 엘지이노텍 주식회사 A light emitting device package
US10043951B2 (en) 2016-06-14 2018-08-07 Samsung Electronics Co., Ltd. Light emitting device package and method of manufacturing the same
JP2019091898A (en) * 2018-12-25 2019-06-13 日亜化学工業株式会社 Method for manufacturing light-emitting device
CN110058434A (en) * 2019-04-26 2019-07-26 电子科技大学中山学院 Electrically-driven surface plasmon polariton light source structure
WO2024091071A1 (en) * 2022-10-27 2024-05-02 서울반도체주식회사 Light-emitting diode package

Similar Documents

Publication Publication Date Title
JP2004172160A (en) Light emitting element
CN100511732C (en) Light emitting device
CN101315963B (en) Semiconductor light-emitting device
US7902568B2 (en) Light-emitting module with plural light emitters and conductor pattern
TWI237910B (en) Lighting module and its production method
CN100530579C (en) Method for manufacture of transparent devices having light emitting diodes (LED)
US20110031513A1 (en) Waterproof smd led module and method of manufacturing the same
TW201025671A (en) LED device and method of packaging the same
KR101361575B1 (en) Light Emitting Diode package and method of manufacturing the same
WO2012050110A1 (en) Led module
JP2007049167A (en) Plcc package equipped with integrally-formed lens, and manufacturing method therefor
CN101060157A (en) Light emitting diode package and fabrication method thereof
CN111446235B (en) Luminous body and luminous module
US7985001B2 (en) LED light fixture and method for manufacturing the same
CN102339912A (en) Method for manufacturing light-emitting device
JP5936885B2 (en) Semiconductor light emitting device
KR101192816B1 (en) Led package and its manufacturing method
KR100839122B1 (en) Side view type led lamp and its fabricating method and light emittid apparatus comprising the same
CN207398144U (en) A kind of LED component, display module and display screen
TWI514051B (en) Backlight structure and method for manufacturing the same
JP2002270902A (en) Light emitting diode
KR101250381B1 (en) Optical package and manufacturing method of the same
KR100754884B1 (en) Light-emitting device and method of manufacturing the same
CN105845804A (en) Light emitting diode device and light emitting device using same
JP2013187269A (en) Optical semiconductor device and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212