JP2004163033A - Heat radiation device - Google Patents

Heat radiation device Download PDF

Info

Publication number
JP2004163033A
JP2004163033A JP2002330841A JP2002330841A JP2004163033A JP 2004163033 A JP2004163033 A JP 2004163033A JP 2002330841 A JP2002330841 A JP 2002330841A JP 2002330841 A JP2002330841 A JP 2002330841A JP 2004163033 A JP2004163033 A JP 2004163033A
Authority
JP
Japan
Prior art keywords
box
heat
evaporator
condenser
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002330841A
Other languages
Japanese (ja)
Inventor
Koji Matsubara
松原幸治
Michio Yanatori
梁取美智雄
Shunichi Yokomura
横村俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIIGATA TLO KK
Kitamura Manufacturing Co Ltd
Niigata TLO Corp
Original Assignee
NIIGATA TLO KK
Kitamura Manufacturing Co Ltd
Niigata TLO Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIIGATA TLO KK, Kitamura Manufacturing Co Ltd, Niigata TLO Corp filed Critical NIIGATA TLO KK
Priority to JP2002330841A priority Critical patent/JP2004163033A/en
Publication of JP2004163033A publication Critical patent/JP2004163033A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem on the temperature rising in a casing caused by solar radiation in daytime and the dew condensation at the inside caused by radiation cooling at night, as an outdoor installation-type electronic device is installed in a state of being put and sealed in the casing. <P>SOLUTION: An evaporator 6 of a heat current control type heat conductive device 200 is installed in the casing 100 accommodating a heat source 2, a condenser 7 is mounted on an external sun visor 5-b part or between the sun visor 5-b and a wall 1, and the heat current is controlled by the heat current control type heat conducting device 200 to control the temperature and humidity inside of the casing 100. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は電源や演算装置を搭載した箱体を屋外に設置して放熱する際の放熱装置の構成に関する。
【0002】
【従来の技術】
本発明に関連ある公知例としては特開平3−255819号なるものがある。しかしこの引用例は本願と目的と構成が異なるものである。
【0003】
【発明が解決しようとする課題】
電源や演算装置を搭載した箱体から成る放熱装置は、発熱密度が高いとともに、屋外に設置される場合には密閉構造にする必要があり、かつ日中の日射に対する対策と、夜間の放射冷却にともなう箱体内部の結露対策等に対する対策をしないと装置として信頼性を保障できない。前記従来の技術においては日射対策及び夜間の放射冷却にともなう結露対策に関しては何ら開示されていず、本願と目的と構成が異なるものである。
【0004】
【課題を解決するための手段】
(1)電源や演算装置を搭載した箱体の外面に日射よけを設け、日射よけと箱体壁との間に適当な広さの間隙を設ける。箱体内で温度上昇し易く熱を取得し易い部分と、箱体壁の外部と日射よけとの間で放熱し易い部分とを熱流制御性熱伝達装置で熱的に結合する。この熱流制御性熱伝達装置は蒸発性の液体(エタノール,フロンなど)を用い、その蒸発と凝縮作用を用いるものであるが、所望時元来のヒートパイプとは異なる蒸発−凝縮作用を停止させる機構を具備している。これにより必要に応じて放熱作用を停止し、過度なる箱体内の温度上昇あるいは温度低下を防止して、日中の放熱を良好する以外に、放射冷却によって結露が起こらないようにする機能を持たせる。
(2)箱体内の熱取得部分としては温度上昇する熱源部分、熱源から離れた大気、あるいは箱の内壁が選定される。一方放熱部分としては、箱体外の日射よけ用の板,あるいは日射よけ板と箱体壁との間の空間が選ばれる。
(3)また熱流制御性熱伝達装置は箱体内と箱体外とを熱的に結ぶので、熱流制御性熱伝達装置の構成要素である蒸気移動管と液戻し管を介在させる。このため箱体の壁の一部に蒸発器装着用の穴を設け、蒸発器装着後は、この穴を閉じて密閉化するための密閉板を設ける。
(4)また本発明を有効に機能させるため、熱流制御性熱伝達装置の熱流開閉機構を発停させるバブルポンプ用のヒーターに入力を与え、その入力量を調節する調節器,及び調節器に所望の情報を与える温度センサーあるいは湿度センサーを具備し、これらをまとめた制御機構を設ける。
【0005】
【発明の実施の形態】
本発明の一実施例の構成図を図1,図2を用いて説明する。図1は本発明の放熱装置の縦断面図(図2のB−B’断面図),図2は図1の横断面図(図1のA−A’断面図)である。主要構成は壁1と日よけ板5,5−a,5−b,5−c,5−dから構成された箱体100,その内部に入っている熱源(電源や演算装置など)2,及び蒸発器6,凝縮器7,これらを循環路を構成するように連結した蒸気移動管11,液戻り管10,液戻り管部に設けた熱流開閉機構300,内部に封入した蒸発性液体(フロン,エタノールなど)9から成る熱流制御性熱伝達装置200から成っている。
【0006】
箱体100内には熱源2が収納されているので、熱源2から発生する熱によって、その箱体100内部の温度が上昇する。また日中には日射によって外部から箱体100は加熱される。このため箱体100の壁1の外面には適当な間隙部1−aを設けて、日よけ板5,5−a,5−b,5−c,5−dが設けてあり、日射の影響を少なくするようにしてある。このような環境において、できるだけ熱源2から発生する熱を、とくに日中良好に放熱させるには、熱流制御性熱伝達装置200を熱的に効果的に稼働させて、放熱効率をよくする必要がある。この方法として熱流制御性熱伝達装置200の蒸発器6を箱体100の壁1内で温度上昇が大きい部分に設置する。この方法としては熱源2の近傍に蒸発器6を設置すると、空気の対流による伝熱のほか、熱源2から輻射熱が伝熱されるので冷却に好適である。またそれが不可能な場合にはファン4を利用して、熱源2で発生する熱を熱源2から蒸発器6まで輸送して伝熱するとよい。この場合でも、蒸発器6と熱源2とはできるだけ近づけ、かつそれらの間に流体力学的な障害がない場所を選定するのがよい。また蒸発器6を熱源2の温度の高まる部分に直接接触させて取り付けてもよい。図1,図2においてファン4の周りに設けてある枠3は、ファン4によって輸送される風が、効果的に蒸発器6に導入されるように配慮したガイドである。一方、凝縮器7は箱体100の壁1の外部で温度があまり高くならない場所に設置することが重要である。この場所としては日射側と全く反対方向の北側の日よけ板5−b側がよく、凝縮器7はこの日射を受けず、温度が上昇し難い日よけ板5−b、あるいは壁1と日よけ板5−bとの間隙部1−aに設置してもよい。この間隙部1−aでは空気の対流による煙突効果により、凝縮器7は冷却されて蒸発器6で受けた熱を凝縮器7にて効果的に放熱できるようになる。また、この凝縮器7の部分にはファンは無いので騒音が発生することがない。
【0007】
本発明に用いる熱流制御性熱伝達装置200の構成とその動作について図3を用いて以下に説明する。
【0008】
蒸発器6と凝縮器7とは蒸気移動管11と液戻り管10とによって密閉循環路を構成するように、図示のように連結されている。この液戻り管10部に熱流開閉機構300が設けてあるが、その詳細は以下の通りである。液戻り管10の一部にはタンク8が設けてあり、それを出た後の液戻り管10は逆U字状に立ち上げて、立ち上げ管12を構成している。また、この立ち上げ管12のタンク側のパイプにはヒーター13が設けてある。このように構成した密閉循環路内にはフロンやエタノール等の蒸発性の液体9が入っている。ヒーター13に入力を入れるとその部分のパイプは加熱され、その内部に入っている液体9はその熱を受けて沸騰する。これにより発生した気泡は浮力によってパイプ内を上昇するが、その時その周りにある液体9もくみ上げられて上昇し、立ち上げ管12の頂部を超えて、溢れ出す。この液体8は、液戻り管10内を降下して蒸発器6内に入り、その後蒸発器6の外面部から入ってくる熱を受けて蒸発する。これにより発生した蒸気は蒸気圧差によって蒸気移動管11内を上昇して凝縮器7内に到達して、ここで冷却されて凝縮熱を放出して液化する。これにより凝縮した液体9は重力によって下方部に降下してタンク8内に戻り、再び前と同じサイクルを繰り返す。このような操作により、実験によればヒーター13の入力量の約20倍の熱量を蒸発器6から凝縮器7へ輸送できることが分かっている。一方ヒーター13への入力を切ると、立ち上げ管12内の液体9のくみ上げは停止され、蒸発器6から凝縮器7への熱輸送は停止され、外部への放熱作用は停止される。またヒーター13への入力量を調節すると立ち上げ管12内の沸騰気泡の発生量が変わり、この発生量によって液体9がくみ上げられる量も変わる。このためヒーター13への入力量を変えて、蒸発器6から凝縮器7への熱輸送量を調節することもできる。
【0009】
センサー17を箱体100内の適当な箇所に設けておいて、このセンサー17の信号量を調節器18に送り、この信号量に応じてヒーター13への入力量を制御する。センサー17としては温度センサー、または湿度センサーを用いる。また熱制御性熱伝達装置200の蒸発器6には箱体100内で発生する熱を多量に集めるためにフィン6−aを設けるのがよい。一方凝縮器7を、日よけ板5−bに設ける場合にはフィン7−aを設けなくともよいが、日よけ板5−bと壁1との間の間隙部1−aに設ける場合には、その外面にフィン7−aを設けるのがよい。これらいずれの場合も、間隙1−a部では煙突効果により放熱は良好となる。
【0010】
図4は熱流開閉機構300の他の実施例の構成図である。本発明においては液体9の沸騰気泡によるバブルポンプ作用を利用しているが、沸騰気泡による液体9のくみ上げ量は、ヒーター13から立ち上げ管12の頂部との間の距離Hとそのパイプの径に依存する。距離Hを余り高くすると、くみ上げ量はヒーター13への入力量を多くした割には大きくならない。このためパイプ径が同じで、液体9のくみ上げ量を多くするには、Hを余り高くしないでパイプ12の数を多くするのが得策である。この実施例ではタンク8から3本の立ち上げ管12−a,12−b,12−cを設け、それぞれの立ち上げ管12−a,12−b,12−cの根元部にヒーター13−a,13−b,13−cを設け、これら3本のパイプの出側を下方部の太い液戻り管10に結んで一本にしたものである。このようにすると比較的多量の液体9をくみ上げることが可能となる。
【0011】
図5は本発明の熱流制御性熱伝達装置200を箱体100に容易に設ける際の方法を示した構成図である。これは箱体100の一部に穴16を設け、外部から熱流制御性熱伝達装置200の蒸発器6を穴16を介して箱体100の内部に挿入して、その後穴16をめくら用の板14によってふさぐようにしたものである。蒸気移動管11,または液戻り管10と壁1及び板14との間には若干の隙間が生ずるが、この隙間は粘土やコーキング剤によってシールすればよい。
【0012】
図6は、図5の板14の構造を示したものであり、この板14には2つのスリット15が設けてある。このスリット15は蒸気移動管11,及び液戻り管10を通すための穴である。またこの場合めくら用の板14を2枚用意し、お互いに上下逆方向にして、蒸気移動管11と液戻り管10をスリット15に通して、はさむと気密性が更によくなる。
【0013】
また、この方法とは異なるものとして蒸気移動管11と液戻り管10に気密性コネクタを設けておいて、壁1に2個小さな穴のみ設けておき、この2個の穴に蒸気移動管11と液戻り管10の一方を挿入後、前記気密性コネクタに他方の蒸気移動管11と液戻り管10を結んでもよいものである。また図1,図2の実施例において箱体100内の上部に露落下防止機構20を設けてもよい。この露落下防止機構20は板,あるいは多孔質体(布,毛細ファイバ,不織布など)によってできていて、上部から万一、露が落下してもここで受けて、下方部の熱源に到達しないようにするものである。
【0014】
図7は本発明の他の実施例の構成図である。これは凝縮器7に連なる液戻り管10を直接下方部の蒸発器6に接続し、熱流開閉機構300を除去したものである。その代わりとして調節器18からの操作量をファン4に連結されているモートル4−aに送って、ファン4をON−OFFして蒸発器6に箱体100内の熱を与えたり、切ったりするものである。このようにしても箱体100内の過度な温度の上昇、あるいは過度な温度の低下を防止することが可能である。
【0015】
【発明の効果】
以上、説明したように、本発明によれば、熱流制御性熱伝達装置による熱流の制御及びON−OFFによって箱体内の温度と湿度の制御が可能となり、箱体内の過度な温度上昇の防止、あるいは過度な温度低下の防止及びこれに伴う結露の防止が可能となり実用に供して便利となった。また、箱体外部への騒音が低減された。
【図面の簡単な説明】
【図1】本発明の一実施例の縦断面図
【図2】本発明の一実施例の横断面図
【図3】本発明の放熱装置に用いる熱流制御性熱伝達装置の構成図
【図4】本発明の熱流制御性熱伝達装置の熱流開閉機構の他の実施例の構成図
【図5】本発明の熱流制御性熱伝達装置を箱体に設ける方法について示した説明図
【図6】図5に用いるめくら用の板の構成図
【図7】本発明の他の実施例の構成図
【符号の説明】
1…壁
1−a…間隙部
2…熱源
3…枠
4…ファン
4−a…モートル
5,5−a,5−b,5−c,5−d…日よけ板
6…蒸発器
7…凝縮器
6−a,7−a…フィン
8…タンク
9…液体
10…液戻り管
11…蒸気移動管
12…立ち上げ管
13…ヒーター
14…板
15…スリット
16…穴
17…センサー
18…調節器
20…露落下防止機構
100…箱体
200…熱流制御性熱伝達装置
300…熱流開閉機構
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a configuration of a heat radiating device for radiating heat by installing a box on which a power supply and an arithmetic device are mounted outdoors.
[0002]
[Prior art]
As a publicly known example related to the present invention, there is one disclosed in JP-A-3-255819. However, this cited example has a different purpose and configuration from the present application.
[0003]
[Problems to be solved by the invention]
A heat dissipation device consisting of a box with a power supply and an arithmetic unit has a high heat generation density and must be sealed when installed outdoors. Without taking measures against dew condensation inside the box, the reliability of the device cannot be guaranteed. The above prior art does not disclose any measures against solar radiation and dew condensation due to radiant cooling at night, and has a different purpose and configuration from the present application.
[0004]
[Means for Solving the Problems]
(1) A sunshade is provided on the outer surface of a box on which a power supply and an arithmetic unit are mounted, and a gap having an appropriate size is provided between the sunshade and the wall of the box. A portion that easily rises in temperature and easily obtains heat in the box and a portion that easily radiates heat between the outside of the box wall and the sunshade are thermally coupled by a heat flow control heat transfer device. This heat flow controlling heat transfer device uses an evaporating liquid (ethanol, chlorofluorocarbon, etc.) and uses its evaporation and condensation functions, but stops the evaporation-condensation function different from the original heat pipe when desired. It has a mechanism. This has the function of stopping the heat radiation action as necessary, preventing excessive temperature rise or temperature decrease inside the box, and improving the heat dissipation during the day, as well as preventing radiation condensation from causing condensation. Let
(2) As the heat acquisition part in the box, a heat source part whose temperature rises, the atmosphere away from the heat source, or the inner wall of the box is selected. On the other hand, as the heat dissipating part, a plate for sun protection outside the box or a space between the sun protection plate and the wall of the box is selected.
(3) Since the heat flow controllable heat transfer device thermally connects the inside of the box and the outside of the box, the steam transfer tube and the liquid return tube which are components of the heat flow controllable heat transfer device are interposed. For this reason, a hole for mounting the evaporator is provided in a part of the wall of the box, and after the evaporator is mounted, a sealing plate is provided for closing the hole to make it tightly closed.
(4) In order to make the present invention function effectively, an input is provided to a heater for a bubble pump which starts and stops a heat flow opening / closing mechanism of the heat flow controllable heat transfer device, and an adjuster for adjusting the input amount and a controller. A temperature sensor or a humidity sensor for giving desired information is provided, and a control mechanism for integrating these is provided.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
A configuration diagram of an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view (BB 'sectional view of FIG. 2) of the heat dissipation device of the present invention, and FIG. 2 is a transverse sectional view (AA' sectional view of FIG. 1) of FIG. The main configuration is a box 100 composed of a wall 1 and sunshades 5, 5-a, 5-b, 5-c, 5-d, and a heat source (such as a power supply and an arithmetic unit) 2 therein. , And an evaporator 6, a condenser 7, a vapor transfer pipe 11, a liquid return pipe 10, a heat flow opening / closing mechanism 300 provided in the liquid return pipe, and an evaporable liquid sealed in the liquid return pipe. (Freon, ethanol, etc.) 9.
[0006]
Since the heat source 2 is housed in the box 100, the heat generated from the heat source 2 raises the temperature inside the box 100. In the daytime, the box 100 is heated from the outside by solar radiation. For this reason, a suitable gap portion 1-a is provided on the outer surface of the wall 1 of the box body 100, and shade plates 5, 5-a, 5-b, 5-c, 5-d are provided. To reduce the effect. In such an environment, in order to radiate the heat generated from the heat source 2 as much as possible, particularly in the daytime, it is necessary to operate the heat flow controllable heat transfer device 200 thermally effectively to improve the heat radiation efficiency. is there. As this method, the evaporator 6 of the heat flow controllable heat transfer device 200 is installed in the portion of the wall 1 of the box 100 where the temperature rise is large. In this method, if the evaporator 6 is installed near the heat source 2, radiant heat is transmitted from the heat source 2 in addition to heat transfer by convection of air, which is suitable for cooling. If this is not possible, the heat generated by the heat source 2 may be transported from the heat source 2 to the evaporator 6 by using the fan 4 for heat transfer. Even in this case, it is preferable to select a place where the evaporator 6 and the heat source 2 are as close as possible and there is no hydrodynamic obstacle between them. Further, the evaporator 6 may be attached in direct contact with a portion where the temperature of the heat source 2 increases. The frame 3 provided around the fan 4 in FIGS. 1 and 2 is a guide in which the wind transported by the fan 4 is effectively introduced into the evaporator 6. On the other hand, it is important that the condenser 7 is installed outside the wall 1 of the box 100 in a place where the temperature does not become too high. This location is preferably on the north side of the sunshade 5-b in a direction completely opposite to the solar side, and the condenser 7 does not receive the sunshine and the temperature is hardly increased. It may be installed in the gap 1-a with the sunshade 5-b. In the gap 1-a, the condenser 7 is cooled by the chimney effect due to the convection of the air, and the heat received by the evaporator 6 can be effectively radiated by the condenser 7. Further, since there is no fan in the part of the condenser 7, no noise is generated.
[0007]
The configuration and operation of the heat flow controllable heat transfer device 200 used in the present invention will be described below with reference to FIG.
[0008]
The evaporator 6 and the condenser 7 are connected as shown so as to form a closed circuit by the vapor transfer pipe 11 and the liquid return pipe 10. A heat flow opening / closing mechanism 300 is provided in the liquid return pipe 10, and details thereof are as follows. A tank 8 is provided in a part of the liquid return pipe 10, and the liquid return pipe 10 after exiting the tank 8 rises in an inverted U-shape to constitute a riser pipe 12. A heater 13 is provided on a pipe on the tank side of the riser pipe 12. An evaporative liquid 9 such as chlorofluorocarbon and ethanol is contained in the closed circulation path configured as described above. When an input is made to the heater 13, the pipe at that portion is heated, and the liquid 9 contained therein receives the heat and boils. The bubbles generated by this rise in the pipe due to buoyancy. At that time, the liquid 9 around the pipe rises and rises, and overflows the top of the riser pipe 12. The liquid 8 descends through the liquid return pipe 10 and enters the evaporator 6, and then evaporates by receiving heat from the outer surface of the evaporator 6. The steam generated thereby rises in the steam transfer pipe 11 due to a difference in steam pressure and reaches the inside of the condenser 7, where it is cooled and releases heat of condensation to liquefy. As a result, the condensed liquid 9 descends by gravity and returns to the tank 8, and repeats the same cycle as before. According to such an operation, experiments have shown that a heat amount about 20 times the input amount of the heater 13 can be transported from the evaporator 6 to the condenser 7. On the other hand, when the input to the heater 13 is turned off, the pumping of the liquid 9 in the riser pipe 12 is stopped, the heat transport from the evaporator 6 to the condenser 7 is stopped, and the heat radiation to the outside is stopped. Further, when the input amount to the heater 13 is adjusted, the amount of boiling bubbles generated in the riser tube 12 changes, and the amount by which the liquid 9 is pumped changes according to the generated amount. Therefore, the amount of heat transported from the evaporator 6 to the condenser 7 can be adjusted by changing the input amount to the heater 13.
[0009]
The sensor 17 is provided at an appropriate position in the box 100, and the signal amount of the sensor 17 is sent to the controller 18, and the input amount to the heater 13 is controlled according to the signal amount. As the sensor 17, a temperature sensor or a humidity sensor is used. Further, the evaporator 6 of the heat controllable heat transfer device 200 is preferably provided with fins 6-a in order to collect a large amount of heat generated in the box 100. On the other hand, when the condenser 7 is provided on the sunscreen 5-b, the fin 7-a may not be provided, but is provided in the gap 1-a between the sunscreen 5-b and the wall 1. In this case, it is preferable to provide the fin 7-a on the outer surface. In any of these cases, the heat radiation is good in the gap 1-a due to the chimney effect.
[0010]
FIG. 4 is a configuration diagram of another embodiment of the heat flow switching mechanism 300. In the present invention, the bubble pump action by the boiling bubbles of the liquid 9 is used. The amount of the liquid 9 to be pumped by the boiling bubbles is determined by the distance H from the heater 13 to the top of the riser pipe 12 and the diameter of the pipe. Depends on. If the distance H is too high, the pumping amount does not increase in spite of the increase in the input amount to the heater 13. Therefore, in order to increase the pumping amount of the liquid 9 with the same pipe diameter, it is advisable to increase the number of the pipes 12 without increasing H too much. In this embodiment, three risers 12-a, 12-b, 12-c are provided from the tank 8, and heaters 13-a are provided at the roots of the risers 12-a, 12-b, 12-c. a, 13-b, and 13-c are provided, and the outlet sides of these three pipes are connected to a thick liquid return pipe 10 at a lower portion to be one. In this way, a relatively large amount of liquid 9 can be pumped.
[0011]
FIG. 5 is a configuration diagram showing a method for easily providing the heat flow controllable heat transfer device 200 of the present invention to the box 100. In this case, a hole 16 is provided in a part of the box 100, and the evaporator 6 of the heat flow controllable heat transfer device 200 is inserted into the inside of the box 100 through the hole 16 from the outside, and then the hole 16 is used for blinding. It is covered by a plate 14. A slight gap is formed between the vapor transfer pipe 11 or the liquid return pipe 10 and the wall 1 and the plate 14, and this gap may be sealed with clay or a caulking agent.
[0012]
FIG. 6 shows the structure of the plate 14 of FIG. 5, and this plate 14 is provided with two slits 15. The slit 15 is a hole through which the vapor transfer pipe 11 and the liquid return pipe 10 pass. Further, in this case, two plates 14 for blinds are prepared, turned upside down, the vapor transfer pipe 11 and the liquid return pipe 10 are passed through the slit 15, and the airtightness is further improved.
[0013]
Further, as a method different from this method, an airtight connector is provided in the vapor transfer pipe 11 and the liquid return pipe 10, only two small holes are provided in the wall 1, and the steam transfer pipe 11 is provided in the two holes. After inserting one of the liquid return pipes 10 and 10, the other vapor transfer pipe 11 and the liquid return pipe 10 may be connected to the airtight connector. In the embodiment shown in FIGS. 1 and 2, a dew drop prevention mechanism 20 may be provided at an upper portion in the box 100. The dew drop prevention mechanism 20 is made of a plate or a porous body (cloth, capillary fiber, non-woven fabric, etc.). Even if dew drops from the upper part, it is received here and does not reach the lower heat source. Is to do so.
[0014]
FIG. 7 is a configuration diagram of another embodiment of the present invention. This is one in which the liquid return pipe 10 connected to the condenser 7 is directly connected to the evaporator 6 in the lower part, and the heat flow opening / closing mechanism 300 is removed. Instead, the operation amount from the controller 18 is sent to the motor 4-a connected to the fan 4, and the fan 4 is turned on and off to apply heat to the evaporator 6 in the box 100 or cut off the heat. Is what you do. Also in this case, it is possible to prevent an excessive rise in temperature in the box 100 or an excessive decrease in temperature.
[0015]
【The invention's effect】
As described above, according to the present invention, it is possible to control the temperature and humidity in the box by controlling the heat flow and ON-OFF by the heat flow controllable heat transfer device, to prevent an excessive rise in temperature in the box, Alternatively, it is possible to prevent an excessive decrease in temperature and to prevent the formation of dew. In addition, noise to the outside of the box was reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of one embodiment of the present invention. FIG. 2 is a transverse sectional view of one embodiment of the present invention. FIG. 3 is a configuration diagram of a heat flow controlling heat transfer device used in a heat radiating device of the present invention. 4 is a structural view of another embodiment of the heat flow opening / closing mechanism of the heat flow controllable heat transfer device of the present invention. FIG. 5 is an explanatory diagram showing a method of providing the heat flow controllable heat transfer device of the present invention in a box. FIG. 5 is a schematic diagram of a blind plate used in FIG. 5. FIG. 7 is a schematic diagram of another embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 ... Wall 1-a ... Gap 2 ... Heat source 3 ... Frame 4 ... Fan 4-a ... Motors 5, 5-a, 5-b, 5-c, 5-d ... Shading plate 6 ... Evaporator 7 ... Condenser 6-a, 7-a ... Fin 8 ... Tank 9 ... Liquid 10 ... Liquid return pipe 11 ... Vapor transfer pipe 12 ... Rising pipe 13 ... Heater 14 ... Plate 15 ... Slit 16 ... Hole 17 ... Sensor 18 ... Controller 20: Dew drop prevention mechanism 100: Box body 200: Heat flow controllable heat transfer device 300: Heat flow opening / closing mechanism

Claims (5)

蒸発器,凝縮器,それらを循環路を構成するように連結した蒸気移動管と液戻り管,液戻り管の一部に設けたタンク、タンクを出た後の液戻り管の一部を逆U字状に立ち上げた立ち上げ管,循環路内に封入した蒸発性の液体,立ち上げ管の根元部に設けたヒーターとによって構成された熱流制御性熱伝導装置の蒸発器を箱体壁あるいは箱体内の大気,あるいは箱体内の熱源部に取り付け、凝縮器を箱体外の日よけ板,あるいは日よけ板と箱体壁との間の間隙部に設けたことを特徴とする放熱装置。Evaporator, condenser, vapor transfer pipe and liquid return pipe connecting them to form a circulation path, tank provided in part of liquid return pipe, part of liquid return pipe after leaving tank The evaporator of the heat flow controllable heat conduction device, which is composed of a rising pipe raised in a U-shape, an evaporable liquid sealed in a circulation path, and a heater provided at the base of the rising pipe, is used as a box wall. Alternatively, the condenser is attached to the atmosphere inside the box, or to the heat source inside the box, and the condenser is provided in a sunshade outside the box or in a gap between the sunshade and the wall of the box. Heat dissipation device. 箱体壁の一部に蒸発器挿入用の穴を設け、この穴から蒸発器を箱体内に設け、その後この穴をめくら用の板でふさぐようにした請求項1に記載の放熱装置。2. The heat radiating device according to claim 1, wherein a hole for inserting an evaporator is provided in a part of the wall of the box, the evaporator is provided in the box from the hole, and then the hole is covered with a blind plate. 箱体内または箱体外の一部に設けたセンサーの信号を調節器に導入し、この信号量に応じて熱流制御性熱伝達装置のヒーターの入力を制御するようにした請求項1または請求項2に記載の放熱装置。The signal of the sensor provided in the box body or a part outside the box body is introduced into the controller, and the input of the heater of the heat flow controllable heat transfer device is controlled according to the signal amount. 3. The heat radiator according to 2. 蒸発器、凝縮器、それらを循環路を構成するように連結した蒸気移動管と液戻り管とによって構成された熱伝達装置の内部に蒸発性液体を封入し、蒸発器を箱体壁あるいは箱体内の大気中に設け、蒸発器の近くにファンを設けるとともに、凝縮器を箱体外の日よけ板,あるいは日よけ板と箱体壁との間に間隙部を設け、箱体内または箱体外の一部に設けたセンサーの信号量に応じて調節器を介してファンを発停させることを特徴とした放熱装置。An evaporative liquid is sealed in a heat transfer device composed of an evaporator, a condenser, and a vapor transfer pipe and a liquid return pipe connecting them to form a circulation path. Provided in the air inside the body, provided a fan near the evaporator, and provided a condenser with a shielding plate outside the box, or with a gap between the shielding plate and the wall of the box. A heat radiating device characterized in that a fan is started and stopped via an adjuster according to a signal amount of a sensor provided in a part outside a box. 箱体内の熱源の上部に露落下防止機構を具備した放熱装置。A radiator equipped with a dew drop prevention mechanism above the heat source inside the box.
JP2002330841A 2002-11-14 2002-11-14 Heat radiation device Pending JP2004163033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002330841A JP2004163033A (en) 2002-11-14 2002-11-14 Heat radiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002330841A JP2004163033A (en) 2002-11-14 2002-11-14 Heat radiation device

Publications (1)

Publication Number Publication Date
JP2004163033A true JP2004163033A (en) 2004-06-10

Family

ID=32808421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330841A Pending JP2004163033A (en) 2002-11-14 2002-11-14 Heat radiation device

Country Status (1)

Country Link
JP (1) JP2004163033A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507854A (en) * 2008-11-03 2012-03-29 テレフオンアクチーボラゲット エル エム エリクソン(パブル) System in network node for temperature regulation of electronic equipment
JP2014086499A (en) * 2012-10-22 2014-05-12 Toshiba Mitsubishi-Electric Industrial System Corp Transformer
JP2014123620A (en) * 2012-12-20 2014-07-03 Kitamura Seisakusho:Kk Radio apparatus accommodation station building
CN106230450A (en) * 2016-07-29 2016-12-14 苏州盖恩茨电子科技有限公司 A kind of intelligent drives stepping heat dissipation type wireless data receiver
CN107182188A (en) * 2017-06-21 2017-09-19 广东合新材料研究院有限公司 Outdoor closed cabinet and its heat abstractor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507854A (en) * 2008-11-03 2012-03-29 テレフオンアクチーボラゲット エル エム エリクソン(パブル) System in network node for temperature regulation of electronic equipment
JP2014086499A (en) * 2012-10-22 2014-05-12 Toshiba Mitsubishi-Electric Industrial System Corp Transformer
JP2014123620A (en) * 2012-12-20 2014-07-03 Kitamura Seisakusho:Kk Radio apparatus accommodation station building
CN106230450A (en) * 2016-07-29 2016-12-14 苏州盖恩茨电子科技有限公司 A kind of intelligent drives stepping heat dissipation type wireless data receiver
CN107182188A (en) * 2017-06-21 2017-09-19 广东合新材料研究院有限公司 Outdoor closed cabinet and its heat abstractor
CN107182188B (en) * 2017-06-21 2023-06-09 广东西江数据科技有限公司 Outdoor airtight cabinet and heat abstractor thereof

Similar Documents

Publication Publication Date Title
US3923038A (en) Solar energy collector panel
US10712056B2 (en) Solar cooling system
KR102020321B1 (en) External wall attachable air-conditioning system using solar heat collection device
CN110121623B (en) Solar energy utilization system
JP2004319658A (en) Electronic cooler
JP2004163033A (en) Heat radiation device
KR200390039Y1 (en) Cooling apparatus in refrigerator for grain
JP6309087B2 (en) Cooling system
WO2014171262A1 (en) Heat-dissipating structure for electronic apparatus
US20080211958A1 (en) Dehumidified Equipment Housing
KR200397965Y1 (en) A monitoring camera having thermostatic control function
JP2005303195A (en) Waterproof structure of heating elements of control panel or the like
CN113207264A (en) Power supply heat dissipation device and power supply
CN109405235A (en) Electrical appliance kit and air-conditioning
NL1037355C2 (en) CLIMATIZATION DEVICE.
KR20060000470A (en) Fan coil unit for cooling and heating with oscillating heat pipe
KR100465410B1 (en) Loop Heat Pipe Fan Coil Unit Radiator
JP2005337336A (en) Liquefied gas evaporating device
JP2001057485A (en) Outdoor-installed electronic apparatus
US20080017186A1 (en) Heat collecting device
JPS6150212B2 (en)
KR20000032669A (en) Cooling pipe for increasing cooling efficiency of thermal element and cooling device by using the cooling pipe
JPH0741262U (en) Outdoor enclosure cooling structure
KR200364898Y1 (en) Fan coil unit for cooling and heating with oscillating heat pipe
TWI261102B (en) Method for producing heat collector