JP2004168901A - Method for producing terminal-blocked polycarbonate - Google Patents

Method for producing terminal-blocked polycarbonate Download PDF

Info

Publication number
JP2004168901A
JP2004168901A JP2002336875A JP2002336875A JP2004168901A JP 2004168901 A JP2004168901 A JP 2004168901A JP 2002336875 A JP2002336875 A JP 2002336875A JP 2002336875 A JP2002336875 A JP 2002336875A JP 2004168901 A JP2004168901 A JP 2004168901A
Authority
JP
Japan
Prior art keywords
aromatic
polycarbonate
anhydride
producing
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002336875A
Other languages
Japanese (ja)
Other versions
JP4067944B2 (en
Inventor
Ichiro Kakihara
一郎 柿原
Hiroshi Yatani
広志 八谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002336875A priority Critical patent/JP4067944B2/en
Publication of JP2004168901A publication Critical patent/JP2004168901A/en
Application granted granted Critical
Publication of JP4067944B2 publication Critical patent/JP4067944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aromatic polycarbonate having a hydroxy group blocked by a blocking agent easily and effectively blocking the hydroxy group at the terminal of the polycarbonate by an extruder without reducing the molecular weight of the polycarbonate resin when producing the polycarbonate by a melt-polymerization of an aromatic dihydroxy compound and a diester of carbonic acid. <P>SOLUTION: The method for producing the aromatic polycarbonate involves reacting an aromatic monocarboxylic acid anhydride represented by a specific formula, and an aromatic sulfonic acid as terminal-blocking agents of the polycarbonate in the extruder by continuously adding them when producing the polycarbonate by a melt polymerization of an aromatic dihydroxy compound and a diester of carbonic acid. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶融法により実施される芳香族ポリカーボネートに関するものである。
【0002】
【従来の技術】
近年、芳香族ポリカーボネートは、耐熱性、耐衝撃性、透明性などに優れたエンジニアリングプラスチックスとして、多くの分野において広く用いられている。この芳香族ポリカーボネートの製造法については、従来種々の研究が行なわれてきており、その中で、芳香族ジヒドロキシ化合物、例えば2,2−ビス(4−ヒドロキシフェニル)プロパン(以下、ビスフェノールAという)とホスゲンとの界面重縮合法が工業化されている。
しかしながら、この界面重縮合法においては、有毒なホスゲンを用いなければならないこと、副生する塩化水素や塩化ナトリウム及び、溶媒として大量に用いる塩化メチレンなどの含塩素化合物により装置が腐食すること、ポリマー物性に悪影響を及ぼす塩化ナトリウムなどの不純物や残留塩化メチレンの分離が困難なことなどの問題があった。
【0003】
一方、芳香族ジヒドロキシ化合物とジアリールカーボネートから、ホスゲンや塩化メチレン溶媒を用いることなく芳香族カーボネートを製造する方法が検討されている。例えば、ビスフェノールAとジフェニルカーボネートを溶融状態でエステル交換し、副生するフェノールを抜き出しながら重合する溶融法がある。溶融法は、界面重合法と異なり、溶媒を使用しないなどの利点がある一方、エステル交換により、重縮合を行なっていくために、ビスフェノールAに由来するヒドロキシ基がポリカーボネートの着色の原因となったり熱安定性を減じたりするといった問題があり、ヒドロキシ基を減らす必要があった。
【0004】
その為、溶融法で製造されるポリカーボネートのヒドロキシ末端基を安定な末端に変換する方法が提案されている。例えば特開平03−231919や特開平10−36497では、末端封止剤(変換)剤として有機カルボン酸エステルや炭酸エステル化合物を用いる方法が示されている。しかしこれらの方法は重合終了前に重合器中に末端封止剤を添加しているために、封止剤と重合器中のポリカーボネートが反応してポリカーボネートの分子量低下が発生し、重合時間が長くなるという問題があった。また、重合時間の増大はポリカーボネートの着色にもつながっていた。
【0005】
さらに高温減圧下の重合終了前の反応器への封止剤の添加の設備が必要となっていた。そこで、重合反応終了後反応器から取出された溶融ポリカーボネート樹脂を、それに続く押出し機による混練中に末端封止剤を導入して、分子量を低下させることなく、末端を封止することにより末端ヒドロキシ基濃度を減じることができれば、既存の設備をそのまま使用することができるため、押出し機中での末端封止する方法が望まれている。
【0006】
また末端ヒドロキシ基の封止にカルボン酸ハライドを用いる方法として、例えば特開平06−306158や公知文献(J.Appl.Polym.Sci.,77,1338(2000))に発生する塩化水素をトラップする方法が紹介されているが、本方法も押出機での混練において分子量の低減は少ないものの樹脂の著しい変色があり、実用には使えないことがわかった。
他方、芳香族スルホン酸化合物を用いる方法も提案されている。例えば特開平05−9287のように酸性化合物の一例としてイオウ含有酸性化合物が使われているが、ここで使われている末端封止剤は重合器中に導入するのであって、押出機に直接導入するものではなく、他方イオウ含有酸性化合物で推奨されているp−トルエンスルホン酸エステルを単独で、もしくは末端封止剤とともに押出機に導入しても改善効果はないことがわかった。
【0007】
なお、ポリカーボネート樹脂は分解によりヒドロキシ末端を生成するため、分解によってフェニル末端量が減少し、ヒドロキシ末端が増加する結果となる。そのためポリカーボネート樹脂の分解は分子量減少に伴う衝撃強度の低下だけでなく末端ヒドロキシ基の増加につながるため、ポリカーボネート樹脂の分解を抑えることが必要である。
【0008】
【特許文献1】
特開平03−231919号公報
【特許文献2】
特開平10−36497号公報
【特許文献3】
特開平06−306158号公報
【特許文献4】
特開平05−9287
【非特許文献1】
J.Appl.Polym.Sci.,77,1338(2000)
【0009】
【発明が解決しようとする課題】
このようにして押出機を通過するわずかな時間の混練の間にポリカーボネート樹脂の分子量を減少させること無く、ポリカーボネートの末端ヒドロキシ基を効果的に封止する方法は従来見つかっておらず、効率的な生産の上でも望まれていた。
本発明の課題は、ポリカーボネート末端のヒドロキシ基を、押出機を通す工程で効率的に封止しポリカーボネート樹脂の安定性を向上させることである。
【0010】
【課題を解決するための手段】
前記課題を解決するために本発明者は鋭意検討を行った結果、カルボン酸無水物のうち、とりわけ芳香族モノカルボン酸無水物が押出機でのヒドロキシ基の封止に非常に効果があることがわかり、当発明に至った。
さらに混合時に芳香族スルホン酸を触媒量添加すると予想外に末端封止効果が現れることがわかり、鋭意検討の結果当発明に至った。
即ち本発明は、エステル交換法により重合したポリカーボネート樹脂を反応器からとりだし押出機にて造粒する過程で、芳香族モノカルボン酸無水物、および芳香族スルホン酸を添加し混練を行うことによりポリカーボネートの末端ヒドロキシ基を効率的に封止したポリカーボネート製造方法である。
【0011】
本発明は、
(1)芳香族ジヒドロキシ化合物と炭酸ジエステルとから溶融重合法により製造されたヒドロキシ末端を有する芳香族ポリカーボネートに、下記一般式(1)で表される芳香族モノカルボン酸無水物、および下記式(2)の芳香族スルホン酸化合物を溶融混練することによって、ヒドロキシ末端を封止されたことを特徴とする末端封止芳香族ポリカーボネートの製造方法。
【0012】
【化3】

Figure 2004168901
【0013】
(式中、R及びRは各々独立に水素原子、炭素数1から20を有する炭化水素基、炭素数1から20を有するアルコキシ基、芳香族基、芳香族オキシ基、芳香族アルキル基、ニトロ基、ハロゲンを示す。m及びnは1から5の整数で、mが2以上の場合は各Rは相互に異なるものであってもよいし、nが2以上の場合は各Rは相互に異なるものであってもよい。Ar及びArは各々独立に炭素数6から14の芳香族炭化水素を示す。)
【0014】
【化4】
Figure 2004168901
【0015】
(式中、Rは水素原子または炭素数1から15を有する炭化水素、Arは炭素数6から11の芳香族炭化水素を示し、pは1から5の整数で、pが2以上の場合は各Rは相互に異なる物であってもよい。nは0または1である。)
【0016】
(2) 該反応が、芳香族ポリカーボネートのヒドロキシ基末端基に対する芳香族モノカルボン酸無水物のモル比が0.5から1.5にあることを特徴とする前記(1)に記載の末端封止芳香族ポリカーボネートの製造方法。
(3) 該反応が、芳香族モノカルボン酸無水物式(1)に対して芳香族スルホン酸式(2)のモル比が0.001から0.1であることを特徴とする前記(1)から(2)に記載の末端封止芳香族ポリカーボネートの製造方法。
(4) 該反応が、最終重合器から溶融状態のままで連続的に芳香族ポリカーボネートが供給されている押出機に、連続的に芳香族モノカルボン酸無水物および芳香族スルホン酸が供給されることを特徴とする前記(1)から(3)記載の末端封止芳香族ポリカーボネートの製造方法。
【0017】
(5) 該押出機が、2軸混練押出機であることを特徴とする前記(1)から(4)に記載の末端封止芳香族ポリカーボネートの製造方法。
(6) 該温度条件が、250℃から280℃であることを特徴とする前記(1)から(5)に記載の末端封止芳香族ポリカーボネートの製造方法。
(7) 該反応が、添加剤の添加と同時に実施されることを特徴とする、前記(1)から(6)に記載の末端封止芳香族ポリカーボネートの製造方法。
に係わる
【0018】
【発明の実施の形態】
押出機に導入される該エステル交換法のポリカーボネートは、公知方法で製造できる。具体的には、芳香族ジヒドロキシ化合物とジフェニルカーボネートを反応せしめる方法により製造できる。
また該エステル交換法のポリカーボネートには必要に応じて各種添加剤を配合して良く、各種添加剤としては例えば耐熱安定剤、酸化防止剤、耐候剤、紫外線吸収剤、離型剤、滑剤、帯電防止剤、可塑剤、他樹脂やゴム等の重合体、顔料、染料、充填剤、強化剤、難燃剤等を挙げることができる。
【0019】
一般にエステル交換法のポリカーボネートはヒドロキシ基の末端の割合が10モル%から50モル%、フェニル基の末端の割合は50モル%から90モル%であり、ヒドロキシ基の割合が20モル%を超えると長期の加熱条件下で樹脂の着色が著しくなる。本発明のエステル交換法のポリカーボネートは末端封止剤によってヒドロキシ基の末端を封止することにより熱安定性を向上させている。すなわち末端封止反応前のヒドロキシ基の割合が10モル%から50モル%に対し、反応後に導入された末端が封止剤である割合が30モル%から50モル%、未反応のヒドロキシ基の末端の割合は5モル%から20モル%である。
また該ポリカーボネートの重量平均分子量(Mw)の範囲は10000から40000であり、10000以下では衝撃強度が低下して実用にならず、また40000を超えると溶融粘度が高くなりすぎて成型が困難になる。
【0020】
本発明で用いられる式(1)で表される芳香族モノカルボン酸無水物としては、例えば安息香酸無水物、2−メチル安息香酸無水物、3−メチル安息香酸無水物、4−メチル安息香酸無水物、2−エチル安息香酸無水物、3−エチル安息香酸無水物、4−エチル安息香酸無水物、2−プロピル安息香酸無水物、3−プロピル安息香酸無水物、4−プロピル安息香酸無水物、2−イソプロピル安息香酸、3−イソプロピル安息香酸無水物、4−イソプロピル安息香酸無水物、2−n−ブチル安息香酸無水物、3−n−ブチル安息香酸無水物、4−n−ブチル安息香酸無水物、2−イソブチル安息香酸無水物、3−イソブチル安息香酸無水物、4−イソブチル安息香酸無水物、2−t−ブチル安息香酸無水物、3−t−安息香酸無水物、4−t−安息香酸無水物、
【0021】
2−メトキシ安息香酸無水物、3−メトキシ安息香酸無水物、4−メトキシ安息香酸無水物、2−エトキシ安息香酸無水物、3−エトキシ安息香酸無水物、4−エトキシ安息香酸無水物、2−ニトロ安息香酸無水物、3−ニトロ安息香酸無水物、4−ニトロ安息香酸無水物、2,4−ジメチル安息香酸無水物、2,5−ジメチル安息香酸無水物、2,6−ジメチル安息香酸無水物、3,5−ジメチル安息香酸無水物、2、4−ジ−t−ブチル安息香酸無水物、2,5−ジ−t−ブチル安息香酸無水物、2,6−ジ−t−ブチル安息香酸無水物、3,5−ジ−t−ブチル安息香酸無水物、2,4−ジメトキシ安息香酸無水物、2,5−ジメトキシ安息香酸無水物、2,6−ジメトキシ安息香酸無水物、3,5−ジメトキシ安息香酸無水物、
【0022】
1−ナフトエ酸無水物、2−ナフトエ酸無水物等の対称無水物、および安息香酸2−メチル安息香酸混合無水物、安息香酸3−メチル安息香酸混合無水物、安息香酸4−メチル安息香酸混合無水物、安息香酸2−t−ブチル安息香酸混合無水物、安息香酸3−t−ブチル安息香酸混合無水物、安息香酸4−t−ブチル安息香酸混合無水物、安息香酸2−メトキシ安息香酸混合無水物、安息香酸3−メトキシ安息香酸混合無水物、安息香酸4−メトキシ安息香酸混合無水物、安息香酸ニトロ安息香酸混合無水物、2−メチル安息香酸3−メチル安息香酸混合無水物、2−メチル安息香酸4−メチル安息香酸混合無水物、3−メチル安息香酸4−メチル安息香酸混合無水物等の混合無水物が挙げられる。これらは単独で用いても良いし、2種類以上混合して用いても良い。
【0023】
本発明に用いられる(2)芳香族スルホン酸としては、例えばベンゼンスルホン酸、p−トルエンスルホン酸、4−t−ブチルベンゼンスルホン酸などが挙げられる。
本発明ではポリカーボネート中に、(1)芳香族モノカルボン酸無水物はポリカーボネート中の末端ヒドロキシル基量に対しモル比が0.5から1.5、好ましくは0.8から1.2である。末端ヒドロキシル基に対する(1)芳香族モノカルボン酸無水物のモル比が0.5以下では反応性が低く、1.5以上ではポリカーボネート樹脂の分解が顕著になる。
【0024】
式(2)で表される芳香族スルホン酸は、少量で良く、(1)芳香族モノカルボン酸無水物に対してモル比が0.001から0.1好ましくは0.003から0.01であり、該モル比が0.001よりすくないと所期の結果が得られず、また0.1より多いとポリカーボネートの分解が顕著になる。
押出し温度は200℃から320℃、好ましくは250℃から280℃が望ましく、200℃以下では押出し樹脂圧力が増加して押出し困難になる。一方320℃を超えるとポリカーボネート樹脂の分解、低分子量化が顕著になる。
【0025】
本発明では反応機から押出機に溶融樹脂を導入する際に、溶融樹脂を取出すことなく連続に末端封止剤を添加するのが特徴であり、取出した樹脂に末端封止剤を添加して再押出をして再反応させる必要がない。
また本発明では末端封止剤を、添加剤と同時に添加できることが特徴で、既存の添加剤添加装置をそのまま用いることができる。
また本発明の押出し機は2軸押出し機が好ましい。
【0026】
【実施例】
以下、実施例に基づき、本発明をより詳細に説明する。なお、例中の「部」は特にことわらない限り重量部を表す。
本発明において物性測定は以下の方法によって測定した。
(i)ポリカーボネート末端基の定量:サンプル0.3gを5mlの重水素置換クロロホルムに溶解し、23℃で核磁気共鳴分析装置のH−NMR(バルカー社製EX−400)を用いて末端基を測定した。ヒドロキシ基末端濃度(モル%)は全末端数に対するヒドロキシ基の割合により計算した。
(ii)分子量の定量:サンプル0.8gを20mlのジクロロメタンに溶解し、23℃でゲルパーミエーションクロマトグラフィー分析装置のGPC(東ソー社製SC8080)を用いて、テトラヒドロフランを展開溶媒として分子量を測定した。なお分子量減少率は反応後の重量平均分子量(Mw)と反応前の重量平均分子量(Mw)との変化量に対する反応前の重量平均分子量(Mw)の割合を示す。
【0027】
長期耐熱着色(Δb)は140℃のギアオーブン中500時間放置した後、色の変化を測定した。
耐衝撃試験はシャルピー試験により行い、その結果は、耐衝撃性に優れるものを○印、耐衝撃性が低下したものを△印、大きく低下したものを×印で示した。
またポリカーボネート樹脂の押出による効果の確認は2軸のスクリューを備えたプラストミル混合機(東洋精機製)を用いて行い、樹脂の加熱は混合機のブロックに内蔵されたヒーターによって行なった。
さらにPCM30(株式会社池貝)2軸スクリュー式押出機で押出の効果の確認を行なった。
【0028】
【実施例1〜7】
エステル交換法によって製造されたポリカーボネート(分子量Mw=15000、末端OH濃度32%、2.57mmol)60gを280℃に温度制御されたプラストミル(東洋精機製)に半量仕込み、アセトンに溶解させた表1に示す安息香酸無水物化合物等0.581g(2.57mmol)、およびp−トルエンスルホン酸・一水和物0.0015g(0.008mmol)をいれ、さらに残り半量のポリカーボネートを仕込み6分間(スクリュー回転数25rpmで1分間、90rpmで5分間)攪拌反応させた。
その結果は表1に示す通り、末端が封止されたポリカーボネートが18モル%〜22モル%となり、末端ヒドロキシ基が12モル%乃至18モル%まで減少しヒドロキシ基量を減じる効果が見られた。
また反応機から連続して溶融ポリカーボネート樹脂を2軸の押出機に導入し、同時に添加剤を好ましくは5%以内で添加することにより、耐熱安定性と耐衝撃性に優れた末端封止ポリカーボネート樹脂を得ることができた。その結果を表1に示す。
【0029】
【表1】
Figure 2004168901
【0030】
【比較例1〜2】
実施例1と同様の反応を行い、芳香族モノカルボン酸の代わりに、表2に示す芳香族ジカルボン酸無水物を仕込む以外はまったく同様の操作で実験を繰り返した。その結果、まったくヒドロキシ基封止反応が起こらなかった。
【0031】
【比較例3】
実施例1と同様の反応を行い、芳香族モノカルボン酸の代わりに、表2に示す脂肪族モノカルボン酸無水物を仕込む以外はまったく同様の操作で実験を繰り返した。その結果、表2に示す通り、ポリカーボネートを分解して分子量が低下していることがわかった。
【0032】
【比較例4〜6】
実施例1と同様の反応を行い、芳香族モノカルボン酸の代わりに、表2に示す脂肪族ジカルボン酸無水物を仕込む以外はまったく同様の操作で実験を繰り返した。その結果、表2に示す通り、まったくヒドロキシ基封止反応が起こらなかった。以上の結果を表2に示す。
【0033】
【表2】
Figure 2004168901
【0034】
【実施例8〜9】
実施例1と同様の反応を行い、混練温度を260度とした以外はまったく同様の操作で実験を繰り返した。結果は、表3に示す。
【0035】
【実施例10】
実施例9と同様の反応を行い、末端封止剤のモル比を1.2とした以外はまったく同様の操作で実験を繰り返した。結果は、表3に示す。
【0036】
【表3】
Figure 2004168901
【0037】
【実施例11】
エステル交換法によって製造されたポリカーボネート(分子量Mw=15000、末端OH濃度32%)750gと安息香酸無水物7.26g、p−トルエンスルホン酸・1水和物0.02gをハンドブレンドし、株式会社池貝PCM30押出機(シリンダー温度250℃、スクリュー回転数150rpm、押出量7kg/hr)で押出した。結果は、表4に示す。
【0038】
【比較例7】
実施例11と同様の操作を行い、安息香酸無水物とp−トルエンスルホン酸・1水和物の代わりに2−メトキシカルボニルフェニルフェニルカーボネートを用いた以外はまったく同様の操作で実験を繰り返した。結果は、表4に示す。
