JP2004169049A - Method for compounding metal to surface of cyclic olefine-based resin molding, and metal-compounded cyclic olefine-based resin molding - Google Patents

Method for compounding metal to surface of cyclic olefine-based resin molding, and metal-compounded cyclic olefine-based resin molding Download PDF

Info

Publication number
JP2004169049A
JP2004169049A JP2002332630A JP2002332630A JP2004169049A JP 2004169049 A JP2004169049 A JP 2004169049A JP 2002332630 A JP2002332630 A JP 2002332630A JP 2002332630 A JP2002332630 A JP 2002332630A JP 2004169049 A JP2004169049 A JP 2004169049A
Authority
JP
Japan
Prior art keywords
cyclic olefin
metal
based resin
resin
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002332630A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kanai
裕之 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2002332630A priority Critical patent/JP2004169049A/en
Priority to PCT/JP2003/014461 priority patent/WO2004046419A1/en
Priority to AU2003280771A priority patent/AU2003280771A1/en
Priority to TW092131910A priority patent/TWI340769B/en
Publication of JP2004169049A publication Critical patent/JP2004169049A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for compounding a metal to the surface of a cyclic olefine-based resin molding, and to provide a compounded molding of a cyclic olefine-based resin molding and a metal which is particularly optimum as the component of a device extremely low in a dielectric constant and a dielectric loss, extremely low in water absorption as well, and treating a high frequency electric signal in a GHz band. <P>SOLUTION: In the molding of a cyclic olefine-based resin or the composition thereof, at least a part of the surface of the molding is roughened so that the ten point average roughness Rz is ≥5 μm, and a metallic film is thereafter formed on the surface of the molding by a wet plating method. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、環状オレフィン系樹脂成形品表面へのメッキによる金属複合方法及び該方法により得られた金属複合化環状オレフィン系樹脂成形品に関する。金属複合化環状オレフィン系樹脂成形品は、高周波、殊にGHz帯の高周波電気信号を処理するデバイスの構成部品に適する。
【0002】
【従来の技術】
近年、携帯電話、インターネット、無線LAN等、通信のブロードバンド化への要望はますます高まっている。情報をより高速かつ大量に伝送するために、電気信号の高周波化が著しく進んでいる。
より高周波の信号を扱うデバイスの基板(絶縁体)には、誘電率および誘電損失(誘電正接(tanδ))がともに低い材料が求められる。これは、誘電率および誘電損失が大きいと、電気信号の遅れや損失が大きくなり、信号の処理が困難になるためである。特に、GHz帯の高周波信号を扱うデバイスでは基板の低誘電率化・低損失化の要求が顕著である。
【0003】
環状オレフィン系樹脂はプラスチック材料のなかでも誘電率・誘電損失がともに非常に低い材料であり、最も低誘電率であるフッ素樹脂(ポリテトラフルオロエチレン(PTFE))に匹敵するものであることが知られている。例えば、環状オレフィン系樹脂の10GHzにおける誘電率は2.27、誘電正接は0.0001であり、同条件でPTFEは誘電率2.1、誘電正接0.0002であることが知られている(非特許文献1参照)。
このようにフッ素樹脂は高周波電子デバイスの基板材料としては理想的な誘電特性であるが、熱可塑性樹脂でないため加工性に著しく劣り、そのため非常に特殊な用途への使用に限られていた。
【0004】
これに対し環状オレフィン系樹脂は熱可塑性で加工性に優れており、広範な用途への適用が期待される。例えば、環状オレフィン系樹脂の一種である熱可塑性ノルボルネン系樹脂を、1.4GHz以上の高周波の伝送に用いるコネクターのインシュレーターに適用することが提案されている(特許文献1参照)。この発明は、コネクターのインシュレーターヘの適用に限定されており、回路形成等に必要な金属との複合化については考慮されていない。
【0005】
環状オレフィン系樹脂は炭素と水素のみからなるため、極性が低く、そのままでは、金属を密着力高く複合することは困難である。また、環状オレフィン系樹脂の一種である熱可塑性ノルボルネン系樹脂と軟質重合体からなる組成物が提案され、該成形品を、高周波帯域で使用されるプリント配線基板、アンテナ、コネクター用インシュレーター等の部品に使用することができる旨の記述がある(特許文献2参照)。しかしこの発明も、実質的にはコネクターのインシュレーターヘの適用に限定したものであり、回路形成に必要な金属との複合化については何ら具体的な教示はない。
【0006】
また、側鎖に極性基をもつ環状オレフィン系樹脂のフィルムに金属薄膜を積層したプリント基板が提案されている。この発明の環状オレフィン系樹脂は極性基を有しているため金属との密着力は高い。しかしその吸水率は0.2%と、極性基のない環状オレフィン系樹脂の吸水率0.01%に比べて非常に高いので、吸水が原因で使用中に誘電率・誘電損失が上昇し、好ましくない(特許文献3参照)。
【0007】
また、結晶性熱可塑性樹脂においては、粗化した成形品表面にパラジウムイオンを含有する水溶性高分子樹脂組成物を塗布した後、パラジウムイオンを金属に還元して、メッキを施す方法が提案されているが、非晶性樹脂である環状オレフィン系樹脂については、このような金属複合化方法が良好に行われるかどうかは知られていない(特許文献4参照)。
【0008】
【特許文献1】
特開平8−213113号公報 (特許請求の範囲)
【特許文献2】
特開平8−325440号公報 (特許請求の範囲、段落0019)
【特許文献3】
特開2000−301088号公報(第1頁の
【解決手段】、段落0035、第10ページ表1)
【特許文献4】
特開2000−154266号公報 (特許請求の範囲)
【非特許文献1】
馬場文明、「プラスチックス」、vol.45、No.9、p10−15、1994年(第4表)
【0009】
【発明が解決しようとする課題】
本発明の目的は、環状オレフィン系樹脂の成形体の表面に金属を複合する方法、及び、誘電率・誘電損失が非常に低く、かつ吸水率が非常に小さい、GHz帯の高周波電気信号を処理するデバイスの構成部品として最適な環状オレフィン系樹脂成形品と金属の複合成形品を供給することである。
【0010】
【課題を解決するための手段】
本発明者らは、検討を進めた結果、環状オレフィン系樹脂の成形品表面を特定の条件に粗化した後、湿式メッキ法により成形品表面に金属層を設けることにより、成形品表面に金属層を高い密着力で複合化できることを見出し、本発明を完成するに至った。
【0011】
すなわち、本発明の第1は、環状オレフィン系樹脂もしくはその組成物の成形品に対し、成形品表面の少なくとも一部を、十点平均粗さRzが5μm以上となるように粗化した後、成形品表面に金属膜を湿式メッキ法により形成することを特徴とする環状オレフィン系樹脂成形品への金属複合方法を提供する。
本発明の第2は、粗化が、サンドブラスト、ショットブラスト、液体ホーニング、タンブリング及びレーザー照射からなる群から選ばれた少なくとも一種で行われる本発明の第1に記載の金属複合方法を提供する。
本発明の第3は、湿式メッキ法が無電解メッキ法である本発明の第1または2に記載の金属複合方法を提供する。
本発明の第4は、湿式メッキ法が、無電解メッキを施した後に電解メッキを施す方法である本発明の第1または2に記載の金属複合方法を提供する。
本発明の第5は、環状オレフィン系樹脂の少なくとも一部が、極性基をもつ不飽和化合物がグラフトされた変性環状オレフィン系樹脂である本発明の第1〜4のいずれか1項に記載の金属複合方法を提供する。
本発明の第6は、環状オレフィン系樹脂もしくはその組成物に含有されている極性基の濃度が1mol/kg以下である本発明の第5に記載の金属複合方法を提供する。
本発明の第7は、環状オレフィン系樹脂が、α−オレフィンと環状オレフィンの付加共重合体である本発明の第1〜6のいずれか1項に記載の金属複合方法を提供する。
本発明の第8は、環状オレフィンがノルボルネンもしくはテトラシクロドデセンである本発明の第7に記載の金属複合方法を提供する。
本発明の第9は、環状オレフィン系樹脂組成物が、環状オレフィン系樹脂と中空無機充填材からなる本発明の第1〜8のいずれか1項記載の金属複合方法を提供する。
本発明の第10は、中空無機充填材がガラスバルーンもしくはシラスバルーンである本発明の第9記載の金属複合方法を提供する。
本発明の第11は、本発明の第1〜9のいずれか1項に記載の環状オレフィン系樹脂成形品への金属複合方法により得られた金属複合化環状オレフィン系樹脂成形品を提供する。
本発明の第12は、金属−樹脂もしくはその組成物間のピール強度が0.2kg/cm以上である本発明の第11に記載の金属複合化環状オレフィン系樹脂成形品を提供する。
本発明の第13は、環状オレフィン系樹脂もしくはその組成物の吸水率が0.1%以下である本発明の第11又は12に記載の金属複合化環状オレフィン系樹脂成形品を提供する。
本発明の第14は、GHz帯の高周波電気信号を処理するデバイスの構成部品に使用される本発明の第11〜13のいずれか1項に記載の金属複合化環状オレフィン系樹脂成形品を提供する。
【0012】
【発明の実施の形態】
環状オレフィン系樹脂成形品
環状オレフィン系樹脂(a)とは、主鎖が炭素−炭素結合からなり、主鎖の少なくとも一部に環状炭化水素構造を有する高分子化合物である。この環状炭化水素構造は、ノルボルネンやテトラシクロドデセンに代表されるような、環状炭化水素構造中に少なくとも一つのオレフィン性二重結合を有する化合物(環状オレフィン)を単量体として用いることで導入される。
環状オレフィン系樹脂(a)は、環状オレフィンの付加(共)重合体またはその水素添加物(al)、環状オレフィンとα−オレフィンの付加共重合体またはその水素添加物(a2)、環状オレフィンの開環(共)重合体またはその水素添加物(a3)に分類される。
また、環状オレフィン系樹脂(a)には、前述の環状オレフィン系樹脂(al)〜(a3)に極性基(例えば、カルボキシル基、酸無水物基、エポキシ基、アミド基、エステル基、ヒドロキシル基など)を有する不飽和化合物(u)をグラフト及び/又は共重合したもの(a4)を含めることができる。上記環状オレフィン系樹脂(al)〜(a4)は、二種以上混合使用してもよい。
上記不飽和化合物(u)としては、(メタ)アクリル酸、マレイン酸、無水マレイン酸、無水イタコン酸、グリシジル(メタ)アクリレート、(メタ)アクリル酸アルキル(炭素数1〜10)エステル、マレイン酸アルキル(炭素数1〜10)エステル、(メタ)アクリルアミド、(メタ)アクリル酸−2−ヒドロキシエチル等が挙げられる。
【0013】
環状オレフィンの具体例としては、シクロペンテン、シクロヘキセン、シクロオクテン;シクロペンタジエン、1,3−シクロヘキサジエン等の1環の環状オレフィン;
ビシクロ[2.2.1]ヘプタ−2−エン(慣用名:ノルボルネン)、5−メチル−ビシクロ[2.2.1]ヘプタ−2−エン、5,5−ジメチル−ビシクロ[2.2.1]ヘプタ−2−エン、5−エチル−ビシクロ[2.2.1]ヘプタ−2−エン、5−ブチル−ビシクロ[2.2.1]ヘプタ−2−エン、5−エチリデン−ビシクロ[2.2.1]ヘプタ−2−エン、5−ヘキシル−ビシクロ[2.2.1]ヘプタ−2−エン、5−オクチル−ビシクロ[2.2.1]ヘプタ−2−エン、5−オクタデシル−ビシクロ[2.2.1]ヘプタ−2−エン、5−メチリデン−ビシクロ[2.2.1]ヘプタ−2−エン、5−ビニル−ビシクロ[2.2.1]ヘプタ−2−エン、5−プロペニル−ビシクロ[2.2.1]ヘプタ−2−エン等の2環の環状オレフィン;
【0014】
トリシクロ[4.3.0.12,5]デカ−3,7−ジエン(慣用名:ジシクロペンタジエン)、トリシクロ[4.3.0.12,5]デカ−3−エン;トリシクロ[4.4.0.12,5]ウンデカ−3,7−ジエン若しくはトリシクロ[4.4.0.12,5]ウンデカ−3,8−ジエンまたはこれらの部分水素添加物(またはシクロペンタジエンとシクロヘキセンの付加物)であるトリシクロ[4.4.0.12,5]ウンデカ−3−エン;5−シクロペンチル−ビシクロ[2.2.1]ヘプタ−2−エン、5−シクロヘキシル−ビシクロ[2.2.1]ヘプタ−2−エン、5−シクロヘキセニルビシクロ[2.2.1]ヘプタ−2−エン、5−フェニル−ビシクロ[2.2.1]ヘプタ−2−エンといった3環の環状オレフィン;
【0015】
テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン(単にテトラシクロドデセンともいう)、8−メチルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−エチルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−メチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−エチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−ビニルテトラシクロ[4,4.0.12,5.17,10]ドデカ−3−エン、8−プロペニル−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エンといった4環の環状オレフィン;
【0016】
8−シクロペンチル−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−シクロヘキシル−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−シクロヘキセニル−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−フェニル−シクロペンチル−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン;テトラシクロ[7.4.13,6.01,9.02,7]テトラデカ−4,9,11,13−テトラエン(1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレンともいう)、テトラシクロ[8.4.14,7.01,10.03,8]ペンタデカ−5,10,12,14−テトラエン(1,4−メタノ−1,4,4a,5,10,10a−へキサヒドロアントラセンともいう);ペンタシクロ[6.6.1.13,6.02,7.09,14]−4−ヘキサデセン、ペンタシクロ[6.5.1.13,6.02,7.09,13]−4−ペンタデセン、ペンタシクロ[7.4.0.02,7.13,6.110,13]−4−ペンタデセン;ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]−5−エイコセン、ヘプタシクロ[8.7.0.12,9.03,8.14,7.012,17.113,l6]−14−エイコセン;シクロペンタジエンの4量体などの多環の環状オレフィンが挙げられる。これらの環状オレフィンは、それぞれ単独であるいは2種以上組合わせて用いることができる。
【0017】
環状オレフィンと共重合可能なα−オレフィンの具体例としては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−へキセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、3−エチル−1−ペンテン、4−メチル−1−ペンテン、4−メチル−1−へキセン、4,4−ジメチル−1−ヘキセン、4,4−ジメチル−1−ペンテン、4−エチル−1−へキセン、3−エチル−1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンなどの炭素数2〜20、好ましくは炭素数2〜8のエチレンまたはα−オレフインなどが挙げられる。これらのα−オレフィンは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
【0018】
環状オレフィンまたは環状オレフィンとα−オレフィンとの重合方法および得られた重合体の水素添加方法に、格別な制限はなく、公知の方法に従って行うことができる。
【0019】
以上に挙げた環状オレフィン系樹脂(a)のなかでも、環状オレフィンとα−オレフィンの付加共重合体またはその水素添加物(a2)が、特性とコストのバランスが取れていて特に好ましい。
環状オレフィン系樹脂は工業的には、TOPAS(独Ticona社)、アペル(三井化学)、ゼオネックス(日本ゼオン)、ゼオノア(日本ゼオン)などの商品名の市販品を入手することができる。
【0020】
極性基を有する不飽和化合物(u)をグラフト及び/又は共重合した変性環状オレフィン系樹脂(a4)を用いることにより金属との密着力を高めることができるので、より高い金属密着力が必要な場合に好適である。しかし、極性基の存在は環状オレフィン系樹脂の吸水率を高めてしまう欠点がある。そのため極性基(例えば、カルボキシル基、酸無水物基、エポキシ基、アミド基、エステル基、ヒドロキシル基など)の含有量は、環状オレフィン系樹脂1kg当り0〜1mol/kgであることが好ましい。
【0021】
環状オレフィン系樹脂単独の成形品では剛性や表面硬度が不足する場合には、中空無機充填材を添加することが好ましい。一般に無機充填材は誘電率・誘電正接が大きいが、中空無機充漠材は、その内部に誘電率1の空気を大量に含んでいるため、これを環状オレフィン系樹脂に添加しても誘電率および誘電正接の値をほとんど上げることなく、成形品の剛性を高めることができ、好適である。
代表的な中空無機充填材としてガラスバルーンおよびシラスバルーンが挙げられる。
中空無機充填材の添加比率は、環状オレフィン系樹脂100重量部に対して5〜100重量部、好ましくは15〜60重量部である。
【0022】
環状オレフィン系樹脂組成物には、その特性を損なわない範囲で、必要に応じて、その他の熱可塑性樹脂、熱可塑性エラストマー、各種配合剤等を添加することができる。
その他の熱可塑性樹脂としては、例えば、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエーテルスルホン、ポリスルフォン、ポリカーボネート、ポリアセタールなどの他、液晶性ポリマー、芳香族ポリエステル、ポリアリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系重合体;ポリエチレン、ポリプロピレン、ポリ4−メチルペンテン−1などのポリオレフィン系重合体;ナイロン6、ナイロン66、芳香族ナイロンなどのポリアミド系重合体;ポリメチルメタクリレート、ポリアクリロニトリルスチレン(AS樹脂)、ポリスチレンなどが挙げられる。
【0023】
熱可塑性エラストマーとしては、オレフィン系、スチレン系、エステル系、アミド系、ウレタン系等の熱可塑性エラストマーが挙げられる。これらのなかでもオレフィン系エラストマーおよびスチレン系エラストマーが環状オレフィン系樹脂との相容性が高く好適である。オレフィン系エラストマーの具体例としてはエチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、エチレン−ブテン共重合体、エチレン−オクテン共重合体等が挙げられる。スチレン系エラストマーの具体例としてはスチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体や、それらの水素添加物が挙げられる。
【0024】
上記各種配合剤としては、熱可塑性樹脂材料で通常用いられているものであれば格別な制限はなく、例えば、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、滑剤、帯電防止剤、難燃剤、染料や顔料などの着色剤、近赤外線吸収剤、蛍光増白剤などの配合剤が挙げられる。
【0025】
上記のような環状オレフィン系樹脂もしくはその組成物は、熱可塑性であり、またトルエン、キシレン、シクロヘキサンといった炭化水素系溶媒に可溶であるため、従来公知の方法で容易に成形することができる。例えば射出成形、押出成形、圧縮成形、射出圧縮成形、ブロー成形といった加熱溶融した樹脂を成形してもよいし、例えば溶液キャスト成形等の、いったん溶媒に溶解させ、その溶液を型に流し込んだ後に、溶媒を揮発させて成形してもよい。
成形品の形状には、特に制限はなく、プリント配線基板等に使用するための板状ないしフィルム状、アンテナ等に使用するための板状ないし立体的形状、ケーブルに使用するための円筒状、コネクターその他に使用するための立体的形状が挙げられる。
【0026】
成形品表面の粗化
次に、上記成形工程で得られた樹脂成形品の全面もしくは所定の一部表面を、表面粗さがRz≧5μm(但し、Rzは十点平均粗さ)となるように粗化する。
本工程において、樹脂成形品表面を粗化するための手法は機械的または物理的な粗化手法が好ましく、例えばサンドペーパーなどを用いて樹脂成形品表面を荒らす方法であっても構わないが、更に好ましくは、粗化の効率性・工業的量産性・品質の安定性に優れるサンドブラスト、ショットブラスト、液体ホーニング、タンブリング、レーザー照射からなる群の中から選ばれた粗化手法が好適に用いられる。
粗化の度合いが大きいほど金属の密着力が大きくなる。金属を成形品に密着させるためには表面粗さRzは5μm以上必要であり、10μm以上であることが好適である。上限は特に限定されないが、70μm程度である。これ以上粗化しても効果は飽和し、さらには外観不良を生じる場合がある。
【0027】
上記粗化表面は、さらにコロナ放電処理、プラズマ処理、火炎処理、短波長紫外線処理、プライマー処理(化学エッチング又はコーティング処理)などにより表面を改質させて、上記物理的アンカー効果に加えて、化学的アンカー効果を相乗させることもできる。
【0028】
湿式メッキ
次に、表面を粗化した成形品に対し、湿式メッキ法によって金属を積層する。環状オレフィン系樹脂成形品は絶縁体であるので、無電解メッキによって金属を積層しなければならない。必要な金属膜の厚みが数μm以下である場合には、無電解メッキのみで十分であるが、それ以上の膜厚が必要な場合には、まず無電解メッキを施した後、電解メッキによって所望の膜厚を得る方法が好適である。
本発明で形成される無電解メッキの厚みは0.1〜10μm、好ましくは0.5〜5μmであり、電解メッキのみの厚みは1〜100μm、好ましくは5〜50μmである。
【0029】
また、環状オレフィン系樹脂成形品表面に回路パターンを形成する方法としては、いったん成形品表面に金属を積層した後、レジスト剤でパターンを描き、レジスト剤が載っていない金属部分をエッチングによって除去する方法、成形品表面にあらかじめ回路パターンのマスクを形成して、金属を積層したい部分のみを粗化し、湿式メッキをおこなう方法などが挙げられるが、それらに限定されるものではない。
【0030】
複合成形品
このようにして得られた環状オレフィン系樹脂成形品に金属を積層した複合成形品は、環状オレフィン系樹脂もしくはその組成物の成形が容易であり、特にGHz帯の高周波領域における低誘電率・低誘電正接といった優れた誘電特性を有し、さらに電気信号を流す回路も形成できる。
本発明の複合成形品は、次の諸特性を有する。
金属−樹脂もしくは樹脂組成物間(即ち、金属−樹脂の成形品間)のピール強度:0.2kg/cm以上、好ましくは0.4kg/cm以上であり、上限は特にはないが、通常2kg/cm程度である。
環状オレフィン系樹脂もしくはその組成物(即ち、樹脂の成形品)の吸水率:0.1%以下、好ましくは0.05%以下である。
環状オレフィン系樹脂もしくはその組成物(即ち、樹脂の成形品)の1GHzにおける誘電率:2.0〜3.0、好ましくは2.0〜2.5
環状オレフィン系樹脂もしくはその組成物(即ち、樹脂の成形品)の1GHzにおける誘電正接:1×10−4〜1×10−2、好ましくは1×10−4〜5×10−3
曲げ弾性率:1,000〜10,000MPa、好ましくは2,000〜6,000MPa
よって本発明の複合成形品は、GHz帯の高周波電気信号を処理するデバイスの構成部品、たとえばプリント配線基板、アンテナ、コネクター、ケーブル等に好適に用いることができる。
【0031】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0032】
なお、実施例および比較例の組成物の物性は以下のように評価した。
表面粗さ:市販の表面粗さ計を使用し、JIS B0601に記載された方法に従い、粗化処理した環状オレフィン系樹脂成形品の表面粗さを測定した。測定結果は十点平均粗さ(Rz:単位μm)で表示した。
ピール強度(金属膜の密着力評価):試験片の金属部分に10mm幅にナイフで切り込みを入れ、金属皮膜の片端を20mm程度引き剥がす。剥がした金属皮膜を引張試験機のチャックに挟み、試験片に対し直角を保ちながら50mm/分の速度で引張り、このときの平均荷重をピール強度(kg/cm)とした。
誘電率・誘電正接:射出成形にて成形した厚さ1mmの平板を15mm四方に切り出したものを試験片とし、これをアジレントテクノロジー社製インピーダンスアナライザー 4287Aを用いて、1GHzにおける誘電率および誘電正接を測定した。
曲げ弾性率(剛性の評価):JIS K7171に従い評価した。
吸水率:23℃、50%RHの条件中に試験片(70mm×50mm×3mm)10枚を放置し、重量変化が飽和したときの重量増加量をもって吸水率とした(成形直後の重量を基準とする)。
【0033】
環状オレフィン系樹脂(Cyclo Olefin Polymer)として以下の市販の樹脂を使用した。
COP1:TOPAS6015(Ticona社製、ノルボルネンとエチレンの付加共重合体、極性基を含有せず)
COP2:アペルAPL6015T(三井化学製、テトラシクロドデセンとエチレンの付加共重合体、極性基を含有せず)
COP3:ゼオノア1600R(日本ゼオン製、ノルボルネン系環状オレフィンの開環重合体の水素添加物、極性基を含有せず)
COP4:アートンG(日本合成ゴム製、8−メチル−8−メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エンの開環重合体の水素添加物、極性基としてエステル基を樹脂1kg中に4.27mol含有する)
【0034】
中空無機充填剤としてガラスバルーン(住友3M製、ガラスバブルズS60HS、真密度0.60、90%粒径45μm、以下GBと略す)を使用した。
【0035】
調製例1(アクリル酸変性環状オレフィン樹脂COPF1の調製)
環状オレフィン樹脂TOPAS6013(Ticona社製、ノルボルネンとエチレンの付加共重合体、ガラス転移温度136℃、極性基を含有せず)98重量部、アクリル酸2重量部、および過酸化物としてパーヘキシン25B(日本油脂製)0.2重量部を、二軸押出機にてシリンダー温度200℃で溶融混練して、アクリル酸をグラフトした変性環状オレフィン系樹脂を合成した。このCOPF1は極性基として樹脂1kgあたり0.28molのカルボキシル基を含有している。
【0036】
調製例2(無水マレイン酸変性環状オレフィン樹脂COPF2の調製)
環状オレフィン樹脂TOPAS6013(Ticona社製)97.3重量部、無水マレイン酸2.7重量部、および過酸化物としてパーヘキシン25B(日本油脂製)0.2重量部を、二軸押出機にてシリンダー温度200℃で溶融混練して、無水マレイン酸をグラフ卜した変性環状オレフィン系樹脂を合成した。このCOPF2は極性基として樹脂1kgあたり0.28molの酸無水物基を含有している。
【0037】
[実施例1]
環状オレフィン系樹脂COP1を、シリンダー温度300℃、金型温度110℃にて射出成形し、50mm×70mm×3mmの平板状の成形片を作成した。
次に、液体ホーニング装置を用い、市販の褐色アルミナ質研削材(粒度=#220、日本工業規格R6111準拠)を使用して、噴射圧力=0.4MPa、噴射時間=10秒間、の条件でこの成形品の片面を粗化処理した。この段階で成形品の粗化表面の表面粗さを測定したところ、Rz=11.7μmであった。
次にメッキ法にて銅を積層した。表面粗化した試験片を酸性脱脂・洗浄した後、キャタポジット44(シプレイ・ファーイースト(株)製)に浸漬し、水洗後、アクセレレータ−19E(シプレイ・ファーイースト(株)製)に浸漬して、表面に触媒を付与した。水洗後、オムニシールド1598(シプレイ・ファーイースト(株)製)に40℃で30分浸漬して無電解銅メッキを施し、水洗後、乾燥した。
無電解銅メッキを施した試験片をエレクトロポジット 1100(シプレイ・ファーイースト(株)製)に浸漬して電流を流し、電解銅メッキを施し、膜厚30μmの銅皮膜を形成した。良好な銅皮膜を形成することができ、ピール強度を測定したところ0.45kg/cmであった。
また、環状オレフィン系樹脂COP1の1GHzにおける誘電率は2.31、誘電正接は0.0005、曲げ弾性率は2900MPa、吸水率は0.01%であった。
【0038】
[実施例2〜6]
表1に示すように表面粗化の条件を変えた以外は実施例1と同様にして、銅メッキを施した環状オレフィン系樹脂成形品を作成した。
実施例1〜6の結果を表1に示す。いずれも良好な銅皮膜を形成することができた。
【0039】
【表1】

Figure 2004169049
【0040】
[実施例7〜11]
環状オレフィン系樹脂COP1とガラスバルーンGBを、表1に示す組成にて、二軸押出機を使いシリンダー温度300℃にて溶融混練して、環状オレフィン系樹脂組成物のペレットを得た、これを実施例1と同様な方法で成形、表面粗化、銅メッキを行い、評価した。結果を表2に示す。
ガラスバルーンを添加することにより、環状オレフィン系樹脂の良好な高周波誘電特性(低誘電率・低誘電正接)を保ったまま、剛性を高め、さらにより高いピール強度を得ることができた。
【0041】
【表2】
Figure 2004169049
【0042】
[実施例12〜15]
環状オレフィン系樹脂をCOP2またはCOP3に変えて、実施例1または実施例7と同様な方法で銅メッキを施した環状オレフィン系樹脂成形品を作成した。いずれも良好な銅皮膜を形成することができた。結果を表3に示す。
【0043】
【表3】
Figure 2004169049
【0044】
[実施例16〜21]
表4に示すように、極性基をグラフトした変性環状オレフィン系樹脂COPF1またはCOPF2を添加した組成物を作り、銅メッキを施した環状オレフィン系樹脂成形品を作成し、評価した。変性環状オレフィン系樹脂を添加することにより、誘電率、誘電正接、吸水率が僅かに上昇してしまうが、ピール強度を大きく増加させることができ、良好であることがわかった。
【0045】
【表4】
Figure 2004169049
【0046】
[比較例1〜4]
表5に示すように、環状オレフィン系樹脂COP1もしくはCOP1とガラスバルーンGBの組成物の成形品を表面粗化せずに無電解銅メッキを行ったが、銅皮膜が容易に剥がれてしまいピール強度を測定することができなかった。
【0047】
[比較例5および6]
表5に示すように、変性環状オレフィン系樹脂COP2を添加した組成物の成形品を表面粗化せずに無電解銅メッキを行った。銅皮膜が容易に剥がれることはなく、ピール強度を測定することはできたが、その値は非常に小さいものであった。
【0048】
【表5】
Figure 2004169049
【0049】
[比較例7および8]
表6に示すように、環状オレフィン系樹脂として側鎖にエステル基を有するCOP4を用いた以外は、実施例1または7と同様な方法で評価した。COP4のように極性基含有量が多いと、ピール強度は高いものの、誘電率・誘電正接の値が大きく上昇し、さらに吸水率は10倍以上に増加してしまい、高周波デバイスの部品としては不適当であることがわかった。
【0050】
【表6】
Figure 2004169049
【0051】
【発明の効果】
本発明によれば、高周波、殊にGHz帯の高周波電気信号を処理するデバイスの構成部品として適当な環状オレフィン系樹脂成形品の表面に金属を複合する方法、および金属を複合した環状オレフィン系樹脂成形品を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal composite method by plating a surface of a cyclic olefin resin molded article and a metal composite cyclic olefin resin molded article obtained by the method. The metal-composite cyclic olefin-based resin molded product is suitable as a component of a device for processing high-frequency electric signals, particularly high-frequency electric signals in the GHz band.
[0002]
[Prior art]
In recent years, demands for broadband communication such as mobile phones, the Internet, and wireless LANs have been increasing. In order to transmit information at a higher speed and in a larger amount, the frequency of electric signals has been significantly increased.
For a substrate (insulator) of a device that handles higher frequency signals, a material having both a low dielectric constant and a low dielectric loss (dielectric loss tangent (tan δ)) is required. This is because when the dielectric constant and the dielectric loss are large, the delay and loss of the electric signal increase, and the signal processing becomes difficult. In particular, in devices handling high-frequency signals in the GHz band, there is a remarkable demand for lowering the dielectric constant and lowering the loss of the substrate.
[0003]
Cyclic olefin resin is one of the plastic materials having very low dielectric constant and dielectric loss, and is known to be comparable to fluororesin (polytetrafluoroethylene (PTFE)), which has the lowest dielectric constant. Have been. For example, the dielectric constant of a cyclic olefin-based resin at 10 GHz is 2.27 and the dielectric loss tangent is 0.0001. Under the same conditions, PTFE is known to have a dielectric constant of 2.1 and a dielectric loss tangent of 0.0002 ( Non-Patent Document 1).
As described above, fluororesin has ideal dielectric properties as a substrate material for high-frequency electronic devices. However, since it is not a thermoplastic resin, it is extremely poor in workability, and thus has been limited to use in very special applications.
[0004]
On the other hand, cyclic olefin-based resins are thermoplastic and excellent in processability, and are expected to be applied to a wide range of applications. For example, it has been proposed to apply a thermoplastic norbornene-based resin, which is a kind of cyclic olefin-based resin, to an insulator of a connector used for high-frequency transmission of 1.4 GHz or more (see Patent Document 1). The present invention is limited to the application of the connector to the insulator, and does not take into account the compounding of the connector with a metal required for forming a circuit.
[0005]
Since the cyclic olefin-based resin is composed of only carbon and hydrogen, it has a low polarity, and it is difficult to form a composite with a metal with high adhesiveness as it is. In addition, a composition comprising a thermoplastic norbornene-based resin, which is a kind of cyclic olefin-based resin, and a soft polymer has been proposed, and the molded article is used in a high-frequency band, such as a printed wiring board, an antenna, and a connector insulator. (See Patent Document 2). However, this invention is also substantially limited to the application of the connector to the insulator, and there is no specific teaching about the combination with a metal required for forming a circuit.
[0006]
Further, a printed circuit board has been proposed in which a metal thin film is laminated on a cyclic olefin resin film having a polar group in a side chain. Since the cyclic olefin-based resin of the present invention has a polar group, the adhesion to metal is high. However, its water absorption is 0.2%, which is extremely higher than the water absorption of a cyclic olefin resin having no polar group of 0.01%, so that the dielectric constant and dielectric loss increase during use due to water absorption, It is not preferable (see Patent Document 3).
[0007]
Further, in the case of crystalline thermoplastic resin, a method has been proposed in which after coating a water-soluble polymer resin composition containing palladium ions on a roughened molded product surface, the palladium ions are reduced to metal and plating is performed. However, it is not known whether or not such a metal complexing method can be favorably performed on a cyclic olefin-based resin which is an amorphous resin (see Patent Document 4).
[0008]
[Patent Document 1]
JP-A-8-213113 (Claims)
[Patent Document 2]
JP-A-8-325440 (Claims, paragraph 0019)
[Patent Document 3]
Japanese Patent Application Laid-Open No. 2000-301888 (Solution on page 1, paragraph 0035, table 1 on page 10)
[Patent Document 4]
JP 2000-154266A (Claims)
[Non-patent document 1]
Baba civilization, "Plastics", vol. 45, no. 9, p10-15, 1994 (Table 4)
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a method of compounding a metal on the surface of a molded article of a cyclic olefin-based resin, and to process a high-frequency electrical signal in the GHz band having a very low dielectric constant / dielectric loss and a very small water absorption. The purpose of the present invention is to supply a composite molded product of a cyclic olefin resin molded product and a metal, which is optimal as a component of a device to be manufactured.
[0010]
[Means for Solving the Problems]
The present inventors have conducted studies and found that after roughening the surface of a molded article of a cyclic olefin resin to specific conditions, a metal layer is formed on the surface of the molded article by a wet plating method, so that a metal layer is formed on the surface of the molded article. The inventors have found that the layers can be composited with high adhesion, and have completed the present invention.
[0011]
That is, the first aspect of the present invention is to roughen at least a part of the surface of the molded product such that the ten-point average roughness Rz is 5 μm or more with respect to the molded product of the cyclic olefin-based resin or the composition thereof. Provided is a method for forming a metal film on a surface of a molded article by a wet plating method.
A second aspect of the present invention provides the metal composite method according to the first aspect of the present invention, wherein the roughening is performed by at least one selected from the group consisting of sand blast, shot blast, liquid honing, tumbling, and laser irradiation.
A third aspect of the present invention provides the metal composite method according to the first or second aspect of the present invention, wherein the wet plating method is an electroless plating method.
A fourth aspect of the present invention provides the metal composite method according to the first or second aspect of the present invention, wherein the wet plating method is a method of performing electroless plating after performing electroless plating.
A fifth aspect of the present invention is the method according to any one of the first to fourth aspects, wherein at least a part of the cyclic olefin-based resin is a modified cyclic olefin-based resin in which an unsaturated compound having a polar group is grafted. A metal composite method is provided.
A sixth aspect of the present invention provides the metal composite method according to the fifth aspect of the present invention, wherein the concentration of the polar group contained in the cyclic olefin-based resin or the composition thereof is 1 mol / kg or less.
A seventh aspect of the present invention provides the metal composite method according to any one of the first to sixth aspects of the present invention, wherein the cyclic olefin-based resin is an addition copolymer of an α-olefin and a cyclic olefin.
An eighth aspect of the present invention provides the metal composite method according to the seventh aspect, wherein the cyclic olefin is norbornene or tetracyclododecene.
A ninth aspect of the present invention provides the metal composite method according to any one of the first to eighth aspects, wherein the cyclic olefin-based resin composition comprises a cyclic olefin-based resin and a hollow inorganic filler.
A tenth aspect of the present invention provides the metal composite method according to the ninth aspect, wherein the hollow inorganic filler is a glass balloon or a shirasu balloon.
According to an eleventh aspect of the present invention, there is provided a metal-complexed cyclic olefin-based resin molded product obtained by the method of metal-combining a cyclic olefin-based resin molded product according to any one of the first to ninth aspects of the present invention.
According to a twelfth aspect of the present invention, there is provided the metal-composite cyclic olefin-based resin molded product according to the eleventh aspect of the present invention, wherein the peel strength between the metal and the resin or the composition thereof is 0.2 kg / cm or more.
A thirteenth aspect of the present invention provides the metal-complexed cyclic olefin-based resin molded product according to the eleventh or twelfth aspect of the present invention, wherein the cyclic olefin-based resin or the composition thereof has a water absorption of 0.1% or less.
According to a fourteenth aspect of the present invention, there is provided the metal-complexed cyclic olefin-based resin molded product according to any one of the eleventh to thirteenth aspects of the present invention, which is used as a component of a device for processing a high-frequency electrical signal in the GHz band. I do.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Cyclic olefin-based resin molded article The cyclic olefin-based resin (a) is a polymer compound having a main chain composed of a carbon-carbon bond and having a cyclic hydrocarbon structure in at least a part of the main chain. This cyclic hydrocarbon structure is introduced by using a compound (cyclic olefin) having at least one olefinic double bond in the cyclic hydrocarbon structure as represented by norbornene or tetracyclododecene as a monomer. Is done.
The cyclic olefin-based resin (a) is an addition (co) polymer of a cyclic olefin or a hydrogenated product thereof (al), an addition copolymer of a cyclic olefin and an α-olefin or a hydrogenated product thereof (a2), It is classified into a ring-opened (co) polymer or a hydrogenated product thereof (a3).
Further, the cyclic olefin-based resin (a) includes a polar group (for example, a carboxyl group, an acid anhydride group, an epoxy group, an amide group, an ester group, a hydroxyl group) in the above-mentioned cyclic olefin-based resins (al) to (a3). And the like (a4) obtained by grafting and / or copolymerizing an unsaturated compound (u) containing The cyclic olefin-based resins (al) to (a4) may be used as a mixture of two or more.
Examples of the unsaturated compound (u) include (meth) acrylic acid, maleic acid, maleic anhydride, itaconic anhydride, glycidyl (meth) acrylate, alkyl (meth) acrylate (C1-10) ester, and maleic acid. Examples thereof include an alkyl (1 to 10 carbon atoms) ester, (meth) acrylamide, and 2-hydroxyethyl (meth) acrylate.
[0013]
Specific examples of the cyclic olefin include cyclopentene, cyclohexene, and cyclooctene; one-ring cyclic olefin such as cyclopentadiene and 1,3-cyclohexadiene;
Bicyclo [2.2.1] hepta-2-ene (common name: norbornene), 5-methyl-bicyclo [2.2.1] hepta-2-ene, 5,5-dimethyl-bicyclo [2.2. 1] Hept-2-ene, 5-ethyl-bicyclo [2.2.1] hept-2-ene, 5-butyl-bicyclo [2.2.1] hept-2-ene, 5-ethylidene-bicyclo [ 2.2.1] Hept-2-ene, 5-hexyl-bicyclo [2.2.1] hept-2-ene, 5-octyl-bicyclo [2.2.1] hept-2-ene, 5- Octadecyl-bicyclo [2.2.1] hepta-2-ene, 5-methylidene-bicyclo [2.2.1] hepta-2-ene, 5-vinyl-bicyclo [2.2.1] hepta-2- Ene, 5-propenyl-bicyclo [2.2.1] hept-2-ene and the like Cyclic olefin ring;
[0014]
Tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene), tricyclo [4.3.0.1 2,5 ] dec-3-ene; tricyclo [ 4.4.0.1 2,5 ] undeca-3,7-diene or tricyclo [4.4.0.1 2,5 ] undeca-3,8-diene or a partially hydrogenated product thereof (or cyclopentadiene) Adduct of cyclohexene and cyclohexene); 5-cyclopentyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexyl-bicyclo which is tricyclo [4.4.0.1 2,5 ] undec-3-ene; 3 such as [2.2.1] hept-2-ene, 5-cyclohexenylbicyclo [2.2.1] hept-2-ene, 5-phenyl-bicyclo [2.2.1] hept-2-ene Ring Orifice N;
[0015]
Tetracyclo [4.4.0.1 2,5 . 17, 10 ] dodec-3-ene (also simply referred to as tetracyclododecene), 8-methyltetracyclo [4.4.0.1 2,5 . 1 7,10] dodeca-3-ene, 8-ethyl tetracyclo [4.4.0.1 2, 5. 1 7,10] dodeca-3-ene, 8-methylidene-tetracyclo [4.4.0.1 2, 5. 1 7,10] dodeca-3-ene, 8-ethylidene tetracyclo [4.4.0.1 2, 5. 1 7,10] dodeca-3-ene, 8-vinyl-tetracyclo [4,4.0.1 2,5. 17, 10 ] dodec-3-ene, 8-propenyl-tetracyclo [4.4.0.1 2,5 . [ 17,10 ] 4-cyclic olefins such as dodeca-3-ene;
[0016]
8-cyclopentyl-tetracyclo [4.4.0.1 2,5 . 17, 10 ] dodec-3-ene, 8-cyclohexyl-tetracyclo [4.4.0.1 2,5 . 17, 10 ] dodec-3-ene, 8-cyclohexenyl-tetracyclo [4.4.0.1 2,5 . 17, 10 ] dodec-3-ene, 8-phenyl-cyclopentyl-tetracyclo [4.4.0.1 2,5 . 17, 10 ] dodec-3-ene; tetracyclo [7.4.1 3,6 . 0 1,9 . 0 2,7] tetradeca -4,9,11,13- tetraene (1,4-methano -1,4,4a, also referred 9a- tetrahydrofluorene), tetracyclo [8.4.1 4,7. 0 1,10 . 0 3,8 ] pentadec-5,10,12,14-tetraene (also referred to as 1,4-methano-1,4,4a, 5,10,10a-hexahydroanthracene); pentacyclo [6.6.1. .13,6 . 0 2,7 . 09,14 ] -4-hexadecene, pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13] -4-pentadecene, pentacyclo [7.4.0.0 2,7. 13,6 . 1 10,13] -4-pentadecene; heptacyclo [8.7.0.1 2,9. 14, 7,. 11, 17 . 0 3,8 . 0 12,16 ] -5-eicosene, heptacyclo [8.7.0.1 2,9 . 0 3,8 . 14, 7,. 0 12,17 . 1 13,16 ] -14-eicosene ; and polycyclic cycloolefins such as tetramers of cyclopentadiene. These cyclic olefins can be used alone or in combination of two or more.
[0017]
Specific examples of the α-olefin copolymerizable with the cyclic olefin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3 -Ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1- C2-C20, preferably C2-C20 such as hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene 2 to 8 ethylene or α-olefin and the like. These α-olefins can be used alone or in combination of two or more.
[0018]
The method for polymerizing the cyclic olefin or the cyclic olefin and the α-olefin and the method for hydrogenating the obtained polymer are not particularly limited, and can be performed according to a known method.
[0019]
Among the above-mentioned cyclic olefin-based resins (a), an addition copolymer of a cyclic olefin and an α-olefin or a hydrogenated product thereof (a2) is particularly preferable because the balance between properties and costs is maintained.
As the cyclic olefin resin, commercially available products having trade names such as TOPAS (Ticona, Germany), Apel (Mitsui Chemicals), ZEONEX (Nippon Zeon), and ZEONOR (Nihon Zeon) can be obtained industrially.
[0020]
By using a modified cyclic olefin-based resin (a4) obtained by grafting and / or copolymerizing an unsaturated compound (u) having a polar group, the adhesion to a metal can be increased, so that a higher metal adhesion is required. It is suitable for the case. However, the presence of the polar group has a disadvantage of increasing the water absorption of the cyclic olefin resin. Therefore, the content of a polar group (for example, a carboxyl group, an acid anhydride group, an epoxy group, an amide group, an ester group, a hydroxyl group, etc.) is preferably 0 to 1 mol / kg per 1 kg of the cyclic olefin resin.
[0021]
When rigidity and surface hardness are insufficient with a molded product made of a cyclic olefin resin alone, it is preferable to add a hollow inorganic filler. In general, inorganic fillers have a large dielectric constant and dielectric loss tangent, but hollow inorganic fillers contain a large amount of air with a dielectric constant of 1 inside. This is preferable because the rigidity of the molded product can be increased without increasing the value of the dielectric loss tangent.
Typical hollow inorganic fillers include glass balloons and shirasu balloons.
The addition ratio of the hollow inorganic filler is 5 to 100 parts by weight, preferably 15 to 60 parts by weight, based on 100 parts by weight of the cyclic olefin resin.
[0022]
If necessary, other thermoplastic resins, thermoplastic elastomers, various compounding agents, and the like can be added to the cyclic olefin-based resin composition as long as its properties are not impaired.
As other thermoplastic resins, for example, polyphenylene sulfide, polyphenylene ether, polyether sulfone, polysulfone, polycarbonate, polyacetal and the like, liquid crystal polymer, aromatic polyester, polyarylate, polyethylene terephthalate, polyester such as polybutylene terephthalate Polyolefin polymers such as polyethylene, polypropylene and poly-4-methylpentene-1; polyamide polymers such as nylon 6, nylon 66 and aromatic nylon; polymethyl methacrylate, polyacrylonitrile styrene (AS resin); Polystyrene and the like can be mentioned.
[0023]
Examples of the thermoplastic elastomer include olefin-based, styrene-based, ester-based, amide-based, and urethane-based thermoplastic elastomers. Among these, olefin-based elastomers and styrene-based elastomers are preferred because they have high compatibility with the cyclic olefin-based resin. Specific examples of the olefin-based elastomer include an ethylene-propylene copolymer, an ethylene-propylene-diene copolymer, an ethylene-butene copolymer, and an ethylene-octene copolymer. Specific examples of the styrene-based elastomer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, and hydrogenated products thereof.
[0024]
The various compounding agents are not particularly limited as long as they are commonly used in thermoplastic resin materials.For example, antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, lubricants, antistatic agents, Compounding agents such as flame retardants, coloring agents such as dyes and pigments, near-infrared absorbers, and fluorescent whitening agents are included.
[0025]
Since the above-mentioned cyclic olefin-based resin or its composition is thermoplastic and is soluble in a hydrocarbon-based solvent such as toluene, xylene and cyclohexane, it can be easily formed by a conventionally known method. For example, injection molding, extrusion molding, compression molding, injection compression molding, may be molded heat-fused resin such as blow molding, for example, such as solution cast molding, once dissolved in a solvent, after pouring the solution into a mold Alternatively, the solvent may be volatilized for molding.
There is no particular limitation on the shape of the molded product, and a plate or film for use in a printed wiring board or the like, a plate or three-dimensional shape for use in an antenna or the like, a cylindrical shape for use in a cable, Three-dimensional shapes for use in connectors and others.
[0026]
Next, the entire surface or a predetermined part of the surface of the resin molded product obtained in the above molding step is adjusted so that the surface roughness is Rz ≧ 5 μm (where Rz is a ten-point average roughness). Roughened.
In this step, a method for roughening the surface of the resin molded product is preferably a mechanical or physical roughening method, and may be a method of roughening the surface of the resin molded product using, for example, sandpaper. More preferably, a roughening method selected from the group consisting of sandblasting, shot blasting, liquid honing, tumbling, and laser irradiation, which is excellent in roughening efficiency, industrial mass productivity, and quality stability, is suitably used. .
The greater the degree of roughening, the greater the adhesion of the metal. In order for the metal to adhere to the molded article, the surface roughness Rz is required to be 5 μm or more, and preferably 10 μm or more. The upper limit is not particularly limited, but is about 70 μm. Even if the surface is further roughened, the effect is saturated, and furthermore, poor appearance may occur.
[0027]
The roughened surface is further modified by corona discharge treatment, plasma treatment, flame treatment, short wavelength ultraviolet treatment, primer treatment (chemical etching or coating treatment), etc. The synergistic effect can also be achieved.
[0028]
Next, a metal is laminated on the molded article having a roughened surface by a wet plating method. Since the cyclic olefin resin molded article is an insulator, the metal must be laminated by electroless plating. If the thickness of the required metal film is several μm or less, only electroless plating is sufficient, but if a greater film thickness is required, first apply electroless plating, and then A method for obtaining a desired film thickness is preferable.
The thickness of the electroless plating formed in the present invention is 0.1 to 10 μm, preferably 0.5 to 5 μm, and the thickness of only the electroplating is 1 to 100 μm, preferably 5 to 50 μm.
[0029]
In addition, as a method of forming a circuit pattern on the surface of a cyclic olefin-based resin molded product, once a metal is laminated on the surface of the molded product, a pattern is drawn with a resist agent, and a metal portion on which the resist agent is not mounted is removed by etching. Examples of the method include a method of forming a mask of a circuit pattern on the surface of a molded product in advance, roughening only a portion where a metal is to be laminated, and performing wet plating, but the method is not limited thereto.
[0030]
Composite molded article The composite molded article obtained by laminating a metal on the cyclic olefin resin molded article thus obtained is easy to mold the cyclic olefin resin or a composition thereof, and has a low dielectric constant especially in a high frequency region of GHz band. It has excellent dielectric properties, such as a low dielectric loss tangent and a low dielectric loss tangent, and can also form a circuit for passing an electric signal.
The composite molded article of the present invention has the following various properties.
Peel strength between metal-resin or resin composition (that is, between metal-resin molded products): 0.2 kg / cm or more, preferably 0.4 kg / cm or more, with no particular upper limit, but usually 2 kg. / Cm.
Water absorption of the cyclic olefin-based resin or its composition (namely, resin molded product): 0.1% or less, preferably 0.05% or less.
Dielectric constant at 1 GHz of the cyclic olefin-based resin or a composition thereof (that is, a molded article of the resin): 2.0 to 3.0, preferably 2.0 to 2.5.
Dielectric loss tangent at 1 GHz of the cyclic olefin-based resin or its composition (namely, resin molded product): 1 × 10 −4 to 1 × 10 −2 , preferably 1 × 10 −4 to 5 × 10 −3.
Flexural modulus: 1,000-10,000 MPa, preferably 2,000-6,000 MPa
Therefore, the composite molded article of the present invention can be suitably used as a component of a device for processing a high-frequency electric signal in the GHz band, for example, a printed wiring board, an antenna, a connector, a cable, and the like.
[0031]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
[0032]
The physical properties of the compositions of Examples and Comparative Examples were evaluated as follows.
Surface roughness: A commercially available surface roughness meter was used to measure the surface roughness of the roughened cyclic olefin resin molded product according to the method described in JIS B0601. The measurement results were represented by a ten-point average roughness (Rz: unit: μm).
Peel strength (evaluation of adhesion of metal film): A knife was cut into the metal part of the test piece to a width of 10 mm, and one end of the metal film was peeled off by about 20 mm. The peeled metal film was sandwiched between chucks of a tensile tester and pulled at a speed of 50 mm / min while maintaining a right angle to the test piece, and an average load at this time was defined as a peel strength (kg / cm).
Dielectric constant and dielectric loss tangent: A 1 mm thick flat plate formed by injection molding cut out into a square of 15 mm was used as a test piece, and its dielectric constant and dielectric loss tangent at 1 GHz were measured using an impedance analyzer 4287A manufactured by Agilent Technologies. It was measured.
Flexural modulus (evaluation of rigidity): Evaluated according to JIS K7171.
Water absorption: Ten test pieces (70 mm × 50 mm × 3 mm) were left under the conditions of 23 ° C. and 50% RH, and the weight increase when the weight change was saturated was defined as the water absorption (based on the weight immediately after molding. And).
[0033]
The following commercially available resins were used as cyclic olefin-based resins (Cyclo Olefin Polymer).
COP1: TOPAS6015 (manufactured by Ticona, addition copolymer of norbornene and ethylene, containing no polar group)
COP2: Apel APL6015T (Mitsui Chemicals, addition copolymer of tetracyclododecene and ethylene, not containing a polar group)
COP3: Zeonor 1600R (manufactured by ZEON CORPORATION, hydrogenated product of a ring-opening polymer of norbornene-based cyclic olefin, containing no polar group)
COP4: ARTON G (Japan Synthetic Rubber Co., Ltd., 8-methyl-8-methoxycarbonyltetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-hydrogenation of ene ring-opening polymer Product, containing 4.27 mol of ester groups as polar groups per 1 kg of resin)
[0034]
A glass balloon (manufactured by Sumitomo 3M, Glass Bubbles S60HS, true density 0.60, 90% particle size 45 μm, hereinafter abbreviated as GB) was used as the hollow inorganic filler.
[0035]
Preparation Example 1 (Preparation of acrylic acid-modified cyclic olefin resin COPF1)
98 parts by weight of a cyclic olefin resin TOPAS 6013 (manufactured by Ticona, addition copolymer of norbornene and ethylene, glass transition temperature: 136 ° C., not containing a polar group), 2 parts by weight of acrylic acid, and perhexin 25B as a peroxide (Japan 0.2 parts by weight (oil and fat) were melt-kneaded at a cylinder temperature of 200 ° C. using a twin-screw extruder to synthesize a modified cyclic olefin resin grafted with acrylic acid. This COPF1 contains 0.28 mol of carboxyl groups per kg of resin as polar groups.
[0036]
Preparation Example 2 (Preparation of maleic anhydride-modified cyclic olefin resin COPF2)
97.3 parts by weight of a cyclic olefin resin TOPAS 6013 (manufactured by Ticona), 2.7 parts by weight of maleic anhydride, and 0.2 part by weight of perhexin 25B (manufactured by NOF Corporation) as a peroxide were subjected to a cylinder using a twin-screw extruder. The mixture was melt-kneaded at a temperature of 200 ° C. to synthesize a modified cyclic olefin resin in which maleic anhydride was grafted. This COPF2 contains, as a polar group, 0.28 mol of an acid anhydride group per 1 kg of the resin.
[0037]
[Example 1]
The cyclic olefin-based resin COP1 was injection-molded at a cylinder temperature of 300 ° C. and a mold temperature of 110 ° C. to form a 50 mm × 70 mm × 3 mm flat molded piece.
Next, using a liquid honing apparatus, using a commercially available brown alumina abrasive (grain size = # 220, conforming to Japanese Industrial Standard R6111) under the conditions of injection pressure = 0.4 MPa and injection time = 10 seconds. One side of the molded article was roughened. At this stage, when the surface roughness of the roughened surface of the molded product was measured, it was Rz = 11.7 μm.
Next, copper was laminated by a plating method. After the surface-roughened test piece is acid-degreased and washed, it is immersed in Cataposit 44 (manufactured by Shipley Far East Co., Ltd.), washed with water, and immersed in Accelerator-19E (manufactured by Shipley Far East Co., Ltd.). Thus, a catalyst was applied to the surface. After washing with water, it was immersed in Omnishield 1598 (manufactured by Shipley Far East Co., Ltd.) at 40 ° C. for 30 minutes to perform electroless copper plating, washed with water, and dried.
The test piece subjected to electroless copper plating was immersed in Electroposit 1100 (manufactured by Shipley Far East Co., Ltd.), and a current was applied to the test piece to perform electrolytic copper plating to form a copper film having a thickness of 30 μm. A good copper film could be formed, and the peel strength was measured to be 0.45 kg / cm.
Moreover, the dielectric constant at 1 GHz of the cyclic olefin resin COP1 was 2.31, the dielectric loss tangent was 0.0005, the flexural modulus was 2900 MPa, and the water absorption was 0.01%.
[0038]
[Examples 2 to 6]
A copper-plated cyclic olefin resin molded article was prepared in the same manner as in Example 1 except that the conditions for surface roughening were changed as shown in Table 1.
Table 1 shows the results of Examples 1 to 6. In each case, a good copper film could be formed.
[0039]
[Table 1]
Figure 2004169049
[0040]
[Examples 7 to 11]
The cyclic olefin resin COP1 and the glass balloon GB were melt-kneaded with a composition shown in Table 1 at a cylinder temperature of 300 ° C. using a twin screw extruder to obtain a pellet of the cyclic olefin resin composition. Molding, surface roughening, and copper plating were performed in the same manner as in Example 1 and evaluated. Table 2 shows the results.
By adding the glass balloon, it was possible to increase the rigidity and obtain a still higher peel strength while maintaining good high-frequency dielectric properties (low dielectric constant and low dielectric loss tangent) of the cyclic olefin resin.
[0041]
[Table 2]
Figure 2004169049
[0042]
[Examples 12 to 15]
By changing the cyclic olefin resin to COP2 or COP3, a copper-plated cyclic olefin resin molded article was produced in the same manner as in Example 1 or 7. In each case, a good copper film could be formed. Table 3 shows the results.
[0043]
[Table 3]
Figure 2004169049
[0044]
[Examples 16 to 21]
As shown in Table 4, a composition was prepared by adding a modified cyclic olefin resin COPF1 or COPF2 to which a polar group was grafted, and a copper-plated cyclic olefin resin molded article was prepared and evaluated. Addition of the modified cyclic olefin-based resin slightly increased the dielectric constant, the dielectric loss tangent, and the water absorption, but it was found that the peel strength could be greatly increased, which was favorable.
[0045]
[Table 4]
Figure 2004169049
[0046]
[Comparative Examples 1-4]
As shown in Table 5, the molded product of the composition of the cyclic olefin resin COP1 or COP1 and the glass balloon GB was subjected to electroless copper plating without surface roughening, but the copper film was easily peeled off and the peel strength was increased. Could not be measured.
[0047]
[Comparative Examples 5 and 6]
As shown in Table 5, a molded article of the composition to which the modified cyclic olefin resin COP2 was added was subjected to electroless copper plating without surface roughening. Although the copper film was not easily peeled off and the peel strength could be measured, the value was very small.
[0048]
[Table 5]
Figure 2004169049
[0049]
[Comparative Examples 7 and 8]
As shown in Table 6, evaluation was performed in the same manner as in Example 1 or 7, except that COP4 having an ester group in a side chain was used as the cyclic olefin-based resin. When the polar group content is large, such as COP4, the peel strength is high, but the values of the dielectric constant and the dielectric loss tangent increase significantly, and the water absorption increases more than 10 times. It turned out to be appropriate.
[0050]
[Table 6]
Figure 2004169049
[0051]
【The invention's effect】
According to the present invention, a method of compounding a metal on the surface of a cyclic olefin resin molded article suitable as a component of a device for processing a high frequency, particularly a high frequency electric signal in the GHz band, and a cyclic olefin resin composited with a metal A molded article can be obtained.

Claims (14)

環状オレフィン系樹脂もしくはその組成物の成形品に対し、成形品表面の少なくとも一部を、十点平均粗さRzが5μm以上となるように粗化した後、成形品表面に金属膜を湿式メッキ法により形成することを特徴とする環状オレフィン系樹脂成形品への金属複合方法。After roughening at least a part of the surface of the molded article of the cyclic olefin-based resin or the composition thereof so that the ten-point average roughness Rz is 5 μm or more, a metal film is wet-plated on the surface of the molded article. A method of metal composite with a cyclic olefin resin molded article, characterized by being formed by a method. 粗化が、サンドブラスト、ショットブラスト、液体ホーニング、タンブリング及びレーザー照射からなる群から選ばれた少なくとも一種で行われる請求項1記載の金属複合方法。The metal composite method according to claim 1, wherein the roughening is performed by at least one selected from the group consisting of sand blast, shot blast, liquid honing, tumbling, and laser irradiation. 湿式メッキ法が無電解メッキ法である請求項1または2記載の金属複合方法。3. The metal composite method according to claim 1, wherein the wet plating method is an electroless plating method. 湿式メッキ法が、無電解メッキを施した後に電解メッキを施す方法である請求項1または2記載の金属複合方法。3. The metal composite method according to claim 1, wherein the wet plating method is a method of performing electroless plating after performing electroless plating. 環状オレフィン系樹脂の少なくとも一部が、極性基をもつ不飽和化合物がグラフトされた変性環状オレフィン系樹脂である請求項1〜4のいずれか1項に記載の金属複合方法。The metal composite method according to any one of claims 1 to 4, wherein at least a part of the cyclic olefin resin is a modified cyclic olefin resin to which an unsaturated compound having a polar group is grafted. 環状オレフィン系樹脂もしくはその組成物に含有されている極性基の濃度が1mol/kg以下である請求項5に記載の金属複合方法。The metal composite method according to claim 5, wherein the concentration of the polar group contained in the cyclic olefin-based resin or the composition thereof is 1 mol / kg or less. 環状オレフィン系樹脂が、α−オレフィンと環状オレフィンの付加共重合体である請求項1〜6のいずれか1項に記載の金属複合方法。The metal composite method according to any one of claims 1 to 6, wherein the cyclic olefin-based resin is an addition copolymer of an α-olefin and a cyclic olefin. 環状オレフィンがノルボルネンもしくはテトラシクロドデセンである請求項7に記載の金属複合方法。The method according to claim 7, wherein the cyclic olefin is norbornene or tetracyclododecene. 環状オレフィン系樹脂組成物が、環状オレフィン系樹脂と中空無機充填材からなる請求項1〜8のいずれか1項記載の金属複合方法。The metal composite method according to any one of claims 1 to 8, wherein the cyclic olefin-based resin composition comprises a cyclic olefin-based resin and a hollow inorganic filler. 中空無機充填材がガラスバルーンもしくはシラスバルーンである請求項9記載の金属複合方法。The metal composite method according to claim 9, wherein the hollow inorganic filler is a glass balloon or a shirasu balloon. 請求項1〜9のいずれか1項に記載の環状オレフィン系樹脂成形品への金属複合方法により得られた金属複合化環状オレフィン系樹脂成形品。A metal-composite cyclic olefin-based resin molded product obtained by the method for metal-combination with the cyclic olefin-based resin molded product according to any one of claims 1 to 9. 金属−樹脂もしくはその組成物間のピール強度が0.2kg/cm以上である請求項11に記載の金属複合化環状オレフィン系樹脂成形品。The metal-composite cyclic olefin-based resin molded product according to claim 11, wherein the peel strength between the metal and the resin or the composition thereof is 0.2 kg / cm or more. 環状オレフィン系樹脂もしくはその組成物の吸水率が0.1%以下である請求項11又は12に記載の金属複合化環状オレフィン系樹脂成形品。The metal-composite cyclic olefin resin molded article according to claim 11 or 12, wherein the cyclic olefin resin or the composition thereof has a water absorption of 0.1% or less. GHz帯の高周波電気信号を処理するデバイスの構成部品に使用される請求項11〜13のいずれか1項に記載の金属複合化環状オレフィン系樹脂成形品。The metal-composite cyclic olefin-based resin molded product according to any one of claims 11 to 13, which is used as a component of a device that processes a high-frequency electric signal in a GHz band.
JP2002332630A 2002-11-15 2002-11-15 Method for compounding metal to surface of cyclic olefine-based resin molding, and metal-compounded cyclic olefine-based resin molding Pending JP2004169049A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002332630A JP2004169049A (en) 2002-11-15 2002-11-15 Method for compounding metal to surface of cyclic olefine-based resin molding, and metal-compounded cyclic olefine-based resin molding
PCT/JP2003/014461 WO2004046419A1 (en) 2002-11-15 2003-11-13 Method of combining metal with surface of molded cycloolefin resin and metal-combined molded cycloolefin resin
AU2003280771A AU2003280771A1 (en) 2002-11-15 2003-11-13 Method of combining metal with surface of molded cycloolefin resin and metal-combined molded cycloolefin resin
TW092131910A TWI340769B (en) 2002-11-15 2003-11-14 Method for compounding metal onto surface of molded article of cyclic olefin based resin, and molded article of cyclic olefin based resin compounded with metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332630A JP2004169049A (en) 2002-11-15 2002-11-15 Method for compounding metal to surface of cyclic olefine-based resin molding, and metal-compounded cyclic olefine-based resin molding

Publications (1)

Publication Number Publication Date
JP2004169049A true JP2004169049A (en) 2004-06-17

Family

ID=32321665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332630A Pending JP2004169049A (en) 2002-11-15 2002-11-15 Method for compounding metal to surface of cyclic olefine-based resin molding, and metal-compounded cyclic olefine-based resin molding

Country Status (4)

Country Link
JP (1) JP2004169049A (en)
AU (1) AU2003280771A1 (en)
TW (1) TWI340769B (en)
WO (1) WO2004046419A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104318A (en) * 2004-10-05 2006-04-20 Sumitomo Bakelite Co Ltd Resin composition, resin layer, carrier material with resin layer and circuit board
JP2006316296A (en) * 2005-05-10 2006-11-24 Fuji Photo Film Co Ltd Method for forming metal film, method for forming metal pattern using the same, and metal film
JP2007517128A (en) * 2003-12-30 2007-06-28 スリーエム イノベイティブ プロパティズ カンパニー Filling composite
JP2007302722A (en) * 2006-05-09 2007-11-22 Polyplastics Co High-frequency electronic part material and high-frequency electronic part composed of the material
JP2009161857A (en) * 2007-12-14 2009-07-23 Fujifilm Corp Photosensitive resin composition for plating and method for producing substrate with metal layer using the same
JP2011181916A (en) * 2010-02-05 2011-09-15 Sumitomo Bakelite Co Ltd Resin composition, high frequency circuit board using the same, and antenna module
JP2011184695A (en) * 2011-04-18 2011-09-22 Sumitomo Bakelite Co Ltd Resin composition, resin layer and carrier material with resin layer, and circuit board
JP2018525840A (en) * 2015-08-21 2018-09-06 コーニング インコーポレイテッド Glass substrate assembly having low dielectric properties
JP2018183934A (en) * 2017-04-26 2018-11-22 株式会社C−Ink Laminate
JPWO2018016527A1 (en) * 2016-07-22 2019-06-13 京セラ株式会社 Organic insulator, metal-clad laminate and wiring board
WO2020121632A1 (en) * 2018-12-14 2020-06-18 株式会社クレハ Antibacterial molded article and use thereof
WO2022118175A1 (en) * 2020-12-02 2022-06-09 3M Innovative Properties Company Curable compositions, composite foam, method of making the same, and article including the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229191A (en) * 1985-07-30 1987-02-07 三井化学株式会社 High frequency electric circuit board
JP2881751B2 (en) * 1989-03-10 1999-04-12 三井化学株式会社 Plating composition and plating
JPH05156100A (en) * 1991-12-03 1993-06-22 Mitsui Petrochem Ind Ltd Resin composition and its use
KR100480548B1 (en) * 1997-06-06 2005-04-07 제온 코포레이션 Resin-coated matal foils containing cycloolefinic polymers, laminated boards and multilayer laminated boards using the same, and process for producing multilayer laminated boards
JP2000017444A (en) * 1998-06-29 2000-01-18 Nec Kansai Ltd Resin molding and production of resin molding
JP2001026687A (en) * 1999-07-14 2001-01-30 Sumitomo Chem Co Ltd Copolymer composition
JP2001031788A (en) * 1999-07-22 2001-02-06 Teijin Meton Kk Plated crosslinked polymer molding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517128A (en) * 2003-12-30 2007-06-28 スリーエム イノベイティブ プロパティズ カンパニー Filling composite
JP2006104318A (en) * 2004-10-05 2006-04-20 Sumitomo Bakelite Co Ltd Resin composition, resin layer, carrier material with resin layer and circuit board
JP2006316296A (en) * 2005-05-10 2006-11-24 Fuji Photo Film Co Ltd Method for forming metal film, method for forming metal pattern using the same, and metal film
JP4579048B2 (en) * 2005-05-10 2010-11-10 富士フイルム株式会社 Metal film forming method, metal pattern forming method using the same, and metal film
JP2007302722A (en) * 2006-05-09 2007-11-22 Polyplastics Co High-frequency electronic part material and high-frequency electronic part composed of the material
JP2009161857A (en) * 2007-12-14 2009-07-23 Fujifilm Corp Photosensitive resin composition for plating and method for producing substrate with metal layer using the same
JP2011181916A (en) * 2010-02-05 2011-09-15 Sumitomo Bakelite Co Ltd Resin composition, high frequency circuit board using the same, and antenna module
JP2011184695A (en) * 2011-04-18 2011-09-22 Sumitomo Bakelite Co Ltd Resin composition, resin layer and carrier material with resin layer, and circuit board
JP2018525840A (en) * 2015-08-21 2018-09-06 コーニング インコーポレイテッド Glass substrate assembly having low dielectric properties
JPWO2018016527A1 (en) * 2016-07-22 2019-06-13 京セラ株式会社 Organic insulator, metal-clad laminate and wiring board
JP2018183934A (en) * 2017-04-26 2018-11-22 株式会社C−Ink Laminate
WO2020121632A1 (en) * 2018-12-14 2020-06-18 株式会社クレハ Antibacterial molded article and use thereof
WO2022118175A1 (en) * 2020-12-02 2022-06-09 3M Innovative Properties Company Curable compositions, composite foam, method of making the same, and article including the same

Also Published As

Publication number Publication date
TW200420752A (en) 2004-10-16
AU2003280771A1 (en) 2004-06-15
WO2004046419A1 (en) 2004-06-03
TWI340769B (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP2004169049A (en) Method for compounding metal to surface of cyclic olefine-based resin molding, and metal-compounded cyclic olefine-based resin molding
JP4267073B2 (en) Solution in which norbornene polymer composition is dissolved in a solvent
US20060272768A1 (en) Method for producing laminated release film
US20100204405A1 (en) Release film
JP5023880B2 (en) Release film
JP2004156048A (en) Cyclic olefin-based resin composition film
JP6829029B2 (en) Curable resin composition, cured product, dry film, film, prepreg, metal-clad laminate, printed wiring board and electronic equipment
JP2007320088A (en) Prepreg and metal-clad substrate for printed wiring board
KR20130029422A (en) Reflective material
JP2013043942A (en) Polybutylene terephthalate resin composition
KR100580887B1 (en) Alicyclic resin composition
JP2004167687A (en) Method for compounding metal on surface of cycloolefinic resin molded product and metal-compounded cycloolefinic resin molded product
JP2003238761A (en) Crosslinkable resin composition, crosslinkable molded product, and crosslinked molded product
KR20020074229A (en) Method for manufacturing multilayer circuit board
TWI410455B (en) A high-frequency electronic component material, and a high-frequency electronic component made of the same
JP2000313090A (en) Laminate and its production
JP3887357B2 (en) Crosslinkable resin composition capable of plating, crosslinkable resin molded article and crosslinked resin molded article
JP4168223B2 (en) Curable resin composition, insulating material and circuit board
CN115768626A (en) Adhesive composition, adhesive sheet, laminate, and printed wiring board
JP2002317092A (en) Electroconductive resin composition and resin molded body
JP2018034422A (en) Laminate, metal-clad laminate, printed wiring board, and electronic equipment
JPS6287310A (en) Manufacture of rubber-based composite material
WO2023112921A1 (en) Flexible waveguide
WO2024038794A1 (en) Low dielectric resin composition, adhesiveness imparting agent, low dielectric adhesive composition, low dielectric adhesive molded article, low dielectric adhesive and multilayer body
EP1302488A1 (en) Grafting-modified cyclic polymer, process for producing the same, and curable composition

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Effective date: 20050819

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A02