JP2004167414A - Catalyst for synthetic gas generation and method for producing the same - Google Patents

Catalyst for synthetic gas generation and method for producing the same Download PDF

Info

Publication number
JP2004167414A
JP2004167414A JP2002337741A JP2002337741A JP2004167414A JP 2004167414 A JP2004167414 A JP 2004167414A JP 2002337741 A JP2002337741 A JP 2002337741A JP 2002337741 A JP2002337741 A JP 2002337741A JP 2004167414 A JP2004167414 A JP 2004167414A
Authority
JP
Japan
Prior art keywords
catalyst
honeycomb
active metal
synthesis gas
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002337741A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kamata
博之 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002337741A priority Critical patent/JP2004167414A/en
Publication of JP2004167414A publication Critical patent/JP2004167414A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a catalyst for synthetic gas generation which is highly active and has a long serviceable life, and also provide a production method for the catalyst for the synthetic gas generation which enables the yield of the catalyst at a lower cost with a good productivity. <P>SOLUTION: The catalyst for the synthetic gas generation reforms a natural gas mainly composed of methane and enables the generation of the synthetic gas composed of hydrogen and carbon monooxide and then carries an active metal 12 on a surface part of a wall or within the wall of the base material as a honeycomb type base material 11 to be a sintered body of material powder. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、合成ガス生成用触媒及びその製造方法に係り、特に、メタンを主成分とする天然ガスを改質し、水素と一酸化炭素からなる合成ガスを生成するのに用いる触媒及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、地球温暖化防止、環境保全、豊富な埋蔵量などの観点から、天然ガスの利用を増やそうという動きがある。天然ガスは、これまで、家庭用や発電用燃料としての利用が主であり、それ以外としては、化学原料としてアンモニアやメタノールの合成、又は石油製品の水素化精製などに利用されている程度であった。
天然ガスは、今後、化学原料用、燃料電池用水素の原料、又は水素インフラが整備されるであろう将来においては水素ステーション用水素の原料など、ますます、その重要性が高まるものと考えられる。このため、天然ガスを、高効率に、かつ、安価に水素を含む改質ガスに改質できるプロセスの開発が望まれている。
【0003】
メタンを主成分とする天然ガスから、触媒を用いて合成ガス(HとCOの混合ガス)を製造するプロセスとしては、主に以下に示す2つが挙げられる。
▲1▼水蒸気改質法(CH+HO→CO+3H ΔH=206kJ/mol)、
▲2▼接触部分酸化法(CH+1/2O→CO+2H ΔH=−36kJ/mol)、
【0004】
【発明が解決しようとする課題】
ところで、▲1▼の水蒸気改質法においては、高活性の触媒として安価なペレット型Ni系触媒を用いており、既に実用化されているが、▲1▼の水蒸気改質法は吸熱反応であるため、外部から大量の熱を供給する必要があり、H,COの生成に多量のエネルギーを必要とするという問題があった。また、熱供給の伝熱が律速となるため、装置の大型化が困難であった。さらに、反応速度が遅いため、製造する合成ガス量に比較して大型の装置(触媒)が必要であった。これらにより、合成ガスが高価なものとなっていた。
【0005】
これに対して、▲2▼の接触部分酸化法は発熱反応であるため、H,COの生成の際、外部から大量の熱供給を必要としない。また、反応速度は、▲1▼と比較して数桁以上も速いため、用いる触媒によっては、装置の大幅な小型化を図ることが可能であるとされている。
【0006】
▲2▼の接触部分酸化法においては、高活性の触媒として貴金属(ルテニウム(Ru)、ロジウム(Rh)など)系触媒が用いられる。触媒の形状としては、ペレット型、流動層型、ハニカム型などが挙げられるが、中でもハニカム型触媒は、圧力損失の低減が可能であることから、小型の装置においては、最も効果的な触媒形状の一つである。
【0007】
ハニカム型触媒は、図5に示すように、一般にコージエライト(2MgO・2Al・5SiO)やステンレス鋼からなるハニカム型基材51の表面に、アルミナ粉末、酸化セリウム等からなる多孔質層(ウォッシュコート層)52を形成し、図7に示すように、ウォッシュコート層52の表面部に、活性金属(Ru、Rh等)71を担持して形成される(コーティング法)。しかしながら、このコーティング法では、担持された活性金属71の濃度は、図6に示すように、基材壁の表面部のみで高く、合成反応中、活性金属71の十分な分散度が得られないという問題があった。その結果、十分な活性及び寿命が得られなかった。
【0008】
以上の事情を考慮して創案された本発明の一の目的は、高活性で、長寿命な合成ガス生成用触媒を提供することにある。
【0009】
一方、本発明の他の目的は、高活性で、長寿命な合成ガス生成用触媒を、良好な生産性で、かつ、安価に製造する方法を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成すべく本発明に係る合成ガス生成用触媒は、メタンを主成分とする天然ガスを改質し、水素と一酸化炭素からなる合成ガスを生成するための触媒において、原料粉末の焼成体であるハニカム型基材の基材壁の表面部及び基材壁内部に、活性金属を担持させたものである。また、メタンを主成分とする天然ガスを改質し、水素と一酸化炭素からなる合成ガスを生成するための触媒において、原料粉末と有機バインダとの混練物を用いてハニカム状に押出成形し、その押出成形体を焼成してなるハニカム型基材の基材壁の表面部及び基材壁内部に、活性金属を担持させたものである。
【0011】
具体的には、請求項3に示すように、上記ハニカム型基材は多孔質状を呈しており、その内部に、上記原料粉末同士間のメソ細孔と、焼成に伴う上記有機バインダの脱ガスによるマクロ細孔とを有するものである。
【0012】
また、請求項4に示すように、上記活性金属は、上記マクロ細孔に臨んだ原料粉末及びそれらの近傍の原料粉末の表面に担持させたものである。
【0013】
また、請求項5に示すように、上記ハニカム型基材の嵩体積1リットルあたりの活性金属担持量が0.1〜4g/lである。
【0014】
また、請求項6に示すように、上記ハニカム型基材の主成分が、アルミナ、酸化セリウム、又は酸化ジルコニウムの単体、或いはそれらの内の2種以上を組み合わせた複合酸化物である。
【0015】
これによって、活性金属の担持表面積を大きくすることができ、高活性で、長寿命な合成ガス生成用触媒を得ることができる。
【0016】
一方、本発明に係る合成ガス生成用触媒の製造方法は、メタンを主成分とする天然ガスを改質し、水素と一酸化炭素からなる合成ガスを生成するための触媒の製造方法において、アルミナ粉末を主成分とする原料粉末に有機バインダを混合すると共に混練を行い、その混練物を用いてハニカム状に押出成形した後、その押出成形体に焼成処理を施してハニカム型基材とし、そのハニカム型基材を、活性金属イオンを含む水溶液中に浸漬した後、再び焼成処理を施し、ハニカム型基材の基材壁の表面部及び基材壁内部に活性金属を担持させるものである。
【0017】
具体的には、請求項8に示すように、アルミナ粉末と硝酸セリウムとの混合物である上記原料粉末に、メチルセルロース系等の有機バインダを混合する。
【0018】
また、請求項9に示すように、アルミナ粉末、硝酸セリウム、又は硝酸ジルコニウムの単体、或いはそれらの内の2種以上を組み合わせてなる混合物からなる上記原料粉末に、メチルセルロース系等の有機バインダを混合する。
【0019】
これによって、高活性で、長寿命な合成ガス生成用触媒を、良好な生産性で、かつ、安価に得ることができる。
【0020】
【発明の実施の形態】
以下、本発明の好適一実施の形態を添付図面に基いて説明する。
【0021】
本発明に係る合成ガス生成用触媒の部分横断面図を図1に、図1の要部Aの拡大図を図2に、図2の要部Bの拡大図を図3に示す。
【0022】
図1に示すように、本発明に係る合成ガス生成用触媒は、原料粉末の焼成体であるハニカム型基材11に、活性金属12を担持させたものである。ここで、図2に示すように、活性金属12は、ハニカム型基材11の基材壁の表面はもちろん、基材壁内部の、厚さ方向(図2中では左右方向)全体に亘って担持される。
活性金属12の担持濃度は、基材壁の中央部よりも基材壁の表面の方が若干高くなっている。
【0023】
より具体的には、ハニカム型基材11は、原料粉末と有機バインダとの混練物を用いてハニカム状に押出成形し、その押出成形体を焼成してなる多孔質状のものであり、図3に示すように、その内部に、原料粉末31同士間のメソ細孔32と、焼成に伴う有機バインダ(図示せず)の脱ガスによるマクロ細孔33とを有するものである。活性金属12は、ハニカム型基材11の基材壁の表面、マクロ細孔33に臨んだ原料粉末31及びそれらの近傍の原料粉末31の表面に担持される。言い換えると、活性金属12は、ハニカム型基材11の基材壁の表面、及び原料粉末群35における外気との接触部(原料粉末群35の外表部及びその近傍)に位置する原料粉末31の表面に担持される。
【0024】
原料粉末31は、アルミナ粉末、硝酸セリウム、又は硝酸ジルコニウムの単体、或いはそれらの内の2種以上を組み合わせてなる混合物からなるものであり、ハニカム型基材11の主成分は、アルミナ、酸化セリウム(セリア)、又は酸化ジルコニウム(ジルコニア)の単体、或いはそれらの内の2種以上を組み合わせた複合酸化物である。
【0025】
ハニカム型基材11の嵩体積1リットルあたりの活性金属12の担持量は0.1〜4g/l、好ましくは0.5〜2g/l、特に好ましくは1g/l前後である。ここで、活性金属12としては特に限定するものではなく、ハニカム型触媒に慣用的に用いられていた金属であれば全て適用可能であり、例えば、Ru、Rh等が挙げられる。特に好ましいのはRuである。
【0026】
ハニカム型基材11における基材壁の壁厚は、基材11のサイズとセル数(cpsi〔cell per square inch〕)によって決定されるものであり、触媒としての強度を保持できる厚さを有していれば、特に限定するものではない。しかし、活性金属12を基材壁内部にまで担持させることから、できれば薄い方が好ましく、例えば、0.1〜1.0mm、好ましくは0.1〜0.4mm、特に好ましくは0.25mm前後である。
【0027】
次に、本発明に係る合成ガス生成用触媒の作用を、添付図面に基いて説明する。
【0028】
接触部分酸化法は発熱反応であるため、合成反応中、触媒温度が上昇する。この時、図5〜図7に示した従来の合成ガス生成用触媒においては、ハニカム型基材51の表面に形成したウォッシュコート層52の表面部のみに活性金属71が担持されており、ウォッシュコート層52の表面積が、そのまま担体の表面積となっている。すなわち、従来の触媒は、担体(ウォッシュコート層52)の表面積が小さかった。このため、活性金属71の分散度を高く保つことが困難であり、合成反応中、活性金属71及び担体のシンタリングが生じる。その結果、活性金属71の凝集が生じてしまい、活性の低下及び触媒寿命の低下を引き起こす要因となっていた。また、合成反応は担体の表面部のみで生じるため、担体と活性金属71との界面で局所的な発熱が生じると、最悪の場合、活性金属71やウォッシュコート層52自体が剥落するおそれがあった。
【0029】
これに対して、本発明に係る合成ガス生成用触媒は、ハニカム型基材11の内部にメソ細孔32とマクロ細孔33とを有しており、基材11の基材壁の表面部及び基材壁内部における外気との接触部が担体となっており、担体の表面積が大きい(例えば、約100〜200m/g)ということに特長がある。本発明に係る触媒においては、コーティング法による従来の触媒と異なり、活性金属12が、ハニカム型基材11の全体(表面部及び基材壁内部)に分散して担持されており、活性金属12が担持された表面積が大きい。
【0030】
従って、本発明に係る触媒は、活性金属12の担持量(絶対量)が、コーティング法による従来の触媒と同じであっても、活性金属12の分散度は高くすることができる。よって、合成反応中、活性金属12のシンタリングによる凝集を抑制することができる。この結果、高温下での反応においても高い活性を得ることができると共に、触媒寿命の著しい向上を図ることができる。
【0031】
また、本発明に係る触媒は、活性金属12の担持された表面積が大きいことから、合成反応中、ハニカム型基材11と活性金属12との界面で局所的な発熱が生じることは殆どない。よって、合成反応中、活性金属12及びハニカム型基材11におけるシンタリングの発生自体を抑制することができる。
【0032】
また、本発明に係る触媒は、活性金属12の担持量を従来の触媒と同じにした場合、従来の触媒よりも高活性な触媒となるため、活性度を同程度に調整する場合、従来の触媒よりも活性金属12の担持量が少なくて済む(又は従来の触媒よりも触媒自体のサイズが小さくて済む)。このため、高価な活性金属の原料コストを低減することができ、延いては、合成ガス生成用触媒の製造コストの低減を図ることができる。
【0033】
また、本発明に係る触媒を、合成ガス製造プラントに適用することで、製造する合成ガス量に対し、従来の触媒と比較して触媒サイズを大幅に小さくすることが可能となる。また、本発明に係る触媒を、合成ガス製造プラントに適用することで、合成ガスを高効率で製造することができる。これらより、コンパクトな装置構成でありながら、合成ガスを大量に、かつ、高効率に製造可能なプラントを得ることができる。延いては、合成ガスの生産コストの低減を図ることができる。
【0034】
次に、本発明に係る合成ガス生成用触媒の製造方法を説明する。
【0035】
アルミナ粉末と硝酸セリウムとの混合物である原料粉末に、有機バインダ、例えばメチルセルロース系等の有機バインダを混合し、よく混練する。この混練の際、適宜、分散剤や可塑剤を添加してもよい。有機バインダとしては、メチルセルロース系の他に、カルボキシルセルロース、PVA(ポリビニルアルコール)、でんぷん等が使用可能である。原料粉末としては、上記した組み合わせの他に、アルミナ粉末、硝酸セリウム、又は硝酸ジルコニウムの単体、或いはそれらの内の2種以上を組み合わせてなる混合物からなるものであってよい。
【0036】
次に、その混練物を用いてハニカム状の成形物を押出成形する。得られた押出成形体を乾燥させた後、焼成処理を施し、アルミナと酸化セリウムの混合酸化物からなるハニカム型基材を形成する。
【0037】
次に、得られたハニカム型基材を活性金属イオンを含む水溶液、例えば、塩化ルテニウム・n水和物(RuCl・nHO)水溶液中に浸漬した後、水分を乾燥させる。
【0038】
その後、この乾燥させたハニカム型基材に焼成処理を施し、ハニカム型基材の基材壁表面及び内部に活性金属を担持させ、本発明に係る合成ガス生成用触媒が得られる。ここで、焼成処理後のハニカム型基材を、体積%で5%の水素を含む窒素ガス中で200〜600℃、例えば500℃まで昇温して、還元処理を施すことが好ましい。
【0039】
前述したコーティング法を用いた従来の製造方法においては、ハニカム型基材の表面に、アルミナ粉末、酸化セリウム等からなるウォッシュコート層(担体)を均一に形成するため、ハニカム型基材をアルミナ粉末や硝酸セリウム等を含んだスラリーに浸漬する工程、およびハニカム基材をスラリー中から取り出して余剰なスラリーを除去する工程を十分に繰り返す必要があった。これに対して、本発明に係る製造方法においては、押出成形体からなるハニカム型基材を用いているため、原理的には均一な、アルミナ、酸化セリウム等からなる担体が得られる。つまり、ハニカム型基材を製造するための作業が容易であると共に、均一なハニカム型基材を用いることで均一なハニカム型触媒を製造することが可能となり、その結果、製造コストの低減および生産性の向上を図ることができる。
【0040】
つまり、本発明に係る製造方法によれば、従来の製造方法と比較して、良好な生産性で、かつ、安価に合成ガス生成用触媒を製造することができる。
【0041】
以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。
【0042】
【実施例】
次に、本発明について、実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。
【0043】
(実施例1)
アルミナ粉末750gと硝酸セリウム・六水和物(Ce(NO・6HO)250gとの混合物である原料粉末に、有機バインダとしてメチルセルロースを混合し、混練器内で十分に攪拌を行った。この混練の際、グリセリン、セラミゾール(日本油脂製)、セロゾール(中京油脂製)を適量添加した。また、イオン交換水約300ccを、混練器を攪拌しながら少しずつ加えた。最終的に4hrの混練を行い、押出成形用の混練物を作製する。
【0044】
次に、この混練物を用い、セル数が400cpsi、壁厚が約0.25mmのハニカム状の成形物を押出成形する。得られた押出成形体を、乾燥機中で80℃まで徐々に昇温させながら徐々に乾燥させた後、大気中で800℃×3hrの焼成処理を施し、アルミナと酸化セリウムの混合酸化物からなるハニカム型基材を形成する。このハニカム型基材を、縦10mm×横10mm×長さ20mmに切り出し、ハニカム試験片を形成する。
【0045】
次に、得られた試験片を、塩化ルテニウム・n水和物(RuCl・nHO)の水溶液(塩化ルテニウム濃度:0.05g/cc)中に浸漬した後、取り出して水分を乾燥させる。この作業を、Ru担持量が約1g/lとなるまで繰り返し行う。
【0046】
次に、このRu担持ハニカム型基材に、大気中で500℃×1hrの焼成処理を施した。焼成処理後のハニカム型基材を、体積%で5%の水素を含む窒素ガス中で500℃まで昇温して還元処理を施し、本発明に係る合成ガス生成用触媒であるRu担持ハニカム型触媒を作製する。
【0047】
(従来例1)
縦10mm×横10mm×長さ20mmで、コージエライトからなるハニカム試験片を形成する。
【0048】
次に、超音波洗浄器に配置した容器内に、アルミナ粉末5g、水酸化アルミニウム(Al(OH))10g、イオン交換水30cc、及び硝酸0.5ccの混合液であるスラリーを入れ、スラリー中にハニカム試験片を浸漬し、よく振とうする。その後、スラリーからハニカム試験片を取り出し、余分なスラリーを高圧空気で吹き飛ばす。その後、ハニカム試験片を120℃の乾燥機中で十分に乾燥させる。この作業を、アルミナ担持量が約20g/lとなるまで繰り返し行う。最後に、大気中で800℃×3hrの焼成処理を施し、アルミナ担持ハニカム型基材を形成する。
【0049】
次に、アルミナ担持ハニカム型基材を、硝酸セリウム・六水和物(Ce(NO・6HO)約15g及びイオン交換水200ccの混合液である硝酸セリウム水溶液中に浸漬した後、取り出して水分を乾燥させる。この作業を、酸化セリウム(CeO)担持量が約5g/lとなるまで繰り返し行う。最後に、大気中で700℃×3hrの焼成処理を施し、酸化セリウム/アルミナ担持ハニカム型基材を形成する。
【0050】
次に、酸化セリウム/アルミナ担持ハニカム型基材を、塩化ルテニウム・n水和物(RuCl・nHO)の水溶液(塩化ルテニウム濃度:0.05g/cc)中に浸漬した後、取り出して水分を乾燥させる。この作業を、Ru担持量が約1g/lとなるまで繰り返し行う。
【0051】
次に、Ru/酸化セリウム/アルミナ担持ハニカム型基材に、大気中で500℃×1hrの焼成処理を施した。焼成処理後のハニカム試験片を、体積%で5%の水素を含む窒素ガス中で500℃まで昇温して還元処理を施し、Ru担持ハニカム型触媒を作製する。
【0052】
(従来例2)
硝酸セリウム・六水和物(Ce(NO・6HO)の代わりに硝酸ジルコニウム(ZrO(NO・2HO)を用い、最終焼成後のハニカム型基材として酸化ジルコニウム/アルミナ担持ハニカム型基材を形成する以外は従来例1と同様にして、Ru担持ハニカム型触媒を作製した。
【0053】
実施例1及び従来例1,2の各ハニカム型触媒について、触媒活性の評価を行った。評価の方法は、石英ガラス製の反応管内に各ハニカム型触媒を配置した後、反応ガスがハニカム型触媒の周囲を流れないように、反応管とハニカム型触媒との間にガラスウールを充填した。また、反応ガスの組成は、メタン(CH)50%に、酸化剤として空気を50%の割合で混合したものを用いた。反応ガスのGHSVは約20000(1/hr)とし、約100℃から900℃まで触媒の温度を段階的に上昇させ、各反応温度(上流側温度と下流側温度との平均温度)でのCH転化率により触媒活性を評価した。ここで、反応ガスにおけるCHと空気との割合が1:1であることから、CH転化率は40%が最大値となる。
【0054】
実施例1及び従来例1,2の各ハニカム型触媒における反応温度とメタン転化率との関係を図4に示す。
【0055】
図4に示すように、実施例1のハニカム型触媒においては、700℃強でCH転化率が40%に達している。これに対して、従来例1,2のハニカム型触媒においては、CH転化率が40%に達するのは約820〜850℃となっている。このことから、実施例1のハニカム型触媒の場合、従来例1,2のハニカム型触媒と比較して、活性温度が100℃以上も低温となっている。つまり、実施例1のハニカム型触媒は、従来例1,2のハニカム型触媒と比較して、低い反応温度でも高活性が得られるということがわかる。
【0056】
【発明の効果】
以上要するに本発明によれば、次のような優れた効果を発揮する。
(1) 活性金属の担持表面積を大きくすることができ、高活性で、長寿命な合成ガス生成用触媒を得ることができる。
(2) (1)の合成ガス生成用触媒を、良好な生産性で、かつ、安価に得ることができる。
【図面の簡単な説明】
【図1】本発明に係る合成ガス生成用触媒の部分横断面図である。
【図2】図1の要部Aの拡大図である。
【図3】図2の要部Bの拡大図である。
【図4】実施例における反応温度とメタン転化率との関係を示す図である。
【図5】従来の合成ガス生成用触媒の部分横断面図である。
【図6】図5の要部Cの拡大図である。
【図7】図6の要部Dの拡大図である。
【符号の説明】
11 ハニカム型基材
12 活性金属
31 原料粉末
32 メソ細孔
33 マクロ細孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a synthesis gas generating catalyst and a method for producing the same, and more particularly to a catalyst used for reforming natural gas containing methane as a main component to produce a synthesis gas composed of hydrogen and carbon monoxide, and a method for producing the same. It is about the method.
[0002]
[Prior art]
In recent years, there has been a movement to increase the use of natural gas from the viewpoints of global warming prevention, environmental protection, and abundant reserves. Until now, natural gas has been mainly used as a fuel for home and power generation, and other than that, it has been used for the synthesis of ammonia and methanol as a chemical raw material or for the hydrorefining of petroleum products. there were.
Natural gas is expected to become more and more important in the future, such as chemical feedstock, hydrogen feedstock for fuel cells, and hydrogen feedstock for hydrogen stations in the future where hydrogen infrastructure will be developed. . Therefore, development of a process capable of reforming natural gas into a reformed gas containing hydrogen with high efficiency and at low cost is desired.
[0003]
As a process for producing a synthesis gas (mixed gas of H 2 and CO) from a natural gas containing methane as a main component using a catalyst, there are mainly two processes described below.
(1) Steam reforming method (CH 4 + H 2 O → CO + 3H 2 ΔH = 206 kJ / mol)
{Circle around (2)} catalytic partial oxidation method (CH 4 + / O 2 → CO + 2H 2 ΔH = −36 kJ / mol);
[0004]
[Problems to be solved by the invention]
By the way, in the steam reforming method (1), an inexpensive pellet-type Ni-based catalyst is used as a highly active catalyst and has already been put to practical use, but the steam reforming method (1) is an endothermic reaction. For this reason, a large amount of heat must be supplied from the outside, and there has been a problem that a large amount of energy is required to generate H 2 and CO. Further, since the heat transfer of heat supply is rate-determining, it has been difficult to increase the size of the apparatus. Furthermore, since the reaction rate is low, a large-sized device (catalyst) was required as compared with the amount of synthesis gas to be produced. These have made the synthesis gas expensive.
[0005]
On the other hand, since the contact partial oxidation method of (2) is an exothermic reaction, a large amount of external heat supply is not required when H 2 and CO are generated. Further, since the reaction rate is several orders of magnitude or more faster than (1), it is said that the size of the apparatus can be significantly reduced depending on the catalyst used.
[0006]
In the contact partial oxidation method (2), a noble metal (ruthenium (Ru), rhodium (Rh), etc.) catalyst is used as a highly active catalyst. Examples of the shape of the catalyst include a pellet type, a fluidized bed type, and a honeycomb type. Among them, the honeycomb type catalyst has the most effective catalyst shape in a small device because the pressure loss can be reduced. one of.
[0007]
As shown in FIG. 5, a honeycomb type catalyst generally has a porous layer made of alumina powder, cerium oxide or the like on a surface of a honeycomb type base material 51 made of cordierite (2MgO.2Al 2 O 3 .5SiO 2 ) or stainless steel. (Wash coat layer) 52 is formed, and as shown in FIG. 7, the active metal (Ru, Rh, etc.) 71 is supported on the surface of the wash coat layer 52 (coating method). However, in this coating method, the concentration of the supported active metal 71 is high only at the surface portion of the substrate wall, as shown in FIG. 6, and a sufficient degree of dispersion of the active metal 71 cannot be obtained during the synthesis reaction. There was a problem. As a result, sufficient activity and life were not obtained.
[0008]
An object of the present invention, which has been made in view of the above circumstances, is to provide a highly active and long-lived catalyst for syngas generation.
[0009]
On the other hand, another object of the present invention is to provide a method for producing a highly active, long-lived catalyst for syngas generation with good productivity and at low cost.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a synthesis gas generating catalyst according to the present invention is a catalyst for reforming natural gas containing methane as a main component and generating a synthesis gas composed of hydrogen and carbon monoxide. An active metal is supported on the surface of the base material wall and inside the base material wall of a honeycomb-type base material that is a fired body. In addition, a catalyst for reforming natural gas containing methane as a main component and producing a synthesis gas consisting of hydrogen and carbon monoxide is extruded into a honeycomb shape using a kneaded mixture of raw material powder and an organic binder. An active metal is supported on the surface of the base material wall and the inside of the base material wall of the honeycomb-type base material obtained by firing the extruded body.
[0011]
More specifically, as shown in claim 3, the honeycomb substrate has a porous shape, and contains mesopores between the raw material powders and the organic binder removed by firing. It has macropores by gas.
[0012]
Further, as described in claim 4, the active metal is supported on the surface of the raw material powder facing the macropores and the raw material powder in the vicinity of the raw material powder.
[0013]
Further, as described in claim 5, the amount of active metal carried per liter of bulk volume of the honeycomb substrate is 0.1 to 4 g / l.
[0014]
Further, as described in claim 6, the main component of the honeycomb substrate is a simple substance of alumina, cerium oxide, or zirconium oxide, or a composite oxide obtained by combining two or more of them.
[0015]
As a result, the active metal-supporting surface area can be increased, and a highly active and long-lasting catalyst for syngas generation can be obtained.
[0016]
On the other hand, the method for producing a synthesis gas producing catalyst according to the present invention is a method for producing a synthesis gas comprising hydrogen and carbon monoxide by reforming natural gas containing methane as a main component. After mixing and kneading the organic binder with the raw material powder containing the powder as a main component, and extruding the mixture into a honeycomb shape using the kneaded product, the extruded product is subjected to a calcination treatment to obtain a honeycomb-type base material. After dipping the honeycomb substrate in an aqueous solution containing active metal ions, the honeycomb substrate is again subjected to a baking treatment so that the active metal is supported on the surface of the substrate wall of the honeycomb substrate and inside the substrate wall.
[0017]
Specifically, an organic binder such as a methylcellulose-based binder is mixed with the raw material powder, which is a mixture of alumina powder and cerium nitrate.
[0018]
Further, as set forth in claim 9, an organic binder such as a methylcellulose-based binder is mixed with the raw material powder composed of a simple substance of alumina powder, cerium nitrate, or zirconium nitrate, or a mixture of two or more of them. I do.
[0019]
As a result, a highly active and long-lived catalyst for syngas generation can be obtained with good productivity and at low cost.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
[0021]
FIG. 1 is a partial cross-sectional view of the synthesis gas generating catalyst according to the present invention, FIG. 2 is an enlarged view of a main part A of FIG. 1, and FIG. 3 is an enlarged view of a main part B of FIG.
[0022]
As shown in FIG. 1, the synthesis gas generating catalyst according to the present invention is obtained by supporting an active metal 12 on a honeycomb substrate 11 which is a fired body of raw material powder. Here, as shown in FIG. 2, the active metal 12 covers the entire thickness direction (the left-right direction in FIG. 2) of the inside of the base material wall as well as the surface of the base material wall of the honeycomb-type base material 11. It is carried.
The concentration of the active metal 12 supported is slightly higher on the surface of the substrate wall than on the center of the substrate wall.
[0023]
More specifically, the honeycomb substrate 11 is formed by extruding a kneaded mixture of raw material powder and an organic binder into a honeycomb shape, and firing the extruded body, and is a porous material. As shown in FIG. 3, there are mesopores 32 between the raw material powders 31 and macropores 33 due to degassing of an organic binder (not shown) during firing. The active metal 12 is supported on the surface of the base material wall of the honeycomb base material 11, the raw material powder 31 facing the macropores 33, and the surface of the raw material powder 31 near them. In other words, the active metal 12 is applied to the surface of the base material wall of the honeycomb-shaped base material 11 and to the contact portion of the raw material powder group 35 with the outside air (the outer surface of the raw material powder group 35 and its vicinity). Carried on the surface.
[0024]
The raw material powder 31 is made of a simple substance of alumina powder, cerium nitrate, or zirconium nitrate, or a mixture of two or more of them. The main components of the honeycomb substrate 11 are alumina, cerium oxide. It is a simple oxide of (ceria) or zirconium oxide (zirconia), or a composite oxide obtained by combining two or more of them.
[0025]
The supporting amount of the active metal 12 per liter of bulk volume of the honeycomb substrate 11 is 0.1 to 4 g / l, preferably 0.5 to 2 g / l, and particularly preferably about 1 g / l. Here, the active metal 12 is not particularly limited, and any metal that is conventionally used for a honeycomb catalyst can be applied, and examples thereof include Ru and Rh. Particularly preferred is Ru.
[0026]
The wall thickness of the substrate wall in the honeycomb substrate 11 is determined by the size of the substrate 11 and the number of cells (cpsi [cell per square inch]), and has a thickness that can maintain the strength as a catalyst. If so, there is no particular limitation. However, since the active metal 12 is supported even inside the base material wall, it is preferably thinner if possible, for example, 0.1 to 1.0 mm, preferably 0.1 to 0.4 mm, and particularly preferably about 0.25 mm. It is.
[0027]
Next, the operation of the synthesis gas generating catalyst according to the present invention will be described with reference to the accompanying drawings.
[0028]
Since the catalytic partial oxidation is an exothermic reaction, the catalyst temperature increases during the synthesis reaction. At this time, in the conventional synthesis gas generation catalyst shown in FIGS. 5 to 7, the active metal 71 is supported only on the surface portion of the wash coat layer 52 formed on the surface of the honeycomb substrate 51. The surface area of the coat layer 52 is the surface area of the carrier as it is. That is, in the conventional catalyst, the surface area of the carrier (wash coat layer 52) was small. For this reason, it is difficult to keep the dispersion degree of the active metal 71 high, and sintering of the active metal 71 and the carrier occurs during the synthesis reaction. As a result, agglomeration of the active metal 71 occurs, causing a reduction in activity and a reduction in catalyst life. In addition, since the synthesis reaction occurs only at the surface of the carrier, if local heat is generated at the interface between the carrier and the active metal 71, in the worst case, the active metal 71 and the washcoat layer 52 may be peeled off. Was.
[0029]
On the other hand, the synthesis gas generating catalyst according to the present invention has the mesopores 32 and the macropores 33 inside the honeycomb substrate 11, and the surface portion of the substrate wall of the substrate 11. In addition, the contact portion between the inside of the base material wall and the outside air serves as a carrier, and is characterized in that the surface area of the carrier is large (eg, about 100 to 200 m 2 / g). In the catalyst according to the present invention, unlike the conventional catalyst obtained by the coating method, the active metal 12 is dispersed and supported on the entire honeycomb substrate 11 (surface portion and inside the substrate wall). Is large.
[0030]
Therefore, in the catalyst according to the present invention, the dispersion degree of the active metal 12 can be increased even if the supported amount (absolute amount) of the active metal 12 is the same as that of the conventional catalyst by the coating method. Therefore, during the synthesis reaction, aggregation due to sintering of the active metal 12 can be suppressed. As a result, high activity can be obtained even in a reaction at a high temperature, and the life of the catalyst can be significantly improved.
[0031]
In addition, since the catalyst according to the present invention has a large surface area on which the active metal 12 is supported, local heat generation hardly occurs at the interface between the honeycomb substrate 11 and the active metal 12 during the synthesis reaction. Accordingly, it is possible to suppress the occurrence of sintering itself in the active metal 12 and the honeycomb substrate 11 during the synthesis reaction.
[0032]
In addition, the catalyst according to the present invention has a higher activity than the conventional catalyst when the supported amount of the active metal 12 is the same as the conventional catalyst. A smaller amount of the active metal 12 is required than the catalyst (or the size of the catalyst itself is smaller than the conventional catalyst). For this reason, the raw material cost of expensive active metals can be reduced, and the production cost of the synthesis gas generating catalyst can be reduced.
[0033]
Further, by applying the catalyst according to the present invention to a synthesis gas production plant, it becomes possible to significantly reduce the size of the catalyst as compared with a conventional catalyst with respect to the amount of synthesis gas to be produced. Further, by applying the catalyst according to the present invention to a synthesis gas production plant, synthesis gas can be produced with high efficiency. As a result, it is possible to obtain a plant capable of producing a large amount of synthesis gas with high efficiency while having a compact apparatus configuration. As a result, the production cost of synthesis gas can be reduced.
[0034]
Next, a method for producing a synthesis gas generating catalyst according to the present invention will be described.
[0035]
An organic binder such as a methylcellulose-based organic binder is mixed with a raw material powder that is a mixture of alumina powder and cerium nitrate and kneaded well. At the time of this kneading, a dispersant or a plasticizer may be appropriately added. As the organic binder, besides methylcellulose, carboxycellulose, PVA (polyvinyl alcohol), starch and the like can be used. In addition to the above combination, the raw material powder may be composed of a simple substance of alumina powder, cerium nitrate, or zirconium nitrate, or a mixture of two or more of them.
[0036]
Next, a honeycomb-shaped molded product is extruded using the kneaded product. After the obtained extruded product is dried, it is subjected to a baking treatment to form a honeycomb substrate made of a mixed oxide of alumina and cerium oxide.
[0037]
Next, the obtained honeycomb substrate is immersed in an aqueous solution containing active metal ions, for example, an aqueous ruthenium chloride n-hydrate (RuCl 3 .nH 2 O) solution, and then the moisture is dried.
[0038]
Thereafter, the dried honeycomb substrate is subjected to a baking treatment, and an active metal is supported on the surface and inside of the substrate wall of the honeycomb substrate to obtain the synthesis gas generating catalyst according to the present invention. Here, it is preferable that the honeycomb-type base material after the firing treatment is subjected to a reduction treatment by raising the temperature to 200 to 600 ° C., for example, 500 ° C. in a nitrogen gas containing 5% by volume of hydrogen.
[0039]
In the conventional manufacturing method using the above-described coating method, in order to uniformly form a wash coat layer (carrier) made of alumina powder, cerium oxide, etc. on the surface of the honeycomb-type substrate, the honeycomb-type substrate is made of alumina powder. It is necessary to sufficiently repeat the steps of immersing the honeycomb base material in a slurry containing cerium nitrate and cerium nitrate and the step of removing the honeycomb base material from the slurry and removing the excess slurry. On the other hand, in the production method according to the present invention, since a honeycomb-type base material made of an extruded product is used, a carrier made of alumina, cerium oxide, or the like, which is uniform in principle, can be obtained. That is, the operation for manufacturing the honeycomb-type base material is easy, and the uniform honeycomb-type base material can be used to manufacture a uniform honeycomb-type catalyst. As a result, the manufacturing cost can be reduced and the production cost can be reduced. Performance can be improved.
[0040]
That is, according to the production method according to the present invention, it is possible to produce a synthesis gas generating catalyst with good productivity and at low cost as compared with the conventional production method.
[0041]
As described above, the embodiments of the present invention are not limited to the above-described embodiments, and it is needless to say that various other embodiments are also possible.
[0042]
【Example】
Next, the present invention will be described based on examples, but the present invention is not limited to these examples.
[0043]
(Example 1)
Methyl cellulose as an organic binder is mixed with a raw material powder, which is a mixture of 750 g of alumina powder and 250 g of cerium nitrate hexahydrate (Ce (NO 3 ) 2 .6H 2 O), and sufficiently stirred in a kneader. Was. At the time of kneading, glycerin, ceramisol (manufactured by NOF Corporation), and cellosol (manufactured by Chukyo Oil & Fat) were added in appropriate amounts. About 300 cc of ion-exchanged water was added little by little while stirring the kneader. Finally, kneading is performed for 4 hours to prepare a kneaded product for extrusion molding.
[0044]
Next, using this kneaded material, a honeycomb-shaped molded product having a cell number of 400 cpsi and a wall thickness of about 0.25 mm is extruded. The obtained extruded product was gradually dried in a dryer while gradually raising the temperature to 80 ° C., and then calcined at 800 ° C. for 3 hours in the air to obtain a mixed oxide of alumina and cerium oxide. To form a honeycomb substrate. This honeycomb substrate is cut into a length of 10 mm × a width of 10 mm × a length of 20 mm to form a honeycomb test piece.
[0045]
Next, the obtained test piece is immersed in an aqueous solution (ruthenium chloride concentration: 0.05 g / cc) of ruthenium chloride · n hydrate (RuCl 3 .nH 2 O), taken out and dried. . This operation is repeated until the Ru carrying amount becomes about 1 g / l.
[0046]
Next, the Ru-supporting honeycomb substrate was subjected to a baking treatment at 500 ° C. × 1 hr in the air. The honeycomb-type base material after the calcination treatment is subjected to a reduction treatment by raising the temperature to 500 ° C. in a nitrogen gas containing 5% by volume of hydrogen, and a Ru-supporting honeycomb type catalyst for syngas generation according to the present invention. Make a catalyst.
[0047]
(Conventional example 1)
A 10 mm long by 10 mm wide by 20 mm long honeycomb test piece made of cordierite is formed.
[0048]
Next, a slurry, which is a mixture of 5 g of alumina powder, 10 g of aluminum hydroxide (Al (OH) 3 ), 30 cc of ion-exchanged water, and 0.5 cc of nitric acid, was placed in a container placed in an ultrasonic cleaner. Immerse the honeycomb test piece in it and shake well. Thereafter, the honeycomb test piece is taken out of the slurry, and excess slurry is blown off with high-pressure air. Thereafter, the honeycomb test piece is sufficiently dried in a dryer at 120 ° C. This operation is repeated until the amount of alumina carried becomes about 20 g / l. Finally, a baking treatment is performed at 800 ° C. for 3 hours in the atmosphere to form an alumina-supporting honeycomb-type base material.
[0049]
Next, the alumina-supported honeycomb-type substrate was immersed in a cerium nitrate aqueous solution which was a mixture of about 15 g of cerium nitrate hexahydrate (Ce (NO 3 ) 2 .6H 2 O) and 200 cc of ion-exchanged water. Take out and dry the water. This operation is repeated until the supported amount of cerium oxide (CeO 2 ) becomes about 5 g / l. Finally, a firing treatment at 700 ° C. for 3 hours is performed in the air to form a cerium oxide / alumina-supported honeycomb-type base material.
[0050]
Next, the cerium oxide / alumina-supported honeycomb type substrate was immersed in an aqueous solution of ruthenium chloride n-hydrate (RuCl 3 .nH 2 O) (ruthenium chloride concentration: 0.05 g / cc), and then taken out. Let the water dry. This operation is repeated until the Ru carrying amount becomes about 1 g / l.
[0051]
Next, the Ru / cerium oxide / alumina-supported honeycomb type substrate was subjected to a baking treatment at 500 ° C. × 1 hr in the air. The honeycomb test piece after the calcination treatment is heated to 500 ° C. in a nitrogen gas containing 5% by volume of hydrogen and subjected to a reduction treatment to produce a Ru-supported honeycomb catalyst.
[0052]
(Conventional example 2)
Instead of cerium nitrate hexahydrate (Ce (NO 3 ) 2 .6H 2 O), zirconium nitrate (ZrO (NO 3 ) 2 .2H 2 O) is used, and zirconium oxide is used as a honeycomb-type substrate after final firing. A Ru-supported honeycomb-type catalyst was produced in the same manner as in Conventional Example 1 except that a / alumina-supported honeycomb-type base material was formed.
[0053]
The catalytic activity of each of the honeycomb catalysts of Example 1 and Conventional Examples 1 and 2 was evaluated. The method of evaluation was such that after disposing each honeycomb-type catalyst in a reaction tube made of quartz glass, glass wool was filled between the reaction tube and the honeycomb-type catalyst so that the reaction gas did not flow around the honeycomb-type catalyst. . The composition of the reaction gas was a mixture of 50% methane (CH 4 ) and 50% air as an oxidizing agent. The GHSV of the reaction gas was set to about 20,000 (1 / hr), the temperature of the catalyst was increased stepwise from about 100 ° C. to 900 ° C., and CH at each reaction temperature (average temperature of the upstream side temperature and the downstream side temperature) was changed. The catalytic activity was evaluated by four conversions. Here, since the ratio of CH 4 to air in the reaction gas is 1: 1, the maximum value of the CH 4 conversion is 40%.
[0054]
FIG. 4 shows the relationship between the reaction temperature and the methane conversion in each of the honeycomb catalysts of Example 1 and Conventional Examples 1 and 2.
[0055]
As shown in FIG. 4, in the honeycomb catalyst of Example 1, the CH 4 conversion reached 40% at a little over 700 ° C. On the other hand, in the honeycomb catalysts of Conventional Examples 1 and 2, the CH 4 conversion reaches 40% at about 820 to 850 ° C. From this, in the case of the honeycomb catalyst of Example 1, the activation temperature is lower than that of the honeycomb catalysts of Conventional Examples 1 and 2 by 100 ° C. or more. That is, it can be seen that the honeycomb catalyst of Example 1 can obtain higher activity even at a lower reaction temperature than the honeycomb catalysts of Conventional Examples 1 and 2.
[0056]
【The invention's effect】
In short, according to the present invention, the following excellent effects are exhibited.
(1) The active metal supporting surface area can be increased, and a highly active and long-lasting catalyst for syngas generation can be obtained.
(2) The catalyst for syngas generation of (1) can be obtained with good productivity and at low cost.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a synthesis gas generating catalyst according to the present invention.
FIG. 2 is an enlarged view of a main part A of FIG.
FIG. 3 is an enlarged view of a main part B of FIG. 2;
FIG. 4 is a diagram showing a relationship between a reaction temperature and a methane conversion in Examples.
FIG. 5 is a partial cross-sectional view of a conventional synthesis gas generating catalyst.
FIG. 6 is an enlarged view of a main part C of FIG.
FIG. 7 is an enlarged view of a main part D of FIG. 6;
[Explanation of symbols]
11 Honeycomb type substrate 12 Active metal 31 Raw material powder 32 Mesopore 33 Macropore

Claims (9)

メタンを主成分とする天然ガスを改質し、水素と一酸化炭素からなる合成ガスを生成するための触媒において、原料粉末の焼成体であるハニカム型基材の基材壁の表面部及び基材壁内部に、活性金属を担持させたことを特徴とする合成ガス生成用触媒。A catalyst for reforming natural gas containing methane as a main component to produce a synthesis gas composed of hydrogen and carbon monoxide. A catalyst for syngas generation, wherein an active metal is supported inside a material wall. メタンを主成分とする天然ガスを改質し、水素と一酸化炭素からなる合成ガスを生成するための触媒において、原料粉末と有機バインダとの混練物を用いてハニカム状に押出成形し、その押出成形体を焼成してなるハニカム型基材の基材壁の表面部及び基材壁内部に、活性金属を担持させたことを特徴とする合成ガス生成用触媒。In a catalyst for reforming natural gas containing methane as a main component and generating a synthesis gas composed of hydrogen and carbon monoxide, the mixture is extruded into a honeycomb shape using a kneaded mixture of raw material powder and an organic binder. A catalyst for syngas generation, wherein an active metal is supported on a surface portion of a base material wall of a honeycomb base material obtained by firing an extruded body and inside the base material wall. 上記ハニカム型基材は多孔質状を呈しており、その内部に、上記原料粉末同士間のメソ細孔と、焼成に伴う上記有機バインダの脱ガスによるマクロ細孔とを有する請求項1又は2記載の合成ガス生成用触媒。3. The honeycomb substrate according to claim 1, wherein the honeycomb substrate has a porous shape, and has mesopores between the raw material powders and macropores due to degassing of the organic binder during firing. 4. The catalyst for producing synthesis gas as described in the above. 上記活性金属は、上記マクロ細孔に臨んだ原料粉末及びそれらの近傍の原料粉末の表面に担持させた請求項1から3いずれかに記載の合成ガス生成用触媒。The synthesis gas generating catalyst according to any one of claims 1 to 3, wherein the active metal is supported on the surfaces of the raw material powder facing the macropores and the raw material powder near the raw material powder. 上記ハニカム型基材の嵩体積1リットルあたりの活性金属担持量が、0.1〜4g/lである請求項1から4いずれかに記載の合成ガス生成用触媒。The catalyst for syngas generation according to any one of claims 1 to 4, wherein the amount of the active metal carried per liter of bulk volume of the honeycomb substrate is 0.1 to 4 g / l. 上記ハニカム型基材の主成分が、アルミナ、酸化セリウム、又は酸化ジルコニウムの単体、或いはそれらの内の2種以上を組み合わせた複合酸化物である請求項1から5いずれかに記載の合成ガス生成用触媒。The synthesis gas generation according to any one of claims 1 to 5, wherein a main component of the honeycomb substrate is a simple substance of alumina, cerium oxide, or zirconium oxide, or a composite oxide obtained by combining two or more of them. Catalyst. メタンを主成分とする天然ガスを改質し、水素と一酸化炭素からなる合成ガスを生成するための触媒の製造方法において、原料粉末に有機バインダを混合すると共に混練を行い、その混練物を用いてハニカム状に押出成形した後、その押出成形体に焼成処理を施してハニカム型基材とし、そのハニカム型基材を、活性金属イオンを含む水溶液中に浸漬した後、再び焼成処理を施し、ハニカム型基材の基材壁の表面部及び基材壁内部に活性金属を担持させることを特徴とする合成ガス生成用触媒の製造方法。In a method for producing a catalyst for reforming a natural gas containing methane as a main component and generating a synthesis gas composed of hydrogen and carbon monoxide, an organic binder is mixed and kneaded with a raw material powder, and the kneaded material is subjected to kneading. After extrusion molding into a honeycomb shape by using, the extruded body is subjected to a baking treatment to obtain a honeycomb-type substrate, and the honeycomb-type substrate is immersed in an aqueous solution containing active metal ions, and then subjected to a baking treatment again. A method for producing a synthesis gas generating catalyst, comprising: supporting an active metal on a surface portion of a substrate wall of a honeycomb-type substrate and inside the substrate wall. アルミナ粉末と硝酸セリウムとの混合物である上記原料粉末に、メチルセルロース系等の有機バインダを混合する請求項7記載の合成ガス生成用触媒の製造方法。The method for producing a catalyst for syngas generation according to claim 7, wherein an organic binder such as methylcellulose is mixed with the raw material powder, which is a mixture of alumina powder and cerium nitrate. アルミナ粉末、硝酸セリウム、又は硝酸ジルコニウムの単体、或いはそれらの内の2種以上を組み合わせてなる混合物からなる上記原料粉末に、メチルセルロース系等の有機バインダを混合する請求項7記載の合成ガス生成用触媒の製造方法。8. A synthesis gas generating method according to claim 7, wherein an organic binder such as methylcellulose is mixed with the raw material powder comprising alumina powder, cerium nitrate, or zirconium nitrate alone or a mixture of two or more of them. Method for producing catalyst.
JP2002337741A 2002-11-21 2002-11-21 Catalyst for synthetic gas generation and method for producing the same Pending JP2004167414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337741A JP2004167414A (en) 2002-11-21 2002-11-21 Catalyst for synthetic gas generation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337741A JP2004167414A (en) 2002-11-21 2002-11-21 Catalyst for synthetic gas generation and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004167414A true JP2004167414A (en) 2004-06-17

Family

ID=32701162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337741A Pending JP2004167414A (en) 2002-11-21 2002-11-21 Catalyst for synthetic gas generation and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004167414A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462299C (en) * 2007-05-10 2009-02-18 天津大学 Method for producing synthetic gas by reforming by-product glycerin vapor of biological diesel production
JP2010029844A (en) * 2008-07-04 2010-02-12 Jgc Corp Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
CN112871173A (en) * 2021-02-03 2021-06-01 河南省科学院 Preparation method of reaction catalyst for preparing synthesis gas by dry reforming of methane and carbon dioxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462299C (en) * 2007-05-10 2009-02-18 天津大学 Method for producing synthetic gas by reforming by-product glycerin vapor of biological diesel production
JP2010029844A (en) * 2008-07-04 2010-02-12 Jgc Corp Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
CN112871173A (en) * 2021-02-03 2021-06-01 河南省科学院 Preparation method of reaction catalyst for preparing synthesis gas by dry reforming of methane and carbon dioxide

Similar Documents

Publication Publication Date Title
EP1885492B1 (en) Selective oxidation catalyst containing platinum, copper and iron to remove carbon monoxide from a hydrogen-rich gas
JP4819235B2 (en) Method for catalytic conversion of carbon monoxide using water in a hydrogen-containing gas mixture
JP5105420B2 (en) Water-gas shift noble metal catalyst having oxide support modified with rare earth elements
JP4414951B2 (en) Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas
JP2010528834A (en) Catalyst for hydrogen production by autothermal reforming, its production and use
JP5763890B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP5702910B2 (en) Treatment conditions for Pt-Re bimetallic water gas shift catalyst
JP2012005926A (en) Ammonia-decomposing catalyst and ammonia-decomposing method using the same
JP5544634B2 (en) Platinum catalyst for oxidation / reduction reaction and its use
CN111589462A (en) Nickel-based catalyst, preparation method and application
JP2015196110A (en) Catalyst for hydrogen production and hydrogen production method using the same
JP2006231280A (en) Solid oxidation catalyst for combustion
JP2007252991A (en) Honeycomb catalyst for carbon monoxide methanation, manufacturing method of the catalyst, and methanation method of carbon monoxide using the catalyst
JP4296430B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP2004167414A (en) Catalyst for synthetic gas generation and method for producing the same
KR100893547B1 (en) Metallic structured catalyst and its manufacturing method
Guo et al. Direct synthesis of CuO–ZnO–CeO2 catalyst on Al2O3/cordierite monolith for methanol steam reforming
JP2004009011A (en) Catalyst for water-gas-shift reaction
JP6574591B2 (en) Catalyst processing apparatus and manufacturing method thereof
JP5494910B2 (en) Hydrogen production catalyst and production method thereof
KR20150111183A (en) Metal foam catalyst for fuel reforming and fuel reforming apparatus having microchannels
JP2007054685A (en) Catalyst for water gas shift reaction
JP3937877B2 (en) Fuel reforming catalyst
TWI539996B (en) Method of Fabricating Catalyst Carrier of Producing Hydrogen through Methane Reformation
JP4799312B2 (en) Synthesis gas production catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118