JP3495301B2 - Production method of humic acid soil improvement material - Google Patents

Production method of humic acid soil improvement material

Info

Publication number
JP3495301B2
JP3495301B2 JP35879599A JP35879599A JP3495301B2 JP 3495301 B2 JP3495301 B2 JP 3495301B2 JP 35879599 A JP35879599 A JP 35879599A JP 35879599 A JP35879599 A JP 35879599A JP 3495301 B2 JP3495301 B2 JP 3495301B2
Authority
JP
Japan
Prior art keywords
humic acid
value
coal ash
ash
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35879599A
Other languages
Japanese (ja)
Other versions
JP2001172630A (en
Inventor
芳夫 井汲
紘雄 大塚
Original Assignee
株式会社関西総合環境センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社関西総合環境センター filed Critical 株式会社関西総合環境センター
Priority to JP35879599A priority Critical patent/JP3495301B2/en
Publication of JP2001172630A publication Critical patent/JP2001172630A/en
Application granted granted Critical
Publication of JP3495301B2 publication Critical patent/JP3495301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Fertilizers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、各種の炭素源を
堆肥化して有効利用する腐植酸質土壌改良資材の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a humic acid soil amendment material by effectively composting various carbon sources.

【0002】[0002]

【従来の技術】近年、ゴミ(廃材、生ゴミなど)の処理
方法や大気中の二酸化炭素低減方策が求められている。
これらの方策として、各種の炭素源を堆肥化して再資源
化をはかり、かつ、長期間炭素を固定できる腐植酸を含
む堆肥の製造方法が提案されている。
2. Description of the Related Art In recent years, there has been a demand for a method of treating garbage (waste materials, raw garbage, etc.) and measures for reducing carbon dioxide in the atmosphere.
As these measures, a method for producing a compost containing humic acid capable of fixing carbon for a long period of time has been proposed in which various carbon sources are composted for recycling.

【0003】腐植酸は、通常、土壌または低石灰化度の
石灰質中に存するアルカリに可溶で酸に不溶の褐色ない
し黒色でフミン酸とも称される無定形の酸性有機物質で
あって、土壌中の有機質を形成しているものである。
Humic acid is an amorphous acidic organic substance, which is usually brown or black and is also called humic acid, which is soluble in alkali and insoluble in acid existing in soil or calcareous matter with low calcification degree, It forms the organic substance inside.

【0004】腐植酸(フミン酸)は、その元素組成がお
よそ炭素50〜65%、水素4〜6%、窒素分1.5〜
6%、残部の大部分は酸素であり、化学構造や分子量は
現在でも不明であるが、その本質は多価フェノール形の
芳香族化合物と含窒素化合物の重縮合物であり、土壌中
での形成には微生物が関与しているものである。
Humic acid (humic acid) has an elemental composition of approximately 50-65% carbon, 4-6% hydrogen, and 1.5-nitrogen content.
6%, most of the balance is oxygen, and the chemical structure and molecular weight are still unknown, but the essence is the polycondensate of polyphenolic aromatic compounds and nitrogen-containing compounds, Microorganisms are involved in the formation.

【0005】このような腐植酸の特徴的な性質は、腐植
化の進行に伴って、順次に黄褐色、赤褐色、暗褐色、黒
褐色、黒色と色調が変化することであり、腐植酸は黒色
調の増大に比例して諸性質が規則的に変化する。
The characteristic property of such humic acid is that the color tone thereof gradually changes to yellowish brown, reddish brown, dark brown, black brown, and black with the progress of humification. The properties change regularly in proportion to the increase of.

【0006】腐植酸の一般的な分別方法としては、シモ
ン法、スプリンゲル法、チューリン法、シモン変法(弘
法・太羽法)、または熊田法があり、熊田法によれば、
単位量当たりの色の濃さを示すRF値〔相対色度:K
600 /吸光度の測定に用いた腐植酸溶液30ml当たり
の0.1N KMnO4 消費量(ml)×1000〕と
ΔlogK値〔色調係数:logK400 −log
600 ,Kは波長400または600nmにおける吸光
係数〕により評価できる。
[0006] As a general method for separating humic acid, there are a Simon method, a sprinkel method, a Thulin method, a modified Simon method (Kobo and Taiba method), or a Kumada method. According to the Kumada method,
RF value indicating the color density per unit amount [relative chromaticity: K
600 / 0.1N KMnO 4 consumption amount (ml) × 1000 per 30 ml of humic acid solution used for measurement of absorbance and ΔlogK value [color coefficient: logK 400 −log
K 600 and K can be evaluated by the extinction coefficient at a wavelength of 400 or 600 nm.

【0007】RF値は、例えば図1に示されるように、
ΔlogK値とRF値との関係によってRp 、P、B、
Aの4型(グラフ内の4つの領域)に類別されるもので
あり、RF値が大きくΔlogK値が小さい程、腐植化
度が高い腐植酸である。
The RF value is, for example, as shown in FIG.
Depending on the relationship between the ΔlogK value and the RF value, Rp, P, B,
The humic acid is classified into A type 4 (four regions in the graph), and the higher the RF value and the smaller the ΔlogK value, the higher the degree of humification is humic acid.

【0008】A型腐植酸は、前述したように炭素を多く
含むものであり、土壌微生物による分解には長期間を要
する長期土壌滞留型の有機物資材である。そのため、土
壌改良効果は長期間持続し、他の有機物の農地への施用
量を削減することにも役立つものである。また、A型腐
植酸は、農産物の生産コストの低減、化学肥料による地
下水などの水質汚染の防止にも役立つほか、各種炭素源
を土壌微生物が分解する際に発生する二酸化炭素量も少
ないので、地球温暖化の主な原因といわれる二酸化炭素
の発生または大気中への放出量の抑制にも資するもので
ある。
The A-type humic acid contains a large amount of carbon as described above, and is a long-term soil retention type organic material which requires a long time for decomposition by soil microorganisms. Therefore, the soil improvement effect lasts for a long period of time and helps to reduce the amount of application of other organic substances to farmland. In addition, A-type humic acid is useful for reducing the production cost of agricultural products, preventing water pollution such as groundwater by chemical fertilizer, and because the amount of carbon dioxide generated when soil microorganisms decompose various carbon sources is small, It also contributes to the suppression of carbon dioxide generation or release into the atmosphere, which is said to be the main cause of global warming.

【0009】しかし、自然状態でのA型腐植酸の生成に
は、200年という長い年月を要し、A型腐植酸を含む
堆肥の実用的な製造は困難であった。
However, it takes a long time of 200 years to produce A-type humic acid in a natural state, and it has been difficult to practically produce compost containing A-type humic acid.

【0010】また、A型腐植酸を実験レベルの規模で比
較的短期間に生成する方法として、ススキなどの植物遺
体に新鮮な火山灰を添加し、90℃で約200日間培養
する方法が知られている。
As a method for producing A-type humic acid on an experimental scale in a relatively short period of time, there is known a method in which fresh volcanic ash is added to plant remains such as Japanese pampas grass and cultured at 90 ° C. for about 200 days. ing.

【0011】[0011]

【発明が解決しようとする課題】しかし、上記したよう
な火山灰を添加する方法では、地域によっては新鮮な火
山灰を容易に入手し難く、また火山灰以外に使用できる
効率のよいA型腐植酸の製造原料については知られてい
なかった。
However, according to the method of adding volcanic ash as described above, it is difficult to obtain fresh volcanic ash in some regions, and efficient production of A-type humic acid that can be used in addition to volcanic ash is possible. The raw material was unknown.

【0012】ところで、本願の発明者らは火山灰に代替
使用できるA型腐植酸製造原料について研究を重ね、石
炭灰の利用可能性についてデータを収集し、このものは
所定のpH調整を行なう条件下で実用性の高い利用がで
きることを見いだした。
[0012] By the way, the inventors of the present application have conducted extensive research on A-type humic acid production raw materials that can be used in place of volcanic ash, and have collected data on the availability of coal ash under the conditions of performing prescribed pH adjustment. I found that it can be used with high practicality.

【0013】因みに、本願の発明に用いる石炭灰は、火
力発電所の運転に伴ってわが国内で年間約550万t発
生するが、その80%をフライアッシュが占め、フライ
アッシュは、その50〜60%がセメントの添加剤とし
て利用されてきた。石炭灰の一種で粒状のクリンカアッ
シュは、道路の路床材などといった土木用途に利用され
る他、酸性土壌の改良剤としてそのまま直接に散布され
ているに過ぎず、さらなる用途開発が求められていると
いう状況にある。
Incidentally, the coal ash used in the invention of the present application generates about 5.5 million tons per year in Japan with the operation of a thermal power plant, 80% of which is fly ash, and fly ash is 50 to 50% of that. 60% has been utilized as an additive in cement. Clinker ash, which is a type of coal ash and is granular, is used not only for civil engineering applications such as road subgrade materials, but is also directly sprayed as it is as an acid soil improver, and further application development is required. There is a situation that

【0014】そこで、本願の発明における課題は上記し
た問題点を解決して、石炭灰の有効利用のための新たな
用途を提供すると共に、地球温暖化の主な原因といわれ
る二酸化炭素の発生または大気中への放出量の抑制にも
資するA型腐植酸を含む土壌改良資材の新たな製造方法
を提供し、このようなA型腐植酸を含む土壌改良資材を
可及的に短期間で効率よく製造できる方法を提供するこ
とである。
Therefore, the object of the invention of the present application is to solve the above-mentioned problems and provide a new application for effective utilization of coal ash, and to generate or reduce carbon dioxide which is said to be the main cause of global warming. A new method for producing a soil improving material containing A-type humic acid, which also contributes to the suppression of the amount released into the atmosphere, is provided, and such a soil improving material containing A-type humic acid can be efficiently used in the shortest possible time. It is to provide a method that can be manufactured well.

【0015】[0015]

【課題を解決するための手段】上記の課題を解決するた
めに、この発明では、有機質の炭素源にpH値4〜6に
調整した石炭灰を添加混合し、この混合物に水を添加す
ると共に90℃以上の温度条件で熱化学反応させてA型
腐植酸を含有する腐植酸質に変成させることからなる腐
植酸質土壌改良資材の製造方法としたのである。
In order to solve the above problems, in the present invention, coal ash adjusted to a pH value of 4 to 6 is added and mixed to an organic carbon source, and water is added to this mixture. The method for producing a humic acid soil improving material comprises a thermochemical reaction under a temperature condition of 90 ° C. or higher to convert into a humic acid substance containing A-type humic acid.

【0016】上記した製造方法おける炭素源は、石炭灰
と炭素源の混合比が、1:5から5:1(重量比)の範
囲であることが好ましく、混合物は、pH値3〜8の範
囲で熱化学反応させることが好ましい。
The carbon source in the above-mentioned production method is preferably such that the mixing ratio of coal ash and carbon source is in the range of 1: 5 to 5: 1 (weight ratio), and the mixture has a pH value of 3-8. It is preferable to carry out a thermochemical reaction within the range.

【0017】この発明の腐植酸質土壌改良資材の製造方
法は、通常、アルカリ性を示す石炭灰をpH値4〜6と
いう所定の酸性域pH値に調整し、この石炭灰を炭素源
に混合しているので、この混合物は酸性〜弱酸性の条件
下で有機質がA型腐植酸へ効率よく変成する。
In the method for producing a material for improving humic acid soil according to the present invention, usually, coal ash showing alkalinity is adjusted to a predetermined acidic region pH value of 4 to 6, and the coal ash is mixed with a carbon source. Therefore, in this mixture, the organic matter is efficiently converted to A-type humic acid under acidic to weakly acidic conditions.

【0018】すなわち、所定pH値に調整された石炭灰
を添加することによって、A型腐植酸の生成に係る熱化
学反応が効率よく進行するのであるが、その作用機構に
ついては充分に明らかではない。
That is, by adding coal ash adjusted to a predetermined pH value, the thermochemical reaction relating to the formation of A-type humic acid proceeds efficiently, but its mechanism of action is not fully clear. .

【0019】しかし、本願の発明者らは石炭灰に含まれ
るAl2 3 または遊離したアルミニウムイオンによる
触媒活性があることを予想した。すなわち、pH値4未
満またはpH値6を越えるような石炭灰では、アルミニ
ウムの触媒活性が不活性になっており、逆に混合物は、
pH値3〜8の範囲で効率よく熱化学反応するとも考え
られる。
However, the inventors of the present application have predicted that there is catalytic activity due to Al 2 O 3 or free aluminum ions contained in coal ash. That is, in coal ash having a pH value of less than 4 or more than pH value 6, the catalytic activity of aluminum is inactive, and conversely, the mixture is
It is considered that the thermochemical reaction is efficiently carried out in the pH value range of 3 to 8.

【0020】また、この発明において有機質の炭素源に
所定pH値の石炭灰を添加混合し、この混合物を90℃
以上の温度条件にする理由は、90℃未満の温度条件で
は、大気中の微生物が混入して増殖することによる発酵
現象がみられるが、このような微生物発酵による腐植酸
の生成状態では、A型腐植酸の生成に年単位の長期間を
要し、一方、90℃以上では微生物発酵ではなく、熱化
学反応によるA型腐植酸への変成が上記の触媒活性作用
の下に急速に進行すると考えられる。
In the present invention, coal ash having a predetermined pH value is added to an organic carbon source and mixed, and the mixture is heated to 90 ° C.
The reason for the above temperature condition is that under temperature conditions of less than 90 ° C., a fermentation phenomenon due to the growth and growth of microorganisms in the atmosphere is observed. It takes a long time to form type humic acid, but on the other hand, at 90 ° C or higher, microbial fermentation does not occur, and conversion to type A humic acid by thermochemical reaction proceeds rapidly under the above catalytic activity. Conceivable.

【0021】また、この発明では、有機質の炭素源と所
定pH値の石炭灰との混合物に対して水を添加するが、
このような水は熱化学反応に必要であり、後述の実験
(実施例および比較例)の結果からも明らかなように、
水分の補給のない状態で熱化学反応させてもA型腐植酸
を生成することはできない。
Further, in the present invention, water is added to a mixture of an organic carbon source and coal ash having a predetermined pH value,
Such water is necessary for the thermochemical reaction, and as is clear from the results of the experiments (Examples and Comparative Examples) described later,
A type humic acid cannot be generated even if the thermochemical reaction is performed without replenishing water.

【0022】[0022]

【発明の実施の形態】この発明に用いる有機質炭素源
は、樹皮、籾殻、稲わら、笹、伐採された樹木の枝葉、
落ち葉、廃材、チップ材、おが屑、ススキ等の雑草その
他の植物質、または牛、馬、豚、鶏などの家畜の糞など
の動物質などの生物由来の有機質であって、通常は堆肥
原料として使用可能なものを採用し、都市の生ゴミのコ
ンポストを利用することもできる。なお、後述の実施例
などからも明らかなように、有機質炭素源として、稲わ
らやススキを採用して特に好ましい結果を得ている。
BEST MODE FOR CARRYING OUT THE INVENTION Organic carbon sources used in the present invention include bark, rice husks, rice straw, bamboo shoots, branches and leaves of felled trees,
Fallen leaves, waste materials, chips, sawdust, other weeds such as Japanese pampas grass, or organic substances of biological origin such as animal matter such as cattle, horses, pigs, chickens, etc. You can also use what is available and use the compost of kitchen garbage in the city. As will be apparent from the examples described below, rice straw and Japanese pampas grass are used as the organic carbon source to obtain particularly preferable results.

【0023】また、この発明に用いる石炭灰は、石炭の
灰分、すなわち石炭の熱分解または酸化生成物をいい、
通常、石炭を燃焼させた後に残る灰分である。多量の石
炭灰は、火力発電所からの石炭灰廃棄物(クリンカアッ
シュまたはフライアッシュ)として産出するので、資源
の有効利用を図り、かつ安定した品質の土壌改良資材を
提供するためにこれを利用することが好ましい。
The coal ash used in the present invention means the ash content of coal, that is, the thermal decomposition or oxidation product of coal,
Usually, it is the ash remaining after burning coal. Since a large amount of coal ash is produced as coal ash waste (clinker ash or fly ash) from thermal power plants, it is used to efficiently use resources and provide a soil quality improvement material of stable quality. Preferably.

【0024】因みに、JIS規格によればフライアッシ
ュは、シリカ45%以上、水分1%以下、強熱減量8%
以下、比重1.95以上、比表面積1500cm2 /g
以上のものであるが、このような規格化されたフライア
ッシュを使用することができるのは勿論である。
By the way, according to JIS standard, fly ash has a silica content of 45% or more, a water content of 1% or less, and a loss on ignition of 8%.
Below, specific gravity 1.95 or more, specific surface area 1500 cm 2 / g
As mentioned above, it goes without saying that such a standardized fly ash can be used.

【0025】また、クリンカアッシュ(クリンカーまた
はコールサンドとも呼ばれる)は、石炭を焼成したとき
に、石炭中の融点の低い部分が溶けて全体を固まらせ、
塊状になった石炭灰であり、フライアッシュとほぼ同様
の成分からなるものと考えられる。このようなクリンカ
アッシュは、均一に混合して効率よく作用させるため
に、5mm以下程度の粒径に整粒されたものを用いるこ
とが好ましい。
Clinker ash (also referred to as clinker or cole sand) melts a low melting point portion of coal to solidify the whole when the coal is fired.
It is a lump of coal ash, and it is thought that it consists of almost the same components as fly ash. As such a clinker ash, it is preferable to use a clinker ash that has been sized to a particle size of about 5 mm or less so that the clinker ash can be uniformly mixed and work efficiently.

【0026】参考のため、石炭灰の成分(%)の例を以
下に示す。 〔常磐神ノ山特粉灰〕 SiO2 42.83%、Al
2 3 29.32%、Fe2 3 2.68%、Ca
O 14.83%、MgO 1.57%、Na2
3.49%、K2 O 0.58%、 〔吉隅沈殿粉灰〕 SiO2 57.20%、Al2
3 29.31%、Fe 2 3 5.29%、CaO
4.06%、MgO 0.99%、SO3 1.37、N
2 O+K2 O 1.61%、 なお、石炭灰は強アルカリ性であり、使用する前にpH
処理する必要がある。石炭灰に対して硫酸等の酸を混合
して、pH値を4〜6、好ましくはpH値約5に調整し
た石炭灰を用いる。前述のように、pH値4未満または
pH値6を越えるような石炭灰では、石炭灰に含まれる
アルミニウムの触媒活性が不活性になっており、熱化学
反応の効率がないか、または極端に低くなると考えられ
る。
For reference, an example of the component (%) of coal ash is as follows.
Shown below. [Jobanjinnoyama special ash] SiO2  42.83%, Al
2O3  29.32%, Fe2O3  2.68%, Ca
O 14.83%, MgO 1.57%, Na2O
3.49%, K2O 0.58%, [Yoshisumi precipitated powder ash] SiO2  57.20%, Al2O
3  29.31%, Fe 2O3  5.29%, CaO
4.06%, MgO 0.99%, SO31.37, N
a2O + K2O 1.61%, It should be noted that coal ash is strongly alkaline and pH is
Need to be processed. Mixing acid such as sulfuric acid with coal ash
And adjust the pH value to 4-6, preferably about 5
Use coal ash. As mentioned above, pH values below 4 or
Coal ash having a pH value of over 6 is included in the coal ash.
The catalytic activity of aluminum has become inactive and thermochemical
The reaction is thought to be inefficient or extremely low
It

【0027】有機質炭素源と石炭灰とを混合すると共に
加水し、外部熱源からの熱供給する場合の温度は、熱化
学反応を速やかに進行させることができる温度範囲であ
ればよく、熱化学反応させる場合の好ましい温度条件
は、90℃以上、好ましくは90〜160℃である。な
ぜなら、90℃未満の低温では所期した熱化学反応が遅
くなり、160℃を越える高温に加熱すると、有機質炭
素源が炭化してしまう結果、芳香族化合物などの重縮合
現象である熱化学反応が起こらず、A型腐植酸の生成が
阻害されるという弊害も起こりやすくなるので好ましく
ない。
The temperature when the organic carbon source and the coal ash are mixed and hydrolyzed and the heat is supplied from the external heat source may be a temperature range in which the thermochemical reaction can be rapidly advanced. The preferable temperature condition for this is 90 ° C or higher, preferably 90 to 160 ° C. This is because the desired thermochemical reaction is slowed down at a temperature lower than 90 ° C, and when heated to a high temperature higher than 160 ° C, the organic carbon source is carbonized, resulting in a polycondensation phenomenon such as an aromatic compound. Does not occur, and the adverse effect of inhibiting the production of A-type humic acid is likely to occur, which is not preferable.

【0028】上記したような好ましい温度条件に調整す
るためには、外部から加熱する必要があり、加熱蒸気な
どの熱媒体により熱供給を受ける伝熱板などを混合物中
に設置する方法が挙げられる。
In order to adjust to the preferable temperature conditions as described above, it is necessary to heat from the outside, and there may be mentioned a method in which a heat transfer plate or the like to which heat is supplied by a heating medium such as heating steam is installed in the mixture. .

【0029】上記した製造方法おける炭素源は、石炭灰
と炭素源の混合比(重量比)が、1:5から5:1の範
囲(すなわち、石炭灰が約15〜85重量%)であるこ
とが好ましい。石炭灰が所定範囲未満では、A型腐植酸
を効率よく生成することが困難になり、所定範囲を越え
て多量に配合された場合には、炭素量が不足して効率良
くA型腐植酸を生成することが困難であると共に、石炭
灰を所定のpH値の範囲に調整することに要する硫酸な
どの強酸性物質の添加量が多くなるほか、反応期間中に
バッファ効果が原因と考えられるpH値の上昇現象が発
生しやすく、更なる酸の添加が必要となる。
The carbon source in the above manufacturing method has a mixing ratio (weight ratio) of coal ash and carbon source in the range of 1: 5 to 5: 1 (that is, about 15 to 85% by weight of coal ash). It is preferable. If the amount of coal ash is less than the predetermined range, it becomes difficult to efficiently generate A-type humic acid. If the amount of coal ash exceeds the predetermined range, the amount of carbon is insufficient and A-type humic acid is efficiently produced. It is difficult to produce, and the amount of strongly acidic substances such as sulfuric acid required to adjust the coal ash to a predetermined pH value range increases, and the pH is thought to be due to the buffer effect during the reaction period. The phenomenon of increasing the value is likely to occur, and further addition of acid is required.

【0030】これらの結果、A型腐植酸の生成までの所
要時間の長期化または酸添加量の増加などの経済的コス
トの上昇という問題が発生する。
As a result of these, there arises a problem that the economical cost is increased, such as a longer time required for producing the A-type humic acid or an increase in the amount of acid added.

【0031】[0031]

【実施例と比較例】〔実施例1〕硫酸処理によってpH
値を5.66に調整した石炭灰(フライアッシュ)と植
物炭素源(ススキの粉砕物)を4:1の重量比で混合し
た材料(混合物)を外部からの電気エネルギーを使用す
るインキュベーター(培養器)で90℃に加熱および保
温すると共に、適量の水を添加し、125日間培養を続
けた。加水量は、24時間、大気中においてほぼ全量が
蒸発するように過不足なく添加し、すなわち混合物とほ
ぼ同重量の水を毎日同じ時刻に添加した。
Examples and Comparative Examples [Example 1] pH by sulfuric acid treatment
Material (mixture) in which coal ash (fly ash) adjusted to a value of 5.66 and plant carbon source (crushed Japanese pampas grass) were mixed at a weight ratio of 4: 1 was used as an incubator (culture) using electric energy from the outside. The mixture was heated to 90 ° C. in a container and kept warm, an appropriate amount of water was added, and the culture was continued for 125 days. The amount of water added was 24 hours, just enough to evaporate almost all in the atmosphere, that is, about the same weight of water as the mixture was added at the same time every day.

【0032】生成される腐植酸の形態分析については、
下記の熊田法(熊田、太田,1963)に準じ、腐植酸の単
位量当たりの色の濃さを示すRF値(相対色度)とΔl
ogK値(腐植酸の吸収スペクトルの波長軸に対する傾
きの近似値)を0日目、70日目および125日目に調
べ、その結果を表1および図1の図表に示した。
For the morphological analysis of the humic acid produced,
According to the following Kumada method (Kumata, Ota, 1963), the RF value (relative chromaticity) and Δl indicating the color strength per unit amount of humic acid
The ogK value (an approximate value of the slope of the absorption spectrum of humic acid with respect to the wavelength axis) was examined on days 0, 70, and 125, and the results are shown in Table 1 and the chart of FIG.

【0033】<熊田法による形態分析方法> (a)抽出操作 加熱培養試料約0.4gを250ml容量の遠沈管に取
り、0.1N水酸化ナトリウム溶液(またはピロリン酸
ナトリウム溶液)を50ml加えた。10分毎に遠沈管
を振りながら、蒸し器の中で30分間、100℃に加熱
した。その後、水中で冷し、遠沈管に凝集剤として硫酸
ナトリウム1gを加え、10000rpmで15分間遠
心分離した。上澄み液を200mlメスフラスコに取
り、残渣の入った遠沈管に0.1N水酸化ナトリウム溶
液(またはピロリン酸ナトリウム溶液)を15ml加え
て、再び10000rpmで15分間遠心分離した。2
回の遠心分離で得られた上澄み液を集めて、0.1N水
酸化ナトリウム溶液(またはピロリン酸ナトリウム溶
液)を加え、200mlに定容する。そこに、2mlの
濃硫酸を徐々に加えて酸沈殿させ、1時間以上静置し、
沈殿後に濾紙で濾過した。濾紙上の残渣は、水:硫酸
(100:1)で2〜3回洗い、ろ液を水:硫酸(10
0:1)で200mlに定容した(フルボ酸画分)。濾
紙上の残渣は、0.1N水酸化ナトリウム溶液(または
ピロリン酸ナトリウム溶液)で溶解し、溶液を0.1N
水酸化ナトリウム溶液(またはピロリン酸ナトリウム溶
液)で100mlに定容し(腐植酸画分)、直ちに吸光
スペクトルを測定した。
<Morphological analysis method by Kumada method> (a) Extraction operation About 0.4 g of the heated culture sample was placed in a 250 ml centrifuge tube, and 50 ml of 0.1N sodium hydroxide solution (or sodium pyrophosphate solution) was added. . It was heated to 100 ° C. for 30 minutes in a steamer, shaking the centrifuge tube every 10 minutes. Then, it was cooled in water, 1 g of sodium sulfate was added to the centrifuge tube as a coagulant, and the mixture was centrifuged at 10,000 rpm for 15 minutes. The supernatant was placed in a 200 ml volumetric flask, 15 ml of 0.1N sodium hydroxide solution (or sodium pyrophosphate solution) was added to the centrifuge tube containing the residue, and the mixture was again centrifuged at 10,000 rpm for 15 minutes. Two
The supernatants obtained by centrifugation once are collected, 0.1N sodium hydroxide solution (or sodium pyrophosphate solution) is added, and the volume is adjusted to 200 ml. Then, 2 ml of concentrated sulfuric acid was gradually added to cause acid precipitation, and allowed to stand for 1 hour or more.
After the precipitation, it was filtered with a filter paper. The residue on the filter paper was washed with water: sulfuric acid (100: 1) 2-3 times, and the filtrate was washed with water: sulfuric acid (10: 1).
The volume was adjusted to 200 ml (0: 1) (fulvic acid fraction). Dissolve the residue on the filter paper with 0.1N sodium hydroxide solution (or sodium pyrophosphate solution) and add 0.1N solution.
The volume was adjusted to 100 ml with a sodium hydroxide solution (or sodium pyrophosphate solution) (humic acid fraction), and the absorption spectrum was immediately measured.

【0034】因みに、NaOH抽出では試料中のCaに
付着している腐植酸は抽出されず、ピロリン酸ナトリウ
ム抽出では、試料中のCaに付着している腐植酸の抽出
が可能である。
Incidentally, the humic acid adhering to Ca in the sample is not extracted in the NaOH extraction, and the humic acid adhering to Ca in the sample can be extracted in the sodium pyrophosphate extraction.

【0035】(b)吸光スペクトルの測定 分光光度計Ubest−35(JAPAN SPECTROSCOPIC C
O.LTD) を使用し、まず600nmでの吸光度(以下、
K600と略記する。)を原液で測定した。次に、40
0nmの値(以下、K400と略記する。)が0.1〜
2.0の間に入るように適当に希釈し、K600とK4
00を測定した。さらに吸光度が0.1〜2.0の間に
入るように適当に希釈し、スペクトルを230〜700
nmの間で測定した。
(B) Measurement of absorption spectrum Spectrophotometer Ubest-35 (JAPAN SPECTROSCOPIC C
O.LTD) first, the absorbance at 600 nm (hereinafter,
It is abbreviated as K600. ) Was measured in undiluted solution. Then 40
The value of 0 nm (hereinafter abbreviated as K400) is 0.1.
Dilute appropriately so that it falls between 2.0, K600 and K4
00 was measured. Further, dilute appropriately so that the absorbance falls between 0.1 and 2.0, and analyze the spectrum between 230 and 700.
It was measured in nm.

【0036】(c)酸化還元滴定 フルボ酸画分、腐植酸画分の試料液30mlを200m
l容量の三角フラスコにとり、0.1N過マンガン酸カ
リウム溶液20ml、水:硫酸(10:1)10ml、
水20mlを加えた。約5分毎にフラスコを振りながら
蒸し器の中で15分間100℃で加熱した。取り出した
後、直ちに、0.1Nシュウ酸25mlを加え、0.1
N過マンガン酸カリウムで滴定し、液が1分以上微淡紅
色を保つ点を終点とした。ブランクは、試料の代わりに
純水を用いたこと以外は、他と同様に行なった。
(C) Oxidation-reduction titration 30 ml of a sample solution of the fulvic acid fraction and the humic acid fraction was added to 200 m.
Transfer to an Erlenmeyer flask of 1 volume, 20 ml of 0.1N potassium permanganate solution, 10 ml of water: sulfuric acid (10: 1),
20 ml of water was added. Heated at 100 ° C. for 15 minutes in a steamer, shaking the flask about every 5 minutes. Immediately after taking it out, 25 ml of 0.1N oxalic acid was added to
Titration with N potassium permanganate was carried out, and the end point was the point at which the liquid remained a slight pink color for 1 minute or longer. The blanking was performed in the same manner as the others except that pure water was used instead of the sample.

【0037】(d)計算方法 ΔlogK(色調係数)=logK400 −logK600 RF(相対色度)=原液のK600 ×1000/{(Th−T
b)×30×f/Vh} 〔式中の記号:f=0.1N過マンガン酸カリウムのフ
ァクター Tb(ml)=ブランクの滴定値 Th(ml)=腐植酸画分試料の滴定値 Vh(ml)=滴定に用いた腐植酸画分試料量
(D) Calculation method ΔlogK (color tone coefficient) = logK400-logK600 RF (relative chromaticity) = K600 of undiluted solution × 1000 / {(Th-T
b) × 30 × f / Vh} [Symbol in the formula: f = 0.1N factor of potassium permanganate Tb (ml) = blank titration value Th (ml) = humic acid fraction sample titration value Vh ( ml) = amount of humic acid fraction sample used for titration

【0038】[0038]

【表1】 [Table 1]

【0039】〔実施例2〕硫酸処理によってpH値を
5.66に調整し、下記のように脱硫酸カルシウム処理
をした石炭灰(フライアッシュ)と植物炭素源(ススキ
の粉砕物)を4:1の重量比で混合した材料(混合物)
を用いたこと以外は、実施例1と全く同様にして加熱培
養し、腐植酸の形態分析については実施例1と全く同様
に行い、その結果を表1および図2中に併記した。
Example 2 The pH value was adjusted to 5.66 by the sulfuric acid treatment, and the coal ash (fly ash) and the plant carbon source (the crushed product of Japanese pampas grass) that had been desulfated with calcium as described below were 4: 4. Materials mixed in a weight ratio of 1 (mixture)
Heat culturing was performed in exactly the same manner as in Example 1 except that the above was used, and morphological analysis of humic acid was performed in exactly the same manner as in Example 1, and the results are also shown in Table 1 and FIG.

【0040】上記の脱硫酸カルシウム処理は、石炭灰に
希硫酸を加え、沈殿した石膏を除去する処理である。す
なわち、石炭灰に希硫酸を加えると石炭灰中に含まれる
カルシウム(石炭灰の粒子中に含有されるCaではな
く、遊離した型のカルシウム塩として存在するもの)が
硫酸の硫酸基(SO4 -2)と反応し、石膏(CaS
4)が生成されるが、石膏は白色沈殿物となって容器
低部に集積し固化するので、これを除去するとpH調整
されかつカルシウムが除去された石炭灰試料が得られ
る。
The above-mentioned calcium sulfate removal treatment is a treatment for adding dilute sulfuric acid to coal ash to remove the precipitated gypsum. That is, when dilute sulfuric acid is added to coal ash, calcium contained in the coal ash (not Ca contained in the particles of the coal ash but existing as a free-form calcium salt) causes the sulfate group of SO 4 (SO 4 -2 ) reacts with plaster (CaS
O 4 ) is produced, but the gypsum becomes a white precipitate and accumulates in the lower part of the container and solidifies. Therefore, removal of this gives a coal ash sample with pH adjusted and calcium removed.

【0041】因みに、Caを除去した試験を実施したの
は、石炭灰と炭素源の加熱培養試験においてAl(触媒
と想定される)の存在下で混合試料の熱化学反応を進行
させる時、過剰にCaが存在すると反応阻害が危惧され
たためである。
By the way, the test in which Ca was removed was carried out when the thermochemical reaction of the mixed sample was allowed to proceed in the presence of Al (presumed to be a catalyst) in the heating culture test of coal ash and carbon source. This is because there is a concern that the reaction inhibition may occur if Ca is present in the.

【0042】〔比較例1〕pH調整を行なわずにpH値
9.31の石炭灰(フライアッシュ)と植物炭素源(ス
スキの粉砕物)を4:1の重量比で混合した材料(混合
物)を用いたこと以外は、実施例1と全く同様にして加
熱培養し、腐植酸の形態分析については実施例1と全く
同様に行い、その結果を表1および図1中に併記した。
[Comparative Example 1] A material (mixture) in which a coal ash (fly ash) having a pH value of 9.31 and a plant carbon source (crushed grass powder) were mixed at a weight ratio of 4: 1 without pH adjustment. Heat culturing was performed in exactly the same manner as in Example 1 except that the above was used, and the morphological analysis of humic acid was performed in exactly the same manner as in Example 1, and the results are also shown in Table 1 and FIG.

【0043】表1および図1〜3の結果からも明らかな
ように、pH調整を行なわないアルカリ性の石炭灰を用
いた比較例1では、125日経過してもRF値が80未
満であり、A型腐植酸は生成しなかった。
As is clear from the results shown in Table 1 and FIGS. 1 to 3, in Comparative Example 1 using alkaline coal ash without pH adjustment, the RF value was less than 80 even after 125 days, No type A humic acid was produced.

【0044】一方、pH調整を行なってpH値が所定の
酸性域にある石炭灰を用いた比較例1では、125日経
過した時点でRF値が80を越えて、A型腐植酸が生成
したことがわかる。
On the other hand, in Comparative Example 1 in which the pH value was adjusted and the coal ash having a pH value in a predetermined acidic range was used, the RF value exceeded 80 at 125 days and A-type humic acid was produced. I understand.

【0045】〔実施例3、4、比較例2〜7〕表2に示
すように、硫酸処理によってpH値を5.0に調整する
か、または全くpH値を調整せずに石炭灰(フライアッ
シュ)と植物炭素源(稲わら)を0:1、1:2、1:
1または5:1の重量比で混合した材料(混合物)をイ
ンキュベーター(培養器)で90℃または75℃に加熱
および保温すると共に、適量の水を添加するか、または
全く添加せずに180日間培養を続けた。腐植酸の形態
分析については実施例1と全く同様にRF値を求めると
共にpH値の測定を0日、50日、90日、120日、
150日および180日目にそれぞれ行ない、それらの
結果を表2に示した。なお、腐植酸の抽出溶媒は、0〜
180日目までは全てNaOHを用いて行ない、180
日目については、必要に応じてピロリン酸を抽出溶媒と
するRF値の測定結果を併記した。
[Examples 3 and 4, Comparative Examples 2 to 7] As shown in Table 2, the pH value was adjusted to 5.0 by sulfuric acid treatment, or the coal ash (frying fly) was adjusted without adjusting the pH value at all. Ash) and vegetable carbon source (rice straw) 0: 1, 1: 2, 1:
The material (mixture) mixed in a weight ratio of 1 or 5: 1 is heated and kept warm at 90 ° C or 75 ° C in an incubator (incubator), and an appropriate amount of water is added or no addition is performed for 180 days. The culture was continued. Regarding the morphological analysis of humic acid, the RF value was determined in the same manner as in Example 1, and the pH value was measured on 0 day, 50 day, 90 day, 120 day,
The results were shown in Table 2 on days 150 and 180, respectively. The extraction solvent for humic acid is 0-
180 days, all done with NaOH, 180
Regarding the day, the measurement results of the RF value using pyrophosphoric acid as the extraction solvent were also described as needed.

【0046】[0046]

【表2】 [Table 2]

【0047】表2の結果からも明らかなように、比較例
2のように石炭灰無添加で加熱培養を行なうと、180
日間の培養期間中のpH値は良好な範囲(pH3〜8)
にあったが、RF値は、実験初期に上昇がみられB型腐
植酸になったが、50日を越えても上昇傾向は全くみら
れず、A型腐植酸までにはいたらなかった。
As is clear from the results in Table 2, when heat culturing was carried out without addition of coal ash as in Comparative Example 2, 180
The pH value is within a good range (pH 3 to 8) during the culture period for one day.
However, the RF value increased to the B-type humic acid in the early stage of the experiment, but there was no tendency to increase even after 50 days, and it did not reach the A-type humic acid.

【0048】また、比較例3〜5では、培養温度が75
℃という所定範囲外の低温であるため、180日後でも
RF値は23未満という低い値であった。
In Comparative Examples 3 to 5, the culture temperature was 75.
Since the temperature was a low temperature outside the predetermined range of ° C, the RF value was as low as less than 23 even after 180 days.

【0049】pH調整を全く行なわずに石炭灰(pH値
は約12)を使用した比較例6では、加熱培養期間が経
過するにつれて徐々にpH値は低下したが、初期のpH
値が高いために180日を経過してもRF値は33未満
という低い値であり、A型腐植酸は生成しなかった。
In Comparative Example 6 in which coal ash (pH value was about 12) was used without any pH adjustment, the pH value gradually decreased as the heating culture period passed.
Since the value was high, the RF value was as low as less than 33 even after 180 days, and the A-type humic acid was not produced.

【0050】また、培養期間中、混合物に対して水分を
全く供給しなかった比較例7では、pH値が大きく上昇
し、その結果、腐植酸の変成は阻害されRF値は12未
満という低い値に止まり、A型腐植酸は生成しなかっ
た。
Further, in Comparative Example 7 in which no water was supplied to the mixture during the culturing period, the pH value was significantly increased, and as a result, the humic acid denaturation was inhibited and the RF value was a low value of less than 12. And the A-type humic acid was not produced.

【0051】以上のような比較例の結果に対して、所定
の条件を満足する実施例3、4は、加熱培養期間中のp
H値が3〜8の範囲にあると共に180日目のRF値が
80を越えるものになり、A型腐植酸を含有する腐植質
になっていることがわかる。
In contrast to the results of the comparative example as described above, Examples 3 and 4 satisfying the predetermined conditions have p values during the heating culture period.
It can be seen that the H value is in the range of 3 to 8 and the RF value on the 180th day exceeds 80, and the humus contains A-type humic acid.

【0052】[0052]

【発明の効果】この発明は、以上説明したように、有機
質炭素源と所定pH値の石炭灰とを混合し、加水しなが
ら熱化学反応によりA型腐植酸を生成する腐植酸質土壌
改良資材の製造方法としたので、石炭灰の有効利用のた
めの新たな用途が提供され、A型腐植酸を含む土壌改良
資材を可及的に短期間で効率よく製造できるという利点
がある。
Industrial Applicability As described above, the present invention provides a humic acid soil improving material which mixes an organic carbon source with coal ash having a predetermined pH value and produces A-type humic acid by thermochemical reaction while adding water. Since the production method is used, there is provided a new application for effective use of coal ash, and there is an advantage that a soil improving material containing A-type humic acid can be efficiently produced in the shortest possible time.

【0053】また、この方法によって、地球温暖化の主
な原因といわれる二酸化炭素を大気中への放出量の抑制
にも資するA型腐植酸を固定し、そのように有用な土壌
改良資材の新たな製造方法が提供されるという利点もあ
る。
By this method, A-type humic acid, which also contributes to the suppression of the release of carbon dioxide, which is said to be the main cause of global warming, into the atmosphere is fixed, and a useful soil improvement material is newly developed. There is also an advantage that various manufacturing methods are provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の試験日数毎のRF値とΔlog K値の
関係を示す図表
FIG. 1 is a chart showing a relationship between an RF value and a Δlog K value for each test day in Example 1.

【図2】実施例2の試験日数毎のRF値とΔlog K値の
関係を示す図表
FIG. 2 is a chart showing the relationship between the RF value and Δlog K value for each test day in Example 2.

【図3】比較例1の試験日数毎のRF値とΔlog K値の
関係を示す図表
FIG. 3 is a chart showing the relationship between the RF value and Δlog K value for each test day in Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C09K 17/32 C05F 11/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C09K 17/32 C05F 11/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機質の炭素源にpH値4〜6に調整し
た石炭灰を添加混合し、この混合物に水を添加すると共
に90℃以上に加熱する条件で熱化学反応させてA型腐
植酸を含有する腐植酸質に変成させることからなる腐植
酸質土壌改良資材の製造方法。
1. A type humic acid is obtained by adding and mixing coal ash adjusted to a pH value of 4 to 6 to an organic carbon source, adding water to this mixture, and performing a thermochemical reaction under the condition of heating at 90 ° C. or higher. A method for producing a humic acid soil amendment material, which comprises degrading to a humic acid soil containing water.
【請求項2】 石炭灰と炭素源の混合比が、1:5から
5:1(重量比)の範囲である請求項1記載の腐植酸質
土壌改良資材の製造方法。
2. The method for producing a humic acid soil amendment material according to claim 1, wherein the mixing ratio of the coal ash and the carbon source is in the range of 1: 5 to 5: 1 (weight ratio).
【請求項3】 混合物をpH値3〜8の範囲で熱化学反
応させる請求項1または2に記載の腐植酸質土壌改良資
材の製造方法。
3. The method for producing a humic acid soil amendment material according to claim 1, wherein the mixture is subjected to a thermochemical reaction at a pH value of 3 to 8.
JP35879599A 1999-12-17 1999-12-17 Production method of humic acid soil improvement material Expired - Fee Related JP3495301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35879599A JP3495301B2 (en) 1999-12-17 1999-12-17 Production method of humic acid soil improvement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35879599A JP3495301B2 (en) 1999-12-17 1999-12-17 Production method of humic acid soil improvement material

Publications (2)

Publication Number Publication Date
JP2001172630A JP2001172630A (en) 2001-06-26
JP3495301B2 true JP3495301B2 (en) 2004-02-09

Family

ID=18461157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35879599A Expired - Fee Related JP3495301B2 (en) 1999-12-17 1999-12-17 Production method of humic acid soil improvement material

Country Status (1)

Country Link
JP (1) JP3495301B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101894285B1 (en) * 2010-11-02 2018-09-12 충북대학교 산학협력단 Green house gas decreasing agent for soil treatment comprising bottom ash as an active ingredient
JP2014001160A (en) * 2012-06-18 2014-01-09 Japan Conservation Engineers Co Ltd Method for producing a humic solution that enhances bioactivity of plants and animals and use method of humic solution
US20140024529A1 (en) * 2012-07-18 2014-01-23 Algae Aqua-Culture Technology, Inc. Biorefinery system, components therefor, methods of use, and products derived therefrom

Also Published As

Publication number Publication date
JP2001172630A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
KR20070086629A (en) Method for treating extinguisher powder wastes, and fertilizer obtained from such a method
JP5700774B2 (en) Method for obtaining inorganic phosphorus compounds from incineration ash of livestock manure
CN104355902A (en) Method for preparing biochar based slow release fertilizers by utilizing sorghum straws
CN104962294A (en) Soil conditioner and preparation method thereof
JP3439701B2 (en) Production method of wood raw material compost
JP3495301B2 (en) Production method of humic acid soil improvement material
CN104447135A (en) Method for preparing biological carbon-based controlled release fertilizer by macadamia nut shells/macadamia nut shells
JP2004168614A (en) Method for manufacturing organic manure
CN111704190A (en) Treatment method for decoloring biomass gasification tar wastewater
EP0970933A2 (en) Slow release matrix bound fertilisers
JP7448127B2 (en) Deodorizing powder containing moisture absorbent and deodorizing method
KR101448799B1 (en) Organic fertilizers using the ashes are burned from excrement and manufacturing
KR101131179B1 (en) Treatment process for livestock excretions using phyllite
CN104355903A (en) Method for preparing biochar based slow release fertilizers by utilizing Chinese torreya shells
JPS62207386A (en) Manufacture of composite snow-melting agent
CN104355907A (en) Method for preparing biochar based slow release fertilizers by utilizing Chinese torreya shells/sorghum straws
JPS593089A (en) Manufacture of organic fertilizer
KR102650584B1 (en) Soil conditioner composition using dry powder of clover
JPS5830273B2 (en) Method for producing fertilizer by solidifying fermentation waste liquid
JPH09111238A (en) Soil modifier and its production
JP2000008037A (en) Production of soil amelioration material of humic acid
CN117700271A (en) Method for preparing organic-inorganic compound fertilizer by mixing organic solid wastes
JP2001161162A (en) Artificial culturing soil
JP2023093034A (en) Compost and manufacturing method of the same
JP3763445B2 (en) Garbage recycling fertilizer

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees