JP2004166697A - Immortalized dendritic cell strain derived from marrow - Google Patents
Immortalized dendritic cell strain derived from marrow Download PDFInfo
- Publication number
- JP2004166697A JP2004166697A JP2003371244A JP2003371244A JP2004166697A JP 2004166697 A JP2004166697 A JP 2004166697A JP 2003371244 A JP2003371244 A JP 2003371244A JP 2003371244 A JP2003371244 A JP 2003371244A JP 2004166697 A JP2004166697 A JP 2004166697A
- Authority
- JP
- Japan
- Prior art keywords
- cell line
- dendritic cell
- cells
- immortalized
- antigen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本発明は、骨髄に由来する不死化樹状細胞株に関し、詳しくはSV40の温度感受性突然変異株tsA58のラージT抗原遺伝子を導入したトランスジェニックマウス(ts SV40 LT Tgマウス)の骨髄に由来する樹状細胞(Dendritic cell;DC)を継代培養することにより樹立することができる不死化樹状細胞株及びその製法や、その利用に関する。本発明の不死化樹状細胞株は、樹状細胞のインビトロにおける解析や樹状細胞を用いたワクチン療法の開発並びに免疫応答の修飾、増強の研究に応用できる。 The present invention relates to an immortalized dendritic cell line derived from bone marrow, and more specifically, a tree derived from the bone marrow of a transgenic mouse (ts SV40 LT Tg mouse) into which a large T antigen gene of SV40 temperature-sensitive mutant tsA58 has been introduced. The present invention relates to an immortalized dendritic cell line that can be established by subculturing dendritic cells (DC), a production method thereof, and use thereof. The immortalized dendritic cell line of the present invention can be applied to in vitro analysis of dendritic cells, development of vaccine therapy using dendritic cells, and modification and enhancement of immune responses.
従来、医薬品の安全性や有効性に関する試験研究には主として動物が用いられていたが、動物愛護の観点から動物を使用する代わりに、培養細胞等を用いてインビトロで医薬品の有効性や安全性を試験研究する技術の実用化レベルでの研究が行われている。例えば、生体組織から採取した初代培養細胞や無限増殖する不死化細胞(樹立細胞)系を用いる方法で予め試験した後に動物試験が行われている。しかし、初代細胞は初期段階ではよく増殖するが、継代培養とともに次第に増殖が停止し、やがては死滅する(この現象を細胞老化という)。さらに、初代細胞は、その特性が生体組織から採取する度に異なるという危惧に加え、継代とともに変化することが指摘されている。特に、増殖速度が非常に遅い場合や微小器官に由来する場合には、試験に供するに足る初代細胞を得ることは非常に困難であるとされている。 Conventionally, animals have been mainly used for research and studies on the safety and efficacy of pharmaceuticals, but instead of using animals from the viewpoint of animal welfare, the efficacy and safety of pharmaceuticals in vitro using cultured cells, etc. Research is being conducted at a practical level of technology for testing and researching. For example, an animal test is performed after testing in advance by a method using a primary cultured cell collected from a living tissue or an immortalized cell (established cell) system that grows indefinitely. However, primary cells proliferate well in the initial stage, but gradually stop with subculture and eventually die (this phenomenon is called cell aging). Furthermore, it has been pointed out that primary cells change with passage in addition to the fear that their characteristics differ each time they are collected from living tissue. In particular, when the growth rate is very slow or when it is derived from a micro-organ, it is said that it is very difficult to obtain primary cells sufficient for the test.
一方、初代培養の継代を重ねるなかで、細胞老化を免れて無限増殖する能力を獲得した不死化細胞では、安定して均一の特性を有することになるが、このような不死化細胞の多くは、その細胞が生体において本来有していた形態や機能の一部又はその全てを喪失する。そのため、このような不死化細胞株を用いた試験では、その細胞株の由来する組織での本来の特性を正確に反映することは難しいとされていた。そこで、初代細胞にras遺伝子やc−myc遺伝子などの発癌遺伝子、アデノウイルスのE1A遺伝子、SV40ウイルスのラージT抗原遺伝子、ヒトパピローマウイルスのHPV16遺伝子等を導入して細胞を形質転換し、初代細胞の有する活発な増殖能を継続的に保持し、さらに継代することによってその細胞固有の特性を喪失しない不死化細胞を樹立する試みがなされている。ところが、このような不死化細胞においても、対象とする臓器によっては、その初代細胞を調製し、これらの癌遺伝子やラージT抗原遺伝子を導入する時点で、すでに幾つかの機能を喪失するため、本来の機能を保持する厳密な意味での不死化細胞の取得は困難であった。特に、増殖速度が非常に遅い場合や微小器官に由来する場合の初代細胞を調製して株化することは極めて困難であった。 On the other hand, immortalized cells that have acquired the ability to proliferate indefinitely by avoiding cell aging through repeated passages of primary culture will have stable and uniform characteristics, but many of these immortalized cells Loses some or all of the forms and functions that the cells originally had in the body. Therefore, in tests using such an immortalized cell line, it has been difficult to accurately reflect the original characteristics of the tissue from which the cell line is derived. Therefore, by transforming the cells by introducing oncogenes such as ras gene and c-myc gene, adenovirus E1A gene, SV40 virus large T antigen gene, human papillomavirus HPV16 gene, etc. into the primary cells, Attempts have been made to establish immortalized cells that retain their active proliferative ability and do not lose their inherent properties by further passage. However, even in such an immortalized cell, depending on the target organ, the primary cell is prepared, and when these oncogene and large T antigen gene are introduced, some functions are already lost. It has been difficult to obtain immortalized cells in a strict sense that retains the original function. In particular, it has been extremely difficult to prepare and establish primary cells when the growth rate is very slow or when they are derived from micro-organs.
これに対し、近年確立された動物個体への遺伝子導入技術を用いて、個々の細胞に癌遺伝子やラージT抗原遺伝子を導入するかわりに、これらの遺伝子を安定的に染色体に組み込んだ遺伝子導入動物を作出し、個体の発生時点において既に癌遺伝子やラージT抗原遺伝子を細胞の中に保有する動物の臓器から初代細胞を調製して、これを継代することによって不死化細胞を樹立する方法が報告されている。特にts SV40 LT Tgマウスの臓器から得られる不死化細胞は、その増殖や分化形質の発現を温度を変えることによって操作することができるため、非常に有効であるとされている(例えば、非特許文献1〜8参照。)。 On the other hand, instead of introducing oncogenes and large T antigen genes into individual cells using recently established gene transfer techniques to individual animals, transgenic animals in which these genes are stably integrated into the chromosome And preparing an immortalized cell by substituting a primary cell from an animal organ that already has an oncogene or a large T antigen gene in the cell at the time of development It has been reported. In particular, immortalized cells obtained from the organs of ts SV40 LT Tg mice can be manipulated by changing the temperature of their growth and expression of differentiation traits, and are therefore considered to be very effective (for example, non-patented Reference 1-8).
他方、樹状細胞(DC)は造血幹細胞由来の樹枝状形態をとる細胞集団で、生体内に広く分布している。未成熟樹状細胞は、それぞれの組織に侵入したウイルスや細菌をはじめとする異物を認識して取り込み、リンパ系器官T細胞領域への移動の過程でペプチドを消化分解によって生成し、MHC分子に結合させて細胞表面に提示することにより、抗原特異的なT細胞を活性化して免疫応答を誘導する抗原提示細胞としての役割を担っている(例えば、非特許文献9、10参照。)。このように、DCはT細胞依存性の初期免疫応答を惹起できるというT細胞応答の始動にとって非常に重要な役割を果たしている(例えば、非特許文献11、12参照。)。骨髄で生まれたDCは未熟な状態で、生体内の様々な組織に飲食作用をもって分布する。その未熟DCは抗原を取り込み成熟し、2次リンパ性器官へと移動する。そしてそのT細胞領域に蓄積して、体内を循環しているT細胞のうち抗原特異的なものを選択的に活性化して免疫応答を駆動する。しかし、DCのインビボにおけるこれらの詳しいメカニズムは未だ分かっておらず、インビトロにて解析する必要がある。マウスのインビトロのシステムにおいて顆粒球マクロファージコロニー刺激因子(GM−CSF)を用いることにより、機能的なDCの誘導が初期培養で可能であるが、その寿命は長くても2ヶ月である(例えば、非特許文献13参照。)。近年、マウスの2次リンパ性器官である脾臓から、DCがGM−CSF依存的に長期培養(12ヶ月以上)できることが報告されたが(D1細胞:例えば、非特許文献14参照。)、未熟で抗原を取り込んでいない、骨髄などの1次リンパ組織からはDC細胞株が樹立されていない。
樹状細胞(DC)は免疫応答の駆動を行う重要な細胞である。しかし、DCの生体内での動態の解析や、癌免疫賦活への応用は始まったばかりであり、未解明な点が多く残されている。DCは生体から調製することで培養可能であるが、その寿命は限られており、GM−CSF等のサイトカイン存在下で培養しても、長くて1ヶ月程度しか存続できず、その後死滅する。これまでは、安定的に増殖し続ける樹状細胞の作製は非常に困難であって、樹状細胞の簡便な株化方法もなく、免疫の誘導や修飾、樹状細胞を用いた治療などに目処が立っていなかった。すなわち本発明の課題は、樹状細胞が本来有する機能・特性を保持する不死化樹状細胞株やその樹立方法、かかる不死化樹状細胞株を用いた有用物質のスクリーニング方法及びかかる不死化樹状細胞株を主成分とする細胞ワクチンを提供することにある。 Dendritic cells (DC) are important cells that drive the immune response. However, analysis of DC dynamics in vivo and application to cancer immunostimulation have just started, and many unclear points remain. Although DC can be cultured by preparing it from a living body, its lifetime is limited, and even if it is cultured in the presence of cytokines such as GM-CSF, it can only last for about one month at a long time and then die. Until now, it has been very difficult to prepare dendritic cells that continue to proliferate stably, and there is no simple method for establishing dendritic cells, which can be used for induction and modification of immunity, treatment using dendritic cells, etc. The prospect was not standing. That is, an object of the present invention is to provide an immortalized dendritic cell line that retains the functions and characteristics inherent to dendritic cells, a method for establishing the immortalized dendritic cell line, a screening method for useful substances using such an immortalized dendritic cell line, and such an immortalized tree. An object of the present invention is to provide a cellular vaccine mainly composed of dendritic cell lines.
本発明者らは、上記課題を解決するために鋭意研究し、ts SV40 LT Tgマウスの骨髄細胞を溶血処理した後、リンパ球及びIa陽性細胞を除去し、得られた細胞をGM−CSFの存在下培養することにより樹状細胞を誘導し、継代培養を10回以上繰り返し、樹立した不死化樹状細胞株が、細胞表面にミエロイド分子及びロイコサイト分子を発現し、抗原の取込み能、抗原の提示能、及びCTL活性の誘導能を有するなど、DCが本来有している性質を備えていることを確認し、本発明を完成するに至った。 The present inventors have intensively studied to solve the above problems, and after lysing bone marrow cells of ts SV40 LT Tg mice, lymphocytes and Ia positive cells were removed, and the resulting cells were treated with GM-CSF. Dendritic cells are induced by culturing in the presence, the subculture is repeated 10 times or more, and the established immortalized dendritic cell line expresses myeloid molecules and leucosite molecules on the cell surface, and the antigen uptake ability, The present invention was completed by confirming that DC had the properties inherent to it, such as the ability to present antigen and the ability to induce CTL activity.
すなわち本発明は、骨髄に由来することを特徴とする不死化樹状細胞株(請求項1)や、細胞表面にミエロイド分子及びロイコサイト分子を発現し、抗原の取込み能、抗原の提示能、及びCTL活性の誘導能を有することを特徴とする請求項1記載の不死化樹状細胞株(請求項2)や、33℃で増殖することができるが、37℃では増殖が抑制されることを特徴とする請求項1又は2記載の不死化樹状細胞株(請求項3)や、LPS刺激に応答能を有することを特徴とする請求項1〜3のいずれか記載の不死化樹状細胞株(請求項4)や、齧歯類起源であることを特徴とする請求項1〜4のいずれか記載の不死化樹状細胞株(請求項5)や、齧歯類がマウスであることを特徴とする請求項5記載の不死化樹状細胞株(請求項6)や、不死化樹状細胞株TDC(FERM BP−08527)(請求項7)に関する。
That is, the present invention relates to an immortalized dendritic cell line derived from bone marrow (Claim 1), a myeloid molecule and a leucosite molecule expressed on the cell surface, antigen uptake ability, antigen presentation ability, And an immortalized dendritic cell line according to claim 1 (claim 2), which is capable of growing at 33 ° C, but is inhibited at 37 ° C. The immortalized dendritic cell line according to
また本発明は、SV40の温度感受性突然変異株tsA58のラージT抗原遺伝子を導入したトランスジェニックマウスの骨髄細胞を溶血処理した後、リンパ球及びIa陽性細胞を除去し、得られた細胞をGM−CSFの存在下培養することにより樹状細胞を誘導し、継代培養を10回以上繰り返し、細胞表面にミエロイド分子及びロイコサイト分子を発現し、抗原の取込み能、抗原の提示能、及びCTL活性の誘導能を有する細胞株を樹立することを特徴とする不死化樹状細胞株の製造方法(請求項8)や、33℃で増殖することができるが、37℃では増殖が抑制され、LPS刺激に応答能を有する細胞株を樹立することを特徴とする請求項8記載の不死化樹状細胞株の製造方法(請求項9)や、被検物質の存在下、請求項1〜7のいずれか記載の不死化樹状細胞株を培養し、該細胞株における成熟マーカータンパク質の発現の程度を測定・評価することを特徴とする樹状細胞における成熟促進又は抑制物質のスクリーニング方法(請求項10)や、マーカータンパク質が、ミエロイド分子、ロイコサイト分子、I−Ab、CD86及び/又はCD40であることを特徴とする請求項10記載の樹状細胞における成熟促進又は抑制物質のスクリーニング方法(請求項11)や、被検物質の存在下、請求項1〜7のいずれか記載の不死化樹状細胞株を培養し、該細胞の増殖の程度を測定・評価することを特徴とする樹状細胞における細胞増殖促進又は抑制物質のスクリーニング方法(請求項12)や、被検物質の存在下、請求項1〜7のいずれか記載の不死化樹状細胞株をLPS刺激し、該細胞のIL−12産生量を測定、評価することを特徴とする樹状細胞の活性化促進又は抑制物質のスクリーニング方法(請求項13)に関する。
In the present invention, the bone marrow cells of a transgenic mouse introduced with the large T antigen gene of SV40 temperature-sensitive mutant tsA58 are hemolyzed, lymphocytes and Ia positive cells are removed, and the resulting cells are treated with GM- Dendritic cells are induced by culturing in the presence of CSF, and subculture is repeated 10 times or more to express myeloid molecules and leucosite molecules on the cell surface, antigen uptake ability, antigen presentation ability, and CTL activity A method for producing an immortalized dendritic cell line characterized by establishing a cell line having an inducibility of the cell line (claim 8), and can be grown at 33 ° C., but growth is suppressed at 37 ° C., and LPS 9. A method for producing an immortalized dendritic cell line according to claim 8 (claim 9), wherein a cell line capable of responding to stimulation is established; Izu A method for screening a substance that promotes or suppresses maturation in dendritic cells, comprising culturing the immortalized dendritic cell line described above, and measuring and evaluating the level of expression of the maturation marker protein in the cell line (claim 10). Or the marker protein is a myeloid molecule, a leucosite molecule, IA b , CD86 and / or CD40, the method for screening a substance for promoting or suppressing maturation in dendritic cells according to claim 10 (claim) (11) or an immortalized dendritic cell line according to any one of (1) to (7) in the presence of a test substance, and the degree of proliferation of the cell is measured and evaluated. A method for screening a substance that promotes or suppresses cell proliferation in cells (Claim 12), or an immortalized dendritic cell line according to any one of
さらに本発明は、請求項10又は11記載のスクリーニング方法により得られる樹状細胞における成熟促進物質(請求項14)や、請求項12記載のスクリーニング方法により得られる樹状細胞における細胞増殖促進物質(請求項15)や、請求項13記載のスクリーニング方法により得られる樹状細胞の活性化促進物質(請求項16)や、請求項1〜7のいずれか記載の不死化樹状細胞株を主成分とすることを特徴とする細胞ワクチン(請求項17)や、不死化樹状細胞株が、33℃で増殖することができるが、37℃では増殖が抑制される不死化樹状細胞株であることを特徴とする請求項17記載の細胞ワクチン(請求項18)や、不死化樹状細胞株が、抗原又は抗原−IgG免疫複合体を取り込ませた不死化樹状細胞株であることを特徴とする請求項17又は18記載の細胞ワクチン(請求項19)や、抗原が腫瘍抗原であることを特徴とする請求項19記載の細胞ワクチン(請求項20)に関する。
Furthermore, the present invention relates to a substance that promotes maturation in dendritic cells obtained by the screening method according to
本発明によれば、安定的に増殖し続ける不死化樹状細胞株を得ることができ、該樹状細胞株を用いて免疫の誘導や修飾、樹状細胞株を用いた治療法の開発など利用することができる。また、本発明によれば、当該細胞株の由来する組織における本来の機能・特性を保持しているので、これを用いた樹状細胞に対する有用物質のスクリーニング方法及び免疫応答を増強する物質を提供することができる。 According to the present invention, an immortalized dendritic cell line that continues to proliferate stably can be obtained, induction and modification of immunity using the dendritic cell line, development of a therapeutic method using the dendritic cell line, etc. Can be used. In addition, according to the present invention, since the original function / property in the tissue from which the cell line is derived is retained, a useful substance screening method for dendritic cells using the same and a substance that enhances the immune response are provided. can do.
本発明の不死化樹状細胞株としては、骨髄に由来する不死化樹状細胞株であればどのようなものでもよく、33℃で増殖することができ、37℃では増殖が抑制される細胞株が好ましく、この温度感受性の点を除いては、DCが本来備えている性質を有するものがより好ましい。例えば、細胞表面にミエロイド分子及びロイコサイト分子を発現し、抗原の取込み能、抗原の提示能、及びCTL活性の誘導能を有する細胞株や、LPSによる刺激により樹状細胞が成熟化、活性化され、IL−12を産生するなどLPS刺激に応答能を有する細胞株や、これらの性質を合わせ有する細胞株を好適に例示することができる。また、かかる不死化樹状細胞株の具体例として、不死化樹状細胞株TDCを挙げることができ、このTDC株は独立行政法人産業技術総合研究所特許生物寄託センターに寄託番号FERM BP−08527(平成14年9月26日に寄託されたFERM P−19044号より移管)として、ブダペスト条約に基づく寄託がなされている。また、本発明の不死化樹状細胞株の由来は特に限定されないが、マウス等の齧歯類などの動物から得られた不死化樹状細胞株は、マウスが豊富な病態モデルを有し、薬理作用の評価に広く用いられていることから好ましい。以下、本発明の不死化樹状細胞株の製造方法を、マウスを用いた方法を例にとって説明する。 The immortalized dendritic cell line of the present invention may be any immortalized dendritic cell line derived from bone marrow, and can grow at 33 ° C., and cells whose growth is suppressed at 37 ° C. Strains are preferred, and those having the properties inherent to DC are more preferred except for this temperature sensitivity. For example, cell lines that express myeloid molecules and leucosite molecules on the cell surface, have the ability to take up antigen, present antigen, and induce CTL activity, and maturation and activation of dendritic cells by stimulation with LPS Preferred examples include cell lines that have the ability to respond to LPS stimulation, such as IL-12 production, and cell lines that combine these properties. Moreover, an immortalized dendritic cell line TDC can be given as a specific example of such an immortalized dendritic cell line. As a transfer from FERM P-19044 deposited on September 26, 2002, deposits have been made based on the Budapest Treaty. The origin of the immortalized dendritic cell line of the present invention is not particularly limited, but the immortalized dendritic cell line obtained from animals such as rodents such as mice has a pathological model rich in mice, It is preferable because it is widely used for evaluation of pharmacological action. Hereinafter, the method for producing an immortalized dendritic cell line of the present invention will be described taking a method using a mouse as an example.
マウス由来の本発明の不死化樹状細胞株は、例えば、ts SV40 LT Tgマウスの骨髄細胞を塩化アンモニウムを用いて溶血処理した後、例えば抗CD4抗体、抗CD8抗体、抗I−Ab抗体、抗ラットIg抗体とウサギ補体を用いて、リンパ球とIa陽性細胞を除去した細胞を20ng/mLのマウスリコンビナントGM−CSFを含む完全RPMI培地(5%FCS)を用いて培養し、樹状細胞(DC)を誘導し、継代培養を10回以上繰り返し、細胞表面にミエロイド分子及びロイコサイト分子を発現し、抗原の取込み能、抗原の提示能、及びCTL活性の誘導能を有する細胞株を樹立することにより得ることができる。 Immortalized dendritic cell line of the present invention derived from mouse, for example, after a bone marrow cells ts SV40 LT Tg mice were hemolyzed with ammonium chloride, for example anti-CD4 antibody, anti-CD8 antibody, anti-I-A b antibody The cells from which lymphocytes and Ia positive cells were removed using anti-rat Ig antibody and rabbit complement were cultured in complete RPMI medium (5% FCS) containing 20 ng / mL mouse recombinant GM-CSF, Cells that induce dendritic cells (DCs) and are subcultured 10 times or more to express myeloid molecules and leucosite molecules on the cell surface, and have the ability to take up antigen, present antigen, and induce CTL activity It can be obtained by establishing a strain.
また、ts SV40 LT Tgマウスは、次のようにして作製することができる。SV40の複製起点(ori)を欠失させたtsA58ori(−)−2の全DNAを制限酸素BamHIで開環してpBR322に導入したプラスミドpSVtsA58(−)−2(OhnoT. et al., Cytotechnology 7, 165-172, 1991)を常法に従い大腸菌内で大量に増幅させ、この増幅したプラスミドを制限酵素BamHIで切断してベクター部位を除去し、tsA58のラージT抗原遺伝子を有するDNA断片を調製する。このラージT抗原遺伝子のプロモーターが内在するDNA断片を常法に従いマウスの全能性細胞に遺伝子導入することにより、SV40の温度感受性突然変異株tsA58のラージT抗原遺伝子を全ての細胞内に有する遺伝子導入マウス、すなわちトランスジェニックマウスを作出することができる。かかるトランスジェニックマウスは、その全ての体細胞においてtsA58のラージT抗原遺伝子が発現することになる。そして、上記全能性細胞としては、受精卵や初期胚のほか、多分化能を有するES細胞などを具体的に挙げることができる。また、全能性細胞へのDNAの導入方法としては、マイクロインジェクション法、電気パルス法、リポソーム法、リン酸カルシウム法等の公知の遺伝子導入法を用いることができる。 A ts SV40 LT Tg mouse can be prepared as follows. Plasmid pSVtsA58 (−)-2 (OhnoT. Et al., Cytotechnology 7) in which the entire DNA of tsA58ori (−)-2 from which the SV40 replication origin (ori) has been deleted was opened with restriction oxygen BamHI and introduced into pBR322. 165-172, 1991) in a large amount in E. coli according to a conventional method, this amplified plasmid is cleaved with the restriction enzyme BamHI to remove the vector site, and a DNA fragment having the large T antigen gene of tsA58 is prepared. . The gene fragment having the large T antigen gene of SV40 temperature-sensitive mutant tsA58 is introduced into all cells by introducing the DNA fragment containing the promoter of the large T antigen gene into a totipotent mouse cell according to a conventional method. Mice, i.e. transgenic mice, can be created. Such transgenic mice express the large T antigen gene of tsA58 in all somatic cells. Specific examples of the totipotent cells include fertilized eggs and early embryos, ES cells having multipotency, and the like. In addition, as a method for introducing DNA into totipotent cells, a known gene introduction method such as a microinjection method, an electric pulse method, a liposome method, or a calcium phosphate method can be used.
上記マウスの全能性細胞(培養細胞)の核を、除核未受精卵に移植して初期化すること(核移植)で卵子にSV40の温度感受性突然変異株tsA58のラージT抗原遺伝子を導入することができる。また、前核期受精卵の雄性前核にSV40の温度感受性突然変異株tsA58のラージT抗原遺伝子をマイクロインジェクションして得られる卵子を仮親の卵管に移植して産仔を得た後、注入した遺伝子を持つ産仔を選出し、安定的にかかる遺伝子が組み込まれた個体を得ることで、個体発生時にすでにtsA58のラージT抗原遺伝子が各組織の細胞の染色体に組み込まれた遺伝子導入マウス、すなわちトランスジェニックマウスを効率よく作出することができる。 The nucleus of totipotent cells (cultured cells) of the mouse is transferred to an enucleated unfertilized egg and initialized (nuclear transfer) to introduce the large T antigen gene of the SV40 temperature-sensitive mutant tsA58 into the egg. be able to. In addition, an oocyte obtained by microinjecting the large T antigen gene of the SV40 temperature-sensitive mutant tsA58 into the male pronucleus of a pronuclear-stage fertilized egg was transplanted into an oviduct of a foster parent, and then a litter was obtained. A transgenic mouse in which the large T antigen gene of tsA58 has already been integrated into the chromosome of the cell of each tissue at the time of ontogeny, That is, transgenic mice can be produced efficiently.
本発明の不死化樹状細胞株は、33℃において永久的増殖能を保持し、37℃においては増殖が抑制され、39℃においては増殖を停止するため、細胞固有の分化形質の発現を制御することができるという特色を有している。また、この不死化樹状細胞株は、7ヶ月以上継代培養行っても33℃で良好な増殖性を示し、樹状細胞としての機能を保持している。本発明の不死化樹状細胞株は、安定的に増殖し続けることができ、また、該樹状細胞の有する抗原取り込み能及び抗原提示能により、T細胞を活性化させることができるので細胞ワクチンとして有用である上に、免疫の誘導や修飾、樹状細胞を用いた治療の研究に用いることができる。また、以下に示すように、樹状細胞に対する有用物質のスクリーニングに用いることができる。 Since the immortalized dendritic cell line of the present invention has a permanent growth ability at 33 ° C., growth is suppressed at 37 ° C., and growth is stopped at 39 ° C., thus controlling the expression of cell-specific differentiation traits It has the feature that it can. In addition, this immortalized dendritic cell line shows good growth at 33 ° C. even when subcultured for 7 months or more, and retains the function as a dendritic cell. The immortalized dendritic cell line of the present invention can continue to proliferate stably, and the T cell can be activated by the antigen uptake ability and antigen presentation ability of the dendritic cell. In addition to its usefulness, it can be used for the study of immunity induction and modification, and treatment using dendritic cells. Moreover, as shown below, it can use for the screening of the useful substance with respect to a dendritic cell.
本発明におけるスクリーニング方法としては、被検物質の存在下、上記本発明の不死化樹状細胞株を培養し、該細胞株におけるミエロイド分子、ロイコサイト分子、I−Ab、CD86、CD40等の成熟マーカータンパク質の発現の程度を測定・評価する樹状細胞における成熟促進又は抑制物質のスクリーニング方法や、該細胞株の増殖の程度を測定・評価する樹状細胞における細胞増殖促進又は抑制物質のスクリーニング方法や、該細胞株をLPS刺激し、該細胞のIL−12産生量を測定、評価する樹状細胞の活性化促進又は抑制物質のスクリーニング方法等を挙げることができる。そして、上記スクリーニング方法により得られる樹状細胞における成熟促進物質や、樹状細胞における細胞増殖促進物質や、樹状細胞の活性化促進物質も本発明に含まれる。 As a screening method in the present invention, the immortalized dendritic cell line of the present invention is cultured in the presence of a test substance, and myeloid molecule, leucosite molecule, IA b , CD86, CD40 and the like in the cell line are cultured. Screening method for a substance that promotes or suppresses maturation in dendritic cells that measures and evaluates the degree of expression of the maturation marker protein, and screening for a substance that promotes or suppresses cell growth in dendritic cells that measures and evaluates the degree of proliferation of the cell line Examples thereof include a method of screening for a dendritic cell activation promoter or inhibitor that stimulates LPS of the cell line and measures and evaluates the amount of IL-12 produced by the cell. The present invention also includes a maturation promoting substance in dendritic cells, a cell growth promoting substance in dendritic cells, and a dendritic cell activation promoting substance obtained by the screening method.
上記樹状細胞における成熟促進又は抑制物質のスクリーニングは、不死化樹状細胞株を種々の濃度の被検物質の存在下でそれぞれ培養し、一定時間培養後に発現したマーカータンパク質の量を検出・測定し、被検物質の非存在下で培養した対照のものと比較・評価することにより行われる。例えば、樹状細胞の表面に発現する成熟度マーカータンパク質であるミエロイド分子やロイコサイト分子は、それぞれ特異抗体を用いて常法により免疫化学的に検出することにより測定することができる。また、これらに相当するmRNAの発現量を常法により検出することにより測定することもできる。上記樹状細胞における細胞増殖促進又は抑制物質のスクリーニングは、不死化樹状細胞株を種々の濃度の被検物質の存在下でそれぞれ培養し、一定時間培養後に細胞数や細胞の形態を測定・解析し、被検物質の非存在下に培養した対照のものと比較・評価することにより行われる。また、上記樹状細胞の活性化促進又は抑制物質のスクリーニングは、不死化樹状細胞株を種々の濃度の被検物質の存在下でそれぞれ培養し、一定時間培養後にIL−12の産生量を測定し、被検物質の非存在下に培養した対照のものと比較・評価することにより行われる。 Screening for substances that promote or suppress maturation in the above dendritic cells involves culturing an immortalized dendritic cell line in the presence of various concentrations of the test substance, and detecting and measuring the amount of marker protein expressed after incubation for a certain period of time. Then, it is performed by comparing and evaluating with a control cultured in the absence of the test substance. For example, myeloid molecules and leucosite molecules, which are maturity marker proteins expressed on the surface of dendritic cells, can be measured by immunochemically detecting each using a specific antibody. Moreover, it can also measure by detecting the expression level of mRNA corresponding to these by a conventional method. Screening for substances that promote or suppress cell growth in the above dendritic cells involves culturing an immortalized dendritic cell line in the presence of various concentrations of the test substance, measuring the number of cells and cell morphology after culturing for a certain period of time. The analysis is performed by comparing and evaluating with a control cultured in the absence of the test substance. In addition, the screening for dendritic cell activation promoting or inhibiting substances involves culturing immortalized dendritic cell lines in the presence of various concentrations of test substances, and increasing IL-12 production after culturing for a certain period of time. This is carried out by measuring and comparing with a control cultured in the absence of the test substance.
本発明の細胞ワクチンとしては、上記本発明の不死化樹状細胞株を主成分とするものであれば特に制限されるものではないが、上記不死化樹状細胞株としてはヒト由来の不死化樹状細胞株が好ましく、かかるヒト由来の不死化樹状細胞株は、ヒト末梢血又は骨髄より樹状細胞株を単離し、SV40の温度感受性突然変異株tsA58のラージT抗原遺伝子を導入し、継代培養を繰り返すことにより、あるいはヒトの胚性幹細胞(ES細胞)にSV40の温度感受性突然変異株tsA58のラージT抗原遺伝子を導入し、これをインビトロで樹状細胞株に分化させ、継代培養を繰り返すことにより樹立することができる。また、不死化樹状細胞株としては、33℃で増殖することができるが、37℃では増殖が抑制されるものや、不死化樹状細胞株が腫瘍抗原等の抗原や抗原−IgG免疫複合体を取り込ませたものが好ましい。本発明の細胞ワクチンは、インビボ又はインビトロで抗原を取り込ませ、修飾後細胞表面に抗原性のペプチドを提示する、T細胞を刺激する抗原提示細胞として用いることができる。例えば、本発明の不死化樹状細胞株の懸濁液からなる本発明の細胞ワクチンは、ヒト体内に治療用のワクチンとして接種されることになるが、37℃では増殖が抑制されることから安全性が高い。通常、細胞ワクチンとしての安全性を高めるために、加熱処理、放射線処理、あるいはマイトマイシンC処理などが必要とされるが、本発明の不死化樹状細胞株は、かかる細胞不活化処理が不要で、かつ、33℃で増殖することができるが、37℃では増殖が抑制されることから極めて安全性が高いワクチンということができる。 The cell vaccine of the present invention is not particularly limited as long as it is mainly composed of the immortalized dendritic cell line of the present invention, but the immortalized dendritic cell line is immortalized from humans. Dendritic cell lines are preferred, such human-derived immortalized dendritic cell lines are isolated from human peripheral blood or bone marrow and introduced with the large T antigen gene of the SV40 temperature-sensitive mutant tsA58, The large T antigen gene of SV40 temperature-sensitive mutant tsA58 is introduced into human embryonic stem cells (ES cells) by repeated subculture, and differentiated into a dendritic cell line in vitro. It can be established by repeating the culture. Further, as an immortalized dendritic cell line, it can grow at 33 ° C., but its growth is suppressed at 37 ° C., or an immortalized dendritic cell line is an antigen such as a tumor antigen or an antigen-IgG immune complex. What incorporated the body is preferable. The cell vaccine of the present invention can be used as an antigen-presenting cell for stimulating T cells, which incorporates an antigen in vivo or in vitro and presents an antigenic peptide on the cell surface after modification. For example, the cell vaccine of the present invention comprising a suspension of the immortalized dendritic cell line of the present invention is inoculated as a therapeutic vaccine in the human body, but growth is suppressed at 37 ° C. High safety. Usually, heat treatment, radiation treatment, mitomycin C treatment, or the like is required to enhance safety as a cell vaccine, but the immortalized dendritic cell line of the present invention does not require such cell inactivation treatment. In addition, it can grow at 33 ° C., but since growth is suppressed at 37 ° C., it can be said to be a highly safe vaccine.
本発明の細胞ワクチン、特にヒト由来の不死化樹状細胞株を主成分とする細胞ワクチンは、ヒトに移入可能な細胞ワクチンとして、白血病、肝癌、肺癌、胃癌、大腸癌などの各種腫瘍、及び各種ウイルス、細菌等による感染症等に対して有利に利用することができる。本発明の細胞ワクチンの投与量は、患者の年齢、体重、性別、癌の種類及び癌の進行度、症状等により異なり、一概に決定できないが、現在行われている細胞ワクチン療法で注入されるのと同程度の量が患者に投与することができる。本発明の細胞ワクチンは、患者本人に使用することもできるが、骨髄バンク、臍帯血バンクの発達により、MHC適合の同種の多数の患者に投与することができる。 The cell vaccine of the present invention, particularly a cell vaccine mainly composed of a human-derived immortalized dendritic cell line, is a cell vaccine that can be transferred to humans, and includes various tumors such as leukemia, liver cancer, lung cancer, stomach cancer, and colon cancer, and It can be advantageously used against infectious diseases caused by various viruses and bacteria. The dose of the cell vaccine of the present invention varies depending on the patient's age, weight, sex, cancer type, cancer progression, symptoms, etc., and cannot be determined in general, but is injected with the current cell vaccine therapy A similar amount of can be administered to a patient. Although the cellular vaccine of the present invention can be used for the patient himself, it can be administered to many patients of the same type who are MHC compatible by the development of bone marrow bank and cord blood bank.
以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations.
(トランスジェニックマウスの作出)
SV40の温度感受性突然変異株tsA58のDNAを導入したトランスジェニックマウスは、下記の手順で作出した。
(Creation of transgenic mice)
Transgenic mice into which the DNA of SV40 temperature-sensitive mutant tsA58 was introduced were produced by the following procedure.
(導入遺伝子の調製)
マイクロインジェクションにはSV40の温度感受性突然変異株tsA58のゲノムDNAを遺伝子工学的手法で改変したものを使用した。tsA58のゲノムDNAを制限酵素BamHIで開環し、pBR322のBamHI部位に導入し、SfiI配列をSacIIに変換してSV40の複製起点(ori)を欠失するori(−)としたDNAクローンpSVtsA58ori(−)−2(Ohno T. et al., Cytotechnology, 165-172, 1991)から常法に従い導入用DNAを調製した。すなわち、大腸菌内で大量に増幅させることにより得られたプラスミドDNAのpSVtsA58ori(−)−2を制限酵素BamHI(宝酒造社製)で消化した後、アガロース電気泳動法(1%ゲル;ベーリンガー社製)により分離し、ゲルを溶解した後、フェノール・クロロホルム処理及びエタノール沈殿処理を行いDNAを回収した。回収した精製DNAをTEバッファー(1mMのEDTAを含む10mMのTris−HCl;pH7.6)に溶解して170μg/mlの精製DNAを含む溶液を得た。このDNA溶液を注入用バッファー(0.1mMのEDTAを含む10mMのTris−HCl;pH7.6)で5μg/mlとなるように希釈して注入用DNA溶液を調製した。なお、調製したDNA溶液は注入操作まで−20℃で保存した。
(Preparation of transgene)
For microinjection, a genomic DNA of SV40 temperature-sensitive mutant tsA58 was modified by genetic engineering techniques. The genomic DNA of tsA58 was opened with the restriction enzyme BamHI, introduced into the BamHI site of pBR322, the SfiI sequence was converted to SacII, and the DNA clone pSVtsA58ori, which had the SV40 replication origin (ori) deleted as ori (-) ( -)-2 (Ohno T. et al., Cytotechnology, 165-172, 1991), DNA for introduction was prepared according to a conventional method. That is, the plasmid DNA pSVtsA58ori (−)-2 obtained by amplifying in large quantities in E. coli was digested with the restriction enzyme BamHI (Takara Shuzo), and then agarose electrophoresis (1% gel; Boehringer) Then, the gel was dissolved, followed by phenol / chloroform treatment and ethanol precipitation treatment to recover DNA. The recovered purified DNA was dissolved in TE buffer (10 mM Tris-HCl containing 1 mM EDTA; pH 7.6) to obtain a solution containing 170 μg / ml purified DNA. This DNA solution was diluted with an injection buffer (10 mM Tris-HCl containing 0.1 mM EDTA; pH 7.6) to 5 μg / ml to prepare an injection DNA solution. The prepared DNA solution was stored at −20 ° C. until the injection operation.
(トランスジェニックマウスの作出)
マウス前核期受精卵への上記調製した注入用DNA溶液のマイクロインジェクションは下記の要領で行った。性成熟した8週齢のウィスターマウスを明暗サイクル12時間(4:00〜16:00を明時間)、温度23±2℃、湿度55±5%で飼育し、膣スメアにより雌の性周期を観察して、ホルモン処理日を選択した。まず、雌マウスにより150IU/kgの妊馬血清性性腺刺激ホルモン(日本ゼンヤク社製;PMSゴナドトロピン(pregnanto mare serum gonadotropin:PMSG))を腹腔内投与し、その48時間後に75IU/kgのヒト絨毛性性腺刺激ホルモン(三共臓器社製;プベローゲン(human chorionic gonadotropin:hCG))を投与して過剰排卵処理を行った後、雄との同居により交配を行った。hCG投与32時間後に卵管灌流により前核期受精卵を採取した。卵管灌流及び卵の培養にはmKRB液(Toyoda Y. and Chang M.C., J. Reprod. Fertil., 36, 9-22, 1974)を使用した。採取した受精卵を0.1%のヒアルロニダーゼ(シグマ社製;Hyaluronidase Typel-S)を含むmKRB液中で37℃、5分間の酵素処理を行い卵丘細胞を除去した後、mKRB液で3回洗浄して酵素を除去し、DNA注入操作までCO2−インキュベーター内(5%のCO2−95%のAir,37℃、飽和湿度)に保存した。この様にして準備したマウス受精卵の雄性前核に前記DNA溶液を注入した。注入した228個の卵を9匹の仮親に移植して出産させ80匹の産仔を得た。注入DNAのマウスへの導入は、離乳直後に断尾して得た尾より調製したDNAをPCR法により検定した[使用プライマー;tsA58−1A,5’−TCCTAATGTGCAGTCAGGTG−3’(1365〜1384部位に相当:配列番号1)、tsA58−1B,5’−ATGACGAGCTTTGGCACTTG−3’(1571〜1590部位に相当:配列番号2)]。その結果、遺伝子導入の認められた20匹(雄6匹、雌8匹、性別不明6匹)の産仔の中から性成熟期間を経過する12週齢まで生存した11ラインのトランスジェニックマウス(雄ライン:#07−2,#07−5,#09−6,#12−3,#19−5,雌ライン:#09−7,#11−6,#12−5,#12−7,#18−5,#19−8)を得た。これらのG0世代のトランスジェニックマウスとウィスターマウスを交配し、雄ファウンダーの2ライン(#07−2,#07−5)と雌ファウンダーの3ライン(#09−7,#11−6,#19−8)において次世代以降への遺伝子の伝達を確認した。
(Creation of transgenic mice)
Microinjection of the prepared DNA solution for injection into mouse pronuclear fertilized eggs was performed as follows. Sexually mature 8-week-old Wistar mice are bred at a light / dark cycle of 12 hours (4: 0 to 16:00 light time), at a temperature of 23 ± 2 ° C. and a humidity of 55 ± 5%. Observed and selected the day of hormone treatment. First, 150 IU / kg pregnant horse serum gonadotropin (manufactured by Zenyak Co., Ltd .; PMS gonadotropin: PMSG) was intraperitoneally administered to female mice, and 75 IU / kg human chorionic property 48 hours later. After gonadotropin (manufactured by Sankyo Organs Co., Ltd .; human chorionic gonadotropin: hCG) was administered to perform superovulation, mating was carried out by cohabitation with males. Pronuclear fertilized eggs were collected by oviduct perfusion 32 hours after hCG administration. MKRB solution (Toyoda Y. and Chang MC, J. Reprod. Fertil., 36, 9-22, 1974) was used for oviduct perfusion and egg culture. The collected fertilized eggs were subjected to enzyme treatment at 37 ° C. for 5 minutes in mKRB solution containing 0.1% hyaluronidase (Sigma; Hyaluronidase Typel-S) to remove cumulus cells, and then 3 times with mKRB solution. It washed to remove the enzyme, CO 2 until DNA injection operation - incubator (5% CO 2 -95% of the Air, 37 ° C., saturated humidity) and stored in. The DNA solution was injected into the male pronucleus of the mouse fertilized egg thus prepared. The injected 228 eggs were transplanted to 9 foster parents to give birth and 80 offspring were obtained. For introduction of the injected DNA into the mouse, DNA prepared from the tail obtained by cleaving immediately after weaning was assayed by PCR [Primer used: tsA58-1A, 5′-TCTCATAATGTGCAGTCAGGTG-3 ′ (from 1365 to 1384 sites). Corresponding: SEQ ID NO: 1), tsA58-1B, 5′-ATGACGAGCTTTGGCACTTG-3 ′ (corresponding to 1571 to 1590 sites: SEQ ID NO: 2)]. As a result, 11 lines of transgenic mice (6 males, 8 females, 6 gender unknown) pups that survived to the age of 12 weeks after the sexual maturation period (20 males, 8 females, 6 gender unknown). Male lines: # 07-2, # 07-5, # 09-6, # 12-3, # 19-5, female lines: # 09-7, # 11-6, # 12-5, # 12-7 , # 18-5, # 19-8). Crossed these G 0 generation of transgenic mice and Wistar mouse, 2 line of male founders (# 07-2, # 07-5) and
(マウス骨髄からのDCの分離・調整)
マウスはC57BL/6(B6マウス)と温度感受性SV40T抗原トランスジェニックマウス(ts SV40 LT Tgマウス;B6バックグラウンド)の2系統を用いた。また、これらマウスは全て6〜8週齢の雌を用いた。マウスの骨髄細胞を0.144M塩化アンモニウムにて赤血球lysis処理し、抗CD4抗体、抗CD8抗体、抗I−Ab抗体、抗ラットIg抗体(それぞれTIB207、211、154、216:Amerikan Type Culture Collection)とウサギ補体(Cedarlane社製)を用いて、リンパ球とIa陽性細胞の除去を行った。この細胞1×106/wellを20ng/mLのマウスリコンビナントGM−CSF(Peprotech社製)を含む完全RPMI培地(5%FCS)を用い、24穴プレートで培養し、6日後に樹状細胞(DC)を誘導した。ts SV40 LT TgマウスからのDCは33℃、5%CO2条件下で誘導後、継代を5×105/mL/wellで10回以上繰り返し(4〜5日ごとに培地交換、3週ごとに継代)、7ヶ月以上培養したものを用いた。なお、B6マウスからのDCは上記の方法により骨髄細胞を単離し、DCを誘導した後、37℃、5%CO2条件下で培養し、その時点で解析に用いた。
(Separation and adjustment of DC from mouse bone marrow)
Two mice, C57BL / 6 (B6 mouse) and temperature-sensitive SV40T antigen transgenic mouse (ts SV40 LT Tg mouse; B6 background) were used. All of these mice were females aged 6 to 8 weeks. Mouse bone marrow cells were erythroid lysis treated with 0.144M ammonium chloride, anti-CD4 antibody, anti-CD8 antibody, anti-I-A b antibody, anti-rat Ig antibody (respectively TIB207,211,154,216: Amerikan Type Culture Collection ) And rabbit complement (Cedarlane) were used to remove lymphocytes and Ia positive cells. This
(ライトギムザ染色による形態観察)
実施例2で得られたDCのライトギムザ(Wright-Giemsa)染色を行った。B6マウスとts SV40 LT Tgマウスの2系統を起源とするそれぞれのDCをサイトスピンでスライドグラスに接着させ、ライトギムザ法(ライト染色液・ギムザ染色液、ともにメルク社製)にて染色し、可視化した。結果を図1に示す。この結果、細胞の大きさは、ts SV40 LT TgのDC(SV40T B6)の方がB6マウスのDC(初代培養B6)より大きかった。
(Morphological observation by light Giemsa staining)
The DC obtained in Example 2 was stained with Wright-Giemsa. Each DC originating from two strains of B6 mice and ts SV40 LT Tg mice was adhered to a slide glass by cytospin, stained with the Light Giemsa method (Light stain solution and Giemsa stain solution, both from Merck), and visualized. did. The results are shown in FIG. As a result, the cell size of ts SV40 LT Tg DC (SV40T B6) was larger than that of B6 mouse DC (primary culture B6).
(異なる温度での増殖能)
MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazo-lium bromide)はミトコンドリア内膜の脱水素酵素などにより開裂されて赤紫色のMTT-formazanを生成する。この呈色反応が細胞の増殖能に比例することに基づいたMTTアッセイにより、ts SV40 LT TgのDCの異なる温度(33℃、37℃、39℃)での増殖能を測定した。MTTアッセイは、5mg/mLのMTT(シグマ社製)溶液10μLを前記20ng/mLのマウスリコンビナントGM−CSF(Peprotech社製)を含む細胞懸濁液100μLに添加し、96穴プレートに7.5×103/100μL/wellで細胞をまき、測定時にMTT溶液を10μL/well添加し、経時的に測定を行った。結果を図2に示す。この結果、SV40T抗原が発現する33℃で最も増殖能が高かった。
(Proliferation ability at different temperatures)
MTT (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazo-lium bromide) is cleaved by dehydrogenase etc. of the inner mitochondrial membrane to produce magenta MTT-formazan. The proliferative ability of ts SV40 LT Tg DC at different temperatures (33 ° C., 37 ° C., 39 ° C.) was measured by MTT assay based on this color reaction being proportional to the proliferative ability of the cells. In the MTT assay, 10 μL of a 5 mg / mL MTT (Sigma) solution was added to 100 μL of a cell suspension containing the 20 ng / mL mouse recombinant GM-CSF (Peprotech), and 7.5 μl in a 96-well plate. × plated cells at 10 3 / 100μL / well, MTT solution was added 10 [mu] L / well at the time of measurement, was measured over time. The results are shown in FIG. As a result, the proliferation ability was highest at 33 ° C. where the SV40T antigen was expressed.
(GM−CSF要求性)
ts SV40 LT TgのDCについて、顆粒球マクロファージコロニー刺激因子(GM−CSF)要求性を検討するため、実施例4と同様な条件で、MTTアッセイを行った。すなわち、5mg/mLのMTT(シグマ社製)溶液10μLをそれぞれ20、10、2、0ng/mL濃度のマウスリコンビナントGM−CSF(Peprotech社製)を含む細胞懸濁液100μLに添加し、96穴プレートに7.5×103/100μL/wellで細胞をまき、測定時にMTT溶液を10μL/well添加し、経時的に測定を行った。結果を図3に示す。この結果、通常の初代培養のDC誘導に用いる濃度の20ng/mLで一番増殖が良かった。この不死化細胞はGM−CSF依存的に増殖する細胞であることが分かった。
(GM-CSF requirement)
In order to examine granulocyte macrophage colony stimulating factor (GM-CSF) requirement for ts SV40 LT Tg DC, MTT assay was performed under the same conditions as in Example 4. That is, 10 μL of a 5 mg / mL MTT (Sigma) solution was added to 100 μL of a cell suspension containing mouse recombinant GM-CSF (Peprotech) at concentrations of 20, 10, 2, and 0 ng / mL, respectively. plates seeded cells with 7.5 × 10 3 / 100μL / well, the MTT solution was added 10 [mu] L / well at the time of measurement, was measured over time. The results are shown in FIG. As a result, the growth was the best at the concentration of 20 ng / mL used for DC induction of normal primary culture. This immortalized cell was found to be a cell that proliferates in a GM-CSF-dependent manner.
(細胞表面に発現するタンパク質の検討)
ts SV40 LT Tgマウス(SV40T B6)とB6マウス(初代培養B6)の2系統を起源とするそれぞれのDCを用いて、細胞表面上に発現する代表的なタンパク質であるミエロイド分子及びロイコサイト分子の発現をFACSにて解析した。結果を図4及び図5に示す。この結果、上記2系統を起源とするDCにおけるミエロイド分子及びロイコサイト分子の発現量は共に変わらなかった。
(Examination of proteins expressed on the cell surface)
Using respective DCs originating from two strains of ts SV40 LT Tg mice (SV40T B6) and B6 mice (primary culture B6), myeloid molecules and leucosite molecules that are representative proteins expressed on the cell surface Expression was analyzed by FACS. The results are shown in FIGS. As a result, the expression levels of myeloid molecules and leucosite molecules in DCs originating from the two strains were not changed.
(抗原の取込み能の比較検討)
ts SV40 LT Tgマウス(SV40T B6)とB6マウス(初代培養B6)の2系統を起源とするそれぞれのDCを用いて、10μg/mLの抗原(OVA−FITC;Molecule Probes社製)を添加後2日目に取込み能の比較検討をFACSにて行った。結果を図6に示す。この結果、ts SV40 LT TgのDCはB6マウスのDCよりも強い取込み能を示した。
(Comparison study of antigen uptake)
After adding 10 μg / mL of antigen (OVA-FITC; manufactured by Molecule Probes) using DCs originating from two strains of ts SV40 LT Tg mouse (SV40T B6) and B6 mouse (primary culture B6), 2 On the day, the uptake ability was compared with FACS. The results are shown in FIG. As a result, DC of ts SV40 LT Tg showed stronger uptake ability than that of B6 mice.
(LPS刺激に対する樹状細胞の成熟化の比較検討)
ts SV40 LT Tgマウス(SV40T B6)とB6マウス(初代培養B6)の2系統を起源とするそれぞれのDCについて、それぞれのDCの培養ウェルにLPSを2μg/mL添加して、24時間後の細胞表面上の成熟度マーカーであるI−Ab、CD86とCD40の発現量をFACSにて解析した。結果を図7に示す。この結果、ts SV40 LT TgのDCにおける成熟度マーカーのアップレギュレーション、つまり成熟度はB6マウス(初代培養B6)のDCと変わらず起こることが分かった。
(Comparison study of maturation of dendritic cells in response to LPS stimulation)
For each DC originating from two strains of ts SV40 LT Tg mice (SV40T B6) and B6 mice (primary culture B6), 2 μg / mL of LPS was added to each DC culture well, and cells 24 hours later the expression level of maturity, a marker I-a b, CD86 and CD40 on the surface was analyzed by FACS. The results are shown in FIG. As a result, it was found that up-regulation of the maturity marker in ts SV40 LT Tg DC, that is, the maturity occurred in the same manner as DC of B6 mice (primary culture B6).
(LPS刺激に対する樹状細胞の活性化の比較検討)
ts SV40 LT Tgマウス(SV40T B6)とB6マウス(初代培養B6)の2系統を起源とするそれぞれのDCにおける、LPS刺激に対するDCの活性化としてIL−12p70産生量をELISAにて測定した。結果を図8に示す。この結果、それぞれのDCの培養ウェルにLPSを2μg/mL添加して、24時間後の上清中のIL−12p70産生量は2系統間で変わらなかった。
(Comparative study of dendritic cell activation in response to LPS stimulation)
IL-12p70 production was measured by ELISA as activation of DC in response to LPS stimulation in each DC originating from two strains of ts SV40 LT Tg mice (SV40T B6) and B6 mice (primary culture B6). The results are shown in FIG. As a result, 2 μg / mL of LPS was added to each DC culture well, and the amount of IL-12p70 produced in the supernatant after 24 hours did not change between the two strains.
(抗原を取り込ませた場合の樹状細胞の成熟化)
ts SV40 LT Tgマウス(SV40T B6)とB6マウス(初代培養B6)の2系統を起源とするそれぞれのDCに、抗原として10μg/mLのOVA−FITCを取り込ませて、2日後にそれらの成熟度をFACSにて解析した。結果を図9に示す。この結果、B6マウス(初代培養B6)のDCの方が強い成熟度を示した。
(Maturation of dendritic cells when antigen is incorporated)
DCs originating from two strains of ts SV40 LT Tg mouse (SV40T B6) and B6 mouse (primary culture B6) were incorporated with 10 μg / mL of OVA-FITC as an antigen, and their maturity two days later Was analyzed by FACS. The results are shown in FIG. As a result, DC of B6 mice (primary culture B6) showed stronger maturity.
(樹状細胞によるOVA−T細胞への抗原提示能の比較検討)
本発明者らが以前樹立したOVA特異的CD4T細胞を用いて、ts SV40 LT Tgマウス(SV40T B6)とB6マウス(初代培養B6)の2系統を起源とするそれぞれのDCの抗原提示能を測定した。提示能としてT細胞のIL−4産生と増殖を測定した。X線照射したDC(5×103/well)を1×105のOVA特異的T細胞と様々な濃度のOVA又はOVA−IgG免疫複合体(IC)存在下で96穴プレートにて共培養した。免疫複合体はFcγレセプターを介して抗原を取り込ませると、高効率な抗原提示が起きると言われている(J. Immunol., 161, 6059-6067, 1998、J. Exp. Med., 189, 371-380, 1999、Eur. J. Immunol., 30, 848-857, 2000、J. Exp. Med., 195, F1-F3, 2002)ことから、比較検討に用いた。なお、OVA−IgG免疫複合体(IC)は、卵白アルブミン(OVA;Sigma社製)をウサギ抗OVA IgG(BioDesign社製)を重量比1:10で混合し、37℃で1時間インキュベートして作製した。24時間後、その培養上清を回収し、T細胞のIL−4産生量をELISAにて測定した。T細胞の増殖は、48時間の共培養後、[3H]−TdRの取り込みを測定した。結果を図10に示す。この結果、2系統を起源とするそれぞれのDCは、共に同じくらいのT細胞の増殖、IL−4産生を起こした。ただ、IL−4産生において添加したOVAが1μg/mLの場合、OVA−IgG免疫複合体(IC)を抗原に用いたときに、ts SV40 LT TgのDCによるIL−4産生量はB6マウス(初代培養B6)のDCに比べて少なかった。
(Comparison study of antigen-presenting ability to OVA-T cells by dendritic cells)
Using the OVA-specific CD4 T cells established previously by the present inventors, the antigen-presenting ability of each DC originating from two strains of ts SV40 LT Tg mice (SV40T B6) and B6 mice (primary culture B6) is measured. did. IL-4 production and proliferation of T cells were measured as the presentation ability. X-irradiated DC (5 × 10 3 / well) were co-cultured in 96-well plates in the presence of 1 × 10 5 OVA-specific T cells and various concentrations of OVA or OVA-IgG immune complex (IC). did. It is said that when an immune complex incorporates an antigen via an Fcγ receptor, highly efficient antigen presentation occurs (J. Immunol., 161, 6059-6067, 1998, J. Exp. Med., 189, 371-380, 1999, Eur. J. Immunol., 30, 848-857, 2000, J. Exp. Med., 195, F1-F3, 2002). The OVA-IgG immune complex (IC) was prepared by mixing egg white albumin (OVA; manufactured by Sigma) with rabbit anti-OVA IgG (manufactured by BioDesign) at a weight ratio of 1:10 and incubating at 37 ° C. for 1 hour. Produced. After 24 hours, the culture supernatant was collected, and the IL-4 production amount of T cells was measured by ELISA. T cell proliferation was measured by [ 3 H] -TdR incorporation after 48 hours of co-culture. The results are shown in FIG. As a result, each DC originating from the two lines caused the same amount of T cell proliferation and IL-4 production. However, when OVA added in IL-4 production is 1 μg / mL, when OVA-IgG immune complex (IC) is used as an antigen, IL-4 production by DC of ts SV40 LT Tg is B6 mice ( Less than the DC of primary culture B6).
(経時的抗OVA抗体価)
ts SV40 LT Tgマウス(SV40T B6)とB6マウス(初代培養B6)の2系統を起源とするそれぞれのDCに、OVA又はOVA−IgG免疫複合体を負荷して、移入した後の経時的抗OVA抗体価を調べた。インビボの実験において、DCを培養しているウェルにOVA又はOVA−IgG免疫複合体を10μg/mL含む新鮮培地と交換後2日目に、抗原を取り込んだ成熟DCを回収してPBS(−)で洗浄し、レシピエントとなるB6マウス1匹あたりDC1×106cellsを尾静脈に移入した。免疫後、眼底より採血し、経時的な抗OVA抗体価をELISAにより測定した。結果を図11に示す。この結果、OVA−IgG免疫複合体(IC)では、2系統ともIgG1、IgG2a、IgG2bいずれにおいても効果的な抗体産生が見られた。抗原にOVAを用いたとき、IgG2aにおいてts SV40 LT TgのDCによる抗体産生が有意な差をもって高かった(2週間後)。
(Anti-OVA antibody titer over time)
Anti-OVA over time after loading and transfecting DCs originating from two strains of ts SV40 LT Tg mice (SV40T B6) and B6 mice (primary culture B6) with OVA or OVA-IgG immune complex The antibody titer was examined. In an in vivo experiment, on the second day after replacement with a fresh medium containing 10 μg / mL of OVA or OVA-IgG immune complex in wells in which DC is cultured, the mature DC incorporating the antigen was collected and PBS (−) After washing,
(抗GL−7抗体による脾臓組織の免疫組織化学染色)
マウスにDCを移入し、約3週後にそのマウスの脾臓を採取し、活性化した胚中心の指標であるGL−7の発現を免疫組織化学染色法にて検鏡した。結果を図12に示す。この結果、B6マウス及びts SV40 LT Tgマウス共に免疫複合体(IC)を抗原に用いたとき、その形成が効果的だった。これら2系統間に差は無かった。
(Immunohistochemical staining of spleen tissue with anti-GL-7 antibody)
DCs were transferred to the mice, and after about 3 weeks, the spleens of the mice were collected, and the expression of GL-7, an indicator of the activated germinal center, was examined by immunohistochemical staining. The results are shown in FIG. As a result, formation of B6 mice and ts SV40 LT Tg mice was effective when the immune complex (IC) was used as an antigen. There was no difference between these two systems.
(生体内CTL活性)
マウスへのDC移入による生体内のCTL活性を比較検討した。移入7日後のマウスの脾臓細胞を採取し、37℃のCO2インキュベーターにて30分間インキュベートすることで付着性細胞を取り除き、T細胞リッチな状態にした。この非付着性細胞1×107と、X線照射し増殖を止めたE.G7−OVA 1×106を24穴プレートにて共培養した。E.G7−OVA(CRL2113;ATCC)はB6由来のthymomaであるEL−4にOVAのcDNAをトランスフェクトしたものであり、そのMHCクラスI上には常にOVAのペプチドがロードされている。培養5日目に、E.G7−OVAをNa2 51CrO4(Amersham Pharmacia Biotech社製)で1時間かけてラベルした。様々な濃度の生脾細胞とその51CrラベルしたE.G7−OVA 1×104とを96穴Uボトムプレートにて共培養し、4時間後に上清中の51Crの放出をオートウェルガンマシステム(Aloka社製)にて測定した。結果を図13に示す。この結果、ts SV40 LT TgのDCにOVAを添加したときに、B6マウスのDCと比較すると、免疫複合体を取り込ませたときと同程度の、かなり強力なCTL活性を誘導した。
(In vivo CTL activity)
The in vivo CTL activity by DC transfer to mice was compared and examined. Seven days after transfer, spleen cells of mice were collected and incubated for 30 minutes in a 37 ° C. CO 2 incubator to remove adherent cells and make them rich in T cells. The non-adherent cells (1 × 10 7) and the E. coli cells that stopped proliferation by X-ray irradiation G7-
(樹状細胞におけるMHCクラスI/OVAペプチド複合体の発現)
上記実施例14において、ts SV40 LT TgのDCにOVAを添加したときに、B6マウス(初代培養B6)のDCと比較すると、免疫複合体を取り込ませたときと同程度の、かなり強力なCTL活性を誘導した理由として、DCのMHCクラスI分子上により多くの抗原由来ペプチドが提示されているのではないかと考え、MHCクラスI/OVAペプチド複合体に特異的なモノクローナル抗体を用いてフローサイトメトリーにより解析した。50μg/mlのOVA存在下で、ts SV40 LT Tgマウス(SV40T B6)とB6マウス(初代培養B6)の2系統を起源とするそれぞれのDCを48時間培養した。次いで、抗FcγRII/III抗体でFcレセプターをブロックした後、抗CD11c−PE抗体及び抗MHC I−FITC抗体、又は抗CD11c−PE抗体及び抗MHC I/OVAペプチド抗体を用いて染色した。なお、抗MHC I/OVAペプチド抗体染色の場合、2次抗体(抗マウスIgG1−FITC抗体)で染色した。染色後、フローサイトメトリー(BDLSR)で測定し、データはBD CellQuestで解析した。樹状細胞(CD11c陽性細胞)のMHC I又はMHC I/OVAペプチド細胞表面発現量をヒストグラムで示した結果を図14に示す。この結果、ts SV40 LT TgのDCのMHCクラスIの発現レベルは野生型のB6マウス(初代培養B6)とほぼ同等であったが、MHCクラスI/OVAペプチド複合体の発現はts SV40 LT TgのDCにおいて劇的に高くなっていた。すなわち、ts SV40 LT TgのDCはMHCクラスIに効率良くOVAペプチドを提示することでCTLに対する効率良い抗原提示ができる細胞であることがわかった。
(Expression of MHC class I / OVA peptide complex in dendritic cells)
In Example 14 above, when OVA was added to DCs of ts SV40 LT Tg, compared with DCs of B6 mice (primary culture B6), it was considerably more powerful CTL, which was comparable to that when immune complexes were incorporated. The reason why the activity was induced is that many antigen-derived peptides are presented on the MHC class I molecule of DC, and the flow site was obtained using a monoclonal antibody specific for the MHC class I / OVA peptide complex. Analyzed by measurement. In the presence of 50 μg / ml of OVA, each DC originating from two strains of ts SV40 LT Tg mouse (SV40T B6) and B6 mouse (primary culture B6) was cultured for 48 hours. Next, the Fc receptor was blocked with an anti-FcγRII / III antibody, and then stained with an anti-CD11c-PE antibody and an anti-MHC I-FITC antibody, or an anti-CD11c-PE antibody and an anti-MHC I / OVA peptide antibody. In the case of anti-MHC I / OVA peptide antibody staining, staining was performed with a secondary antibody (anti-mouse IgG1-FITC antibody). After staining, measurement was performed by flow cytometry (BDLSR), and data was analyzed by BD CellQuest. FIG. 14 shows the results of the expression of dendritic cells (CD11c positive cells) on the surface of MHC I or MHC I / OVA peptide cells as a histogram. As a result, the expression level of MHC class I of DC of ts SV40 LT Tg was almost the same as that of wild type B6 mouse (primary culture B6), but the expression of MHC class I / OVA peptide complex was ts SV40 LT Tg. The DC was dramatically higher. That is, it was found that the DC of ts SV40 LT Tg is a cell that can efficiently present an antigen against CTL by efficiently presenting an OVA peptide to MHC class I.
(インビボにおける抗腫瘍活性)
ts SV40 LT TgのDCの生体内における増強されたCTL応答を具体的に評価するために、抗腫瘍実験を行った。OVA刺激(10μg/ml,48時間)を与えたts SV40 LT Tgマウス(SV40T B6)とB6マウス(初代培養B6)の2系統を起源とするそれぞれのDC(5×105/マウス)、又は生理食塩水(200μl)を、未感作マウス(7〜8匹)の尾静脈より投与し、7日後に再度DC又は生理食塩水を投与し、さらに7日後にOVAを発現する腫瘍細胞(E.G7)を左大腿部に1×105/マウスで植え付け、腫瘍形成を日を追って観察し、腫瘍の直径が5mm以上のものを腫瘍が形成されたと判定した。結果を図15に示す。図15における腫瘍抑制率は、腫瘍が形成されていないマウスの割合を%で表示したものである。ts SV40 LT TgのDCを移入したマウスは野生型のB6マウスのDCを移入したマウスよりも腫瘍形成が遅く、効率良く腫瘍形成を抑制した。すなはち、ts SV40 LT TgのDCは生体内において野生型DCよりも効率良く抗腫瘍活性を誘導する細胞であることが判った。
(Anti-tumor activity in vivo)
To specifically evaluate the enhanced CTL response of ts SV40 LT Tg DC in vivo, anti-tumor experiments were performed. Each DC (5 × 10 5 / mouse) originating from two strains of ts SV40 LT Tg mice (SV40T B6) and B6 mice (primary culture B6) given OVA stimulation (10 μg / ml, 48 hours), or Saline (200 μl) was administered from the tail vein of naive mice (7-8 mice), DC or saline was administered again 7 days later, and tumor cells (E) expressing OVA 7 days later. .G7) was planted in the left thigh at 1 × 10 5 / mouse, and tumor formation was observed day by day, and it was determined that tumors were formed if the diameter of the tumor was 5 mm or more. The results are shown in FIG. The tumor suppression rate in FIG. 15 represents the percentage of mice in which tumors are not formed in%. Mice transfected with DCs of ts SV40 LT Tg were slower in tumor formation than mice transfected with DCs of wild type B6 mice and efficiently suppressed tumor formation. In other words, it was found that ts SV40 LT Tg DCs are cells that induce antitumor activity more efficiently than wild type DCs in vivo.
(考察)
ts SV40 LT Tgマウスの骨髄細胞から誘導して、10回以上継代し、7ヶ月以上33℃で長期培養を繰り返したDCは初期培養のそれに比べ、大きさが少々大きく、取り込み能が高いが、インビトロにおいての抗原提示能ではMHCクラスIIを介した場合で変わらない機能を持つことが分かった。このことから、インビトロにおけるDCの解析に用いるのに有用な細胞株であると考えられる。また、インビボにおいてワクチンとして用いると、特にMHCクラスIを介して強力にCTLを誘導した。これは高効率のMHCクラスIを介した提示能は高い抗原の取り込み量に依存するという報告(Annu. Rev. Immunol., 19, 47-64, 2001)と一致する。このことから、ts SV40 LT TgのDCは癌やウイルスなどに対するワクチン効果を生体内で効率よく起こすことができる。
(Discussion)
DCs derived from bone marrow cells of ts SV40 LT Tg mice, passaged more than 10 times, and repeated long-term culture at 33 ° C. for 7 months or more have a slightly larger size and higher uptake capacity than those of the initial culture. In addition, it was found that the antigen presentation ability in vitro has a function that does not change when mediated by MHC class II. From this, it is considered that the cell line is useful for use in analysis of DC in vitro. In addition, when used as a vaccine in vivo, CTL was strongly induced, particularly via MHC class I. This is consistent with a report (Annu. Rev. Immunol., 19, 47-64, 2001) that the high-efficiency MHC class I presentation ability depends on high antigen uptake. From this, DC of ts SV40 LT Tg can efficiently cause a vaccine effect against cancer, virus and the like in vivo.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003371244A JP4219789B2 (en) | 2002-10-30 | 2003-10-30 | Bone marrow-derived immortalized dendritic cell line |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002316871 | 2002-10-30 | ||
JP2003371244A JP4219789B2 (en) | 2002-10-30 | 2003-10-30 | Bone marrow-derived immortalized dendritic cell line |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004166697A true JP2004166697A (en) | 2004-06-17 |
JP4219789B2 JP4219789B2 (en) | 2009-02-04 |
Family
ID=32715829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003371244A Expired - Fee Related JP4219789B2 (en) | 2002-10-30 | 2003-10-30 | Bone marrow-derived immortalized dendritic cell line |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4219789B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009518017A (en) * | 2005-12-08 | 2009-05-07 | ダンリド ビオテク アクティーゼルスカブ | Method for producing dendritic cells using reduced temperature |
KR20160069712A (en) * | 2014-12-09 | 2016-06-17 | (주)아모레퍼시픽 | Uv-a induced aging modle of stem/progenitor cell line and screening system for potential anti-aging component using them |
-
2003
- 2003-10-30 JP JP2003371244A patent/JP4219789B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009518017A (en) * | 2005-12-08 | 2009-05-07 | ダンリド ビオテク アクティーゼルスカブ | Method for producing dendritic cells using reduced temperature |
US9771558B2 (en) | 2005-12-08 | 2017-09-26 | Dandrit Diotech A/S | Method for generating dendritic cells employing decreased temperature |
KR20160069712A (en) * | 2014-12-09 | 2016-06-17 | (주)아모레퍼시픽 | Uv-a induced aging modle of stem/progenitor cell line and screening system for potential anti-aging component using them |
Also Published As
Publication number | Publication date |
---|---|
JP4219789B2 (en) | 2009-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schaefer et al. | Observation of antigen-dependent CD8+ T-cell/dendritic cell interactions in vivo | |
CN105578876B (en) | The method for preparing the non-human animal of expression HLAI classes | |
AU2010200016B2 (en) | Growth of foreign cells in fetal animals facilitated by conditional and selective destruction of native host cells | |
IE83909B1 (en) | Transgenic animals, cells and cell lines therefrom, and their use | |
JP2012531896A (en) | Method for producing a humanized non-human mammal | |
CN113930446B (en) | Method for modifying non-human animal genes and constructed immunodeficiency animal model | |
WO2015199225A1 (en) | Genetic modification method for poultry primordial germ cells, genetically-modified poultry primordial germ cells, method for producing genetically-modified poultry, and poultry eggs | |
KR20180012323A (en) | Non-human animal with destruction at C9ORF72 locus | |
JP5542928B2 (en) | Method for producing transformed earthworm using worm's gonad regeneration ability, transformed earthworm produced thereby, and method for producing recombinant protein from body fluid of transformed earthworm | |
JP4609855B2 (en) | Method for producing human-derived immunocompetent cells | |
Manfra et al. | Leukocytes expressing green fluorescent protein as novel reagents for adoptive cell transfer and bone marrow transplantation studies | |
EP2992759B1 (en) | Atopic dermatitis model animal and use thereof | |
JP4219789B2 (en) | Bone marrow-derived immortalized dendritic cell line | |
JP2004516834A (en) | Thymic epithelial progenitor cells and uses thereof | |
JP2012050431A (en) | Modified cell co-expressing blimp1 and reporter molecule, and method for using the same | |
US20060067914A1 (en) | Immortalized natural killer cell line | |
WO2016208532A1 (en) | Method for producing blood chimeric animal | |
WO2004039968A1 (en) | Immortalized dendritic cell line originating in bone marrow | |
JP2020089332A (en) | Non-human genetically modified animal and its making method | |
WO2001060984A1 (en) | Immortalized vascular adventitial cell line | |
US20030044398A1 (en) | Methods for producing antibodies in mammals | |
WO2012020843A1 (en) | Transgenic animal, transformed stem cell, and use thereof | |
JP5186637B2 (en) | Transgenic non-human mammal and use thereof | |
JP6078383B2 (en) | Transgenic non-human mammal | |
WO2002028188A1 (en) | Derivation of human tumor cell lines using passage in transgenic mice having selectable markers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20031105 |
|
AA64 | Notification of invalidation of claim of internal priority (with term) |
Free format text: JAPANESE INTERMEDIATE CODE: A241764 Effective date: 20040216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040303 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080714 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081112 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4219789 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131121 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |