JP2012005926A - Ammonia-decomposing catalyst and ammonia-decomposing method using the same - Google Patents

Ammonia-decomposing catalyst and ammonia-decomposing method using the same Download PDF

Info

Publication number
JP2012005926A
JP2012005926A JP2010141930A JP2010141930A JP2012005926A JP 2012005926 A JP2012005926 A JP 2012005926A JP 2010141930 A JP2010141930 A JP 2010141930A JP 2010141930 A JP2010141930 A JP 2010141930A JP 2012005926 A JP2012005926 A JP 2012005926A
Authority
JP
Japan
Prior art keywords
ammonia
catalyst
volume
hydrogen
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010141930A
Other languages
Japanese (ja)
Inventor
Takashi Fuji
敬司 藤
Hideto Kubo
秀人 久保
Shohei Matsumoto
祥平 松本
Shuji Yumoto
修士 湯本
Kiyoshi Yamazaki
清 山崎
Hiroshi Miyagawa
浩 宮川
Atsushi Okamura
淳志 岡村
Masanori Yoshimune
壮基 吉宗
Kuninori Miyazaki
邦典 宮碕
Hisakazu Shindo
久和 進藤
Hideaki Tsuneki
英昭 常木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Nippon Shokubai Co Ltd
Original Assignee
Toyota Industries Corp
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Nippon Shokubai Co Ltd filed Critical Toyota Industries Corp
Priority to JP2010141930A priority Critical patent/JP2012005926A/en
Publication of JP2012005926A publication Critical patent/JP2012005926A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ammonia-decomposing catalyst which stably, efficiently decomposes ammonia into hydrogen and nitrogen at a high temperature for long period of time, the ammonia being contained in a reaction gas at a high concentration; and to provide an ammonia-decomposing method.SOLUTION: The ammonia-decomposing catalyst is used to decompose, at a reaction temperature of 100-1,200°C, ammonia in a reaction gas which contains 1-100 vol.% of ammonia, 0-10 vol.% of hydrogen, 0-20 vol.% of oxygen, 0-80 vol.% of nitrogen, and the remainder (the total of the ammonia, hydrogen, oxygen, nitrogen and remainder is 100% in volume). In this case, the catalyst concerned is obtained by coating a honeycomb-like ceramic molding with a catalyst component. Further, the ammonia-decomposing method using the catalyst thus obtained is provided herein.

Description

本発明は、アンモニアを分解して水素を得るためのアンモニア分解触媒及び当該触媒を用いたアンモニアの分解方法に関するものである。   The present invention relates to an ammonia decomposition catalyst for decomposing ammonia to obtain hydrogen and a method for decomposing ammonia using the catalyst.

アンモニアを分解し水素を得る技術は多く提案されている。例えば、アンモニア分解触媒としては、鉄と希土類などの酸化物との複合体からなるアンモニア改質触媒が提案されている(特許文献1(請求項1)参照)。当該触媒は金属鉄を用いることで、窒素を触媒中に吸蔵し触媒的作用を奏するものである。当該触媒は、アンモニア分解反応に用いる際には、粉末状として用いられるものである。また、担体に触媒成分を担持させた複合体を用いる例として、例えば、炭素系基材にアルカリ土類金属及び遷移金属からなる群から選択される1種の元素を担持させた複合体触媒を粉体、ペレット状として用いて、500℃〜1200℃でアンモニアを分解して水素を得ようとする技術(特許文献2(請求項1,2)参照)が提案されている。さらに、ルテニウムとアルカリ金属とがアルミナ粒子担体に担持されたアンモニア分解触媒を用いて、低温(500℃〜700℃)でアンモニアを分解して水素を得る技術(特許文献3(請求項1、13、段落[0049]))も提案されている。   Many techniques for decomposing ammonia and obtaining hydrogen have been proposed. For example, as an ammonia decomposition catalyst, an ammonia reforming catalyst composed of a composite of iron and an oxide of rare earth has been proposed (see Patent Document 1 (Claim 1)). By using metallic iron, the catalyst occludes nitrogen in the catalyst and exhibits a catalytic action. The catalyst is used as a powder when used in an ammonia decomposition reaction. In addition, as an example of using a composite in which a catalyst component is supported on a carrier, for example, a composite catalyst in which one element selected from the group consisting of an alkaline earth metal and a transition metal is supported on a carbon-based substrate. There has been proposed a technique (see Patent Document 2 (Claims 1 and 2)) in which ammonia is decomposed at 500 ° C. to 1200 ° C. to obtain hydrogen using powder and pellets. Further, a technology for obtaining hydrogen by decomposing ammonia at a low temperature (500 ° C. to 700 ° C.) using an ammonia decomposition catalyst in which ruthenium and an alkali metal are supported on an alumina particle carrier (Patent Document 3 (Claims 1 and 13)). Paragraph [0049])) has also been proposed.

また、担体に触媒成分を担持させた複合体を用いる例として、触媒成分であるルテニウムをα−アルミナに担持して反応温度300℃〜800℃で、アンモニアを水素と窒素に分解する技術が開示(特許文献4(請求項1、3))されている。当該特許文献4では、触媒の形状について、球状、円柱形が提案されている。   In addition, as an example of using a composite in which a catalyst component is supported on a carrier, a technique for decomposing ammonia into hydrogen and nitrogen at a reaction temperature of 300 ° C. to 800 ° C. by supporting ruthenium as a catalyst component on α-alumina is disclosed. (Patent Document 4 (Claims 1 and 3)). In the said patent document 4, spherical shape and a cylindrical shape are proposed about the shape of a catalyst.

ところで、実際の反応器に触媒を充填して使用する場合には、特に粉末状触媒の場合には圧力損失が高くなるために触媒充填量に制限があるという問題がある。さらに、粉末状触媒の場合には、該粉末状触媒が反応器から飛散するという問題がある。一方、球状及び円柱形に成形された触媒の場合には、反応器中の充填状態が不十分であると、反応中に充填触媒自体が反応器内で振動などを起こし、これら振動などにより触媒自体が磨耗して反応率が低下するという問題点がある。また、これまで提案されているような粉末状、球状及び円柱形の触媒を充填しようとすると反応器の形状、並びに、効率的かつ安定な運転条件の選定等において実用上、多くの制限がある。   By the way, when an actual reactor is filled with a catalyst and used, particularly in the case of a powdery catalyst, there is a problem that the amount of catalyst filling is limited because the pressure loss becomes high. Furthermore, in the case of a powdery catalyst, there is a problem that the powdery catalyst is scattered from the reactor. On the other hand, in the case of a catalyst formed into a spherical shape or a cylindrical shape, if the packed state in the reactor is insufficient, the packed catalyst itself will vibrate in the reactor during the reaction, and these vibrations cause the catalyst. There is a problem that the reaction rate decreases due to wear. In addition, there are many practical limitations in selecting the reactor shape and efficient and stable operating conditions when trying to fill a powdery, spherical and cylindrical catalyst as proposed so far. .

特開2001−300314号公報JP 2001-300314 A 特開2001−261302号公報JP 2001-261302 A 特開平10−85601号公報JP-A-10-85601 特開平08−84910号公報JP-A-08-84910

上記特許文献等に提案されているような従来技術では、アンモニア濃度、反応温度、原料供給時の空間速度、ガス線速、長時間の連続反応において、実用上十分に満足できるものではなかった。   In the prior art as proposed in the above-mentioned patent documents and the like, the ammonia concentration, the reaction temperature, the space velocity at the time of supplying the raw material, the gas linear velocity, and the continuous reaction for a long time are not sufficiently satisfactory in practice.

ここで、金属製の成型体基材は熱伝導性に優れ、反応応答性が良く、反応温度、ガス濃度が変化する状況で好ましい性質を有するので、実用性の高い触媒担持用成型体基材として用いることが期待される。本発明者らは、アンモニア、水素及び酸素を含むガスを、触媒成分を金属製成型体基材の一つであるフェライト系またはオーステナイト系ステンレス鋼製成型体に被覆した触媒を用いてアンモニア分解し水素を得る反応を行った。当該反応によると、低温、かつ、短時間においては支障なくアンモニア分解反応を継続することができるが、反応温度が500℃以上において当該分解反応を継続すると、当該成型体が劣化し、触媒用成型体としては好ましくない状態になることが分かった。   Here, the metal molding base material is excellent in thermal conductivity, has good reaction responsiveness, and has favorable properties in a situation where the reaction temperature and gas concentration change. It is expected to be used as The inventors of the present invention decompose ammonia using a catalyst in which a gas containing ammonia, hydrogen and oxygen is coated with a ferrite or austenitic stainless steel molded body, which is one of the metal molded body base materials. The reaction to obtain hydrogen was conducted. According to the reaction, the ammonia decomposition reaction can be continued without problems at low temperatures and in a short time. However, if the decomposition reaction is continued at a reaction temperature of 500 ° C. or higher, the molded body deteriorates, and molding for the catalyst. It turned out that it becomes a state unpreferable as a body.

また、上記先行技術として用いられる粉体状の触媒を用いると、定常使用では問題はないが、反応温度、ガス濃度、ガス線速が変化する条件下では、反応活性において一定の性能を得ることができず、先行技術を適用することが難しいことが分かった。   In addition, when the powdered catalyst used as the above prior art is used, there is no problem in steady use, but under the conditions where the reaction temperature, gas concentration and gas linear velocity change, a certain performance in reaction activity can be obtained. It was difficult to apply the prior art.

本発明の課題はアンモニアを分解し水素を得る技術において、高温耐久性を有し、かつ、従来提案されていた粉末状、球状及び円柱形触媒における実用上の問題点を克服できるアンモニア分解触媒、及びその触媒を用いたアンモニアの分解方法を提案することにある。   An object of the present invention is an ammonia decomposing catalyst that has high temperature durability in a technology for decomposing ammonia to obtain hydrogen, and that can overcome practical problems in conventionally proposed powdery, spherical and cylindrical catalysts, And a method of decomposing ammonia using the catalyst.

本発明者らは上記課題を解決するために、鋭意研究の結果、下記構成を見出し、発明を完成した。   In order to solve the above-mentioned problems, the present inventors have found the following constitution as a result of intensive studies and completed the invention.

第一発明は、アンモニア(NH3)量が1〜100体積%、水素(H2)量が0〜10体積%、酸素(O2)量が0〜20体積%、窒素(N2)量が0〜80体積%及び残部(アンモニア、水素、酸素、窒素及び残部の合計量が100体積%)である反応ガス中のアンモニアを、反応温度100〜1200℃で分解するために用いる触媒であって、当該触媒がハニカム状セラミックス製成形体に触媒成分を被覆したことを特徴とするアンモニア分解触媒である。好ましくは、当該ハニカム状セラミックス製成形体が、コージェライト、ムライトまたは炭化珪素を主成分とするものであり、貫通孔の断面形状は四角形、六角形又は波型形が好ましい。また、前記触媒成分の被覆量はアンモニア分解触媒1リットル当たり0.1〜600gであることが好ましい。 In the first invention, the amount of ammonia (NH 3 ) is 1 to 100% by volume, the amount of hydrogen (H 2 ) is 0 to 10% by volume, the amount of oxygen (O 2 ) is 0 to 20% by volume, and the amount of nitrogen (N 2 ) Is a catalyst used for decomposing ammonia in a reaction gas of 0 to 80% by volume and the balance (a total amount of ammonia, hydrogen, oxygen, nitrogen and the balance is 100% by volume) at a reaction temperature of 100 to 1200 ° C. The catalyst is an ammonia decomposition catalyst characterized in that a honeycomb ceramic molded body is coated with a catalyst component. Preferably, the honeycomb ceramic formed body is mainly composed of cordierite, mullite or silicon carbide, and the cross-sectional shape of the through hole is preferably a square, hexagon or corrugated shape. Further, the coating amount of the catalyst component is preferably 0.1 to 600 g per liter of the ammonia decomposition catalyst.

第二発明は、前記触媒を用いて、アンモニア量が1〜100体積%、水素量が0〜10体積%、酸素量が0〜20体積%、窒素量が0〜80体積%及び残部(アンモニア、水素、酸素、窒素及び残部の合計量が100体積%)である反応ガス中のアンモニアを、反応温度100〜1200℃で水素と窒素に分解することを特徴とするアンモニアの分解方法である。   2nd invention uses the said catalyst, ammonia amount is 1-100 volume%, hydrogen amount is 0-10 volume%, oxygen amount is 0-20 volume%, nitrogen amount is 0-80 volume%, and remainder (ammonia The ammonia decomposition method is characterized by decomposing ammonia in a reaction gas having a total amount of hydrogen, oxygen, nitrogen and the balance of 100% by volume into hydrogen and nitrogen at a reaction temperature of 100 to 1200 ° C.

本発明によれば、アンモニア、水素及び酸素を含むガスを、高温下に、ガス濃度・ガス量が変化する条件下で長時間に渡って安定的にガス中のアンモニアを分解して水素を得ることができる。   According to the present invention, a gas containing ammonia, hydrogen, and oxygen is obtained by stably decomposing ammonia in the gas over a long period of time under conditions where the gas concentration and the amount of gas change at high temperatures. be able to.

第一発明は、アンモニア量が1〜100体積%、水素量が0〜10体積%、酸素量が0〜20体積%、窒素量が0〜80体積%及び残部(アンモニア、水素、酸素、窒素及び残部の合計量が100体積%)である反応ガス中のアンモニアを、反応温度100〜1200℃で分解するために用いる触媒であって、当該触媒がハニカム状セラミックス製成形体に触媒成分を被覆したことを特徴とするアンモニア分解触媒である。   In the first invention, the amount of ammonia is 1 to 100% by volume, the amount of hydrogen is 0 to 10% by volume, the amount of oxygen is 0 to 20% by volume, the amount of nitrogen is 0 to 80% by volume, and the balance (ammonia, hydrogen, oxygen, nitrogen And a catalyst used for decomposing ammonia in the reaction gas at a reaction temperature of 100 to 1200 ° C., and the catalyst coats the honeycomb ceramic molded body with a catalyst component. This is an ammonia decomposition catalyst.

第一発明に用いる反応ガスは、アンモニア量が1〜100体積%、水素量が0〜10体積%、酸素量が0〜20体積%、窒素量が0〜80体積%及び残部(アンモニア、水素、酸素、窒素及び残部の合計量が100体積%)である混合ガスである。   The reaction gas used in the first invention has an ammonia amount of 1 to 100% by volume, a hydrogen amount of 0 to 10% by volume, an oxygen amount of 0 to 20% by volume, a nitrogen amount of 0 to 80% by volume and the balance (ammonia, hydrogen , Oxygen, nitrogen and the balance are 100% by volume).

アンモニア量は、反応ガス中において1〜100体積%、好ましくは10〜90体積%、更に好ましくは20〜80体積%である。水素量は、反応ガス中において0〜10体積%、好ましくは0〜5体積%である。酸素濃度は、反応ガス中において0〜20体積%、好ましくは4〜16体積%、更に好ましくは6〜12体積%である。なお窒素濃度は、反応ガス中において0〜80体積%、好ましくは0〜50体積%、更に好ましくは0〜40体積%である。但し、この場合、アンモニア、水素、酸素、窒素及び残部の合計量が100体積%である。また、アンモニアに対する酸素の体積比(酸素/アンモニア)は、0.75未満であり、好ましくは0.1以上0.5以下、さらに好ましくは0.12以上0.3以下である。   The amount of ammonia in the reaction gas is 1 to 100% by volume, preferably 10 to 90% by volume, more preferably 20 to 80% by volume. The amount of hydrogen is 0 to 10% by volume, preferably 0 to 5% by volume in the reaction gas. The oxygen concentration in the reaction gas is 0 to 20% by volume, preferably 4 to 16% by volume, and more preferably 6 to 12% by volume. The nitrogen concentration in the reaction gas is 0 to 80% by volume, preferably 0 to 50% by volume, and more preferably 0 to 40% by volume. However, in this case, the total amount of ammonia, hydrogen, oxygen, nitrogen and the balance is 100% by volume. The volume ratio of oxygen to ammonia (oxygen / ammonia) is less than 0.75, preferably 0.1 or more and 0.5 or less, more preferably 0.12 or more and 0.3 or less.

上記残部としては、水蒸気、アルゴン、ヘリウム、二酸化炭素、一酸化炭素、一酸化窒素、二酸化窒素、亜酸化窒素などが挙げられる。これらの残部成分量は、反応ガス中において0〜5体積%である。   Examples of the remainder include water vapor, argon, helium, carbon dioxide, carbon monoxide, nitrogen monoxide, nitrogen dioxide, and nitrous oxide. The amount of these remaining components is 0 to 5% by volume in the reaction gas.

前記反応ガス中のアンモニアを分解させる際の反応温度は100〜1200℃、好ましくは100〜1000℃である。反応ガスは触媒に対して、空間速度(SV)で500〜500000hr-1、好ましくは5000〜150000hr-1である。ガス線速(LV)は0.2〜80Nm(ノルマルメートル)/秒である。 The reaction temperature for decomposing ammonia in the reaction gas is 100 to 1200 ° C, preferably 100 to 1000 ° C. The reaction gas has a space velocity (SV) of 500 to 500,000 hr −1 , preferably 5000 to 150,000 hr −1 with respect to the catalyst. The gas linear velocity (LV) is 0.2 to 80 Nm (normal meter) / second.

本発明で用いる成形体は貫通孔を有するセラミックス製であり、好ましくはコージェライト、ムライト又は炭化珪素である。当該セラミックス成形体の貫通孔の断面形状は、四角形、六角形又は波型形が好ましい。   The molded product used in the present invention is made of ceramics having through holes, and is preferably cordierite, mullite, or silicon carbide. The cross-sectional shape of the through hole of the ceramic molded body is preferably a square, hexagon or corrugated shape.

当該貫通孔(以下、「セル」と称する場合がある。)の個数は、反応ガスが当該成形体を通過する断面1平方インチ(6.45cm2)当たり100〜900個が好ましく、更に好ましくは当該1平方インチ当たり100〜600個である。当該1平方インチ当たりの貫通孔が、100セル以上であれば当該成型体の幾何学的表面積が大きくなるため反応効率がより向上し、900セル以下であれば、個々のセルが小さくなりすぎず、触媒成分を被覆する際のセル開口部の目詰まりがより抑制される。各貫通孔の隔壁の厚さは2〜20ミル(50.8〜508μm)、好ましくは2〜15ミル(50.8〜381μm)である。 The number of the through holes (hereinafter sometimes referred to as “cells”) is preferably 100 to 900 per 1 square inch (6.45 cm 2 ) in which the reaction gas passes through the molded body, and more preferably. There are 100 to 600 per square inch. If the number of through-holes per square inch is 100 cells or more, the geometric surface area of the molded body increases, so that the reaction efficiency is further improved. If it is 900 cells or less, individual cells do not become too small. Further, the clogging of the cell opening when the catalyst component is coated is further suppressed. The thickness of the partition wall of each through hole is 2 to 20 mil (50.8 to 508 μm), preferably 2 to 15 mil (50.8 to 381 μm).

当該触媒に用いる触媒成分は、アンモニアを水素に分解することができるものであれば何れのものでも使用することができる。前記触媒成分としては、白金、パラジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、モリブデン、タングステン、マンガン、ランタン、セリウム、ネオジム等の遷移金属元素を含むものが好ましい。これらの中でも、白金、パラジウム、ロジウム、ルテニウム等の貴金属元素がより好ましい。これらの触媒成分は適宜、単独、併用して用いることができる。前記触媒成分は触媒1リットル当たり0.1〜600gが好ましく、より好ましくは5〜600g、更に好ましくは50〜500gである(以下、「g/リットル」と称する場合がある)。   Any catalyst component may be used as long as it can decompose ammonia into hydrogen. The catalyst component preferably contains a transition metal element such as platinum, palladium, rhodium, ruthenium, iron, cobalt, nickel, molybdenum, tungsten, manganese, lanthanum, cerium, or neodymium. Among these, noble metal elements such as platinum, palladium, rhodium, and ruthenium are more preferable. These catalyst components can be used alone or in combination as appropriate. The catalyst component is preferably 0.1 to 600 g per liter of catalyst, more preferably 5 to 600 g, and still more preferably 50 to 500 g (hereinafter sometimes referred to as “g / liter”).

前記触媒成分は、アルミナ、シリカ、ジルコニアまたはチタニア等の高比表面積を有する耐火性無機酸化物に担持して用いることができる。当該耐火性無機酸化物は、触媒1リットル当たり0〜300gが好ましく、特に触媒成分として遷移金属酸化物を用いる場合は0〜100gがより好ましく、触媒成分として貴金属を含むときは10〜300gがより好ましい(以下、「g/リットル」と称する場合がある)。   The catalyst component can be used by being supported on a refractory inorganic oxide having a high specific surface area such as alumina, silica, zirconia or titania. The refractory inorganic oxide is preferably 0 to 300 g per liter of the catalyst, particularly preferably 0 to 100 g when a transition metal oxide is used as a catalyst component, and more preferably 10 to 300 g when a noble metal is included as a catalyst component. Preferred (hereinafter sometimes referred to as “g / liter”).

触媒の調製方法は通常の手段を用いることができ、例えば(1)触媒成分である金属または酸化物を湿式粉砕して得られるスラリーを当該成形体に被覆する方法、(2)触媒成分の水性液を当該成形体に被覆し、場合により乾燥・焼成する方法、(3)触媒成分を耐火性無機酸化物に担持した粉体を湿式粉砕して得られるスラリーを当該成形体に被覆する方法、(4)触媒成分である金属または酸化物と、耐火性無機酸化物とを湿式粉砕して得られるスラリーを当該成形体に被覆する方法、(5)耐火性無機酸化物を湿式粉砕し当該成形体に被覆し、次いで触媒成分を更に被覆する方法等がある。   The catalyst can be prepared by any conventional means. For example, (1) a method in which a slurry obtained by wet-grinding a metal or an oxide as a catalyst component is coated on the molded body, and (2) an aqueous catalyst component. A method of coating the molded body with a liquid, and optionally drying and firing; (3) a method of coating the molded body with a slurry obtained by wet-grinding a powder carrying a catalyst component on a refractory inorganic oxide; (4) A method of coating the molded body with a slurry obtained by wet pulverizing a metal or oxide as a catalyst component and a refractory inorganic oxide, and (5) wet pulverizing the refractory inorganic oxide and molding. There is a method of coating the body and then further coating the catalyst component.

第二発明は、上記触媒を反応ガスの流れに設置し、上記の温度、空間速度等により、アンモニアを分解し、窒素、水素を得るものである。当該触媒は単一のものに限定されるものでなく、場合によっては複数の触媒を用いることもできる。複数の触媒を用いるときは、単一の当該成形体に複数の触媒成分を被覆して用いることもでき、個々の触媒を反応ガスに対して直列、並列に設置して用いることもできる。   In the second invention, the catalyst is installed in the flow of the reaction gas, and ammonia is decomposed by the temperature, space velocity, etc., to obtain nitrogen and hydrogen. The said catalyst is not limited to a single thing, A some catalyst can also be used depending on the case. When using a plurality of catalysts, a single molded article can be used by coating a plurality of catalyst components, and individual catalysts can be used in series or in parallel with the reaction gas.

以下に実施例と比較例を用いて発明を更に詳細に説明するが本発明の効果を有するものであれば以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail using examples and comparative examples. However, the present invention is not limited to the following examples as long as it has the effects of the present invention.

1.触媒の製造
1−1.触媒A1(実施例1)
γ−アルミナに白金を5質量%担持した粉体(触媒成分A)をボールミルにより湿式粉砕を行い、水分散スラリーを得た。当該スラリーにコージェライトハニカム(横断面が1平方インチ当たり400個のガス流通セルを有している。)を浸漬した後、余剰のスラリーを圧縮空気により吹き飛ばした。次いで、150℃で5時間乾燥した後、500℃で1時間焼成し、触媒A1を得た。当該触媒A1には、触媒1リットル当たり触媒成分Aが200g担持されていた。
1. Production of catalyst 1-1. Catalyst A1 (Example 1)
A powder (catalyst component A) carrying 5% by mass of platinum on γ-alumina was wet pulverized with a ball mill to obtain an aqueous dispersion slurry. A cordierite honeycomb (having 400 gas flow cells per square inch) was immersed in the slurry, and then the excess slurry was blown off with compressed air. Subsequently, after drying at 150 degreeC for 5 hours, it baked at 500 degreeC for 1 hour, and obtained catalyst A1. The catalyst A1 supported 200 g of catalyst component A per liter of catalyst.

1−2.触媒B1(実施例2)
γ−アルミナにルテニウムを5質量%担持した粉体(触媒成分B)をボールミルにより湿式粉砕を行い、水分散スラリーを得た。当該スラリーにコージェライトハニカム(横断面が1平方インチ当たり400個のガス流通セルを有している。)を浸漬した後、余剰のスラリーを圧縮空気により吹き飛ばした。次いで、150℃で5時間乾燥した後、450℃で1時間焼成し、触媒成分Bにより被覆したハニカムを得た。次いで、水素(5体積%)/窒素雰囲気下において600℃で1時間、還元処理を行い、触媒B1を得た。当該触媒B1には、触媒1リットル当たり触媒成分Bが250g担持されていた。
1-2. Catalyst B1 (Example 2)
A powder (catalyst component B) in which 5% by mass of ruthenium was supported on γ-alumina was wet-ground by a ball mill to obtain an aqueous dispersion slurry. A cordierite honeycomb (having 400 gas flow cells per square inch) was immersed in the slurry, and then the excess slurry was blown off with compressed air. Next, after drying at 150 ° C. for 5 hours, firing was performed at 450 ° C. for 1 hour to obtain a honeycomb coated with the catalyst component B. Subsequently, reduction treatment was performed at 600 ° C. for 1 hour in a hydrogen (5% by volume) / nitrogen atmosphere to obtain catalyst B1. The catalyst B1 supported 250 g of catalyst component B per liter of catalyst.

1−3.触媒a1(比較例1)
実施例1において、コージェライトハニカム担体を、Fe−20Cr−5Alからなるメタルハニカム担体(横断面が1平方インチ当たり400個のガス流通セルを有している。)に変更した以外は、触媒A1の製造(実施例1)と同様の方法で、触媒成分Aにより被覆した触媒a1を得た。当該触媒a1には、触媒1リットル当たり触媒成分Aが180g担持されていた。
1-3. Catalyst a1 (Comparative Example 1)
In Example 1, the catalyst A1 was used except that the cordierite honeycomb carrier was changed to a metal honeycomb carrier made of Fe-20Cr-5Al (having 400 gas flow cells per square inch in cross section). The catalyst a1 coated with the catalyst component A was obtained in the same manner as in the production of Example 1 (Example 1). The catalyst a1 was loaded with 180 g of catalyst component A per liter of catalyst.

1−4.触媒b1(比較例2)
実施例2において、コージェライトハニカム担体を、Fe−20Cr−5Alからなるメタルハニカム担体(横断面が1平方インチ当たり400個のガス流通セルを有している。)に変更した以外は、触媒B1の製造(実施例2)と同様の方法で、触媒成分Bにより被覆した触媒b1を得た。当該触媒b1には、触媒1リットル当たり触媒成分Bが、200g担持されていた。
1-4. Catalyst b1 (Comparative Example 2)
In Example 2, the catalyst B1 was used except that the cordierite honeycomb support was changed to a metal honeycomb support made of Fe-20Cr-5Al (having 400 gas flow cells per square inch in cross section). A catalyst b1 coated with the catalyst component B was obtained in the same manner as in the production of Example 2 (Example 2). The catalyst b1 supported 200 g of catalyst component B per liter of catalyst.

2−1.アンモニア分解反応1(触媒評価1)
触媒A1がガス入口側に、触媒B1が出口側になるように反応器に充填し、アンモニア(NH3)が57.1体積%、窒素(N2)が33.3体積%、酸素(O2)が8.9体積%、残部アルゴン(Ar)からなるガスを用いて、反応試験を30時間継続した。触媒入口温度は200℃、ガスのSVは36221hr-1、触媒A1と触媒B1の体積比(A1/B1)1/3でアンモニア分解反応を行った。初期及び30時間反応後のH2収率を表1に示す。30時間反応後のH2収率は、反応開始初期のものと変化がなかった。また、触媒層最高温度は1000℃、触媒層出口温度は470℃で30時間の反応中に変化はなかった。なお、H収率は、以下の式で求めた。また、30時間反応後のコージェライトハニカム触媒を反応器から取り出して観察したところ、セル形状の変形・崩壊等の構造劣化は全く発生していなかった。
2-1. Ammonia decomposition reaction 1 (catalyst evaluation 1)
The reactor is charged so that the catalyst A1 is on the gas inlet side and the catalyst B1 is on the outlet side, 57.1% by volume of ammonia (NH 3 ), 33.3% by volume of nitrogen (N 2 ), oxygen (O 2 ) The reaction test was continued for 30 hours using a gas consisting of 8.9% by volume and the balance argon (Ar). The ammonia decomposition reaction was performed at a catalyst inlet temperature of 200 ° C., a gas SV of 36221 hr −1 , and a volume ratio (A1 / B1) of catalyst A1 to catalyst B1 of 1/3. Table 1 shows the H 2 yield at the initial stage and after the reaction for 30 hours. The H 2 yield after the reaction for 30 hours was the same as that at the beginning of the reaction. The maximum catalyst layer temperature was 1000 ° C. and the catalyst layer outlet temperature was 470 ° C., and there was no change during the reaction for 30 hours. The H 2 yield was determined by the following formula. Further, when the cordierite honeycomb catalyst after the reaction for 30 hours was taken out from the reactor and observed, structural deterioration such as deformation and collapse of the cell shape did not occur at all.

2−2.アンモニア分解反応2(触媒評価2)
触媒a1がガス入口側に、触媒b1が出口側になるように反応器に充填し、アンモニアが57.1体積%、窒素が33.3体積%、酸素が8.9体積%、残部アルゴンからなるガスを用いて反応試験を30時間継続した。触媒入口温度は200℃、SVは34996hr-1、触媒a1と触媒b1の体積比(a1/b1)は1/5でアンモニア分解反応を行った。初期及び30時間反応後のH2収率を表2に示す。メタルハニカム触媒を用いた場合、30時間反応後のH2収率は、反応開始初期のものと比較して明らかな低下がみられた。触媒層最高温度、触媒層出口温度についても、反応開始初期がそれぞれ1000℃、500℃であったものが、30時間反応後は、それぞれ1000℃、565℃に変化がみられた。また、30時間反応後のメタルハニカム触媒を反応器から取り出して観察したところ、セル形状の変形・崩壊等の著しい構造劣化が観察された。
2-2. Ammonia decomposition reaction 2 (catalyst evaluation 2)
The reactor is charged so that the catalyst a1 is on the gas inlet side and the catalyst b1 is on the outlet side, ammonia is 57.1% by volume, nitrogen is 33.3% by volume, oxygen is 8.9% by volume, and the remainder from argon The reaction test was continued for 30 hours using The ammonia decomposition reaction was performed at a catalyst inlet temperature of 200 ° C., an SV of 34996 hr −1 , and a volume ratio (a1 / b1) of the catalyst a1 to the catalyst b1 of 1/5. Table 2 shows the H 2 yield at the initial stage and after the reaction for 30 hours. When the metal honeycomb catalyst was used, the H 2 yield after the reaction for 30 hours was clearly reduced as compared with that at the beginning of the reaction. The catalyst layer maximum temperature and catalyst layer outlet temperature were 1000 ° C. and 500 ° C. at the beginning of the reaction, respectively, but changed to 1000 ° C. and 565 ° C. after the reaction for 30 hours, respectively. Further, when the metal honeycomb catalyst after the reaction for 30 hours was taken out from the reactor and observed, remarkable structural deterioration such as deformation and collapse of the cell shape was observed.

本発明はアンモニア分解反応に適用することができ、アンモニアを分解し水素を得る技術に利用することができる。   The present invention can be applied to an ammonia decomposition reaction, and can be used in a technique for decomposing ammonia to obtain hydrogen.

Claims (5)

アンモニア量が1〜100体積%、水素量が0〜10体積%、酸素量が0〜20体積%及び窒素量が0〜80体積%及び残部(アンモニア、水素、酸素、窒素及び残部の合計量が100体積%)である反応ガス中のアンモニアを、反応温度100〜1200℃で分解するために用いる触媒であって、
当該触媒が、ハニカム状セラミックス製成形体に触媒成分を被覆したことを特徴とするアンモニア分解触媒。
1 to 100% by volume of ammonia, 0 to 10% by volume of hydrogen, 0 to 20% by volume of oxygen, 0 to 80% by volume of nitrogen and the balance (total amount of ammonia, hydrogen, oxygen, nitrogen and the balance Is a catalyst used for decomposing ammonia in a reaction gas having a reaction temperature of 100 to 1200 ° C.
An ammonia decomposing catalyst, wherein the catalyst comprises a honeycomb ceramic molded body coated with a catalyst component.
前記ハニカム状セラミックス製成形体が、コージェライト、ムライトまたは炭化珪素を主成分とするものである請求項1記載のアンモニア分解触媒。   The ammonia-decomposing catalyst according to claim 1, wherein the honeycomb ceramic formed body is mainly composed of cordierite, mullite or silicon carbide. 前記ハニカム状セラミックス製成形体が有する貫通孔の断面形状が四角形、六角形又は波型形である請求項1または2記載のアンモニア分解触媒。   The ammonia decomposition catalyst according to claim 1 or 2, wherein a cross-sectional shape of the through hole of the honeycomb ceramic formed body is a square, a hexagon or a corrugated shape. 前記触媒成分の被覆量が、アンモニア分解触媒1リットル当たり0.1〜600gである請求項1〜3のいずれか一項に記載のアンモニア分解触媒。   The ammonia decomposition catalyst according to any one of claims 1 to 3, wherein a coating amount of the catalyst component is 0.1 to 600 g per liter of the ammonia decomposition catalyst. 請求項1〜4のいずれか一項に記載のアンモニア分解触媒を用いて、
アンモニア量が1〜100体積%、水素量が0〜10体積%、酸素量が0〜20体積%及び窒素量が0〜80体積%及び残部(アンモニア、水素、酸素、窒素及び残部の合計量が100体積%)である反応ガス中のアンモニアを、反応温度100〜1200℃で水素と窒素に分解することを特徴とするアンモニアの分解方法。
Using the ammonia decomposition catalyst according to any one of claims 1 to 4,
1 to 100% by volume of ammonia, 0 to 10% by volume of hydrogen, 0 to 20% by volume of oxygen, 0 to 80% by volume of nitrogen and the balance (total amount of ammonia, hydrogen, oxygen, nitrogen and the balance Is decomposed into hydrogen and nitrogen at a reaction temperature of 100 to 1200 ° C.
JP2010141930A 2010-06-22 2010-06-22 Ammonia-decomposing catalyst and ammonia-decomposing method using the same Withdrawn JP2012005926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010141930A JP2012005926A (en) 2010-06-22 2010-06-22 Ammonia-decomposing catalyst and ammonia-decomposing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010141930A JP2012005926A (en) 2010-06-22 2010-06-22 Ammonia-decomposing catalyst and ammonia-decomposing method using the same

Publications (1)

Publication Number Publication Date
JP2012005926A true JP2012005926A (en) 2012-01-12

Family

ID=45537121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010141930A Withdrawn JP2012005926A (en) 2010-06-22 2010-06-22 Ammonia-decomposing catalyst and ammonia-decomposing method using the same

Country Status (1)

Country Link
JP (1) JP2012005926A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176792A (en) * 2013-03-14 2014-09-25 Tanaka Kikinzoku Kogyo Kk Ammonia reformation catalyst and method for manufacturing the same
JP2015188820A (en) * 2014-03-28 2015-11-02 株式会社日本触媒 Catalyst for hydrogen production and method for hydrogen production using the catalyst
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
WO2023037642A1 (en) * 2021-09-09 2023-03-16 中外炉工業株式会社 Ammonia fuel combustion device
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
JP7425915B1 (en) 2023-05-26 2024-01-31 東京窯業株式会社 Ammonia decomposition equipment and its manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176792A (en) * 2013-03-14 2014-09-25 Tanaka Kikinzoku Kogyo Kk Ammonia reformation catalyst and method for manufacturing the same
JP2015188820A (en) * 2014-03-28 2015-11-02 株式会社日本触媒 Catalyst for hydrogen production and method for hydrogen production using the catalyst
US11994062B2 (en) 2021-05-14 2024-05-28 AMOGY, Inc. Systems and methods for processing ammonia
US11994061B2 (en) 2021-05-14 2024-05-28 Amogy Inc. Methods for reforming ammonia
US12000333B2 (en) 2021-05-14 2024-06-04 AMOGY, Inc. Systems and methods for processing ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11769893B2 (en) 2021-08-17 2023-09-26 Amogy Inc. Systems and methods for processing hydrogen
US11843149B2 (en) 2021-08-17 2023-12-12 Amogy Inc. Systems and methods for processing hydrogen
WO2023037642A1 (en) * 2021-09-09 2023-03-16 中外炉工業株式会社 Ammonia fuel combustion device
JP7387243B2 (en) 2021-09-09 2023-11-28 中外炉工業株式会社 Ammonia fuel combustion equipment
KR20240056680A (en) 2021-09-09 2024-04-30 쥬가이로 고교 가부시키가이샤 Ammonia fuel combustion device
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11912574B1 (en) 2022-10-06 2024-02-27 Amogy Inc. Methods for reforming ammonia
US11975968B2 (en) 2022-10-06 2024-05-07 AMOGY, Inc. Systems and methods of processing ammonia
US11840447B1 (en) 2022-10-06 2023-12-12 Amogy Inc. Systems and methods of processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
JP7425915B1 (en) 2023-05-26 2024-01-31 東京窯業株式会社 Ammonia decomposition equipment and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2012005926A (en) Ammonia-decomposing catalyst and ammonia-decomposing method using the same
JP5103386B2 (en) Improved high selective oxidation catalyst containing platinum, copper and iron
CN103002985B (en) Nanosized gold catalysts for co oxidation and water gas shift reactions
JP2012187518A (en) Exhaust gas purification catalyst
CN103945920B (en) Noble metal catalyst for handling waste gas
JP6803920B2 (en) Methods and equipment for catalytic methanation of reaction gas
EP1903001A2 (en) Method and Apparatus for Syngas Production
US11020732B2 (en) Catalyst bed and method for reducing nitrogen oxides
CN101330973B (en) Process conditions for Pt-Re bimetallic water gas shift catalysts
US11911728B2 (en) Reactor for reducing nitrogen oxides
JP2015196110A (en) Catalyst for hydrogen production and hydrogen production method using the same
JP2010215457A (en) Ammonia decomposition apparatus, and ammonia decomposition method using the apparatus
CN101160170A (en) Precious metal water-gas shift catalyst with oxide support modified with rare earth elements
US10946336B2 (en) Oxidation catalyst, catalyst support structure, method of producing oxidation catalyst, and method of producing catalyst support structure
US8889588B2 (en) High-durability metal foam-supported catalyst for steam carbon dioxide reforming and method for preparing the same
CN108367278B (en) The method and apparatus strengthened for chemical technology
KR100893547B1 (en) Metallic structured catalyst and its manufacturing method
CN100352544C (en) Catalyst used for methanol oxidation oxidizing and reforming hydrogen production and preparation method thereof
JP6376494B2 (en) CO selective methanation reactor
JP2012213682A (en) Ammonia decomposition catalyst and ammonia decomposition method using the catalyst
JP2016190226A (en) Catalyst processing device and method for production thereof
JP2009179504A (en) Fuel reforming apparatus
JP6350898B2 (en) CO selective methanation catalyst
JP5991934B2 (en) Catalyst for producing hydrogen and method for producing the catalyst
JP2004167414A (en) Catalyst for synthetic gas generation and method for producing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903