【0039】
【表4】
Figure 2004168901
【0040】
【発明の効果】
芳香族ジヒドロキシ化合物と炭酸ジエステルを溶融重合法により製造するにあたり、ポリカーボネートの分子量を減少させること無く、かつ押出機で容易にポリカーボネート末端のヒドロキシ基を有効に封止することができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aromatic polycarbonate carried out by a melting method.
[0002]
[Prior art]
In recent years, aromatic polycarbonate has been widely used in many fields as engineering plastics excellent in heat resistance, impact resistance, transparency and the like. Various researches have been conducted on the process for producing this aromatic polycarbonate, and among them, aromatic dihydroxy compounds such as 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as bisphenol A). The interfacial polycondensation process between phosgene and phosgene has been industrialized.
However, in this interfacial polycondensation method, toxic phosgene must be used, equipment is corroded by by-produced hydrogen chloride and sodium chloride, and chlorine-containing compounds such as methylene chloride used in large quantities as a solvent, polymer There were problems such as difficulty in separating impurities such as sodium chloride and residual methylene chloride which adversely affect physical properties.
[0003]
On the other hand, a method for producing an aromatic carbonate from an aromatic dihydroxy compound and diaryl carbonate without using phosgene or a methylene chloride solvent has been studied. For example, there is a melting method in which bisphenol A and diphenyl carbonate are transesterified in a molten state and polymerized while extracting by-produced phenol. Unlike the interfacial polymerization method, the melting method has the advantage of not using a solvent. On the other hand, since the polycondensation is performed by transesterification, the hydroxy group derived from bisphenol A may cause the coloring of the polycarbonate. There was a problem of reducing thermal stability, and it was necessary to reduce the number of hydroxy groups.
[0004]
Therefore, a method has been proposed in which the hydroxy end group of a polycarbonate produced by a melting method is converted to a stable end. For example, Japanese Patent Application Laid-Open No. 03-231919 and Japanese Patent Application Laid-Open No. 10-36497 show a method using an organic carboxylic acid ester or a carbonic acid ester compound as a terminal blocking agent (conversion) agent. However, in these methods, since the end-capping agent is added to the polymerization vessel before the polymerization is completed, the sealing agent and the polycarbonate in the polymerization vessel react to cause a decrease in the molecular weight of the polycarbonate, resulting in a longer polymerization time. There was a problem of becoming. Moreover, the increase in polymerization time has led to the coloring of the polycarbonate.
[0005]
Furthermore, a facility for adding a sealant to the reactor before completion of polymerization under high temperature and reduced pressure was required. Therefore, terminal polycarbonate is introduced into the molten polycarbonate resin taken out from the reactor after the completion of the polymerization reaction by capping the terminal without lowering the molecular weight by introducing an end capping agent during kneading by the subsequent extruder. If the group concentration can be reduced, the existing equipment can be used as it is, and therefore, a method of end-sealing in an extruder is desired.
[0006]
Further, as a method of using a carboxylic acid halide for sealing a terminal hydroxy group, for example, trapping hydrogen chloride generated in JP-A-06-306158 and publicly known literature (J. Appl. Polym. Sci., 77, 1338 (2000)). Although the method has been introduced, it has been found that this method is also not practically usable because of the significant discoloration of the resin, although the reduction in molecular weight is small in kneading with an extruder.
On the other hand, a method using an aromatic sulfonic acid compound has also been proposed. For example, a sulfur-containing acidic compound is used as an example of an acidic compound as disclosed in Japanese Patent Application Laid-Open No. 05-9287. The end-capping agent used here is introduced into a polymerization vessel and directly into an extruder. On the other hand, it was found that there was no improvement effect even when the p-toluenesulfonic acid ester recommended for the sulfur-containing acidic compound was introduced into the extruder alone or together with the end-capping agent.
[0007]
In addition, since polycarbonate resin produces | generates a hydroxy terminal by decomposition | disassembly, the amount of phenyl terminals decreases by decomposition | disassembly, and it will result in an increase of a hydroxy terminal. Therefore, the decomposition of the polycarbonate resin leads to not only a decrease in impact strength due to a decrease in molecular weight but also an increase in terminal hydroxy groups, so it is necessary to suppress the decomposition of the polycarbonate resin.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 03-231919 [Patent Document 2]
Japanese Patent Laid-Open No. 10-36497 [Patent Document 3]
Japanese Patent Laid-Open No. 06-306158 [Patent Document 4]
JP 05-9287
