JP2004168825A - Rubber foamed material and method for producing the same - Google Patents

Rubber foamed material and method for producing the same Download PDF

Info

Publication number
JP2004168825A
JP2004168825A JP2002333480A JP2002333480A JP2004168825A JP 2004168825 A JP2004168825 A JP 2004168825A JP 2002333480 A JP2002333480 A JP 2002333480A JP 2002333480 A JP2002333480 A JP 2002333480A JP 2004168825 A JP2004168825 A JP 2004168825A
Authority
JP
Japan
Prior art keywords
mass
rubber
rubber foam
materials
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002333480A
Other languages
Japanese (ja)
Inventor
Kenji Kurisu
顕治 栗栖
Ichiro Sakae
一郎 寒河江
Shinji Tsukamoto
真司 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishikawa Rubber Co Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Nishikawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Nishikawa Rubber Co Ltd filed Critical Showa Denko KK
Priority to JP2002333480A priority Critical patent/JP2004168825A/en
Priority to US10/679,526 priority patent/US20040097605A1/en
Publication of JP2004168825A publication Critical patent/JP2004168825A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber foamed material suitable for puffs for makeup, industrial materials, building materials or automotive parts such as soundproofing materials, heat insulating materials, cushioning materials, gaskets, sealing materials, packing materials, containers, packaging materials or floor materials having excellent cushioning properties, elasticity, chemical and weather resistances, flame retardance and compression set properties. <P>SOLUTION: The rubber foamed material is obtained as follows. A rubber composition containing (A) 100 pts. mass of a polymer containing 30-100 mass% of a polar group-containing polymer, (B) 1-30 pts. mass of an organic foaming agent and (C) 0.1-10 pts. mass of an organic peroxide is extruded into a prescribed shape. The extruded composition is heated, and cross-linked and foamed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は緩衝性,弾力性,耐薬品性,難燃性,耐候性,圧縮永久歪み性に優れたゴム発泡材に関する。また、更に詳しくは、連続押出架橋発泡により得られるゴム発泡材であり、化粧用パフ,防音材,断熱材,緩衝材,ガスケット,シーリング材,パッキン材,容器,包装材,床材などの産業資材,建築資材,自動車部品に好適に使用できるゴム発泡材に関するものである。
【0002】
【従来の技術】現在、ゴム発泡材は緩衝材,防音材,断熱材,シール部材などの様々な分野に使用されている。これらのゴム発泡材には通常、アクリロニトリルブタジエンゴム(NBR),エチレン−プロピレン−ジエン3元共重合ゴム(EPDM),シリコーンゴム,天然ゴムなどが用いられているが、汚染性,皮膚刺激性,耐候性,難燃性,耐薬品性いずれかに欠点を有し、各々の利用分野において使用が制約される場合があった。
【0003】
また、高発泡のゴム発泡材を得る方法としては、ゴムと発泡剤,架橋剤等を混練した混合物を金型内に充填し、加圧下これを加熱したのち、除圧して発泡材を得る方法、ゴムラテックスに架橋剤を加え機械的に撹拌して泡立て、これを金型内に注入して加熱する方法などが知られている。しかし、これらの方法は、バッチ製造であるため生産性に劣るといった欠点を有していた。
【0004】
一方では発泡剤,架橋剤を混合したゴム組成物を押出機から押出し、ただちにマイクロ波照射,空気加熱,熱媒体との接触などによる加熱処理を施し、連続的にゴム発泡材を得る方法が知られている。この方法によると、生産性は高いが、密度0.2g/cm以下でセルが均一な高発泡ゴムを得ることは難しい。
【0005】
これらの欠点を改善する目的で塩素化ポリエチレンを使用したゴム発泡材が提案されている。例えば、塩素化ポリエチレンと発泡剤の混合物を用い、電子線照射して架橋処理を施した後に発泡剤の分解温度以上に加熱して発泡材を得ている。(例えば、特許文献1、及び2参照。)この方法では発泡を制御しやすく、比較的高発泡材を得やすいという利点があるが、高エネルギーの電子線照射が必要となり、設備的に経済性に欠けている上、生産性が低い。
【0006】
また、塩素化ポリエチレンと安定剤,発泡剤,有機過酸化物を含む組成物から得られた発泡材(化粧用パフ)の提案がなされている。(例えば、特許文献3参照。)しかしながら、金型内発泡の域を出ておらず、連続的に発泡材を得る方法には言及されていない。
【0007】
更に、特定の塩素化ポリエチレンと安定剤および架橋剤と発泡剤を含む発泡用組成物を常圧下、加熱して発泡材を得ているが、可撓性と難燃性以外の発泡材の特性については不明確である。(例えば、特許文献4参照。)
【0008】
化粧用スポンジパフとしては、ゴムラテックス配合物を機械的に発泡し加硫させるラテックスパフがあるが、連続気泡体に制限されること、製品近似の筒状金型が多量に必要であるといった課題がある。
【0009】
固形ゴムに発泡剤等を加え、金型内に充填し、加圧加熱して発泡材を得る独立気泡スポンジパフがあるが、金型から取り出したゴムシートを製品近似形状に打ち抜く必要があるため材料ロスが大きく、バッチ生産のため、生産性に劣る等の課題がある。
【0010】
溶媒を含むウレタン樹脂組成物を押出し後、減圧下にて溶媒を気化させ、気泡を形成するウレタンスポンジパフがあるが、材料ロスが大きく、溶媒回収等の負荷が大きいといった課題がある。
【0011】
ラテックスパフ,独立気泡スポンジパフ,ウレタンスポンジパフ及びその他の材料との複合品もあるが、複層成形が難しく、後加工などの工数大等の課題がある。
【0012】
【特許文献1】
特開昭53−21265号公報
【特許文献2】
特開昭57−2342号公報
【特許文献3】
特開平6−7220号公報
【特許文献4】
特公昭59−10741号公報
【0013】
【発明が解決しようとする課題】本発明は緩衝性,弾力性,耐薬品性,難燃性,耐候性,圧縮永久歪み性に優れた化粧用パフ,防音材,断熱材,緩衝材,ガスケット,シーリング材,パッキン材,容器,包装材,床材などの産業資材,建築資材,自動車部品に好適なゴム発泡材を提供しようとするものである。また、経済性に優れたゴム発泡材を製造する方法を提供するものである。
【0014】
【課題を解決するための手段】本発明者らは、鋭意研究を重ねた結果、特定のポリマーと有機過酸化物、有機発泡剤を組み合わせ、押出発泡させることで上記目的を達成しうることを見いだし、本発明を完成するに至った。すなわち、本発明は以下の[1]〜[15]に示されるゴム発泡材及びその製造方法に関する。
【0015】
[1] (A)極性基含有ポリマーを30〜100質量%含有するポリマー100質量部、(B)有機発泡剤を1〜30質量部、及び(C)有機過酸化物を0.1〜10質量部を含むゴム組成物を加熱することにより得られることを特徴とするゴム発泡材。
[2] ポリマー(A)に含まれる極性基含有ポリマーが塩素化ポリエチレンである[1]記載のゴム発泡材。
[3] 塩素化ポリエチレンの塩素含有量が10〜35質量%であり、100℃のムーニー粘度ML(1+4)が30〜100である[1]又は[2]記載のゴム発泡材。
[4] 有機発泡剤(B)の分解温度Tが100〜170℃である[1]〜[3]のいずれかに記載のゴム発泡材。
[5] 有機過酸化物(C)の1分半減期温度Tが100〜170℃である[1]〜[4]のいずれかに記載のゴム発泡材。
[6] 有機発泡剤(B)の分解温度Tと有機過酸化物(C)の1分半減期温度Tの関係が−20℃≦(T−T)≦+30℃である[1]〜[5]のいずれかに記載のゴム発泡材。
【0016】
[7] (A)極性基含有ポリマーを30〜100質量%含有するポリマー100質量部、(B)有機発泡剤を1〜30質量部、及び(C)有機過酸化物を0.1〜10質量部を含むゴム組成物を所定形状に押出成形し、これを加熱し、架橋、発泡させることにより得られることを特徴とするゴム発泡材。
[8] ポリマー(A)に含まれる極性基含有ポリマーが塩素化ポリエチレンである[7]記載のゴム発泡材。
[9] 塩素化ポリエチレンの塩素含有量が10〜35質量%であり、100℃のムーニー粘度ML(1+4)が30〜100である[7]又は[8]記載のゴム発泡材。
[10] 有機発泡剤(B)の分解温度Tが100〜170℃である[7]〜[9]のいずれかに記載のゴム発泡材。
[11] 有機過酸化物(C)の1分半減期温度Tが100〜170℃である[7]〜[10]のいずれかに記載のゴム発泡材。
[12] 有機発泡剤(B)の分解温度Tと有機過酸化物(C)の1分半減期温度Tの関係が−20℃≦(T−T)≦+30℃である[7]〜[11]のいずれかに記載のゴム発泡材。
[13] 加熱がマイクロ波照射により行われる[1]〜[12]のいずれかに記載のゴム発泡材。
[14] (A)極性基含有ポリマーを30〜100質量%含有するポリマー100質量部、(B)有機発泡剤を1〜30質量部、及び(C)有機過酸化物を0.1〜10質量部を含むゴム組成物を所定形状に押出成形し、これを加熱し、架橋、発泡させることを特徴とするゴム発泡材の製造方法。
[15] 加熱がマイクロ波照射により行われる[14]記載のゴム発泡材の製造方法。
【0017】
【発明の実施の形態】本発明で用いるポリマー(A)は、ポリマー(A)全量に対して極性基含有ポリマーを30〜100質量%含有しているものであり、好ましくは50〜100質量%である。極性基含有ポリマーの含有量が30質量%未満であると、マイクロ波による十分な加熱が得られず、均質かつ十分な発泡、架橋が得られない。なお、極性基含有ポリマーだけでもよいが、それ以外に加える場合、そのポリマーは限定されない。
【0018】
極性基含有ポリマーとしては、分子内に極性基を有するものである。該極性基としては例えばハロゲン原子、酸素原子、窒素原子、または硫黄原子などを有する官能基であり、クロル基、シアノ基、アミノ基、カルボキシル基、アミド基、アセチル基、エステル基、スルホン基、メルカプト基、クロルスルホン基などが挙げられる。これら極性基を有するポリマーとしては、例えば塩素化ポリエチレン、クロロプレンゴム、クロロスルホン化ゴム、ポリ塩化ビニル、ニトリルゴム、アクリロニトリル−ブタジエン−スチレン共重合体ゴム、アクリルゴム、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン−メタクリル酸エステル共重合体、フッ素ゴム、シリコーンゴムなどを挙げることができる。これらの極性基含有ポリマーは2種以上のブレンド物も使用することができる。これらの中でも、柔軟性、難燃性、耐薬品性、耐候性などにおいて特徴のある塩素化ポリエチレン(以下、「CPE」ということがある。)が好ましい。
【0019】
また、上記塩素化ポリエチレンとしては、ポリエチレン(低密度ポリエチレン、直鎖低密度ポリエチレン、高密度ポリエチレン)を塩素化したものを用いることが出来る。塩素化する方法としては、水性懸濁法、溶液法、気相法等の公知の塩素化法が利用できるが、なかでも水性懸濁法により塩素化するのが好ましい。
【0020】
本発明に使用できる塩素化ポリエチレンとしては、特に構造を限定するものではないが、塩素含有量が10〜35質量%である塩素化ポリエチレンが好ましい。塩素含有量が10質量%未満であると、弾性を損ね、マイクロ波による十分な加熱が得られず、均質かつ十分な発泡、架橋が得られない場合がある。また、35重量%を越えると、均質かつ十分な発泡、架橋が得られず、また低温特性に劣る等の品質低下が見られることがある。
【0021】
さらに、塩素化ポリエチレンは、100℃のムーニー粘度ML(1+4)が30〜100であることが好ましい。ムーニー粘度ML(1+4)が30未満であると、発泡時の材料粘度が低く、気泡が粗雑なものとなり、また100を越えると、充分な発泡が得られなかったり、発泡架橋時に割れが発生する等の不具合が生じる場合がある。
【0022】
本発明で用いる有機発泡剤(B)としては、特に限定されないが、例えばアゾジカルボンアミド、4,4‘−オキシビスベンゼンスルホニルヒドラジド、ジニトロソペンタメチレンテトラミン、p−トルエンスルホニルヒドラジド、p−トルエンスルホニルアセトンヒドラゾン、ヒドラジジカルボンアミド、アゾビスイソブチロニトリルなどが挙げられる。なお、鉛、亜鉛化合物、尿素、アミン化合物、その他塩基性化合物などの発泡助剤は上記有機発泡剤の分解温度を制御する目的で併用することができる。また、これらの有機発泡剤は2種以上ブレンドして用いることも可能であり、重炭酸ナトリウム、炭酸アンモニウム、重炭酸アンモニウムなどの無機発泡剤と併用することも可能である。
【0023】
有機発泡剤(B)の含有量は、ポリマー(A)100質量部に対して1〜30質量部である。有機発泡剤(B)の含有量が1質量部未満であると、充分な発泡度が得られず、硬く、目的の弾性を得られず、また30質量部を越えると、発泡過多となり、成形時に割れを生じたりする。また、有機発泡剤(B)の分解温度Tは100〜170℃であることが好ましい。100℃未満では、加工時の安定性に問題があり、170℃を越えると、均質かつ十分な発泡度が得られにくい。なお、有機発泡剤(B)の分解温度Tは、示差熱量測定法にて、5℃/分で昇温したときの発熱ピーク温度で示すことができる。
【0024】
本発明で用いる有機過酸化物(C)としては、特に限定されないが、例えば、ステアロイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、4―メチルベンゾイルパーオキサイド、1,1−ビス(t−ブチルパーオキシ)2−メチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシマレイン酸、t−ブチルパーオキシラウレート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ,2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシベンゾエート、n−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレート、ジ−t−ブチルパーオキシイソフタレート、α,α’ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3などが挙げられる。
これらの有機過酸化物は、2種以上併用して用いることも可能である。
【0025】
有機過酸化物(C)の含有量は、ポリマー(A)100質量部に対して0.1〜10質量部である。有機過酸化物(C)の含有量が0.1質量部未満であると、充分な架橋が得られず、弾性が劣ったり、物性強度等の製品特性が脆弱なものとなり、また10質量部を越えると、架橋過多となり,成形時に割れを生じたりする。また、有機過酸化物(C)の1分半減期温度Tは100〜170℃が好ましい。100℃未満では、加工時の安定性に問題があり、170℃を越えると、均質かつ十分な発泡、架橋度が得られにくい。なお、有機過酸化物(C)の1分半減期温度Tは、有機過酸化物が分解して1分間で元の活性酸素量が半分になる温度である。その測定は、ベンゼンなどのラジカルに対して比較的不活な溶媒中で複数の温度で有機過酸化物の半減期を求め、そのプロットから得ることができる。
【0026】
本発明のゴム発泡材において、有機発泡剤(B)の分解温度Tと有機過酸化物(C)の1分半減期温度Tの関係が−20℃≦(T−T)≦+30℃であることが好ましい。有機発泡剤(B)の分解温度Tと有機過酸化物(C)の1分半減期温度Tの関係がこの範囲を越えると、発泡と架橋のバランスが悪く、全く発泡しなかったり、成形時に割れを生じたりする場合がある。また、更に好ましくは、有機発泡剤(B)の分解温度Tと有機過酸化物(C)の1分半減期温度Tの関係が−10℃≦(T−T)≦+20℃である。
【0027】
本発明では、さらに上記(A)〜(C)以外にも、当該分野で通常用いられている各種配合剤、例えば受酸剤、老化防止剤、光安定剤、UV吸収剤、加工助剤、滑剤、可塑剤、粘着付与剤、難燃剤、脱水剤、顔料、カーボンブラック、無機充填剤、架橋助剤、及び架橋促進剤等を加えることができる。
【0028】
特に、ポリマー(A)として塩素化ポリエチレンを使用する場合、受酸剤を加えることが好ましい。用いる受酸剤の例としては、周期律表第II族又は第IVb族の金属の酸化物,水酸化物,炭酸塩,カルボン酸塩,ケイ酸塩,ホウ酸塩,亜リン酸塩,亜硫酸塩および硫酸塩ならびにハイドロタルサイト石群,エポキシ化合物などが挙げられる。具体的には酸化マグネシウム、水酸化マグネシウム、水酸化バリウム、炭酸マグネシウム、炭酸バリウム、消石灰、生石灰、炭酸カルシウム、珪酸カルシウム、ステアリン酸カルシウム、ステアリン酸バリウム、亜燐酸マグネシウム、亜燐酸カルシウム、酸化錫、リサージ、鉛丹、鉛白、二塩基性フタル酸鉛、二塩基性炭酸鉛、塩基性亜燐酸鉛、塩基性亜硫酸鉛、三塩基性硫酸鉛、及び合成ハイドロタルサイトなどが挙げられる。
【0029】
受酸剤はポリマー(A)100質量部に対して1〜30質量部添加するのが好ましい。受酸剤が1質量部未満であると、架橋が進行しにくく、十分な弾性が得られなかったり、狙いとしない気泡を生じたりする場合がある。また、30質量部を越えると、他のゴム特性を低下させたり弾性を損ねたりすることがある。
【0030】
無機充填剤としては、具体的には炭酸カルシウム、炭酸マグネシウム、アルミナ、水酸化アルミニウム、水酸化マグネシウム、珪酸アルミニウム(カオリンクレー)、珪酸マグネシウム(タルク)、珪酸カルシウム(ウォラストナイト)、珪酸(シリカ)、マイカ、ゾノトライト、沈降性硫酸バリウムなどが挙げられる。これら充填剤の粒径としては、均質な発泡を得るために、平均粒径が10μm以下のものが好ましい。また、高級脂肪酸、高級脂肪酸の金属塩、高級脂肪酸のエステル化合物、シランカップリング剤、チタネートカップリング剤などで無機充填剤を表面処理することも可能である。
【0031】
架橋助剤、促進剤としては、例えばトリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレートなどが挙げられ、有機過酸化物と併用することで架橋度が高くなり、好ましい。
【0032】
本発明における各成分、配合剤の添加、混合方法としては特に限定はなく、オープンロール、バンバリーミキサー、加圧式ニーダー、インターミキサー、押出機等の通常の樹脂、ゴム混練に適用される方法を採用することができる。
【0033】
本発明においてゴム組成物の発泡方法としては、既存の常圧発泡法、型内発泡法、加圧発泡法(プレス発泡法)等いずれも適用できるが、望ましくは、ゴム組成物を所定形状に押出成形し、これを加熱し、架橋することにより発泡させる方法が適している。加熱する方法としては、熱空気を循環させたり、赤外線ヒーターを備えた加熱炉を連続的に通す方法や、溶融塩や加熱したガラスビーズを満たしたバスの中を通す方法などがあるが、マイクロ波照射により押出したゴム組成物を内部より加熱し、架橋、発泡させる方法が好ましい。また、加熱はこれらの複数の方法を併用することもできる。
【0034】
例えば、図1〜図4において、4は連続押出機、5は加熱・加硫炉、6は裁断又は打ち抜き機、1は押出材料で、複数の素材1a,1bが共押出しされることもある。単一素材1のときは製品2となり、複数の素材のときは製品3となる。
【0035】
【実施例】以下に本発明を実施例にて具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
<発泡剤の分解温度の測定>
示差熱測定法にて測定した。
測定装置:セイコー電子工業(株)製 TG/DTA220
測定条件:昇温5℃/分、窒素雰囲気
<塩素化ポリエチレン(CPE)の塩素量測定法>
酸素フラスコ燃焼法(JIS K7229)にて測定した。
<ムーニー粘度測定>
JIS K6300にて測定した。(ML(1+4)100℃)
【0036】
<ポリマー>
CPE1:
塩素量が30質量%、ムーニー粘度が70の塩素化ポリエチレン(水性懸濁法で製造、昭和電工(株)製、TR31)
CPE2:
塩素量が20質量%、ムーニー粘度が60の塩素化ポリエチレン(水性懸濁法で製造、昭和電工(株)製、TR21)
CPE3:
塩素量が40質量%、ムーニー粘度が80の塩素化ポリエチレン(水性懸濁法で製造、昭和電工(株)製、TR41)
CPE4:
塩素量が30質量%、ムーニー粘度が25の塩素化ポリエチレン(水性懸濁法で製造、昭和電工(株)製、TR32)
CPE5:
塩素量が30質量%、ムーニー粘度が120の塩素化ポリエチレン(水性懸濁法で製造、昭和電工(株)製、TR33)
EPDM(エチレン−プロピレン−ジエン3元共重合体):
ムーニー粘度が40、プロピレン含有量が26質量%、ヨウ素価が20のエチレン−プロピレン−(5−エチリデン−2−ノルボルネン)3元共重合体(日本合成ゴム(株)製、EP51)
【0037】
<有機発泡剤>
発泡剤1:
分解温度が125℃のアゾジカルボンアミド系(以下、「ADCA」系という。)の複合発泡剤(三協化成(株)製、セルマイクCAP)
発泡剤2:
分解温度が150℃のADCA系の複合発泡剤(三協化成(株)製、セルマイクCAP−500)
発泡剤3:
分解温度が205℃のADCA系の複合発泡剤(三協化成(株)製、セルマイクC−1)
発泡剤4:
分解温度が155℃の4,4‘オキシビスベンゼンスルホニルヒドラジッド系の複合発泡剤(三協化成(株)製、セルマイクS)
【0038】
<有機過酸化物(架橋剤)>
架橋剤1:
ベンゾイルパーオキサイド(1分半減期温度が130℃[ベンゼン中測定、メーカーカタログ値]日本油脂(株)製、ナイパーBW)
架橋剤2:
1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン(1分半減期温度が149℃[ベンゼン中測定、メーカーカタログ値]、日本油脂(株)製、パーヘキサ3M)
架橋剤3:
2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン(1分半減期温度が180℃[ベンゼン中測定、メーカーカタログ値]、日本油脂(株)製、パーヘキサ25B)
【0039】
<その他配合剤>
酸化マグネシウム:
軽質酸化マグネシウム(協和化学工業(株)製、キョーワマグ150)
炭酸カルシウム:
平均粒径0.5μmの軽質炭酸カルシウム(奥多摩工業(株)製、タマパールTP−222H)
可塑剤:
フタル酸ジイソデシル(新日本理化(株)製、サンソサイザーDIDP)
架橋助剤:
トリアリルイソシアヌレート(日本化成(株)製、タイク)
脱水剤
酸化カルシウム(井上石灰工業(株)製、ベスタBS)
【0040】
(実施例1、比較例1、2)
表1に実施例1の配合を質量部で示す。組成物の混練は水冷したオープンロールにて実施した。
【0041】

Figure 2004168825
【0042】
上記組成物を押出機で押出し、表2の条件で架橋、発泡させた。
【0043】
Figure 2004168825
【0044】
縦×横×厚さ=40mm×50mm×7mmのパフを作った。その品質特性は表3の通りである。表3中、ラテックススポンジパフ及びEPDM独立気泡スポンジパフは公知の方法を用いて作った。
【0045】
Figure 2004168825
【0046】
表3中、○=良,△=可,×=不可である。
耐光性,耐金属イオン性は色調変化で評価した。
【0047】
(実施例1〜11、比較例3)
表4に各実施例、比較例の組成を質量部で示す。混練、押出、架橋発泡は実施例1と同様に実施した。なお表4中の発泡状態は、○=均質で良好な発泡、△=一部不均一な発泡、×=発泡せず を表す。
【0048】
[表4]
Figure 2004168825
【0049】
【発明の効果】本発明は、多量の金型なし(異形口金のみ)で、基本形状の変更が容易であり、かつ意匠性を持った複層材料の同時成形が可能である。また、大幅な材料ロスと成形工数の低減が可能であり、安価な製品となる。更に、配合〜成形条件の変量と後加工により、適用する化粧料に合わせた広範な気泡構造(独泡〜半連泡,連泡),気泡径,硬度を持つものを得ることが可能となる。しかもオレフィン系エラストマーの選択により、類似の特性を持つ球状樹脂融着等の表面改質が可能である。
【図面の簡単な説明】
【図1】この発明に係るゴム発泡材の製造装置の側面図である。
【図2】図1における押出材料の一例を示すもので、(イ)は正面図,(ロ)は側面図である。
【図3】図1における押出材料の他例を示すもので、(イ)は正面図,(ロ)は側面図である。
【図4】図1における押出材料の更に他例を示すもので、(イ)は平面図,(ロ)は正面図である。
【符号の説明】
1 押出材料
2 製品
3 製品
4 連続押出機
5 加熱加硫炉
6 裁断又は打ち抜き機[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubber foam excellent in cushioning, elasticity, chemical resistance, flame retardancy, weather resistance and compression set. More specifically, it is a rubber foam material obtained by continuous extrusion cross-linking foaming, and is used for industrial puffs, soundproofing materials, heat insulating materials, cushioning materials, gaskets, sealing materials, packing materials, containers, packaging materials, flooring materials and the like. The present invention relates to a rubber foam material that can be suitably used for materials, building materials, and automobile parts.
[0002]
2. Description of the Related Art At present, rubber foam materials are used in various fields such as cushioning materials, soundproofing materials, heat insulating materials and sealing members. Usually, acrylonitrile butadiene rubber (NBR), ethylene-propylene-diene terpolymer rubber (EPDM), silicone rubber, natural rubber, and the like are used for these rubber foam materials. It has drawbacks in any of weather resistance, flame retardancy and chemical resistance, and its use may be restricted in each application field.
[0003]
As a method for obtaining a highly foamed rubber foam, a method in which a mixture obtained by kneading rubber, a foaming agent, a crosslinking agent, and the like is filled in a mold, heated under pressure, and then depressurized to obtain a foamed material. A method is known in which a crosslinking agent is added to rubber latex, and the mixture is mechanically stirred to form a foam, which is injected into a mold and heated. However, these methods have a disadvantage that productivity is poor because of batch production.
[0004]
On the other hand, a method is known in which a rubber composition containing a foaming agent and a crosslinking agent is extruded from an extruder, and immediately subjected to heat treatment by microwave irradiation, air heating, contact with a heat medium, etc., to obtain a rubber foam material continuously. Have been. According to this method, the productivity is high, but it is difficult to obtain a highly foamed rubber having a density of 0.2 g / cm 3 or less and uniform cells.
[0005]
For the purpose of remedying these drawbacks, rubber foams using chlorinated polyethylene have been proposed. For example, using a mixture of chlorinated polyethylene and a foaming agent, a cross-linking treatment is performed by irradiating with an electron beam, and then the foamed material is heated to a decomposition temperature or higher of the foaming agent. (See, for example, Patent Documents 1 and 2.) This method has an advantage that foaming is easy to control and a relatively high foaming material is easily obtained, but requires high energy electron beam irradiation, and is economical in terms of equipment. And lack productivity.
[0006]
Further, there has been proposed a foaming material (cosmetic puff) obtained from a composition containing chlorinated polyethylene, a stabilizer, a foaming agent, and an organic peroxide. (For example, refer to Patent Document 3.) However, the method does not go out of the area of foaming in the mold and does not mention a method for continuously obtaining a foamed material.
[0007]
Furthermore, a foaming composition containing a specific chlorinated polyethylene, a stabilizer, a crosslinking agent, and a foaming agent is heated under normal pressure to obtain a foamed material. Is unclear. (For example, see Patent Document 4.)
[0008]
As a cosmetic sponge puff, there is a latex puff that foams and vulcanizes a rubber latex compound mechanically, but it is limited to open-cell foam and requires a large number of cylindrical molds similar to the product. There is.
[0009]
There is a closed-cell sponge puff that adds a foaming agent, etc. to the solid rubber, fills the mold, and pressurizes and heats the foam to obtain a foam.However, it is necessary to punch the rubber sheet taken out of the mold into a product-like shape. There are problems such as large material loss and poor productivity due to batch production.
[0010]
After extruding a urethane resin composition containing a solvent, there is a urethane sponge puff which evaporates the solvent under reduced pressure to form air bubbles, but has a problem in that the material loss is large and the load such as solvent recovery is large.
[0011]
Latex puffs, closed-cell sponge puffs, urethane sponge puffs and composites with other materials are also available, but multi-layer molding is difficult, and there are problems such as large man-hours such as post-processing.
[0012]
[Patent Document 1]
JP-A-53-21265 [Patent Document 2]
JP-A-57-2342 [Patent Document 3]
JP-A-6-7220 [Patent Document 4]
JP-B-59-10741
SUMMARY OF THE INVENTION The present invention relates to a cosmetic puff, a soundproof material, a heat insulating material, a heat insulating material, a cushioning material, and a gasket having excellent cushioning, elasticity, chemical resistance, flame retardancy, weather resistance, and compression set. It is intended to provide a rubber foam material suitable for industrial materials such as sealing materials, packing materials, containers, packaging materials, flooring materials, building materials, and automobile parts. Another object of the present invention is to provide a method for producing a rubber foam material having excellent economic efficiency.
[0014]
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the above object can be achieved by combining a specific polymer with an organic peroxide and an organic foaming agent and extruding foam. They have found and completed the present invention. That is, the present invention relates to a rubber foam material shown in the following [1] to [15] and a method for producing the same.
[0015]
[1] (A) 100 parts by mass of a polymer containing a polar group-containing polymer in an amount of 30 to 100% by mass, (B) 1 to 30 parts by mass of an organic foaming agent, and (C) 0.1 to 10 parts by mass of an organic peroxide. A rubber foam obtained by heating a rubber composition containing parts by mass.
[2] The rubber foam according to [1], wherein the polar group-containing polymer contained in the polymer (A) is chlorinated polyethylene.
[3] The rubber foam according to [1] or [2], wherein the chlorinated polyethylene has a chlorine content of 10 to 35% by mass and a Mooney viscosity ML (1 + 4) at 100 ° C of 30 to 100.
[4] decomposition temperature T 1 of the organic blowing agent (B) is 100 to 170 ° C. [1] Rubber foam according to any one of - [3].
[5] 1-minute half-life temperature T 2 of the organic peroxide (C) is 100 to 170 ° C. [1] ~ rubber foam according to any one of [4].
[6] The relationship between the decomposition temperature T 1 of the organic foaming agent (B) and the one-minute half-life temperature T 2 of the organic peroxide (C) is −20 ° C. ≦ (T 1 −T 2 ) ≦ + 30 ° C. [ The rubber foam according to any one of [1] to [5].
[0016]
[7] (A) 100 parts by mass of a polymer containing a polar group-containing polymer in an amount of 30 to 100% by mass, (B) 1 to 30 parts by mass of an organic foaming agent, and (C) 0.1 to 10 parts by mass of an organic peroxide. A rubber foam material obtained by extruding a rubber composition containing a mass part into a predetermined shape, heating, crosslinking, and foaming the rubber composition.
[8] The rubber foam according to [7], wherein the polar group-containing polymer contained in the polymer (A) is chlorinated polyethylene.
[9] The rubber foam according to [7] or [8], wherein the chlorinated polyethylene has a chlorine content of 10 to 35% by mass and a Mooney viscosity ML (1 + 4) at 100 ° C of 30 to 100.
[10] decomposition temperature T 1 of the organic blowing agent (B) is 100 to 170 ° C. [7] rubber foam according to any one of - [9].
[11] 1-minute half-life temperature T 2 of the organic peroxide (C) is 100 to 170 ° C. [7] rubber foam according to any one of - [10].
[12] The relationship between the decomposition temperature T 1 of the organic foaming agent (B) and the one-minute half-life temperature T 2 of the organic peroxide (C) is −20 ° C. ≦ (T 1 −T 2 ) ≦ + 30 ° C. [ 7] The rubber foam according to any one of [11].
[13] The rubber foam according to any one of [1] to [12], wherein the heating is performed by microwave irradiation.
[14] (A) 100 parts by mass of a polymer containing a polar group-containing polymer in an amount of 30 to 100% by mass, (B) 1 to 30 parts by mass of an organic foaming agent, and (C) 0.1 to 10 parts by mass of an organic peroxide. A method for producing a rubber foam material, comprising extruding a rubber composition containing a mass part into a predetermined shape, heating the rubber composition, and crosslinking and foaming the rubber composition.
[15] The method for producing a rubber foam according to [14], wherein the heating is performed by microwave irradiation.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION The polymer (A) used in the present invention contains a polar group-containing polymer in an amount of 30 to 100% by mass, preferably 50 to 100% by mass, based on the total amount of the polymer (A). It is. If the content of the polar group-containing polymer is less than 30% by mass, sufficient heating by microwave cannot be obtained, and uniform and sufficient foaming and crosslinking cannot be obtained. In addition, only a polar group-containing polymer may be used, but when it is added in addition to that, the polymer is not limited.
[0018]
The polar group-containing polymer has a polar group in the molecule. Examples of the polar group include a functional group having a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, or the like, a chloro group, a cyano group, an amino group, a carboxyl group, an amide group, an acetyl group, an ester group, a sulfone group, Examples include a mercapto group and a chlorosulfone group. Examples of the polymer having these polar groups include chlorinated polyethylene, chloroprene rubber, chlorosulfonated rubber, polyvinyl chloride, nitrile rubber, acrylonitrile-butadiene-styrene copolymer rubber, acrylic rubber, ethylene-vinyl acetate copolymer, Examples thereof include an ethylene-acrylic acid copolymer, an ethylene-acrylic acid ester copolymer, an ethylene-methacrylic acid ester copolymer, a fluorine rubber, and a silicone rubber. These polar group-containing polymers can also be used as a blend of two or more kinds. Among these, chlorinated polyethylene (hereinafter, sometimes referred to as “CPE”) having characteristics such as flexibility, flame retardancy, chemical resistance, and weather resistance is preferable.
[0019]
As the chlorinated polyethylene, chlorinated polyethylene (low-density polyethylene, linear low-density polyethylene, high-density polyethylene) can be used. As a chlorination method, a known chlorination method such as an aqueous suspension method, a solution method, and a gas phase method can be used. Among them, chlorination by an aqueous suspension method is preferable.
[0020]
Although the structure of the chlorinated polyethylene that can be used in the present invention is not particularly limited, a chlorinated polyethylene having a chlorine content of 10 to 35% by mass is preferable. If the chlorine content is less than 10% by mass, elasticity is impaired, sufficient heating by microwaves cannot be obtained, and uniform and sufficient foaming and crosslinking may not be obtained. On the other hand, if the content exceeds 35% by weight, uniform and sufficient foaming and crosslinking cannot be obtained, and quality deterioration such as inferior low-temperature characteristics may be observed.
[0021]
Further, the chlorinated polyethylene preferably has a Mooney viscosity ML (1 + 4) at 100 ° C. of 30 to 100. If the Mooney viscosity ML (1 + 4) is less than 30, the material viscosity at the time of foaming is low and bubbles are coarse, and if it exceeds 100, sufficient foaming cannot be obtained or cracks occur during foam crosslinking. May occur.
[0022]
The organic blowing agent (B) used in the present invention is not particularly limited. Acetone hydrazone, hydrazidicarbonamide, azobisisobutyronitrile and the like can be mentioned. In addition, a foaming aid such as a lead, zinc compound, urea, an amine compound, and other basic compounds can be used in combination for the purpose of controlling the decomposition temperature of the organic foaming agent. These organic foaming agents can be used as a blend of two or more kinds, and can be used in combination with an inorganic foaming agent such as sodium bicarbonate, ammonium carbonate and ammonium bicarbonate.
[0023]
The content of the organic foaming agent (B) is 1 to 30 parts by mass based on 100 parts by mass of the polymer (A). When the content of the organic foaming agent (B) is less than 1 part by mass, a sufficient degree of foaming cannot be obtained and the composition is hard and cannot have the desired elasticity. Sometimes cracks occur. Further, the decomposition temperature T 1 of the organic blowing agent (B) is preferably 100 to 170 ° C.. If the temperature is lower than 100 ° C, there is a problem in stability during processing. If the temperature is higher than 170 ° C, it is difficult to obtain a uniform and sufficient foaming degree. Incidentally, the decomposition temperature T 1 of the organic blowing agent (B), by a differential calorimetry, can be represented by the exothermic peak temperature when the temperature was raised at 5 ° C. / min.
[0024]
The organic peroxide (C) used in the present invention is not particularly limited. For example, stearoyl peroxide, lauroyl peroxide, benzoyl peroxide, 4-methylbenzoyl peroxide, 1,1-bis (t-butylperoxide) Oxy) 2-methylcyclohexane, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t -Butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy Oxylaurate, t-butyl peroxyisopropyl monocarb Tert-butylperoxy, 2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxybenzoate, n-butyl -4,4-bis (t-butylperoxy) valerate, di-t-butylperoxyisophthalate, α, α'bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl -2,5-di (t-butylperoxy) hexane, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3 and the like.
These organic peroxides can be used in combination of two or more.
[0025]
The content of the organic peroxide (C) is 0.1 to 10 parts by mass based on 100 parts by mass of the polymer (A). If the content of the organic peroxide (C) is less than 0.1 part by mass, sufficient crosslinking cannot be obtained, resulting in poor elasticity, weak product properties such as physical strength, and 10 parts by mass. Exceeding the limit results in excessive crosslinking, which may cause cracking during molding. Further, 1 minute half-life temperature T 2 of the organic peroxide (C) is preferably 100 to 170 ° C.. If the temperature is lower than 100 ° C, there is a problem in stability during processing. If the temperature exceeds 170 ° C, it is difficult to obtain a uniform and sufficient degree of foaming and crosslinking. Note that one minute half-life temperature T 2 of the organic peroxide (C) is the temperature at which the original amount of active oxygen in 1 minute organic peroxide is decomposed is halved. The measurement can be obtained from the plot by determining the half-life of the organic peroxide at a plurality of temperatures in a solvent relatively inert to radicals such as benzene.
[0026]
In the rubber foam of the present invention, the decomposition temperatures T 1 and an organic peroxide relationship 1 minute half-life temperature T 2 of the (C) is -20 ℃ ≦ (T 1 -T 2 ) of the organic blowing agent (B) ≦ Preferably it is + 30 ° C. When one minute half-life of the temperature T 2 relationship of the decomposition temperatures T 1 and an organic peroxide of an organic blowing agent (B) (C) exceeds this range, poor balance foaming and crosslinking, or not at all foaming, Cracks may occur during molding. Further, more preferably, the decomposition temperatures T 1 and an organic peroxide relationship 1 minute half-life temperature T 2 of the (C) is -10 ℃ ≦ (T 1 -T 2 ) of the organic blowing agent (B) ≦ + 20 ℃ It is.
[0027]
In the present invention, in addition to the above (A) to (C), various compounding agents usually used in the art, such as an acid acceptor, an antioxidant, a light stabilizer, a UV absorber, a processing aid, Lubricants, plasticizers, tackifiers, flame retardants, dehydrating agents, pigments, carbon black, inorganic fillers, crosslinking aids, crosslinking accelerators and the like can be added.
[0028]
In particular, when chlorinated polyethylene is used as the polymer (A), it is preferable to add an acid acceptor. Examples of the acid acceptor used include oxides, hydroxides, carbonates, carboxylates, silicates, borates, phosphites, and sulfites of metals of Group II or IVb of the Periodic Table. Salts and sulfates, hydrotalcite stones, epoxy compounds and the like. Specifically, magnesium oxide, magnesium hydroxide, barium hydroxide, magnesium carbonate, barium carbonate, slaked lime, quicklime, calcium carbonate, calcium silicate, calcium stearate, barium stearate, magnesium phosphite, calcium phosphite, tin oxide, litharge , Lead white, lead white, dibasic lead phthalate, dibasic lead carbonate, basic lead phosphite, basic lead sulfite, tribasic lead sulfate, synthetic hydrotalcite, and the like.
[0029]
The acid acceptor is preferably added in an amount of 1 to 30 parts by mass based on 100 parts by mass of the polymer (A). When the amount of the acid acceptor is less than 1 part by mass, crosslinking does not easily proceed, and sufficient elasticity may not be obtained, or unintended air bubbles may be generated. On the other hand, when the amount exceeds 30 parts by mass, other rubber properties may be reduced or elasticity may be impaired.
[0030]
Specific examples of the inorganic filler include calcium carbonate, magnesium carbonate, alumina, aluminum hydroxide, magnesium hydroxide, aluminum silicate (kaolin clay), magnesium silicate (talc), calcium silicate (wollastonite), and silica (silica). ), Mica, zonotolite, precipitated barium sulfate and the like. The filler preferably has an average particle diameter of 10 μm or less in order to obtain uniform foaming. It is also possible to surface-treat the inorganic filler with higher fatty acids, metal salts of higher fatty acids, ester compounds of higher fatty acids, silane coupling agents, titanate coupling agents, and the like.
[0031]
Examples of the crosslinking assistant and accelerator include triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, and the like. The use of an organic peroxide together with the organic peroxide increases the degree of crosslinking, and is preferred.
[0032]
The method for adding and mixing each component and compounding agent in the present invention is not particularly limited, and employs a method applied to kneading of ordinary resin and rubber such as an open roll, a Banbury mixer, a pressure kneader, an intermixer, and an extruder. can do.
[0033]
In the present invention, as the foaming method of the rubber composition, any of the existing normal pressure foaming method, in-mold foaming method, pressure foaming method (press foaming method), etc. can be applied, but preferably, the rubber composition is formed into a predetermined shape. A method of extruding, heating, and crosslinking to form a foam is suitable. Heating methods include circulating hot air, continuously passing through a heating furnace equipped with an infrared heater, and passing through a bath filled with molten salt or heated glass beads. A method is preferred in which the rubber composition extruded by wave irradiation is heated from the inside to cause crosslinking and foaming. Heating can also use these plural methods in combination.
[0034]
For example, in FIGS. 1 to 4, 4 is a continuous extruder, 5 is a heating and vulcanizing furnace, 6 is a cutting or punching machine, 1 is an extruded material, and a plurality of materials 1a and 1b may be co-extruded. . In the case of a single material 1, the product 2 is obtained, and in the case of a plurality of materials, the product 3 is obtained.
[0035]
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to only these examples.
<Measurement of decomposition temperature of foaming agent>
It was measured by a differential heat measurement method.
Measuring device: TG / DTA220 manufactured by Seiko Electronic Industry Co., Ltd.
Measurement conditions: temperature rise 5 ° C / min, nitrogen atmosphere <Method for measuring chlorine content of chlorinated polyethylene (CPE)>
It was measured by the oxygen flask combustion method (JIS K7229).
<Moony viscosity measurement>
It was measured according to JIS K6300. (ML (1 + 4) 100 ° C)
[0036]
<Polymer>
CPE1:
Chlorinated polyethylene having a chlorine content of 30% by mass and a Mooney viscosity of 70 (manufactured by an aqueous suspension method, manufactured by Showa Denko KK, TR31)
CPE2:
Chlorinated polyethylene having a chlorine content of 20% by mass and a Mooney viscosity of 60 (manufactured by an aqueous suspension method, manufactured by Showa Denko KK, TR21)
CPE3:
Chlorinated polyethylene having a chlorine content of 40% by mass and a Mooney viscosity of 80 (manufactured by an aqueous suspension method, manufactured by Showa Denko KK, TR41)
CPE4:
Chlorinated polyethylene having a chlorine content of 30% by mass and a Mooney viscosity of 25 (manufactured by an aqueous suspension method, manufactured by Showa Denko KK, TR32)
CPE5:
Chlorinated polyethylene having a chlorine content of 30% by mass and a Mooney viscosity of 120 (manufactured by aqueous suspension method, manufactured by Showa Denko KK, TR33)
EPDM (ethylene-propylene-diene terpolymer):
An ethylene-propylene- (5-ethylidene-2-norbornene) terpolymer having a Mooney viscosity of 40, a propylene content of 26% by mass, and an iodine value of 20 (EP51, manufactured by Nippon Synthetic Rubber Co., Ltd.)
[0037]
<Organic foaming agent>
Blowing agent 1:
An azodicarbonamide-based (hereinafter, referred to as "ADCA" -based) composite blowing agent having a decomposition temperature of 125 ° C (Cermic CAP, manufactured by Sankyo Kasei Co., Ltd.)
Blowing agent 2:
ADCA-based composite foaming agent with a decomposition temperature of 150 ° C (Cermic CAP-500, manufactured by Sankyo Kasei Co., Ltd.)
Blowing agent 3:
An ADCA-based composite foaming agent having a decomposition temperature of 205 ° C (Cermic C-1 manufactured by Sankyo Kasei Co., Ltd.)
Blowing agent 4:
4,4 'Oxybisbenzenesulfonylhydrazide-based composite foaming agent having a decomposition temperature of 155 ° C (Cermic S, manufactured by Sankyo Kasei Co., Ltd.)
[0038]
<Organic peroxide (crosslinking agent)>
Crosslinking agent 1:
Benzoyl peroxide (1 minute half-life temperature is 130 ° C [measured in benzene, manufacturer's catalog value] Nippon Oil & Fats Co., Ltd., Niiper BW)
Crosslinking agent 2:
1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane (1 minute half-life temperature is 149 ° C. [measurement in benzene, manufacturer catalog value], manufactured by NOF Corporation, Perhexa 3M)
Crosslinking agent 3:
2,5-dimethyl-2,5-di (t-butylperoxy) hexane (1 minute half-life temperature is 180 ° C [measurement in benzene, manufacturer catalog value], manufactured by NOF CORPORATION, Perhexa 25B)
[0039]
<Other compounding agents>
Magnesium oxide:
Light magnesium oxide (Kyowa Mag 150, manufactured by Kyowa Chemical Industry Co., Ltd.)
Calcium carbonate:
Light calcium carbonate having an average particle size of 0.5 μm (Tamapearl TP-222H, manufactured by Okutama Industry Co., Ltd.)
Plasticizer:
Diisodecyl phthalate (Sansoizer DIDP manufactured by Nippon Rika Co., Ltd.)
Crosslinking aid:
Triallyl isocyanurate (Taike, manufactured by Nippon Kasei Co., Ltd.)
Dehydrating agent calcium oxide (Vesta BS, manufactured by Inoue Lime Industry Co., Ltd.)
[0040]
(Example 1, Comparative Examples 1 and 2)
Table 1 shows the composition of Example 1 in parts by mass. The composition was kneaded with a water-cooled open roll.
[0041]
Figure 2004168825
[0042]
The composition was extruded with an extruder, and crosslinked and foamed under the conditions shown in Table 2.
[0043]
Figure 2004168825
[0044]
A puff of length × width × thickness = 40 mm × 50 mm × 7 mm was made. The quality characteristics are as shown in Table 3. In Table 3, latex sponge puffs and EPDM closed cell sponge puffs were made using known methods.
[0045]
Figure 2004168825
[0046]
In Table 3, ○ = good, Δ = acceptable, × = not acceptable.
Light fastness and metal ion fastness were evaluated by color change.
[0047]
(Examples 1 to 11, Comparative Example 3)
Table 4 shows the composition of each Example and Comparative Example in parts by mass. Kneading, extrusion and cross-linked foaming were carried out in the same manner as in Example 1. In addition, the foaming state in Table 4 represents ○ = homogeneous and good foaming, Δ = partially non-uniform foaming, and X = no foaming.
[0048]
[Table 4]
Figure 2004168825
[0049]
According to the present invention, it is possible to simultaneously form a multi-layered material having a simple design without a large number of dies (only a deformed die) and a design property. In addition, it is possible to significantly reduce material loss and the number of molding steps, resulting in an inexpensive product. Furthermore, it is possible to obtain a foam having a wide range of cell structure (closed cell to semi-open cell, open cell), cell diameter, and hardness according to the cosmetics to be applied, by varying the mixing to molding conditions and post-processing. . Moreover, by selecting an olefin-based elastomer, surface modification such as fusion of a spherical resin having similar characteristics is possible.
[Brief description of the drawings]
FIG. 1 is a side view of an apparatus for producing a rubber foam material according to the present invention.
FIG. 2 shows an example of an extruded material in FIG. 1, wherein (a) is a front view and (b) is a side view.
FIG. 3 shows another example of the extruded material in FIG. 1, wherein (a) is a front view and (b) is a side view.
4 shows still another example of the extruded material in FIG. 1, wherein (a) is a plan view and (b) is a front view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Extruded material 2 Product 3 Product 4 Continuous extruder 5 Heat vulcanizing furnace 6 Cutting or punching machine

Claims (15)

(A)極性基含有ポリマーを30〜100質量%含有するポリマー100質量部、
(B)有機発泡剤を1〜30質量部、及び
(C)有機過酸化物を0.1〜10質量部
を含むゴム組成物を加熱することにより得られることを特徴とするゴム発泡材。
(A) 100 parts by mass of a polymer containing 30 to 100% by mass of a polar group-containing polymer,
A rubber foam material obtained by heating a rubber composition containing (B) 1 to 30 parts by mass of an organic foaming agent and (C) 0.1 to 10 parts by mass of an organic peroxide.
ポリマー(A)に含まれる極性基含有ポリマーが塩素化ポリエチレンである請求項1記載のゴム発泡材。The rubber foam according to claim 1, wherein the polar group-containing polymer contained in the polymer (A) is chlorinated polyethylene. 塩素化ポリエチレンの塩素含有量が10〜35質量%であり、100℃のムーニー粘度ML(1+4)が30〜100である請求項1又は2記載のゴム発泡材。The rubber foam according to claim 1, wherein the chlorinated polyethylene has a chlorine content of 10 to 35% by mass and a Mooney viscosity ML (1 + 4) at 100 ° C. of 30 to 100. 4 . 有機発泡剤(B)の分解温度Tが100〜170℃である請求項1〜3のいずれかに記載のゴム発泡材。Rubber foam according to any of decomposition claims 1-3 temperatures T 1 is 100 to 170 ° C. of the organic blowing agent (B). 有機過酸化物(C)の1分半減期温度Tが100〜170℃である請求項1〜4のいずれかに記載のゴム発泡材。Organic peroxides rubber foam according to any one-minute half-life temperature T 2 is of claims 1 to 4 is 100 to 170 ° C. of (C). 有機発泡剤(B)の分解温度Tと有機過酸化物(C)の1分半減期温度Tの関係が−20℃≦(T−T)≦+30℃である請求項1〜5のいずれかに記載のゴム発泡材。Organic blowing agent (B) of the decomposition temperature T 1 of the organic peroxide (C) 1 minute half-life temperature T 2 of the relationship -20 ° C. ≦ of (T 1 -T 2) is ≦ + 30 ° C. claim 1 5. The rubber foam according to any one of the above items 5. (A)極性基含有ポリマーを30〜100質量%含有するポリマー100質量部、
(B)有機発泡剤を1〜30質量部、及び
(C)有機過酸化物を0.1〜10質量部
を含むゴム組成物を所定形状に押出成形し、これを加熱し、架橋、発泡させることにより得られることを特徴とするゴム発泡材。
(A) 100 parts by mass of a polymer containing 30 to 100% by mass of a polar group-containing polymer,
A rubber composition containing (B) 1 to 30 parts by mass of an organic foaming agent and (C) 0.1 to 10 parts by mass of an organic peroxide is extruded into a predetermined shape, which is heated, crosslinked, and foamed. A rubber foam characterized in that the rubber foam is obtained by performing
ポリマー(A)に含まれる極性基含有ポリマーが塩素化ポリエチレンである請求項7記載のゴム発泡材。The rubber foam according to claim 7, wherein the polar group-containing polymer contained in the polymer (A) is chlorinated polyethylene. 塩素化ポリエチレンの塩素含有量が10〜35質量%であり、100℃のムーニー粘度ML(1+4)が30〜100である請求項7又は8記載のゴム発泡材。The rubber foam according to claim 7 or 8, wherein the chlorinated polyethylene has a chlorine content of 10 to 35% by mass and a Mooney viscosity ML (1 + 4) at 100 ° C of 30 to 100. 有機発泡剤(B)の分解温度Tが100〜170℃である請求項7〜9のいずれかに記載のゴム発泡材。Rubber foam according to any of claims 7-9 decomposition temperature T 1 of the organic blowing agent (B) is 100 to 170 ° C.. 有機過酸化物(C)の1分半減期温度Tが100〜170℃である請求項7〜10のいずれかに記載のゴム発泡材。Rubber foam according to any of claims 7 to 10 minute half-life temperature T 2 of the organic peroxide (C) is 100 to 170 ° C.. 有機発泡剤(B)の分解温度Tと有機過酸化物(C)の1分半減期温度Tの関係が−20℃≦(T−T)≦+30℃である請求項7〜11のいずれかに記載のゴム発泡材。Organic blowing agent (B) of the decomposition temperature T 1 of the organic peroxide (C) 1 minute half-life temperature T 2 of the relationship -20 ° C. ≦ of (T 1 -T 2) ≦ + a 30 ° C. claim 7 12. The rubber foam according to any one of 11. 加熱がマイクロ波照射により行われる請求項1〜12のいずれかに記載のゴム発泡材。The rubber foam according to any one of claims 1 to 12, wherein the heating is performed by microwave irradiation. (A)極性基含有ポリマーを30〜100質量%含有するポリマー100質量部、
(B)有機発泡剤を1〜30質量部、及び
(C)有機過酸化物を0.1〜10質量部
を含むゴム組成物を所定形状に押出成形し、これを加熱し、架橋、発泡させることを特徴とするゴム発泡材の製造方法。
(A) 100 parts by mass of a polymer containing 30 to 100% by mass of a polar group-containing polymer,
A rubber composition containing (B) 1 to 30 parts by mass of an organic foaming agent and (C) 0.1 to 10 parts by mass of an organic peroxide is extruded into a predetermined shape, which is heated, crosslinked, and foamed. A method for producing a rubber foam material.
加熱がマイクロ波照射により行われる請求項14記載のゴム発泡材の製造方法。The method for producing a rubber foam material according to claim 14, wherein the heating is performed by microwave irradiation.
JP2002333480A 2002-11-18 2002-11-18 Rubber foamed material and method for producing the same Pending JP2004168825A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002333480A JP2004168825A (en) 2002-11-18 2002-11-18 Rubber foamed material and method for producing the same
US10/679,526 US20040097605A1 (en) 2002-11-18 2003-10-06 Cellular rubber material and producion process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333480A JP2004168825A (en) 2002-11-18 2002-11-18 Rubber foamed material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004168825A true JP2004168825A (en) 2004-06-17

Family

ID=32698180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333480A Pending JP2004168825A (en) 2002-11-18 2002-11-18 Rubber foamed material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004168825A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072885A1 (en) * 2005-12-21 2007-06-28 Sekisui Chemical Co., Ltd. Closed cell foam rubber sheet, laminate, and waterproof/watertight sealing material using the sheet or lamiante
JP2012067235A (en) * 2010-09-27 2012-04-05 Sanwa Kako Co Ltd Chloroprene rubber foam and method for producing the same
JP2012107224A (en) * 2010-10-27 2012-06-07 Nitto Denko Corp Foamable resin composition, foamable resin sheet, foam and method for producing the same
JP2015052045A (en) * 2013-09-06 2015-03-19 株式会社カネカ Polyester resin composition, polyester resin foam and method for producing the same
JP2015522673A (en) * 2012-06-27 2015-08-06 ダウ グローバル テクノロジーズ エルエルシー Articles containing flame retardant polymer foam
JP2017002111A (en) * 2015-06-04 2017-01-05 昭和電工株式会社 Composition for foam and foam
CN106680214A (en) * 2017-03-20 2017-05-17 华南师范大学 Device and method of optical-acoustic peritoneoscope for simultaneously detecting elasticity and viscosity
CN114364501A (en) * 2019-10-29 2022-04-15 山内株式会社 Hot-pressing buffer piece
CN115160679A (en) * 2022-08-23 2022-10-11 智筑汇创(上海)新材料科技有限公司 Radiation-proof polymer composite material and preparation method thereof
CN115322458A (en) * 2022-10-13 2022-11-11 华美节能科技集团有限公司 Environment-friendly rubber-plastic heat-insulating material and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072885A1 (en) * 2005-12-21 2007-06-28 Sekisui Chemical Co., Ltd. Closed cell foam rubber sheet, laminate, and waterproof/watertight sealing material using the sheet or lamiante
JP2012067235A (en) * 2010-09-27 2012-04-05 Sanwa Kako Co Ltd Chloroprene rubber foam and method for producing the same
JP2012107224A (en) * 2010-10-27 2012-06-07 Nitto Denko Corp Foamable resin composition, foamable resin sheet, foam and method for producing the same
JP2015522673A (en) * 2012-06-27 2015-08-06 ダウ グローバル テクノロジーズ エルエルシー Articles containing flame retardant polymer foam
JP2015052045A (en) * 2013-09-06 2015-03-19 株式会社カネカ Polyester resin composition, polyester resin foam and method for producing the same
JP2017002111A (en) * 2015-06-04 2017-01-05 昭和電工株式会社 Composition for foam and foam
CN106680214A (en) * 2017-03-20 2017-05-17 华南师范大学 Device and method of optical-acoustic peritoneoscope for simultaneously detecting elasticity and viscosity
CN106680214B (en) * 2017-03-20 2019-08-27 华南师范大学 Optoacoustic laparoscopic apparatus and its method a kind of while that detect elasticity and viscosity
CN114364501A (en) * 2019-10-29 2022-04-15 山内株式会社 Hot-pressing buffer piece
CN115160679A (en) * 2022-08-23 2022-10-11 智筑汇创(上海)新材料科技有限公司 Radiation-proof polymer composite material and preparation method thereof
CN115322458A (en) * 2022-10-13 2022-11-11 华美节能科技集团有限公司 Environment-friendly rubber-plastic heat-insulating material and preparation method thereof
CN115322458B (en) * 2022-10-13 2023-01-06 华美节能科技集团有限公司 Environment-friendly rubber-plastic heat-insulating material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4912588B2 (en) Open cell foam of ethylene / propylene / diene rubber
KR20170045220A (en) Thermally expandable fire resistant resin composition
US10696811B2 (en) Expansion system for flexible insulation foams
JP4554061B2 (en) EPDM foam and method for producing the same
JP2004168825A (en) Rubber foamed material and method for producing the same
JP2016141759A (en) Ethylene propylene diene rubber foam and sealant
US20040097605A1 (en) Cellular rubber material and producion process therefor
JP2004275743A (en) Applicator for cosmetics
JP6031093B2 (en) Composition for rubber foam and rubber foam using the same
JP2018059079A (en) Heat expansible resin composition and multilayer fire-resistant molding
JP5026232B2 (en) Method for producing crosslinked butyl rubber foam
KR101083277B1 (en) Metalatearate containig the foam compositions and foam products
JP6223957B2 (en) Foam rubber composition for seal material and seal material comprising the foam rubber composition
JP4554059B2 (en) EPDM vulcanized foam
JP2000302905A (en) Rubber foam
JP2003082144A (en) Polyolefin resin crosslinked foam
JP4774199B2 (en) Method for producing flame retardant conductive cross-linked polyolefin foam
JP2001064429A (en) Rubber-based foam
JP2004002518A (en) Method for manufacturing rubber sponge
WO2017002957A1 (en) Ethylene-propylene-diene rubber foam and sealing material
WO2017002958A1 (en) Ethylene-propylene-diene rubber foam, method for producing same and sealing material
JP2000026527A (en) Resin composition
JP2001131320A (en) Rubber-based foaming material and its foamed product
JP2018168311A (en) Rubber resin closed-cell foam sheet and method for producing the same
JP3763879B2 (en) Polyolefin resin cross-linked foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225