JP2004167655A - Whetstone for rotary ultrasonic machining - Google Patents

Whetstone for rotary ultrasonic machining Download PDF

Info

Publication number
JP2004167655A
JP2004167655A JP2002339174A JP2002339174A JP2004167655A JP 2004167655 A JP2004167655 A JP 2004167655A JP 2002339174 A JP2002339174 A JP 2002339174A JP 2002339174 A JP2002339174 A JP 2002339174A JP 2004167655 A JP2004167655 A JP 2004167655A
Authority
JP
Japan
Prior art keywords
grindstone
abrasive grains
abrasive
processing
rotary ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002339174A
Other languages
Japanese (ja)
Inventor
Yasuhiko Watanabe
泰彦 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002339174A priority Critical patent/JP2004167655A/en
Publication of JP2004167655A publication Critical patent/JP2004167655A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a whetstone for rotary ultrasonic machining capable of conducting the rotary ultrasonic machining with high precision and high efficiency, and also capable of improving the lifetime of a grinding wheel. <P>SOLUTION: An abrasive grain diameter b is 20 to 80 μm, a protrusion length d of an abrasive grain 4 is 1/5 to 1/3 of the abrasive grain diameter b, an abrasive grain 4 in the end face 8 of the whetstone is substantially uniformly distributed, and the ratio of its occupying area is 20 to 40 %. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は、回転式超音波加工用砥石に関する。
【0002】
【従来の技術】近年、難削材セラミックスや高硬度脆性材料の高能率、高精度(微細)加工法として、加工工具に超音波を付加しながら加工する超音波加工が採用されつつある。
この超音波加工の特徴は、カケ、バリ、クラックの発生が極めて少なく、且つ砥粒加工特有の平滑な加工面が得られるとともに、加工による変質層や加工歪みが少ないことにある。
【0003】特に、セラミック製シャワーヘッド等に加工される(例えば、直径0.5mmの)小径穴加工を行う際、図2に示す回転式超音波加工が行われている。
これは、加工工具である砥石12に、1000〜5000rpmの回転数(N)で回転させ、且つ20〜60kHzの超音波(f)を付与し、砥石先端部8を2〜15μmで振幅(Δt)させながら、被加工材20に5〜15mm/minの送り速度で押しつけることにより、被加工材20を微量ずつ繰り返し破砕する加工法である。
【0004】上記回転式超音波加工で用いる砥石は、例えば、図2に示すように、台金6(一般的にSS材やピアノ線)の先端部に、砥石部10として、砥粒4(例えば、ダイヤモンド砥粒)を電着(例えば、Niメッキ)させたものが主に用いられているが、過酷な条件で使用されるため、砥粒4の脱落や破砕により、砥石12の寿命が著しく低下するという問題点があった。
上記問題点を解消するためには、砥粒保持力及び使用する砥粒の強度、砥石の基材である台金の強度が非常に重要であるが、特に、砥粒を台金と結合させる砥粒保持層における砥粒突出量と、加工精度及び砥石の寿命を左右する砥石の端面部8(特に、底面)における砥粒の分布状態の最適化が必要不可欠であった。
【0005】
【発明が解決しようとする課題】本発明は、このような従来の事情に鑑みてなされたものであり、その目的とするところは、難削材セラミックスや高硬度脆性材料の高能率、高精度(微細)加工の際に、砥粒の耐剥離性の向上と、砥石の端面部の砥粒分布を最適化することにより、回転式超音波加工を高精度、高効率に行うことができるとともに、砥石の寿命を向上することができる回転式超音波加工用砥石を提供することにある。
【0006】
【課題を解決するための手段】すなわち、本発明によれば、砥粒径が20〜80μmであるとともに、砥粒の突き出し量が砥粒径の1/5〜1/3であり、且つ砥石の端面部における砥粒がほぼ均一に分布し、その占有面積比率が20〜40%であることを特徴とする回転式超音波加工用砥石が提供される。
【0007】このとき、本発明では、砥石径が0.2〜3mmであり、また、砥粒が人工ダイヤモンドであることが好ましい。
【0008】
【発明の実施の形態】以下、本発明の実施の形態を図面に基づいて更に詳細に説明する。
図1は、本発明の砥石の一例を示すものであり、(a)は模式断面図であり、(b)は砥石の端面部の模式正面図である。
本発明の砥石は、図1(a)(b)に示すように、砥粒径bが20〜80μmであるとともに、砥粒4の突き出し量dが砥粒径bの1/5〜1/3であり、且つ砥石の端面部8における砥粒4がほぼ均一に分布し、その占有面積比率が20〜40%であるものである。
これにより、本発明の砥石は、砥粒の耐剥離性の向上と、砥石の端面部の砥粒分布を最適化することにより、回転式超音波加工を高精度、高効率に行うことができるとともに、砥石の寿命を向上することができるため、特に、Al、Si、SiC、AlN等の難削材セラミックスや高硬度脆性材料の高能率、高精度(微細)加工に好適に用いることができる。
【0009】ここで、本発明の砥石の主な特徴は、図1(a)に示すように、砥粒部10における砥粒4の突き出し量dを砥粒径bの1/5〜1/3の範囲内に最適化することにある。
これは、突き出し量dが砥粒径bの1/5未満である場合、砥粒4と電着層2との結合が強固となる反面、回転式超音波加工を高効率に行うことが困難となるからである。
一方、突き出し量dが砥粒径bの1/3を超過する場合、砥粒4と電着層2との結合強度が不十分であるため、砥粒4の脱落や破砕により、砥石12の寿命が著しく低下してしまう。
【0010】また、本発明の砥石は、図1(b)に示すように、砥石の端面部8における砥粒4をほぼ均一(より具体的には、図4(a)参照)に分布させることにより、回転式超音波加工を高精度に行うことができるとともに、砥石の寿命を向上することができる。
【0011】更に、本発明の砥石は、図1(b)に示すように、砥石の端面部8における砥粒の占有面積率を20〜40%にすることが好ましい。
これは、砥石の端面部8における砥粒の占有面積率が20%未満である場合、回転式超音波加工を高効率に行うことが困難となり、一方、上記占有面積率が40%を超過する場合、砥粒4と電着層2との結合強度が不十分であるため、砥粒4の脱落や破砕により、砥石12の寿命が低下してしまうからである。
【0012】尚、本発明の砥石は、砥石径が0.2〜3mm(より好ましくは、0.3〜0.5mm程度)の時、上記条件で最適化することにより、砥石保持力が高まり、回転式超音波加工を高精度、高効率に行うことができる。
このとき、本発明で用いる砥粒は、人工ダイヤモンドであることが、砥粒強度のばらつきが小さいため好ましい。
また、本発明の砥石は、特に限定されるものではなく、図3に示すように、砥石部11の形状が略円錐台であってもよい。
【0013】
【実施例】本発明を実施例に基づいて、更に詳細に説明するが、本発明はこれらの実施例に限られるものではない。
(実施例,比較例1及び比較例2)
表1に示す条件を有する直径0.5mmの砥石をそれぞれ用いて、ALN製の被加工材に、穴径0.5mmをピッチ3mmで6×50個の小径穴加工を行った。
尚、回転式超音波加工は、図2に示すように、砥石12を、3000rpmの回転数(N)で回転させ、且つ40kHzの超音波(f)を付与し、砥石の端面部8を2〜3μmで振幅(Δt)させながら、被加工材20に8mm/minの送り速度で押しつけることにより、被加工材20を微量ずつ繰り返し破砕するものである。
【0014】上記加工後におけるそれぞれの砥石の加工効率、加工精度、予測される寿命をそれぞれ算出した。その結果を表2に示す。
また、それぞれの砥石(実施例、比較例1及び比較例2)における加工使用前及び加工使用後の形状を示すSEM写真を図4〜6に示す。
【0015】
【表1】

Figure 2004167655
【0016】
【表2】
Figure 2004167655
【0017】
(考察)
表2の結果から、実施例では、表1に示すように、砥粒突き出し量、砥粒先端部における有効砥粒数及び砥粒占有比率を最適化することにより、砥石の加工効率、加工精度、予測される寿命を、比較例1及び比較例2と比べて大幅に向上することができた。
また、実施例は、図4〜6に示すように、従来の砥石(比較例1及び比較例2)と比べて、砥粒の突き出し量、砥石の先端部における有効砥粒数及び均一性が、加工使用前、更には加工使用後であっても、良好な状態で維持されていることを確認した。
【0018】
【発明の効果】以上説明した通り、本発明の砥石は、難削材セラミックスや高硬度脆性材料の高能率、高精度(微細)加工の際に、砥粒の耐剥離性の向上と、砥石の端面部の砥粒分布を最適化することにより、回転式超音波加工を高精度、高効率に行うことができるとともに、砥石の寿命を向上することができる。
【図面の簡単な説明】
【図1】本発明の砥石の一例を示すものであり、(a)は砥石部の模式断面図であり、(b)は砥石の端面部の模式正面図であり、(c)は本発明の砥石の模式全体図である。
【図2】回転式超音波加工の一例を示す説明図である。
【図3】本発明の砥石の他の例を示す模式全体図である。
【図4】実施例の砥石の先端部における形状を示すSEM写真であり、(a)は加工使用前、(b)は加工使用後である。
【図5】比較例1の砥石の先端部における形状を示すSEM写真であり、(a)は加工使用前、(b)は加工使用後である。
【図6】比較例2の砥石の先端部における形状を示すSEM写真であり、(a)は加工使用前、(b)は加工使用後である。
【符号の説明】
2…電着層、4…砥粒、6…台金、8…砥石の端面部、10,11…砥石部、12…回転式超音波加工用砥石、20…被加工材。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary grinding wheel for ultrasonic machining.
[0002]
2. Description of the Related Art In recent years, as a highly efficient and high-precision (fine) processing method for hard-to-cut materials and high-hardness brittle materials, ultrasonic processing for processing while applying ultrasonic waves to a processing tool has been adopted.
The features of the ultrasonic processing are that generation of chips, burrs, and cracks is extremely small, a smooth processing surface unique to abrasive processing is obtained, and an altered layer and processing distortion due to the processing are small.
In particular, when a small-diameter hole (for example, having a diameter of 0.5 mm) is formed in a ceramic shower head or the like, rotary ultrasonic processing shown in FIG. 2 is performed.
This means that the grindstone 12 which is a processing tool is rotated at a rotation speed (N) of 1000 to 5000 rpm and ultrasonic waves (f) of 20 to 60 kHz are applied to the grindstone 12 so that the tip 8 of the grindstone has an amplitude (Δt) of 2 to 15 μm. ), While pressing the workpiece 20 at a feed speed of 5 to 15 mm / min, thereby repeatedly crushing the workpiece 20 in small amounts.
[0006] As shown in FIG. 2, for example, as shown in FIG. 2, the grindstone used in the above-mentioned rotary ultrasonic machining is an abrasive grain 4 (as a grindstone part 10) at the tip of a base metal 6 (generally an SS material or a piano wire). Electrodeposited (eg, Ni-plated) diamond abrasive grains are mainly used. However, since the abrasive grains 4 are used under severe conditions, the life of the grindstone 12 is reduced due to dropping or crushing of the abrasive grains 4. There is a problem that it is significantly reduced.
In order to solve the above problems, the abrasive grain holding power and the strength of the abrasive grains to be used, the strength of the base metal that is the base material of the grindstone are very important, but particularly, the abrasive grains are combined with the base metal. It has been essential to optimize the distribution of the abrasive grains at the end face 8 (particularly, the bottom surface) of the abrasive stone, which affects the amount of abrasive grains projected in the abrasive grain holding layer, the processing accuracy, and the life of the abrasive stone.
[0005]
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional circumstances, and has as its object to provide a high-efficiency, high-precision ceramic material which is difficult to cut and a high hardness brittle material. In (fine) processing, rotary ultrasonic processing can be performed with high accuracy and high efficiency by improving the peeling resistance of abrasive grains and optimizing the abrasive grain distribution on the end face of the grinding stone. Another object of the present invention is to provide a rotary ultrasonic machining grindstone capable of improving the life of the grindstone.
[0006]
That is, according to the present invention, the abrasive grains have a grain size of 20 to 80 μm, the protrusion amount of the abrasive grains is 1/5 to 1/3 of the grain size, and The abrasive grain for the rotary ultrasonic machining is provided, wherein the abrasive grains at the end face portion are substantially uniformly distributed, and the occupied area ratio is 20 to 40%.
At this time, in the present invention, it is preferable that the diameter of the grindstone is 0.2 to 3 mm and the abrasive grains are artificial diamond.
[0008]
Embodiments of the present invention will be described below in more detail with reference to the drawings.
FIG. 1 shows an example of a grindstone of the present invention, in which (a) is a schematic cross-sectional view and (b) is a schematic front view of an end face of the grindstone.
As shown in FIGS. 1 (a) and 1 (b), the grindstone of the present invention has an abrasive grain size b of 20 to 80 μm, and the protrusion amount d of the abrasive grains 4 is 1/5 to 1/1 / the abrasive grain size b. 3, and the abrasive grains 4 in the end face 8 of the grindstone are almost uniformly distributed, and the occupied area ratio is 20 to 40%.
Thereby, the grindstone of the present invention can perform rotary ultrasonic machining with high precision and high efficiency by improving the peeling resistance of the abrasive grains and optimizing the abrasive grain distribution on the end face of the grindstone. In addition, since the life of the grindstone can be improved, it is particularly suitable for high-efficiency, high-precision (fine) processing of hard-to-cut ceramics such as Al 2 O 3 , Si 3 N 4 , SiC, and AlN, and high hardness brittle materials. It can be suitably used.
Here, the main characteristic of the grindstone of the present invention is that, as shown in FIG. 3 is to be optimized.
This is because when the protrusion amount d is less than 1/5 of the abrasive particle size b, the bond between the abrasive particles 4 and the electrodeposited layer 2 is strong, but it is difficult to perform rotary ultrasonic processing with high efficiency. This is because
On the other hand, if the protrusion amount d exceeds 1/3 of the abrasive grain size b, the bonding strength between the abrasive grains 4 and the electrodeposited layer 2 is insufficient, and the abrasive grains 4 fall off or crush, causing The service life is significantly reduced.
Further, in the grinding stone of the present invention, as shown in FIG. 1 (b), the abrasive grains 4 on the end face 8 of the grinding stone are distributed almost uniformly (more specifically, see FIG. 4 (a)). This makes it possible to perform the rotary ultrasonic machining with high accuracy and to improve the life of the grindstone.
Further, in the grindstone of the present invention, as shown in FIG. 1 (b), it is preferable that the occupied area ratio of the abrasive grains in the end face 8 of the grindstone is 20 to 40%.
If the occupied area ratio of the abrasive grains in the end face portion 8 of the grindstone is less than 20%, it becomes difficult to perform the rotary ultrasonic machining with high efficiency, while the occupied area ratio exceeds 40%. In this case, the bonding strength between the abrasive grains 4 and the electrodeposition layer 2 is insufficient, and the life of the grindstone 12 is reduced due to dropping or crushing of the abrasive grains 4.
When the grindstone of the present invention has a grindstone diameter of 0.2 to 3 mm (more preferably, about 0.3 to 0.5 mm), the whetstone holding force is increased by optimizing under the above conditions. In addition, rotary ultrasonic machining can be performed with high accuracy and high efficiency.
At this time, it is preferable that the abrasive used in the present invention is an artificial diamond because the variation in abrasive strength is small.
Further, the grindstone of the present invention is not particularly limited, and the shape of the grindstone portion 11 may be a substantially truncated cone as shown in FIG.
[0013]
EXAMPLES The present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
(Example, Comparative Example 1 and Comparative Example 2)
Using a grindstone having a diameter of 0.5 mm having the conditions shown in Table 1, a workpiece having a diameter of 0.5 mm was machined into 6 × 50 small-diameter holes at a pitch of 3 mm with a hole diameter of 0.5 mm.
In the rotary ultrasonic machining, as shown in FIG. 2, the grindstone 12 is rotated at a rotation speed (N) of 3000 rpm, and ultrasonic waves (f) of 40 kHz are applied to the grindstone 12 so that the end face 8 of the grindstone 2 By pressing the workpiece 20 at a feed rate of 8 mm / min while the amplitude (Δt) is up to 3 μm, the workpiece 20 is repeatedly crushed little by little.
The processing efficiency, processing accuracy, and expected life of each grinding wheel after the above processing were calculated. Table 2 shows the results.
FIGS. 4 to 6 show SEM photographs showing the shape of each grindstone (Example, Comparative Example 1 and Comparative Example 2) before and after processing.
[0015]
[Table 1]
Figure 2004167655
[0016]
[Table 2]
Figure 2004167655
[0017]
(Discussion)
From the results in Table 2, in the example, as shown in Table 1, by optimizing the abrasive protrusion amount, the effective number of abrasive grains at the abrasive grain tip and the abrasive occupancy ratio, the processing efficiency and processing accuracy of the grinding stone The expected life was significantly improved as compared with Comparative Examples 1 and 2.
In addition, as shown in FIGS. 4 to 6, the working example has a greater amount of abrasive grains protruding, an effective number of abrasive grains and uniformity at the tip of the grindstone as compared with the conventional grindstones (Comparative Example 1 and Comparative Example 2). It was confirmed that the sample was maintained in a good condition before and after processing.
[0018]
As described above, the grindstone of the present invention improves the peeling resistance of abrasive grains and improves the grindstone at the time of high-efficiency, high-precision (fine) machining of hard-to-cut materials and hard brittle materials. By optimizing the distribution of the abrasive grains at the end face, it is possible to perform rotary ultrasonic machining with high accuracy and high efficiency, and to improve the life of the grindstone.
[Brief description of the drawings]
FIG. 1 shows an example of a grindstone of the present invention, in which (a) is a schematic sectional view of a grindstone portion, (b) is a schematic front view of an end face portion of the grindstone, and (c) is a present invention. 1 is a schematic overall view of a whetstone of FIG.
FIG. 2 is an explanatory view showing an example of rotary ultrasonic machining.
FIG. 3 is a schematic overall view showing another example of the grindstone of the present invention.
FIGS. 4A and 4B are SEM photographs showing the shape of the tip of the grindstone of the example, wherein FIG. 4A shows a state before processing and FIG. 4B shows a state after processing.
FIGS. 5A and 5B are SEM photographs showing the shape of the tip of the grindstone of Comparative Example 1, in which FIG. 5A shows a state before processing and FIG. 5B shows a state after processing.
FIGS. 6A and 6B are SEM photographs showing the shape of the tip of the grindstone of Comparative Example 2, in which FIG. 6A shows a state before processing and FIG. 6B shows a state after processing.
[Explanation of symbols]
2 ... electrodeposited layer, 4 ... abrasive grain, 6 ... base metal, 8 ... end face of grindstone, 10, 11 ... grindstone part, 12 ... grindstone for rotary ultrasonic machining, 20 ... workpiece.

Claims (3)

砥粒径が20〜80μmであるとともに、砥粒の突き出し量が砥粒径の1/5〜1/3であり、且つ砥石の端面部における砥粒がほぼ均一に分布し、その占有面積比率が20〜40%であることを特徴とする回転式超音波加工用砥石。The abrasive grain diameter is 20 to 80 μm, the protrusion amount of the abrasive grains is 1/5 to 1/3 of the abrasive grain diameter, and the abrasive grains at the end face of the grinding stone are almost uniformly distributed, and the occupied area ratio Is between 20 and 40%. 砥石径が、0.2〜3mmである請求項1に記載の回転式超音波加工用砥石。The grindstone for rotary ultrasonic machining according to claim 1, wherein the grindstone has a diameter of 0.2 to 3 mm. 砥粒が、人工ダイヤモンドである請求項1又は2に記載の回転式超音波加工用砥石。The grindstone for rotary ultrasonic machining according to claim 1 or 2, wherein the abrasive grains are artificial diamonds.
JP2002339174A 2002-11-22 2002-11-22 Whetstone for rotary ultrasonic machining Pending JP2004167655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339174A JP2004167655A (en) 2002-11-22 2002-11-22 Whetstone for rotary ultrasonic machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339174A JP2004167655A (en) 2002-11-22 2002-11-22 Whetstone for rotary ultrasonic machining

Publications (1)

Publication Number Publication Date
JP2004167655A true JP2004167655A (en) 2004-06-17

Family

ID=32702192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339174A Pending JP2004167655A (en) 2002-11-22 2002-11-22 Whetstone for rotary ultrasonic machining

Country Status (1)

Country Link
JP (1) JP2004167655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108478A (en) * 2012-11-30 2014-06-12 Noritake Co Ltd End surface polishing tool for sheet glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108478A (en) * 2012-11-30 2014-06-12 Noritake Co Ltd End surface polishing tool for sheet glass

Similar Documents

Publication Publication Date Title
JP6282613B2 (en) Dicing blade
TWI356449B (en) Cmp pad conditioners and associated methods
JP5888827B2 (en) Dicing apparatus and dicing method
JP6039084B2 (en) Dicing apparatus and dicing method
CA2673523A1 (en) Method of grinding a sapphire substrate
JP2004319951A (en) EDGE POLISHED NITRIDE SEMICONDUCTOR SUBSTRATE, EDGE POLISHED GaN FREE-STANDING SUBSTRATE, AND EDGE PROCESSING METHOD OF NITRIDE SEMICONDUCTOR SUBSTRATE
CN112677061B (en) Brazing diamond grinding disc for steel grinding and preparation method thereof
JP2016196085A (en) Working grindstone
JP2008161992A (en) Cutting method for processed member and manufacturing method for wafer
JP2004167655A (en) Whetstone for rotary ultrasonic machining
JP2001105330A (en) Multiple grinding wheel and single grinding wheel disk for use in the same
JP2018103356A (en) Blade processing device and blade processing method
JP2005177979A (en) Dressing tool
JP3043782B2 (en) Tools for drilling hard and brittle materials
KR20210121024A (en) Metal bond grindstone for hard and brittle materials
JP3086670B2 (en) Super abrasive whetstone
JP2001087943A (en) Composite rotary cutter
JP4126377B2 (en) Diamond processing method
JPS6236599Y2 (en)
JP3998648B2 (en) Cup type rotating grindstone
JP2002127021A (en) Rotary disc cutter
JPH058218A (en) Manufacture of diamond core bit
JP2002187071A (en) Electrotype thin-blade grindstone
JPH11216675A (en) Highly-accurate, super-abrasive grain wheel
JPH01206004A (en) Drill for hard and brittle material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Effective date: 20070724

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A02