JP2004168614A - Method for manufacturing organic manure - Google Patents

Method for manufacturing organic manure Download PDF

Info

Publication number
JP2004168614A
JP2004168614A JP2002338185A JP2002338185A JP2004168614A JP 2004168614 A JP2004168614 A JP 2004168614A JP 2002338185 A JP2002338185 A JP 2002338185A JP 2002338185 A JP2002338185 A JP 2002338185A JP 2004168614 A JP2004168614 A JP 2004168614A
Authority
JP
Japan
Prior art keywords
organic
heating
drying
heat treatment
organic fertilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002338185A
Other languages
Japanese (ja)
Inventor
Toshiyuki Wakatsuki
利之 若月
Kensuke Matsui
謙介 松井
Takeshi Shibata
健 柴田
Kaori Matsuoka
かおり 松岡
Kazuyuki Masunaga
二之 増永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002338185A priority Critical patent/JP2004168614A/en
Publication of JP2004168614A publication Critical patent/JP2004168614A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an organic manure including humified matter of good quality by heating and drying organic wastes, such as organic sludge, garbage, and livestock feces, then heat treating the organic wastes, thereby rapidly and effective progressing humification. <P>SOLUTION: The humification of the treated objects is sufficiently progressed by holding the objects for 2 to 40 hours at 150 to 250°C in a heat treatment process after heating and drying. The heat treatment temperature and time for the humification can be lowered and shortened by adding inorganic catalysts, such as volcanic ash, pumice powder, aluminum oxide, iron oxide, kaolinite, and acidic clay to the organic wastes. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機汚泥や生ごみ、畜糞などの有機性廃棄物を原料として、加熱乾燥し、その後熱処理を続けることにより有機質肥料を製造する方法に係り、特に、短時間で効果的に腐植化を進行させることにより、良質の腐植化物を含む有機質肥料を製造する方法に関する。
【0002】
【従来の技術】
従来、有機汚泥や生ごみ、畜糞等の有機性廃棄物の再資源化処理方法として、有機性廃棄物を乾燥処理後、更に熱処理して有機質肥料を製造する方法が提案されている。この方法によれば、加熱乾燥後も更に熱処理を継続することにより、10〜20時間程度の短時間の処理で、悪臭がなく、しかも、有機肥料分も十分に残留している上に塩分もさほど高くなく、有機肥料として有効な有機質肥料を得ることができる。
【0003】
しかして、特開2002−028608号公報には、この加熱乾燥後の熱処理の終了時期を適正に判断して、熱処理時間の過不足なく処理を行うことにより、目標とする悪臭のない高品質の有機質肥料を効率的に製造するために、有機性廃棄物を加熱乾燥した後の熱処理工程において被処理物の温度が110〜200℃、好ましくは150〜200℃に達した時点で加熱を停止し、製品を熱処理装置から取り出す方法が提案されている。
【0004】
この特開2002−028608号公報に記載される実施例では、被処理物の温度が150℃に達した時点で熱処理装置の加熱を停止し、その後2時間弱で製品を取り出している。
【0005】
ところで、有機汚泥や畜糞等の有機性廃棄物が土壌中で微生物によって分解されて腐植化される過程はおおよそ次の通りである。即ち、まず、有機性廃棄物中の炭水化物やタンパク質が微生物によって分解されたり、再合成されてキノイド性物質やアミノ酸、タンパク質が生成する。そして、これらが縮合して初生腐植物質ができる。一方、難分解性のグニン様物質やリグニンも分解の後期段階で微生物によって低分子のキノン系物質やポリフェノール等に分解され、これらはやはり縮合して初生腐植物質を生成する。生成されたこれらの初生腐植物質は、土壌中の無機成分の触媒的な作用を受けて酸化的重合を起こし、更に重合度の高い真正腐植物質に変化する。
【0006】
このように腐植が高度に進行し、この真正腐植物質が多く存在する(即ち、易分解性の有機物が少なく、難分解性の有機物質である真正腐植物質が多い)ことが、植物の生育に有効で、有機質肥料としての用途に好ましい。即ち、腐植化が進行した有機質肥料であれば、次のような効果が得られる。
【0007】
▲1▼ 土壌の緩衝作用が大きく、外的影響に対して、土壌を植物の根に好適なpHに安定に維持する。
▲2▼ イオンの吸着保持力が大きいため、肥料の塩基成分を吸着保持することにより、肥持ちを良くし、また、施肥量が多過ぎた場合の障害を防止する。
▲3▼ 土壌中の粘土鉱物等と結合することにより、土壌を団粒構造にすることができ、これにより、保水性、透水性、通気性に優れた土壌を形成する。
▲4▼ 土壌中の活性アルミニウムとキレート化合物を作り、アルミニウムを不活性にし、活性アルミニウムによる土壌の酸性化やリン酸の固定化を防止する。
▲5▼ 生理活性効果を有し、細胞分裂を増強することにより、植物の根毛の発生を促進する。
【0008】
【特許文献1】
特開2002−028608号公報
【0009】
【発明が解決しようとする課題】
有機性廃棄物を加熱乾燥した後、熱処理することにより有機質肥料を製造する場合、従来においては、原料の有機性廃棄物の悪臭の除去を主目的として加熱乾燥後の熱処理が行われており、良質な腐植化物を製造することは考慮されていなかった。
【0010】
このため、従来法により製造された有機質肥料は、悪臭がなく、取り扱い性に優れたものではあるが、有機質肥料としての有効性の面では劣るものであった。
【0011】
本発明は上記従来の問題点を解決し、有機汚泥や生ごみ、畜糞等の有機性廃棄物を加熱乾燥した後、熱処理することにより、短時間で効果的に腐植化を進行させて、良質の腐植化物を含む有機質肥料を製造する方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
請求項1の有機質肥料の製造方法は、有機性廃棄物を加熱乾燥処理した後、熱処理することにより有機質肥料を製造する方法において、加熱乾燥後の熱処理工程において被処理物を150〜200℃で8〜40時間保持することを特徴とする。
【0013】
請求項2の有機質肥料の製造方法は、熱処理することにより有機質肥料を製造する方法において、該有機性廃棄物に、火山灰、軽石粉末、酸化アルミニウム、酸化鉄、カオリナイト、及び酸性白土よりなる群から選ばれる1種又は2種以上の無機触媒を添加した後、加熱乾燥し、加熱乾燥後の熱処理工程において被処理物を150〜200℃で2〜40時間保持することを特徴とする。
【0014】
従来においては、有機汚泥や生ごみ、畜糞等の有機性廃棄物を加熱乾燥した後熱処理することにより有機質肥料を製造するに当たり、有機物の熱変性に関する検討が十分になされておらず、腐植化について考慮されていなかった。
【0015】
本発明者らは、加熱乾燥後の熱処理を、150〜200℃で2〜40時間行うことにより、腐植化が十分に進行し、有機質肥料として有効な高度腐植化物の含有量の多い有機質肥料を得ることができることを見出した。
【0016】
請求項2の方法に従って、火山灰、軽石粉末、酸化アルミニウム、酸化鉄、カオリナイト、酸性白土といった無機触媒を添加した後、加熱乾燥、次いで熱処理することにより、腐植化に要する温度及び時間を低減することができる。
【0017】
本発明では、このような条件で加熱乾燥後の熱処理を行うことにより、相対色度RF及び色調係数ΔlogKがそれぞれ下記式▲1▼,▲2▼を満たす有機質肥料を製造することが好ましい。
【0018】
RF>20 …▲1▼
ΔlogK<1.0 …▲2▼
ただし、相対色度RF及び色調係数ΔlogKは次の通り定義される。
RF={K600/M(ml)}×1000
ΔlogK=logK400−logK600
logK400:試料溶液の波長400nmにおける吸光係数
logK600:試料溶液の波長600nmにおける吸光係数
M:吸光度の測定に用いた試料溶液30ml当りの0.02M KMnO水溶液消費量(ml)
試料溶液:有機質肥料の有機炭素換算で約70mgを水100mlに溶解させて得られる水溶液
【0019】
即ち、「Chemistry of soil organic matter, Kyouichi KUMADA, Japan ScientificSocieties Press and Elsevier」(熊田(1987))に報告されているように、上記の相対色度RFが大きく色調係数ΔlogKが小さいほど腐植化度は高く、難分解性の有機物の割合が多く、易分解性の有機物の割合が少ない有効な有機質肥料となる。上記文献によれば、腐植の進行度合いは、後述の実施例で示すRF−ΔlogKの腐植酸分布図(図1)において、Rp型は未熟腐植酸、B型は中程度腐植酸、A型は高度腐植酸として分類される。そして、この順に易分解性の有機物の割合が減少し、より難分解性の有機物の割合の大きい腐植化物である。
【0020】
本発明においては、加熱時間と無機触媒の質と量の組み合わせで、このような腐植酸分布図において、一番安定で難分解性のA型、中程度の安定性で中程度の分解性を有するB型、Rp型ではあるが源汚泥や源有機物に比べてかなり安定化してよりゆるやかな分解特性に変化しているがB型に比べてより不安定でより易分解性のRp型腐植酸等、使用目的に応じて異なる腐植酸組成を有する有機質肥料を製造することを可能にする。より長時間の加熱かつ酸性の表面を有するより触媒活性の高い無機触媒を使用すればするほどA型腐植酸の割合が高くなる。土壌の基本的な地力を向上させ基本的な物理化学生物性を向上させ、かつ安定に有機炭素を土壌中に保持させ地球温暖化防止等の施策を資するには、A型腐植酸の割合を増加させた有機質肥料が望ましい。一方、即効的な肥料効果がより望ましい場合は、Rp型の腐植酸の割合の高い有機質肥料が望ましい。
【0021】
【発明の実施の形態】
以下に本発明の有機質肥料の製造方法の実施の形態を詳細に説明する。
【0022】
本発明において、原料となる有機性廃棄物としては、下水処理汚泥や余剰汚泥、消化汚泥等、廃水や廃棄物の生物処理工程で生じる生物処理汚泥、生ごみ、畜糞等が挙げられる。
【0023】
本発明では、このような有機性廃棄物を加熱乾燥し、この乾燥処理により有機性廃棄物中の水分が徐々に蒸発し、含水率が1%未満となって乾燥が完了した後も、更に150〜200℃(以下この温度を「目標処理温度」と称す場合がある。)で加熱を継続して熱処理する。
【0024】
原料の有機性廃棄物には、必要に応じて、無機触媒を混合して加熱乾燥及び熱処理に供しても良く、無機触媒を用いることにより、腐植化のための熱処理温度及び熱処理時間を低減することができる。無機触媒としては、例えば、火山灰、軽石粉末、酸化アルミニウム、酸化鉄、カオリナイト、及び酸性白土よりなる群から選ばれる1種又は2種以上を用いることができ、これらの無機触媒の添加量は、有機性廃棄物の乾燥基準量に対して1〜50重量%程度とすることが好ましい。この添加量が1重量%未満では、無機触媒を添加したことによる十分な触媒効果を得ることができず、50重量%を超えると製造コストが高くなりかつ重量も増え輸送コストも高くなり過ぎる。
【0025】
有機性廃棄物の加熱乾燥工程で水分が蒸発する過程において、水分が残留している間は、被処理物である有機性廃棄物の温度は100℃未満であるが、水分が完全に蒸発除去された後も加熱を継続すると、被処理物の温度は100℃以上に上昇する。本発明では、加熱乾燥により、被処理物の温度が100℃以上に上昇し、目標処理温度に達した後も、この目標処理温度に、無機触媒を用いた場合は2〜40時間、無機触媒を用いない場合は8〜40時間保持する。
【0026】
この目標処理温度が150℃未満では、腐植化を十分に進行させることができない。目標処理温度が250℃を超えると、発火のおそれがあり、好ましくない。好ましい目標処理温度は、無機触媒の使用の有無によっても異なるが、無機触媒を用いない場合は170〜190℃、無機触媒を用いた場合は160〜180℃である。
【0027】
この目標処理温度に保持する時間は、2〜40時間の範囲で目標処理温度や、無機触媒の使用の有無等によって適宜設定される。この熱処理時間が上記範囲よりも短いと腐植化を十分に促進させることができず、過度に長くても、腐植化は頭打ちとなり、生産効率を損ない好ましくない。
【0028】
前述の如く、本発明においては、このように加熱乾燥後の熱処理工程において、所定の目標処理温度で所定時間保持することにより、相対色度RFが20を超え、特に40以上で、色調係数ΔlogKが1.0未満、特に0.9以下の有機質肥料を製造することが好ましい。
【0029】
このような有機質肥料を得るために、目標処理温度T(℃)とその保持時間H(hr)は、無機触媒を用いない場合には、T(℃)×H(hr)=170×8〜190×40(℃・hr)、無機触媒を用いた場合には、T(℃)×H(hr)=160×8〜180×40(℃・hr)で加熱乾燥後の熱処理を行うことが好ましい。
【0030】
なお、本発明において、有機性廃棄物の加熱を、直接加熱方式で行うと発火の恐れがあることから、間接加熱装置を用いて、好ましくは被処理物を撹拌しながら加熱を行うことが好ましい。
【0031】
しかして、加熱乾燥後の熱処理は、このような間接加熱装置内に被処理物を保持したまま必要に応じて温度の低下を補うだけの加熱を続けることにより行っても良く、また、間接加熱装置内から目標処理温度に達した被処理物を取り出し、保温性に優れた容器に移し、この容器内で必要に応じて温度の低下を補うだけの加熱を続けることにより行っても良い。前者の方法は、バッチ処理型の装置により、処理時間に十分な余裕がある場合に好適であり、後者の方法は、連続処理型の装置の場合や、バッチ処理型の装置であっても処理時間に十分な余裕がなく、生産量を上げたい場合に有効である。
【0032】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0033】
実施例1〜6、比較例1,2
し尿処理施設から発生した余剰汚泥の脱水ケーキ(含水率83%)を原料とし、撹拌機付きの間接加熱装置により被処理物の温度が表1に示す目標処理温度となるように加熱乾燥した。加熱乾燥により表1に示す目標処理温度に達した後も、更に表1に示す時間同温度に保持した後、処理物を取り出した。
【0034】
ただし、比較例1では、目標処理温度に到達した時点で加熱を停止し、処理物を取り出した。なお、比較例1において、被処理物の温度が150℃から160℃に上昇するまでに要した時間は1時間であり、装置から取り出された処理物は自然放冷により直ちに150℃未満の温度に冷却された。
【0035】
また、実施例3〜6では無機触媒として、表1に示すものを、原料に対して表1に示す割合で添加した。
【0036】
得られた処理物について相対色度RFと色調係数ΔlogKを測定し、結果を図1に示した。なお、試料溶液は処理物の有機炭素換算で約70mgを水100mlに溶解するように調製した。また、吸光係数K400,K600は日本分光社製「V−530DS」により測定した。
【0037】
なお、表1には腐植酸の形態を併記した。
【0038】
【表1】

Figure 2004168614
【0039】
図1より、加熱乾燥後目標処理温度に到達した後直ちに加熱を停止した比較例1,2で得られた処理物では、未熟腐植酸しか含まれていないが、本発明によればより腐植化が進行した有機質肥料を得ることができる。特に、無機触媒を用いた場合には腐植化のための熱処理温度及び熱処理時間の低減を図ることができ、工業的に有利である。
【0040】
【発明の効果】
以上詳述した通り、本発明の有機質肥料の製造方法によれば、有機汚泥や生ごみ、畜糞等の有機性廃棄物を加熱乾燥した後熱処理することにより有機質肥料を製造する方法において、腐植化を十分に進行させて、良質な腐植化物を含む腐植を短時間で効率的に製造することができる。
【図面の簡単な説明】
【図1】実施例及び比較例の結果を示す腐植酸分布図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an organic fertilizer by heating and drying an organic waste such as organic sludge, garbage, and livestock dung as a raw material, and then continuing the heat treatment. To produce an organic fertilizer containing high-quality humic substances.
[0002]
[Prior art]
BACKGROUND ART Conventionally, as a method of recycling organic waste such as organic sludge, garbage, and livestock dung, a method has been proposed in which organic waste is dried and then heat-treated to produce an organic fertilizer. According to this method, by continuing the heat treatment even after heating and drying, in a short time treatment of about 10 to 20 hours, there is no bad smell, and the organic fertilizer component still remains sufficiently, and the salt content is also reduced. An organic fertilizer which is not so expensive and is effective as an organic fertilizer can be obtained.
[0003]
Japanese Patent Application Laid-Open No. 2002-028608 discloses that the end timing of the heat treatment after the heating and drying is properly determined, and the treatment is performed without excess or shortage of the heat treatment time. In order to efficiently produce an organic fertilizer, in the heat treatment step after heating and drying the organic waste, the heating is stopped when the temperature of the object to be treated reaches 110 to 200 ° C, preferably 150 to 200 ° C. In addition, a method of removing a product from a heat treatment apparatus has been proposed.
[0004]
In the embodiment described in JP-A-2002-028608, the heating of the heat treatment apparatus is stopped when the temperature of the object reaches 150 ° C., and the product is taken out in less than two hours.
[0005]
By the way, the process in which organic waste such as organic sludge and animal dung is decomposed by microorganisms in the soil and turned into humus is roughly as follows. That is, first, carbohydrates and proteins in organic waste are decomposed or resynthesized by microorganisms to produce quinoid substances, amino acids, and proteins. These are condensed to form primary humic substances. On the other hand, lignin-like substances and lignin that are hardly decomposable are also decomposed by microorganisms into low-molecular-weight quinone-based substances and polyphenols at a later stage of decomposition, and these are also condensed to produce primary humic substances. These generated primary humic substances undergo oxidative polymerization under the catalytic action of inorganic components in the soil, and change to true humic substances having a higher degree of polymerization.
[0006]
As described above, humus progresses to a high degree, and the true humic substance is present in a large amount (that is, there are few easily decomposable organic substances and many genuine humic substances, which are hardly decomposable organic substances). Effective and preferred for use as organic fertilizer. That is, the following effects can be obtained if the organic fertilizer has undergone humification.
[0007]
{Circle around (1)} The buffering action of the soil is large, and the soil is stably maintained at a pH suitable for plant roots against external influences.
{Circle around (2)} Since the adsorption and holding power of ions is large, by adsorbing and holding the base component of the fertilizer, the fertilization is improved, and obstacles when the amount of fertilizer applied is too large are prevented.
{Circle around (3)} By combining with clay minerals and the like in the soil, the soil can be formed into an aggregated structure, thereby forming a soil excellent in water retention, water permeability and air permeability.
{Circle around (4)} Active aluminum in the soil and a chelate compound are made to inactivate aluminum and prevent acidification of the soil and immobilization of phosphoric acid by active aluminum.
{Circle around (5)} It has a bioactive effect and enhances cell division, thereby promoting root hair development in plants.
[0008]
[Patent Document 1]
JP-A-2002-028608
[Problems to be solved by the invention]
After heating and drying the organic waste, when producing an organic fertilizer by heat treatment, conventionally, heat treatment after heat drying is performed mainly for the purpose of removing the bad smell of the organic waste as a raw material, Producing good quality humus was not considered.
[0010]
For this reason, the organic fertilizer produced by the conventional method has no odor and is excellent in handleability, but is inferior in effectiveness as an organic fertilizer.
[0011]
The present invention solves the above-described conventional problems, and heat-drys organic waste such as organic sludge, garbage, and livestock dung, and then heat-treats the humus to effectively promote humification in a short period of time. An object of the present invention is to provide a method for producing an organic fertilizer containing humic substances.
[0012]
[Means for Solving the Problems]
The method for producing an organic fertilizer according to claim 1 is a method for producing an organic fertilizer by heat-treating an organic waste after heat-drying the organic waste. It is characterized by holding for 8 to 40 hours.
[0013]
The method for producing an organic fertilizer according to claim 2, wherein the organic waste is a group comprising volcanic ash, pumice powder, aluminum oxide, iron oxide, kaolinite, and acid clay. After adding one or more kinds of inorganic catalysts selected from the group consisting of: (a) and (b), the mixture is heated and dried, and the object to be treated is kept at 150 to 200 ° C. for 2 to 40 hours in a heat treatment step after the heating and drying.
[0014]
Conventionally, when producing organic fertilizers by heating and drying organic waste such as organic sludge, garbage, and livestock dung, heat-denaturation of organic substances has not been sufficiently studied. Was not taken into account.
[0015]
The present inventors performed heat treatment after heating and drying at 150 to 200 ° C. for 2 to 40 hours, whereby humification sufficiently proceeded, and an organic fertilizer having a high content of highly humic substances effective as an organic fertilizer was obtained. I found that I can get it.
[0016]
According to the method of claim 2, after adding an inorganic catalyst such as volcanic ash, pumice powder, aluminum oxide, iron oxide, kaolinite, and acid clay, heat and dry, and then heat-treat to reduce the temperature and time required for humification. be able to.
[0017]
In the present invention, it is preferable to produce an organic fertilizer in which the relative chromaticity RF and the color tone coefficient ΔlogK satisfy the following formulas (1) and (2) by performing heat treatment after heating and drying under such conditions.
[0018]
RF> 20… ▲ 1 ▼
ΔlogK <1.0… ▲ 2 ▼
Here, the relative chromaticity RF and the color tone coefficient ΔlogK are defined as follows.
RF = {K 600 / M (ml)} × 1000
ΔlogK = logK 400 -logK 600
logK 400 : extinction coefficient at 400 nm wavelength of sample solution logK 600 : extinction coefficient at 600 nm wavelength of sample solution M: consumption of 0.02 M KMnO 4 aqueous solution per 30 ml of sample solution used for measurement of absorbance (ml)
Sample solution: an aqueous solution obtained by dissolving about 70 mg of organic fertilizer in terms of organic carbon in 100 ml of water.
That is, as described in "Chemistry of soil organic matter, Kyouichi KUMADA, Japan Scientific Society Press and Elsevier" (Kumada (1987)), the relative color chromaticity [gamma] is lower as the coloration coefficient [gamma] is lower. It is an effective organic fertilizer with a high ratio of organic substances that are high and hardly decomposable and a small percentage of organic substances that are easily decomposable. According to the above-mentioned literature, the progress degree of humus can be determined by the humic acid distribution map of RF-ΔlogK (FIG. 1) shown in Examples described later, Rp type is immature humic acid, B type is moderate humic acid, and A type is Classified as highly humic. In this order, the proportion of the easily decomposable organic matter decreases, and the humic substance has a larger proportion of the more hardly decomposable organic matter.
[0020]
In the present invention, the combination of the heating time and the quality and quantity of the inorganic catalyst makes it possible to obtain the most stable and hardly decomposable type A in such a humic acid distribution map, the medium stability and the moderate degradability in such a humic acid distribution map. B-type and Rp-type humic acids that are much more stable than source sludge and organic matter, and that change to more gradual decomposition characteristics, but are more unstable and more readily decomposable than B-type. For example, it is possible to produce an organic fertilizer having a different humic acid composition depending on the purpose of use. The higher the activity of the inorganic catalyst with a longer heating and acidic surface and higher catalytic activity, the higher the proportion of type A humic acid. To improve the basic soil fertility, improve the basic physicochemical and biological properties, and stably retain organic carbon in the soil to contribute to measures such as global warming prevention, the proportion of A-type humic acid must be adjusted. Increased organic fertilizer is desirable. On the other hand, when an immediate fertilizer effect is more desirable, an organic fertilizer having a high ratio of Rp-type humic acid is desirable.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the method for producing an organic fertilizer of the present invention will be described in detail.
[0022]
In the present invention, examples of the organic waste as a raw material include sewage sludge, surplus sludge, digested sludge, and the like, biologically treated sludge generated in a biological treatment step of wastewater and waste, garbage, livestock dung, and the like.
[0023]
In the present invention, such organic waste is dried by heating, and after the drying treatment, water in the organic waste gradually evaporates to a moisture content of less than 1% and drying is completed. Heating is continued at 150 to 200 ° C. (hereinafter, this temperature may be referred to as “target processing temperature”) to perform heat treatment.
[0024]
The raw material organic waste, if necessary, may be mixed with an inorganic catalyst and subjected to heat drying and heat treatment. By using the inorganic catalyst, the heat treatment temperature and time for humification are reduced. be able to. As the inorganic catalyst, for example, one or two or more selected from the group consisting of volcanic ash, pumice powder, aluminum oxide, iron oxide, kaolinite, and acid clay can be used. The amount is preferably about 1 to 50% by weight based on the dry reference amount of the organic waste. If the addition amount is less than 1% by weight, a sufficient catalytic effect due to the addition of the inorganic catalyst cannot be obtained. If the addition amount exceeds 50% by weight, the production cost is increased, the weight is increased, and the transportation cost is too high.
[0025]
In the process of evaporating water in the heating and drying process of organic waste, while water remains, the temperature of the organic waste to be treated is lower than 100 ° C, but the water is completely evaporated and removed. If the heating is continued after the heating, the temperature of the object to be processed rises to 100 ° C. or more. In the present invention, the temperature of the object to be processed is increased to 100 ° C. or more by heating and drying, and even after reaching the target processing temperature, when the inorganic catalyst is used at the target processing temperature, the inorganic catalyst is used for 2 to 40 hours. If not used, hold for 8 to 40 hours.
[0026]
If the target treatment temperature is lower than 150 ° C., humification cannot proceed sufficiently. If the target processing temperature exceeds 250 ° C., there is a risk of ignition, which is not preferable. The preferred target treatment temperature varies depending on whether or not an inorganic catalyst is used, but is 170 to 190 ° C. when no inorganic catalyst is used, and 160 to 180 ° C. when an inorganic catalyst is used.
[0027]
The time for maintaining the target processing temperature is appropriately set in the range of 2 to 40 hours depending on the target processing temperature, whether or not the inorganic catalyst is used, and the like. If the heat treatment time is shorter than the above range, humification cannot be sufficiently promoted. If the heat treatment time is excessively long, humification reaches a peak and production efficiency is impaired, which is not preferable.
[0028]
As described above, in the present invention, in the heat treatment step after the heating and drying, the color tone coefficient ΔlogK is maintained at a predetermined target processing temperature for a predetermined time so that the relative chromaticity RF exceeds 20, especially 40 or more. It is preferable to produce an organic fertilizer having a value of less than 1.0, particularly 0.9 or less.
[0029]
In order to obtain such an organic fertilizer, the target treatment temperature T (° C.) and the holding time H (hr) are T (° C.) × H (hr) = 170 × 8 when an inorganic catalyst is not used. 190 × 40 (° C. · hr), when an inorganic catalyst is used, heat treatment after heating and drying can be performed at T (° C.) × H (hr) = 160 × 8 to 180 × 40 (° C. · hr). preferable.
[0030]
Note that, in the present invention, heating of the organic waste is liable to be ignited when performed by the direct heating method. Therefore, it is preferable to perform heating using an indirect heating device, preferably while stirring the object to be treated. .
[0031]
Thus, the heat treatment after the heating and drying may be performed by continuing the heating for compensating for the temperature drop as necessary while holding the object to be processed in such an indirect heating device. The processing may be performed by taking out the object to be processed which has reached the target processing temperature from the inside of the apparatus, transferring it to a container having excellent heat retention, and continuing the heating in this container as needed to compensate for the temperature drop. The former method is suitable when the batch processing type apparatus has a sufficient margin for the processing time, and the latter method is suitable for a continuous processing type apparatus or a batch processing type apparatus. This is effective when there is not enough time to increase the production volume.
[0032]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0033]
Examples 1 to 6, Comparative Examples 1 and 2
Excess sludge dewatered cake (water content: 83%) generated from the night soil treatment facility was used as a raw material, and was heated and dried by an indirect heating device equipped with a stirrer so that the temperature of the treatment target reached the target treatment temperature shown in Table 1. After reaching the target processing temperature shown in Table 1 by heating and drying, the temperature was further maintained at the same processing temperature shown in Table 1, and then the processed product was taken out.
[0034]
However, in Comparative Example 1, heating was stopped when the target processing temperature was reached, and the processed product was taken out. In Comparative Example 1, the time required for the temperature of the object to rise from 150 ° C. to 160 ° C. was one hour, and the object taken out of the apparatus was immediately cooled to a temperature of less than 150 ° C. by natural cooling. It was cooled down.
[0035]
In Examples 3 to 6, the inorganic catalysts shown in Table 1 were added to the raw materials at the ratios shown in Table 1.
[0036]
The relative chromaticity RF and the color tone coefficient Δlog K of the obtained processed product were measured, and the results are shown in FIG. The sample solution was prepared so that about 70 mg of the treated product in terms of organic carbon was dissolved in 100 ml of water. The absorption coefficients K 400 and K 600 were measured by “V-530DS” manufactured by JASCO Corporation.
[0037]
Table 1 also shows the form of humic acid.
[0038]
[Table 1]
Figure 2004168614
[0039]
From FIG. 1, the processed products obtained in Comparative Examples 1 and 2 in which heating was stopped immediately after reaching the target processing temperature after heating and drying contained only immature humic acid. The advanced organic fertilizer can be obtained. In particular, when an inorganic catalyst is used, the heat treatment temperature and heat treatment time for humification can be reduced, which is industrially advantageous.
[0040]
【The invention's effect】
As described in detail above, according to the method for producing an organic fertilizer of the present invention, in a method for producing an organic fertilizer by heating and drying an organic waste such as organic sludge, garbage, and livestock dung, followed by heat treatment, Is sufficiently advanced to produce humus containing good humic substances in a short time and efficiently.
[Brief description of the drawings]
FIG. 1 is a humic acid distribution chart showing the results of Examples and Comparative Examples.

Claims (3)

有機性廃棄物を加熱乾燥処理した後、熱処理することにより有機質肥料を製造する方法において、
加熱乾燥後の熱処理工程において被処理物を150〜200℃で8〜40時間保持することを特徴とする有機質肥料の製造方法。
After heating and drying the organic waste, in a method of producing an organic fertilizer by heat treatment,
A method for producing an organic fertilizer, wherein an object to be treated is kept at 150 to 200 ° C. for 8 to 40 hours in a heat treatment step after heating and drying.
有機性廃棄物を加熱乾燥処理した後、熱処理することにより有機質肥料を製造する方法において、
該有機性廃棄物に、火山灰、軽石粉末、酸化アルミニウム、酸化鉄、カオリナイト、及び酸性白土よりなる群から選ばれる1種又は2種以上の無機触媒を添加した後、加熱乾燥し、加熱乾燥後の熱処理工程において被処理物を150〜200℃で2〜40時間保持することを特徴とする有機質肥料の製造方法。
After heating and drying the organic waste, in a method of producing an organic fertilizer by heat treatment,
After adding one or more inorganic catalysts selected from the group consisting of volcanic ash, pumice powder, aluminum oxide, iron oxide, kaolinite, and acid clay to the organic waste, heat drying and heating drying A method for producing an organic fertilizer, wherein an object to be treated is kept at 150 to 200 ° C. for 2 to 40 hours in a subsequent heat treatment step.
請求項1又は2において、相対色度RF及び色調係数ΔlogKがそれぞれ下記式▲1▼,▲2▼を満たす有機質肥料を製造することを特徴とする有機質肥料の製造方法。
RF>20 …▲1▼
ΔlogK<1.0 …▲2▼
ただし、相対色度RF及び色調係数ΔlogKは次の通り定義される。
RF={K600/M(ml)}×1000
ΔlogK=logK400−logK600
logK400:試料溶液の波長400nmにおける吸光係数
logK600:試料溶液の波長600nmにおける吸光係数
M:吸光度の測定に用いた試料溶液30ml当りの0.02M KMnO水溶液消費量(ml)
試料溶液:有機質肥料の有機炭素換算で約70mgを水100mlに溶解させて得られる水溶液
3. The method for producing an organic fertilizer according to claim 1, wherein the relative chromaticity RF and the color tone coefficient .DELTA.logK satisfy the following formulas (1) and (2), respectively.
RF> 20… ▲ 1 ▼
ΔlogK <1.0… ▲ 2 ▼
Here, the relative chromaticity RF and the color tone coefficient ΔlogK are defined as follows.
RF = {K 600 / M (ml)} × 1000
ΔlogK = logK 400 -logK 600
logK 400 : extinction coefficient at 400 nm wavelength of sample solution logK 600 : extinction coefficient at 600 nm wavelength of sample solution M: consumption of 0.02 M KMnO 4 aqueous solution per 30 ml of sample solution used for measurement of absorbance (ml)
Sample solution: An aqueous solution obtained by dissolving about 70 mg of organic fertilizer in terms of organic carbon in 100 ml of water
JP2002338185A 2002-11-21 2002-11-21 Method for manufacturing organic manure Abandoned JP2004168614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002338185A JP2004168614A (en) 2002-11-21 2002-11-21 Method for manufacturing organic manure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002338185A JP2004168614A (en) 2002-11-21 2002-11-21 Method for manufacturing organic manure

Publications (1)

Publication Number Publication Date
JP2004168614A true JP2004168614A (en) 2004-06-17

Family

ID=32701475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002338185A Abandoned JP2004168614A (en) 2002-11-21 2002-11-21 Method for manufacturing organic manure

Country Status (1)

Country Link
JP (1) JP2004168614A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131501A (en) * 2008-12-03 2010-06-17 Nihonkai Gijutsu Consultants:Kk Method for burning sludge granulated product, use method thereof
US7901481B2 (en) * 2007-02-01 2011-03-08 True Organic Products, Inc. Concentrated separator by-product based fertilizer
US7927397B1 (en) 2008-08-06 2011-04-19 True Organic Products, Inc. Concentrated separator by-product and fish soluble by-product based fertilizer
US9604887B2 (en) 2015-04-20 2017-03-28 True Organic Products, Inc. Betaine based organic fertilizer
US9815744B2 (en) 2015-09-24 2017-11-14 True Organic Products, Inc. pH adjusted betaine based organic fertilizer
US9850178B2 (en) 2015-08-06 2017-12-26 True Organic Products, Inc. Betaine based organic fertilizer
US10301226B2 (en) 2016-04-13 2019-05-28 True Organic Products, Inc. Ph adjusted organic fertilizer from anaerobic digestate and grain by-products
CN112088748A (en) * 2020-09-23 2020-12-18 华中师范大学 Directional humification strengthening soil making based on iron circulation regulation and control, and preparation method and application thereof
US11155504B1 (en) 2019-01-10 2021-10-26 True Organic Products, Inc. Combination fertilizer
CN116159850A (en) * 2022-11-25 2023-05-26 天津师范大学 Method for preparing humic acid by catalyzing kitchen waste through manganese dioxide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901481B2 (en) * 2007-02-01 2011-03-08 True Organic Products, Inc. Concentrated separator by-product based fertilizer
US7927397B1 (en) 2008-08-06 2011-04-19 True Organic Products, Inc. Concentrated separator by-product and fish soluble by-product based fertilizer
JP2010131501A (en) * 2008-12-03 2010-06-17 Nihonkai Gijutsu Consultants:Kk Method for burning sludge granulated product, use method thereof
US9604887B2 (en) 2015-04-20 2017-03-28 True Organic Products, Inc. Betaine based organic fertilizer
US9850178B2 (en) 2015-08-06 2017-12-26 True Organic Products, Inc. Betaine based organic fertilizer
US9815744B2 (en) 2015-09-24 2017-11-14 True Organic Products, Inc. pH adjusted betaine based organic fertilizer
US10301226B2 (en) 2016-04-13 2019-05-28 True Organic Products, Inc. Ph adjusted organic fertilizer from anaerobic digestate and grain by-products
US11155504B1 (en) 2019-01-10 2021-10-26 True Organic Products, Inc. Combination fertilizer
CN112088748A (en) * 2020-09-23 2020-12-18 华中师范大学 Directional humification strengthening soil making based on iron circulation regulation and control, and preparation method and application thereof
CN116159850A (en) * 2022-11-25 2023-05-26 天津师范大学 Method for preparing humic acid by catalyzing kitchen waste through manganese dioxide

Similar Documents

Publication Publication Date Title
US5385673A (en) Method of treating wastewater biosolids
CN107794050B (en) Preparation method and application of biochar-based cadmium-polluted soil conditioner
JP2004168614A (en) Method for manufacturing organic manure
Bougarne et al. Consequences of surface water eutrophication: remedy and environmental interest
JP2006151787A (en) Humification accelerating agent, method of humifying organic material and humified material
US5118336A (en) Process for valorizing liquid manure from pigs and device for implementing such methods
CN110283008A (en) A kind of organic waste green compost method
KR101028143B1 (en) Process of manufacturing biosolids using organic sludge
JP7448127B2 (en) Deodorizing powder containing moisture absorbent and deodorizing method
JPS5848238B2 (en) Gesui Suratsuji no Shiyorihou
KR101448799B1 (en) Organic fertilizers using the ashes are burned from excrement and manufacturing
JPS5841916B2 (en) How to dispose of waste
JP3495301B2 (en) Production method of humic acid soil improvement material
KR101088776B1 (en) Manufacturing method of organic fertilizer using sludge of water supply and drainage
JPS593089A (en) Manufacture of organic fertilizer
RU2504531C1 (en) Method of producing organic fertiliser
JPH1017390A (en) Wood chip charcoal, its production, fertilizer containing the same, treatment of waste mushroom culture medium, carbonization product of the same waste medium and fertilizer containing the same carbonization product
JP2000008037A (en) Production of soil amelioration material of humic acid
Visiy et al. The Impact of the application of biochar previously used in domestic wastewater treatment on the growth of lettuce (Lactuca sativa)
JP3243575B2 (en) Cultivation and production method
JP2873646B2 (en) Method for producing soil conditioner
FR2832404A1 (en) Compost production comprises composting an aerated mixture of finely divided lignocellulosic waste and nitrogenous liquid waste
PL210311B1 (en) Method of obtaining the fertilizers from the sediments produced in biological sewage treatment plants
JPH09286684A (en) Soil conditioner
JP2004099395A (en) Method of manufacturing ripe compost-like material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051117

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824