[Non-Patent Document 1]
J. et al. Appl. Polym. Sci. , 77, 1338 (2000)
[0009]
[Problems to be solved by the invention]
Thus, no method has been found to effectively seal the terminal hydroxy group of polycarbonate without reducing the molecular weight of the polycarbonate resin during the kneading for a short period of time passing through the extruder. It was also desired for production.
An object of the present invention is to efficiently seal the hydroxyl group at the end of the polycarbonate in the process of passing through an extruder to improve the stability of the polycarbonate resin.
[0010]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors to solve the above-mentioned problems, among the carboxylic acid anhydrides, aromatic monocarboxylic acid anhydrides are particularly effective for sealing hydroxy groups in an extruder. As a result, the present invention has been achieved.
Furthermore, when a catalytic amount of aromatic sulfonic acid was added during mixing, it was found that an end-capping effect appeared unexpectedly, and as a result of intensive studies, the present invention was reached.
That is, the present invention relates to a process in which an aromatic monocarboxylic acid anhydride and an aromatic sulfonic acid are added and kneaded in a process in which a polycarbonate resin polymerized by a transesterification method is taken out from a reactor and granulated by an extruder. It is the polycarbonate manufacturing method which sealed efficiently the terminal hydroxy group.
[0011]
The present invention
(1) An aromatic monocarboxylic acid anhydride represented by the following general formula (1), and an aromatic monocarboxylic acid anhydride represented by the following general formula (1), and an aromatic polycarbonate having a hydroxy terminal produced from an aromatic dihydroxy compound and a carbonic acid diester by a melt polymerization method: 2. A process for producing an end-capped aromatic polycarbonate, wherein the hydroxy terminus is sealed by melt-kneading the aromatic sulfonic acid compound of 2).
[0012]
[Chemical Formula 3]
Figure 2004168901
[0013]
Wherein R 1 and R 2 are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aromatic group, an aromatic oxy group, or an aromatic alkyl group. And m and n are integers of 1 to 5, and when m is 2 or more, each R 1 may be different from each other, and when n is 2 or more, each R 1 2 may be different from each other, Ar 1 and Ar 2 each independently represents an aromatic hydrocarbon having 6 to 14 carbon atoms.
[0014]
[Formula 4]
Figure 2004168901
[0015]
(Wherein, R 3 is a hydrocarbon, Ar 3 having a hydrogen atom or a C 1 to 15 represents an aromatic hydrocarbon 11 to 6 carbon atoms, p is an integer from 1 5, p is 2 or more In this case, each R 3 may be different from each other, and n is 0 or 1.)
[0016]
(2) The end-capping described in (1), wherein the molar ratio of the aromatic monocarboxylic acid anhydride to the hydroxy group end group of the aromatic polycarbonate is 0.5 to 1.5. A method for producing a stopped aromatic polycarbonate.
(3) The reaction is characterized in that the molar ratio of the aromatic sulfonic acid formula (2) to the aromatic monocarboxylic acid anhydride formula (1) is 0.001 to 0.1 (1) ) To the end-capped aromatic polycarbonate according to (2).
(4) Aromatic monocarboxylic anhydride and aromatic sulfonic acid are continuously fed to an extruder in which the aromatic polycarbonate is continuously fed in the molten state from the final polymerization vessel. The method for producing an end-capped aromatic polycarbonate according to any one of (1) to (3) above.
[0017]
(5) The method for producing an end-capped aromatic polycarbonate according to any one of (1) to (4), wherein the extruder is a twin-screw kneading extruder.
(6) The method for producing an end-capped aromatic polycarbonate according to any one of (1) to (5), wherein the temperature condition is 250 ° C. to 280 ° C.
(7) The method for producing an end-capped aromatic polycarbonate according to any one of (1) to (6), wherein the reaction is performed simultaneously with the addition of the additive.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The transesterification polycarbonate introduced into the extruder can be produced by a known method. Specifically, it can be produced by a method of reacting an aromatic dihydroxy compound and diphenyl carbonate.
In addition, various additives may be blended in the transesterification polycarbonate as necessary. Examples of the various additives include heat stabilizers, antioxidants, weathering agents, ultraviolet absorbers, mold release agents, lubricants, charging agents. Examples thereof include inhibitors, plasticizers, polymers such as other resins and rubbers, pigments, dyes, fillers, reinforcing agents, flame retardants, and the like.
[0019]
In general, a transesterified polycarbonate has a hydroxyl group terminal ratio of 10 mol% to 50 mol%, a phenyl group terminal ratio of 50 mol% to 90 mol%, and a hydroxy group ratio of more than 20 mol%. Coloring of the resin becomes significant under long-term heating conditions. The polycarbonate of the transesterification method of the present invention has improved thermal stability by sealing the end of the hydroxy group with a terminal blocking agent. That is, the proportion of the hydroxy group before the end-capping reaction is 10 mol% to 50 mol%, whereas the proportion of the end group introduced after the reaction is the capping agent is 30 mol% to 50 mol%. The proportion of terminals is 5 mol% to 20 mol%.
Further, the range of the weight average molecular weight (Mw) of the polycarbonate is 10,000 to 40,000, and if it is 10,000 or less, the impact strength is lowered and is not practical, and if it exceeds 40,000, the melt viscosity becomes too high and molding becomes difficult. .
[0020]
Examples of the aromatic monocarboxylic acid anhydride represented by the formula (1) used in the present invention include benzoic acid anhydride, 2-methylbenzoic acid anhydride, 3-methylbenzoic acid anhydride, and 4-methylbenzoic acid. Anhydride, 2-ethylbenzoic anhydride, 3-ethylbenzoic anhydride, 4-ethylbenzoic anhydride, 2-propylbenzoic anhydride, 3-propylbenzoic anhydride, 4-propylbenzoic anhydride 2-isopropylbenzoic acid, 3-isopropylbenzoic anhydride, 4-isopropylbenzoic anhydride, 2-n-butylbenzoic anhydride, 3-n-butylbenzoic anhydride, 4-n-butylbenzoic acid Anhydride, 2-isobutylbenzoic anhydride, 3-isobutylbenzoic anhydride, 4-isobutylbenzoic anhydride, 2-t-butylbenzoic anhydride, 3-t-benzoic anhydride, 4-t- Ikikosan anhydride,
[0021]
2-methoxybenzoic anhydride, 3-methoxybenzoic anhydride, 4-methoxybenzoic anhydride, 2-ethoxybenzoic anhydride, 3-ethoxybenzoic anhydride, 4-ethoxybenzoic anhydride, 2- Nitrobenzoic anhydride, 3-nitrobenzoic anhydride, 4-nitrobenzoic anhydride, 2,4-dimethylbenzoic anhydride, 2,5-dimethylbenzoic anhydride, 2,6-dimethylbenzoic anhydride Product, 3,5-dimethylbenzoic anhydride, 2,4-di-t-butylbenzoic anhydride, 2,5-di-t-butylbenzoic anhydride, 2,6-di-t-butylbenzoic acid Acid anhydride, 3,5-di-t-butylbenzoic anhydride, 2,4-dimethoxybenzoic anhydride, 2,5-dimethoxybenzoic anhydride, 2,6-dimethoxybenzoic anhydride, 3, 5-dimethoxybenzoic anhydride,
[0022]
Symmetric anhydrides such as 1-naphthoic anhydride, 2-naphthoic anhydride, and benzoic acid 2-methylbenzoic acid mixed anhydride, benzoic acid 3-methylbenzoic acid mixed anhydride, benzoic acid 4-methylbenzoic acid mixed Anhydrous, benzoic acid 2-t-butylbenzoic acid mixed anhydride, benzoic acid 3-t-butylbenzoic acid mixed anhydride, benzoic acid 4-t-butylbenzoic acid mixed anhydride, benzoic acid 2-methoxybenzoic acid mixed Anhydrous, benzoic acid 3-methoxybenzoic acid mixed anhydride, benzoic acid 4-methoxybenzoic acid mixed anhydride, benzoic acid nitrobenzoic acid mixed anhydride, 2-methylbenzoic acid 3-methylbenzoic acid mixed anhydride, 2- Examples thereof include mixed anhydrides such as methylbenzoic acid 4-methylbenzoic acid mixed anhydride and 3-methylbenzoic acid 4-methylbenzoic acid mixed anhydride. These may be used alone or in combination of two or more.
[0023]
Examples of (2) aromatic sulfonic acid used in the present invention include benzenesulfonic acid, p-toluenesulfonic acid, 4-t-butylbenzenesulfonic acid and the like.
In the present invention, (1) the aromatic monocarboxylic acid anhydride in the polycarbonate has a molar ratio of 0.5 to 1.5, preferably 0.8 to 1.2, based on the amount of terminal hydroxyl groups in the polycarbonate. When the molar ratio of the (1) aromatic monocarboxylic acid anhydride to the terminal hydroxyl group is 0.5 or less, the reactivity is low, and when it is 1.5 or more, the polycarbonate resin is significantly decomposed.
[0024]
A small amount of the aromatic sulfonic acid represented by the formula (2) may be used, and (1) the molar ratio with respect to the aromatic monocarboxylic acid anhydride is 0.001 to 0.1, preferably 0.003 to 0.01. If the molar ratio is less than 0.001, the expected result cannot be obtained, and if it is more than 0.1, the decomposition of the polycarbonate becomes remarkable.
The extrusion temperature is from 200 ° C. to 320 ° C., preferably from 250 ° C. to 280 ° C. If it is 200 ° C. or less, the extrusion resin pressure increases and the extrusion becomes difficult. On the other hand, when the temperature exceeds 320 ° C., the decomposition and the low molecular weight of the polycarbonate resin become remarkable.
[0025]
In the present invention, when the molten resin is introduced from the reactor to the extruder, it is characterized in that the end capping agent is continuously added without taking out the molten resin, and the end capping agent is added to the extracted resin. There is no need to re-extrude and react again.
Further, the present invention is characterized in that the end-capping agent can be added simultaneously with the additive, and an existing additive addition apparatus can be used as it is.
The extruder of the present invention is preferably a twin screw extruder.
[0026]
【Example】
Hereinafter, based on an Example, this invention is demonstrated in detail. In the examples, “parts” represents parts by weight unless otherwise specified.
In the present invention, physical properties were measured by the following methods.
(I) Quantification of polycarbonate end group: Dissolve 0.3 g of sample in 5 ml of deuterium-substituted chloroform and use 1 H-NMR (EX-400 manufactured by Valqua) of a nuclear magnetic resonance analyzer at 23 ° C. Was measured. The hydroxy group terminal concentration (mol%) was calculated by the ratio of hydroxy groups to the total number of terminals.
(Ii) Quantification of molecular weight: 0.8 g of sample was dissolved in 20 ml of dichloromethane, and the molecular weight was measured at 23 ° C. using a gel permeation chromatography analyzer GPC (SC8080 manufactured by Tosoh Corporation) with tetrahydrofuran as a developing solvent. . The molecular weight reduction rate indicates the ratio of the weight average molecular weight (Mw) before reaction to the amount of change between the weight average molecular weight (Mw) after reaction and the weight average molecular weight (Mw) before reaction.
[0027]
For long-term heat-resistant coloring (Δb), the color change was measured after standing in a gear oven at 140 ° C. for 500 hours.
The impact resistance test was conducted by a Charpy test, and the results were indicated by ○ mark for those with excellent impact resistance, Δ mark for those with reduced impact resistance, and x marks for those with greatly reduced impact resistance.
The effect of the polycarbonate resin extrusion was confirmed using a plastmill mixer (manufactured by Toyo Seiki Co., Ltd.) equipped with a biaxial screw, and the resin was heated by a heater built in the block of the mixer.
Furthermore, the effect of extrusion was confirmed with a PCM30 (Ikegai Co., Ltd.) twin screw extruder.
[0028]
Examples 1-7
60 g of polycarbonate (molecular weight Mw = 15000, terminal OH concentration 32%, 2.57 mmol) produced by the transesterification method was charged in a half amount to a plastoyl (manufactured by Toyo Seiki) controlled at 280 ° C. and dissolved in acetone. The benzoic anhydride compound and the like shown in Fig. 1 were added in 0.581 g (2.57 mmol) and p-toluenesulfonic acid monohydrate 0.0015 g (0.008 mmol), and the remaining half amount of polycarbonate was charged for 6 minutes (screw Stirring reaction was performed at a rotation speed of 25 rpm for 1 minute and at 90 rpm for 5 minutes.
As a result, as shown in Table 1, the end-capped polycarbonate was 18 mol% to 22 mol%, and the terminal hydroxy groups were reduced to 12 mol% to 18 mol%, and the effect of reducing the amount of hydroxy groups was observed. .
In addition, by continuously introducing molten polycarbonate resin from a reactor into a twin-screw extruder and simultaneously adding an additive preferably within 5%, an end-capped polycarbonate resin excellent in heat stability and impact resistance is obtained. Could get. The results are shown in Table 1.
[0029]
[Table 1]
Figure 2004168901
[0030]
[Comparative Examples 1-2]
The same reaction as in Example 1 was performed, and the experiment was repeated in exactly the same manner except that the aromatic dicarboxylic acid anhydride shown in Table 2 was used instead of the aromatic monocarboxylic acid. As a result, no hydroxyl group blocking reaction occurred.
[0031]
[Comparative Example 3]
The same reaction as in Example 1 was performed, and the experiment was repeated in exactly the same manner except that the aliphatic monocarboxylic acid anhydride shown in Table 2 was charged instead of the aromatic monocarboxylic acid. As a result, as shown in Table 2, it was found that the molecular weight was lowered by decomposing the polycarbonate.
[0032]
[Comparative Examples 4-6]
The same reaction as in Example 1 was performed, and the experiment was repeated in exactly the same manner except that the aliphatic dicarboxylic acid anhydride shown in Table 2 was charged instead of the aromatic monocarboxylic acid. As a result, as shown in Table 2, no hydroxyl group blocking reaction occurred. The results are shown in Table 2.
[0033]
[Table 2]
Figure 2004168901
[0034]
Examples 8 to 9
The same reaction as in Example 1 was performed, and the experiment was repeated with exactly the same operation except that the kneading temperature was 260 degrees. The results are shown in Table 3.
[0035]
[Example 10]
The same reaction as in Example 9 was performed, and the experiment was repeated in exactly the same manner except that the molar ratio of the end capping agent was 1.2. The results are shown in Table 3.
[0036]
[Table 3]
Figure 2004168901
[0037]
Example 11
750 g of polycarbonate (molecular weight Mw = 15000, terminal OH concentration 32%) produced by the transesterification method, 7.26 g of benzoic anhydride and 0.02 g of p-toluenesulfonic acid monohydrate were hand-blended. Extrusion was performed with an Ikekai PCM30 extruder (cylinder temperature 250 ° C., screw rotation speed 150 rpm, extrusion rate 7 kg / hr). The results are shown in Table 4.
[0038]
[Comparative Example 7]
The same operation as in Example 11 was performed, and the experiment was repeated in exactly the same manner except that 2-methoxycarbonylphenylphenyl carbonate was used instead of benzoic anhydride and p-toluenesulfonic acid monohydrate. The results are shown in Table 4.
[0039]
[Table 4]
Figure 2004168901
[0040]
【The invention's effect】
In producing an aromatic dihydroxy compound and a carbonic acid diester by the melt polymerization method, the hydroxyl group at the end of the polycarbonate could be effectively sealed easily with an extruder without reducing the molecular weight of the polycarbonate.

Claims (7)

芳香族ジヒドロキシ化合物と炭酸ジエステルとから溶融重合法により製造されたヒドロキシ末端を有する芳香族ポリカーボネートに、下記一般式(1)で表される芳香族モノカルボン酸無水物、および下記式(2)の芳香族スルホン酸化合物を200℃から320℃の温度条件で溶融混練することによって、ヒドロキシ末端を封止されたことを特徴とする末端封止芳香族ポリカーボネートの製造方法。
Figure 2004168901
(式中、R及びRは各々独立に水素原子、炭素数1から20を有する炭化水素基、炭素数1から20を有するアルコキシ基、芳香族基、芳香族オキシ基、芳香族アルキル基、ニトロ基、ハロゲンを示す。m及びnは1から5の整数で、mが2以上の場合は各Rは相互に異なるものであってもよいし、nが2以上の場合は各Rは相互に異なるものであってもよい。Ar及びArは各々独立に炭素数6から14の芳香族炭化水素を示す。)
Figure 2004168901
(式中、Rは水素原子または炭素数1から15を有する炭化水素、Arは炭素数6から11の芳香族炭化水素を示し、pは1から5の整数で、pが2以上の場合は各Rは相互に異なる物であってもよい。nは0または1である。)
An aromatic monocarboxylic acid anhydride represented by the following general formula (1), and an aromatic monocarboxylic acid anhydride represented by the following general formula (2) are produced from an aromatic dihydroxy compound and a carbonic acid diester by a melt polymerization method. A process for producing an end-capped aromatic polycarbonate, wherein an aromatic sulfonic acid compound is melt-kneaded under a temperature condition of 200 ° C to 320 ° C to seal the hydroxy end.
Figure 2004168901
(Wherein, R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group having from 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aromatic group, an aromatic oxy group, an aromatic group And m and n are integers of 1 to 5, and when m is 2 or more, each R 1 may be different from each other, and when n is 2 or more, each R 1 2 may be different from each other, Ar 1 and Ar 2 each independently represents an aromatic hydrocarbon having 6 to 14 carbon atoms.
Figure 2004168901
(In the formula, R 3 represents a hydrogen atom or a hydrocarbon having 1 to 15 carbon atoms, Ar 3 represents an aromatic hydrocarbon having 6 to 11 carbon atoms, p is an integer of 1 to 5, and p is 2 or more. If each R 3 may be different from each other .n is 0 or 1.)
該反応が、芳香族ポリカーボネートのヒドロキシ基末端基に対する芳香族モノカルボン酸無水物のモル比が0.5から1.5にあることを特徴とする請求項1に記載の末端封止芳香族ポリカーボネートの製造方法。The end-capped aromatic polycarbonate according to claim 1, wherein the reaction is such that the molar ratio of the aromatic monocarboxylic acid anhydride to the hydroxy group end group of the aromatic polycarbonate is from 0.5 to 1.5. Manufacturing method. 該反応が、芳香族モノカルボン酸無水物(1)に対して芳香族スルホン酸(2)のモル比が0.001から0.1であることを特徴とする請求項1〜2記載の末端封止芳香族ポリカーボネートの製造方法。3. The terminal according to claim 1, wherein the reaction has a molar ratio of aromatic sulfonic acid (2) to aromatic monocarboxylic anhydride (1) of 0.001 to 0.1. A method for producing a sealed aromatic polycarbonate. 該反応が、最終重合器から溶融状態のままで連続的に芳香族ポリカーボネートが供給されている押出機に、連続的に芳香族モノカルボン酸無水物および芳香族スルホン酸が供給されることを特徴とする請求項1から3に記載の末端封止芳香族ポリカーボネートの製造方法。The reaction is characterized in that aromatic monocarboxylic acid anhydride and aromatic sulfonic acid are continuously fed to an extruder in which aromatic polycarbonate is continuously fed in a molten state from the final polymerization vessel. The method for producing an end-capped aromatic polycarbonate according to claim 1. 該押出機が、2軸混練押出機であることを特徴とする請求項1から4に記載の末端封止芳香族ポリカーボネートの製造方法。5. The method for producing an end-capped aromatic polycarbonate according to claim 1, wherein the extruder is a biaxial kneading extruder. 該温度条件が、250℃から280℃であることを特徴とする請求項1から5に記載の末端封止芳香族ポリカーボネートの製造方法。The method for producing an end-capped aromatic polycarbonate according to claim 1, wherein the temperature condition is 250 ° C. to 280 ° C. 該反応が、添加剤の添加と同時に実施されることを特徴とする、請求項1から6に記載の末端封止芳香族ポリカーボネートの製造方法。The method for producing an end-capped aromatic polycarbonate according to claim 1, wherein the reaction is carried out simultaneously with the addition of the additive.
JP2002336875A 2002-11-20 2002-11-20 Method for producing polycarbonate with sealed end Expired - Lifetime JP4067944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336875A JP4067944B2 (en) 2002-11-20 2002-11-20 Method for producing polycarbonate with sealed end

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336875A JP4067944B2 (en) 2002-11-20 2002-11-20 Method for producing polycarbonate with sealed end

Publications (2)

Publication Number Publication Date
JP2004168901A true JP2004168901A (en) 2004-06-17
JP4067944B2 JP4067944B2 (en) 2008-03-26

Family

ID=32700584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336875A Expired - Lifetime JP4067944B2 (en) 2002-11-20 2002-11-20 Method for producing polycarbonate with sealed end

Country Status (1)

Country Link
JP (1) JP4067944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017508850A (en) * 2014-03-27 2017-03-30 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Melt polymerization polycarbonate quenching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017508850A (en) * 2014-03-27 2017-03-30 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Melt polymerization polycarbonate quenching

Also Published As

Publication number Publication date
JP4067944B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP2010106171A (en) Aromatic polycarbonate resin composition
CN114230779B (en) Polycarbonate and preparation method and application thereof
JP5055663B2 (en) Polycarbonate and resin composition
JP2015189905A (en) aromatic polycarbonate resin composition
US8450403B2 (en) Branched polycarbonate resin composition, and branched polycarbonate resin and molded product made using the same
JP4067944B2 (en) Method for producing polycarbonate with sealed end
JP4290414B2 (en) End-capped polycarbonate and method
KR20150032174A (en) Adamantane derivatives capping monomer, and method for preparing polycarbonate copolymer with improved flow using thereof
JPH02238020A (en) Terminal blocking of wholly-aromatic polyester carboxylic acid terminal using aromatic carbonate
KR100888621B1 (en) End-capped polycarbonate resin and method of preparing thereof
JP2000080262A (en) Polycarbonate-based resin composition
JPH0356527A (en) Aromatic polyester and production thereof
JP2010001446A (en) Aromatic polyether sulfone having hydroxyphenyl end group, and its manufacturing method
JP3039757B2 (en) Low glass transition temperature copolyester carbonate
JP4641591B2 (en) Aromatic polycarbonate resin composition
JP2009108149A (en) Aromatic polycarbonate resin composition
JP2000007907A (en) Polycarbonate resin composition
KR102089829B1 (en) Copolymerized polycarbonate resin having excellent weather resistance and method for preparing the same
KR100898899B1 (en) Method for preparing polycarbonate having improved thermal stability and good hydrolysis resistance and polycarbonate resin prepared thereby
EP0278498A2 (en) Novel polycarbonate resins, process for production of said resins, and compositions containing such resins
KR20140097919A (en) Method for preparing polycarbonate resin
JP4601123B2 (en) Aromatic polycarbonate resin composition
KR102180534B1 (en) Method for preparing polycarbonate
JPH0912843A (en) Aromatic polycarbonate resin composition
JPH11349793A (en) Thermoplastic polyester-based resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4067944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term