JP2004161534A - Method of predicting relation between flow rate of inert gas and pure margin - Google Patents

Method of predicting relation between flow rate of inert gas and pure margin Download PDF

Info

Publication number
JP2004161534A
JP2004161534A JP2002329118A JP2002329118A JP2004161534A JP 2004161534 A JP2004161534 A JP 2004161534A JP 2002329118 A JP2002329118 A JP 2002329118A JP 2002329118 A JP2002329118 A JP 2002329118A JP 2004161534 A JP2004161534 A JP 2004161534A
Authority
JP
Japan
Prior art keywords
inert gas
ingot
flow rate
pure margin
pure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002329118A
Other languages
Japanese (ja)
Other versions
JP4193470B2 (en
Inventor
Shinrin Fu
森林 符
Kazuhiro Harada
和浩 原田
Nobuto Fukatsu
宣人 深津
Yoji Suzuki
洋二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumitomo Mitsubishi Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsubishi Silicon Corp filed Critical Sumitomo Mitsubishi Silicon Corp
Priority to JP2002329118A priority Critical patent/JP4193470B2/en
Publication of JP2004161534A publication Critical patent/JP2004161534A/en
Application granted granted Critical
Publication of JP4193470B2 publication Critical patent/JP4193470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of remarkably reducing the work and the cost for practically pulling up an ingot and confirming a pure margin and predicting the relation between the flow rate of an inert gas and the pure margin by predicting the width of the pure margin. <P>SOLUTION: The relation between the flow rate of the inert gas flowing in the vicinity of meniscus and the pure margin in the boundary part between the outer circumferential surface of the ingot and the surface of a silicon molten liquid is predicted by optionally fixing a pulling up condition. When a distance between the center of convection current and the center of the ingot in the radius direction is expressed by Rf and the radius of the ingot is expressed by Rc, it is predicted that the pure margin increases with the increase of the flow rate of the inert gas when Rf≤(Rc/2) is satisfied, it is predicted that the flow rate of the inert gas and the pure margin are unrelated to each other when (Rc/2)<Rf≤Rc is satisfied and it is predicted that the pure margin decreases with the increase of the flow rate of the inert gas when Rc<Rf is satisfied. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、チョクラルスキー法(以下、CZ法という。)により流下させる不活性ガスと、引き上げるピュアシリコン単結晶におけるピュアマージンとの関係を予測する方法に関するものである。
【0002】
【従来の技術】
近年の半導体集積回路の超微細化にともないデバイスの歩留まりを低下させる要因として、結晶に起因したパーティクル(Crystal Originated Particle、以下、COPという。)や、酸化誘起積層欠陥(Oxidation induced Stacking Fault、以下、OSFという。)の核となる酸素析出物の微小欠陥や、或いは侵入型転位(Interstitial−type Large Dislocation、以下、L/Dという。)の存在が挙げられている。
COPは、鏡面研磨されたシリコンウェーハをアンモニアと過酸化水素の混合液でSC−1洗浄すると、ウェーハ表面に出現する結晶起因のピットである。このウェーハをパーティクルカウンタで測定すると、このピットがパーティクル(Light Point Defect、LPD)として検出される。COPは電気的特性、例えば酸化膜の経時絶縁破壊特性(Time Dependent dielectric Breakdown、TDDB)、酸化膜耐圧特性(Time Zero Dielectric Breakdown、TZDB)等を劣化させる原因となる。またCOPがウェーハ表面に存在するとデバイスの配線工程において段差を生じ、断線の原因となり得る。そして素子分離部分においてもリーク等の原因となり、製品の歩留りを低くする。
【0003】
OSFは、結晶成長時に形成される微小な酸素析出が核となっていると考えられ、半導体デバイスを製造する際の熱酸化工程等で顕在化する積層欠陥である。このOSFは、デバイスのリーク電流を増加させる等の不良原因になる。L/Dは、転位クラスタとも呼ばれたり、或いはこの欠陥を生じたシリコンウェーハをフッ酸を主成分とする選択エッチング液に浸漬すると方位を持ったエッチングピットを生じることから転位ピットとも呼ばれる。このL/Dも、電気的特性、例えばリーク特性、アイソレーション特性等を劣化させる原因となる。
【0004】
以上のことから、半導体集積回路を製造するために用いられるシリコンウェーハからCOP、OSF及びL/Dを減少させることが必要となっている。
このCOP、OSF及びL/Dを有しない無欠陥のインゴット及びこのインゴットからスライスされたシリコンウェーハが開示されている(例えば、特許文献1参照。)。この無欠陥のインゴットは、インゴット内での空孔型点欠陥の凝集体及び格子間シリコン型点欠陥の凝集体がそれぞれ検出されないパーフェクト領域を[P]とするとき、パーフェクト領域[P]からなるインゴット、即ちピュアシリコン単結晶インゴットである。パーフェクト領域[P]は、インゴット内で空孔型点欠陥が優勢であって過飽和な空孔が凝集した欠陥を有する領域[V]と、格子間シリコン型点欠陥が優勢であって過飽和な格子間シリコンが凝集した欠陥を有する領域[I]との間に介在する。
【0005】
パーフェクト領域[P]からなるピュアシリコン単結晶インゴットは、インゴットの引上げ速度をV(mm/分)とし、シリコン融液とシリコンインゴットの固液界面近傍における軸方向温度勾配をG(℃/mm)とするとき、熱酸化処理をした際にリング状に発生するOSF(Pバンド)がウェーハ中心部で消滅し、かつL/D(Bバンド)を発生しない領域のV/G(mm/分・℃)の範囲内で作られる。
このピュアシリコン単結晶の生産性や収率等を向上するためには、ピュアマージンを拡大することが必要である。ピュアマージンは引上げ時における固液界面形状と何らかの相関性があると考えられている。
そこで固液界面形状をピュアシリコン単結晶インゴット製造の制御因子として用いる方法が研究されている。例えば固液界面形状を考慮して無欠陥結晶を製造する方法が開示されている(例えば、特許文献2参照。)。この方法では、結晶側面の温度分布とシリコン融液とシリコン単結晶との固液界面形状を考慮することによって、広範囲に無欠陥領域を備えるシリコンインゴットを安定かつ再現性よく製造することができる。
【0006】
【特許文献1】
特開平11−1393号公報
【特許文献2】
特開2001−261495号公報
【0007】
【発明が解決しようとする課題】
しかし、上述した特許文献2に示された方法では、固液界面の形状と、固液界面近傍のインゴット側面における温度分布との関係を適切に調整することによって、無欠陥結晶を安定かつ再現性よく製造しているが、インゴットを引き上げる際にそのインゴットの外周面を流下する不活性ガスについて考慮されていないため、上記公報に示された方法を用いてインゴットを引上げたとしても、ピュアマージンの幅が予測できず、無欠陥結晶を安定かつ再現性よく得ることは実際に難しかった。
本発明の目的は、ピュアマージンの幅を予測することにより、実際に引上げて確認する作業やコストを大幅に低減する、不活性ガスの流速とピュアマージンとの関係を予測する方法を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、ヒータにより融解されたシリコン融液からシリコン単結晶インゴットを引上げる引上げ条件を任意に決めて総合熱解析手法を利用することによりシリコン融液の対流を数値的にシミュレーションを行ってインゴットの外周面及びシリコン融液の表面の境界部分におけるメニスカス近傍を流れる不活性ガスの流速とインゴットのピュアマージンとの関係を予測する方法である。
【0009】
その特徴ある点は、シミュレーションにより得られたメニスカス近傍のシリコン融液に生じる対流の中心とインゴット中心との半径方向距離をRfとし、インゴットの半径をRcとするとき、式(1)を満たすときメニスカス近傍を流れる不活性ガスの流速の増加とともにピュアマージンが増加すると予測し、式(2)を満たすときメニスカス近傍を流れる不活性ガスの流速とピュアマージンはともに無関係であると予測し、式(3)を満たすときメニスカス近傍を流れる不活性ガスの流速の増加とともにピュアマージンが減少すると予測するところにある。
Rf≦(Rc/2) …(1)
(Rc/2)<Rf≦Rc …(2)
Rc<Rf …(3)
【0010】
この請求項1に係る発明では、任意の引上げ条件を設定し、総合熱解析手法を利用して数値的にシミュレーションを行うことにより得られたRcとRf関係が上記式(1)〜(3)のいずれに該当するかにより、不活性ガスの流速とピュアマージンとの関係を予測し、その関係に基づいて不活性ガスの流速等を変化させることによりピュアマージンの幅を拡大することが可能になる。そしてピュアマージンの幅を拡大した引上げ条件を設定することにより、実際に引上げて確認する作業やコストを大幅に低減することができる。
【0011】
【発明の実施の形態】
本発明者らは、インゴットを引き上げる際にそのインゴットの外周面を流下する不活性ガスの流速により、インゴットの外周面及びシリコン融液の表面の境界部分におけるメニスカス近傍のシリコン融液に生じる対流が変化することの知見から本発明を導き出した。即ち、パーフェクト領域からなるピュアシリコン単結晶の引上げ条件を規定する制御因子にインゴットの外周面を流下する不活性ガスの流速を含め、シリコン単結晶インゴット成長時のシリコン融液の対流を数値的にシミュレーション解析することにより導き出した。
【0012】
図1に示すように、先ず、ヒータにより融解されたシリコン融液からシリコン単結晶インゴットを引上げる引上げ条件を任意に決めて定常計算を行い、シリコン融液の対流を考慮した固液界面形状を解析した。任意の引上げ条件としては、るつぼの回転速度、インゴットの回転速度、チャンバ内を流通させる不活性ガスの流量、ホットゾーンの形状、ヒートキャップの形状、ヒータの形状やその配置、ボトムヒータの形状やその配置、ヒータ電力の大きさ、ヒートキャップとシリコン融液面との距離(Gap)、印加する磁場の種類、コイルの形状、コイルの位置、磁場強度、外的な機械振動の状態等が挙げられる。この解析から、引上げ時における対流パターンは次の3種類に分類されることが判った。即ち、メニスカス近傍のシリコン融液に生じる対流の中心とインゴット中心との半径方向距離をRfとし、インゴットの半径をRcとするとき、図2(a)に示すようなRf≦(Rc/2)のパターン(式(1))、図2(b)に示すような(Rc/2)<Rf≦Rcのパターン(式(2))、図2(c)に示すようなRc<Rfのパターン(式(3))である。
【0013】
次いで、上記3種類に分類された対流パターンについての多くのシミュレーション解析を行った。先ず、図2(b)に示すようなシリコン融液の対流をシミュレーション解析した。この解析図を図3に示す。図3より明らかなように、シリコン融液の対流は、最も高い変位点Aよりもインゴット周辺側の直下で小さい対流渦が発生していることが判った。即ち、インゴットの半径をRc、メニスカス近傍のシリコン融液に生じる対流の中心とインゴット中心との半径方向距離をRfとするとき、(Rc/2)<Rf≦Rcからなる式(2)の関係を満たすことが確認された。そして、他の条件を変化させずにチャンバ内を流通させる不活性ガスの流量を変化させて、その固液界面の形状がどのように変化するかについてミュレーション解析を行った。その結果、不活性ガスの流速を変化させてもその対流パターンが変化することは認められなかった。
【0014】
また、図2(c)に示すようなシリコン融液の対流をシミュレーション解析した。この解析図を図4に示す。図4より明らかなように、シリコン融液の対流は、インゴット周辺より外側で小さい対流渦が発生していることが確認された。即ち、Rc<Rfからなる式(3)の関係を満たすとき、メニスカス近傍を流れる不活性ガス流により下凸型の固液界面が生じることが判った。そして、他の条件を変化させずにチャンバ内を流通させる不活性ガスの流量を変化させて、その固液界面の形状がどのように変化するかについてミュレーション解析を行った。その結果、不活性ガスの流速を増加させると固液界面中央の下側に突出する割合が増加し、不活性ガスの流速を減少させると固液界面中央の下側に突出する割合が減少することが判った。
【0015】
更に、図2(a)に示すようなシリコン融液の対流をシミュレーション解析した。この解析図を図5に示す。図5より明らかなように、シリコン融液の対流は、インゴットの中心近傍で小さい対流渦が発生していることが確認された。即ち、Rf≦(Rc/2)からなる式(1)の関係を満たすとき、メニスカス近傍を流れる不活性ガス流により上凸型の固液界面が生じることが判った。そして、他の条件を変化させずにチャンバ内を流通させる不活性ガスの流量を変化させて、その固液界面の形状がどのように変化するかについてミュレーション解析を行った。その結果、不活性ガスの流速を増加させると固液界面中央の上側に突出する割合が増加し、不活性ガスの流速を減少させると固液界面中央の上側に突出する割合が減少することが判った。
【0016】
一方、図3に示す変位点Aにおける軸方向温度勾配は大きく変化する。またその変位点Aの近傍においてもシリコン融液からの熱流束も他の部分より特に大きくなり、その変位点Aにおける軸方向温度勾配は他の固液界面形状位置における軸方向温度勾配よりも大きくなることが判る。ここで、ボロンコフの理論に基づいた場合、シリコン単結晶棒を最適な引上げ速度で引上げることによりシリコン単結晶棒の軸方向における温度勾配の径方向分布を略均一にする必要がある。してみると、ピュアマージンの幅は温度勾配の径方向分布を略均一か否かにより決定される。
【0017】
そこで、上記3種類に分類された対流パターンのそれぞれについて、引上げられるシリコン単結晶棒の軸方向における温度勾配の径方向分布と不活性ガスの流速との関係を検討する。先ず、図3に示すような対流パターンであると、不活性ガスの流速を変化させてもその対流パターンが変化することは認められないことから、不活性ガスの流速とピュアマージンとは無関係であり、上述した式(2)を満たすときメニスカス近傍を流れる不活性ガスの流速とピュアマージンはともに無関係であると予測することができる。従って、この場合においてピュアマージンを拡大するためには、この他の条件、即ちチャンバ内におけるホットゾーンの形状、ヒートキャップの形状、ヒータの形状やその配置、ボトムヒータの形状やその配置、ヒータ電力の大きさ、ヒートキャップとシリコン融液面との距離(Gap)、印加する磁場の種類、コイルの形状、コイルの位置、磁場強度、外的な機械振動の状態等を変化させることが必要であることが判る。
【0018】
次に、図4に示すような対流パターンが生じる場合を検討すると、不活性ガスの流速を増加させると固液界面中央の下側に突出する割合が増加することから、シリコン単結晶棒の軸方向における温度勾配の径方向分布は、不活性ガスの流速の増加に伴い拡大することになる。その一方、不活性ガスの流速を減少させると固液界面中央の下側に突出する割合が減少することから、シリコン単結晶棒の軸方向における温度勾配の径方向分布は、不活性ガスの流速の減少に伴い減少することになる。従って、上述した式(3)を満たすときメニスカス近傍を流れる不活性ガスの流速の増加とともにピュアマージンが減少すると予測することができる。
【0019】
更に、図5に示すような対流パターンが生じる場合を検討すると、不活性ガスの流速を増加させると固液界面中央の上側に突出する割合が増加することから、シリコン単結晶棒の軸方向における温度勾配の径方向分布は、不活性ガスの流速の増加に伴い減少することになる。その一方、不活性ガスの流速を減少させると固液界面中央の上側に突出する割合が減少することから、シリコン単結晶棒の軸方向における温度勾配の径方向分布は、不活性ガスの流速の減少に伴い増加することになる。従って、上述した式(1)を満たすときメニスカス近傍を流れる不活性ガスの流速の増加とともにピュアマージンが増加すると予測することができる。
【0020】
以上のことからすると、図1に示すように、実際にインゴットを引上げる前に、先ず任意の引上げ条件を設定して定常計算を行い、次いでこの条件から総合熱解析手法を利用して融液対流を数値的にシミュレーションし、シミュレーションにより得られたメニスカス近傍のシリコン融液に生じる対流の中心とインゴット中心との半径方向距離をRfとし、インゴットの半径をRcとするとき、上述した式(2)を満たすときメニスカス近傍を流れる不活性ガスの流速とピュアマージンはともに無関係であるので、そのまま温度勾配分布をシミュレーションして良ければ実際に引上げて確認し、悪ければ最初に入力された任意の引上げ条件を変更する。
【0021】
また、シミュレーションを行うことにより得られたRcとRfの関係が上記式(1)に該当する場合には、メニスカス近傍を流れる不活性ガスの流速の増加とともにピュアマージンが増加すると予測できるので、不活性ガスの流速を増加するように変更入力し、その不活性ガスの流速と連動した対流を更に解析し、その後温度勾配分布をシミュレーションして良ければ実際に引上げて確認する。
更に、シミュレーションを行うことにより得られたRcとRfの関係が上述した式(3)に該当する場合には、メニスカス近傍を流れる不活性ガスの流速の増加とともにピュアマージンが減少すると予測できるので、不活性ガスの流速を減少するように変更入力し、その不活性ガスの流速と連動した対流を更に解析し、その後温度勾配分布をシミュレーションして良ければ実際に引上げて確認する。このようにして、ピュアマージンの幅を拡大した引上げ条件を予測できるため、実際に引上げて確認する作業やコストを大幅に低減できる。
【0022】
一方、不活性ガスの流速を変更入力してガス流連動対流解析した後の温度勾配分布が不適切な場合には、その温度勾配分布をチェックし、ガス流の調整で温度勾配分布を是正し得るものか否かを判断する。そして、その温度勾配分布をガス流の調整で是正し得る範囲内のものであればそのガス流を更に調整し、その温度勾配分布がガス流の調整で是正できない範囲内のものであれば、最初に入力された任意の引上げ条件を変更する。このように、不活性ガスの流速を変更入力してガス流連動対流解析した後の温度勾配分布が不適切な場合であっても、実際に引上げて確認する作業やコストを大幅に低減できる。
【0023】
【実施例】
次に本発明の実施例を詳しく説明する。
<実施例>
先ず、任意の引上げ条件を設定し、図4に示すRc<Rfの関係を有する対流パターンが生じる場合と図5に示すRf≦(Rc/2)の関係を有する対流パターンが生じる場合の2種類の引き上げ条件を決定した。そして、他の条件を変化させずにチャンバ内を流通させる不活性ガスの流量をそれぞれ変化させてインゴットの外周面及びシリコン融液の表面の境界部分におけるメニスカス近傍を流れる不活性ガスの流速を徐々に変化させ、総合熱解析手法を用い、数値的にシミュレーション解析を行って、不活性ガスの流速とピュアマージンとの関係を予測した。メニスカス近傍を流れる不活性ガスの流速は0.1〜0.5m/sec、0.5〜1.0m/sec、1.0〜3.0m/sec及び3.0〜5.0m/secの範囲を選定した。
【0024】
この結果、メニスカス近傍を流れる不活性ガスの流速が0.1〜0.5m/secの場合、図4に示すRc<Rfの関係を有する対流パターンが生じる場合のピュアマージンは僅かに減少したが、図5に示すRf≦(Rc/2)の関係を有する対流パターンが生じる場合のピュアマージンに変化は認められなかっら。メニスカス近傍を流れる不活性ガスの流速が0.5〜1.0m/secの場合、図4に示すRc<Rfの関係を有する対流パターンが生じる場合のピュアマージンは明らかに減少したが、図5に示すRf≦(Rc/2)の関係を有する対流パターンが生じる場合のピュアマージンに変化は認められなかった。メニスカス近傍を流れる不活性ガスの流速が1.0〜3.0m/secである場合、図4に示すRc<Rfの関係を有する対流パターンが生じる場合のピュアマージンは非常に減少したが、図5に示すRf≦(Rc/2)の関係を有する対流パターンが生じる場合のピュアマージンは僅かに拡大した。そして、メニスカス近傍を流れる不活性ガスの流速が3.0〜5.0m/secである場合、図4に示すRc<Rfの関係を有する対流パターンが生じる場合のピュアマージンは消滅したが、図5に示すRf≦(Rc/2)の関係を有する対流パターンが生じる場合のピュアマージンは著しく拡大した。
【0025】
次に、他の条件を変化させずにチャンバ内を流通させる不活性ガスの流量を変化させてメニスカス近傍を流れる不活性ガスの流速を0.3m/sec、0.8m/sec、2.0m/sec及び4.0m/secとする任意の引上げ条件を図4に示すRc<Rfの関係を有する対流パターンが生じる場合と図5に示すRf≦(Rc/2)の関係を有する対流パターンが生じる場合のそれぞれについて4パターンづつ設定した。これらの引上げ条件を用い、実際にシリコン融液からシリコン単結晶インゴットを実際にそれぞれ4本引上げた。次いで、引上げたシリコン単結晶インゴットを軸方向にスライスし、かつミラーエッチングすることにより、表面が鏡面化したシリコンサンプルを作製した。次に、このスライスしたシリコンサンプルを所定の熱処理条件で熱処理して、パーフェクト領域[P]を含むサンプルを作製した。熱処理条件は、窒素又は酸化性雰囲気下で800℃で4時間保持し、更に続いて1000℃で16時間保持した。この熱処理したサンプルを銅デコレーション(copperdecoration)、セコエッチング(secco−etching)、X線トポグラフ像分析(X−Ray Topography)分析、再結合ライフタイム(lifetime)測定等の方法により測定して、パーフェクト領域[P]に対応される速度範囲をピュアマージンと規定した。
【0026】
具体的には、図6に示すように、先ず、上記各測定方法により領域[V]、領域[P]及び領域[I]をそれぞれ観察した。次いで、領域[V]と領域[P]の境界位置の×印で示される変曲点のうち、最も領域[I]に近い変曲点位置における引上げ速度を引上げ速度Vと規定した。次に、領域[P]と領域[I]の境界位置の×印で示される変曲点のうち、最も領域[V]に近い変曲点位置における引上げ速度を引上げ速度Vと規定した。そしてこの引上げ速度V〜Vの範囲内をピュアマージンと規定した。この結果、図4に示すRc<Rfの関係を有する対流パターンが生じる場合のメニスカス近傍を流れる不活性ガスの流速とピュアマージンとの関係を示す図を図7に示し、図5に示すRf≦(Rc/2)の関係を有する対流パターンが生じる場合のメニスカス近傍を流れる不活性ガスの流速とピュアマージンとの関係を示す図を図8に示す。なおピュアマージンはピュアマージンの最大値で除すことにより、相対的に表記した。
【0027】
図7より明らかなように、図4に示すRc<Rfの関係を有する対流パターンが生じる場合のメニスカス近傍を流れる不活性ガスの流速が大きくなるにつれて、ピュアマージンが減少していることが判る。また、図8より明らかなように、図5に示すRf≦(Rc/2)の関係を有する対流パターンが生じる場合のメニスカス近傍を流れる不活性ガスの流速が大きくなるにつれて、ピュアマージンが拡大していることが判る。一方、図3に示す(Rc/2)<Rf≦Rcの関係を有する対流パターンが生じる場合はそれらの中間にあるため、そのピュアマージンはメニスカス近傍を流れる不活性ガスの流速富む関係であろうと推認される。この結果から、本発明の予測方法による制御因子が引上げ条件の設定において有効であることを確認した。
【0028】
【発明の効果】
以上述べたように、本発明の予測方法では、不活性ガスの流速を含む任意の引上げ条件を設定し、総合熱解析手法を利用して数値的にシミュレーションすることにより得られたメニスカス近傍のシリコン融液に生じる対流の中心とインゴット中心との半径方向距離との関係が上記式(1)〜(3)のいずれに該当するかにより、不活性ガスの流速とピュアマージンとの関係を予測し、その関係に基づいて不活性ガスの流速等を変化させることによりピュアマージンの幅を拡大することが可能になる。そしてピュアマージンの幅を拡大した引上げ条件を設定することにより、実際に引上げて確認する作業やコストを大幅に低減することができる。
【図面の簡単な説明】
【図1】本発明の不活性ガスの流速とピュアマージンとの関係を予測する方法を含む引き上げ条件の設定を示すフローチャート。
【図2】引上げ条件の違いによる対流パターンの違いを示す図。
【図3】図2(b)おける対流を示すシミュレーション図。
【図4】図2(c)における対流を示すシミュレーション図。
【図5】図2(a)における対流を示すシミュレーション図。
【図6】ピュアマージンを規定するための説明図。
【図7】図4に示す対流パターンが生じる場合における不活性ガスの流速とピュアマージンとの関係を示す図。
【図8】図5に示す対流パターンが生じる場合における不活性ガスの流速とピュアマージンとの関係を示す図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for predicting a relationship between an inert gas flowing down by a Czochralski method (hereinafter, referred to as a CZ method) and a pure margin in a pure silicon single crystal to be pulled.
[0002]
[Prior art]
Factors that reduce the yield of devices with the recent miniaturization of semiconductor integrated circuits include particles originating from crystals (Crystal Originated Particles, hereinafter referred to as COPs) and oxidation induced stacking faults (hereinafter, referred to as COPs). The presence of minute defects in oxygen precipitates serving as nuclei of OSF) or interstitial-type large dislocation (hereinafter, referred to as L / D) is cited.
COPs are pits caused by crystals that appear on the wafer surface when a mirror-polished silicon wafer is SC-1 washed with a mixed solution of ammonia and hydrogen peroxide. When this wafer is measured by a particle counter, the pits are detected as particles (Light Point Defect, LPD). The COP causes deterioration of electrical characteristics, for example, a time-dependent dielectric breakdown characteristic (Time Dependent Breakdown, TDDB) of an oxide film, and a dielectric breakdown voltage characteristic (Time Zero Dielectric Breakdown, TZDB) of an oxide film. Also, if COP exists on the wafer surface, a step is generated in a device wiring process, which may cause disconnection. This also causes a leak or the like in the element isolation portion, and lowers the product yield.
[0003]
OSF is considered to be a nucleus formed by minute oxygen precipitates formed during crystal growth, and is a stacking fault that becomes apparent in a thermal oxidation step or the like when manufacturing a semiconductor device. This OSF causes a defect such as an increase in the leak current of the device. L / D is also called a dislocation cluster because a silicon wafer having this defect is immersed in a selective etching solution containing hydrofluoric acid as a main component to generate etching pits having an orientation. This L / D also causes deterioration of electrical characteristics such as leak characteristics and isolation characteristics.
[0004]
From the above, it is necessary to reduce COP, OSF and L / D from a silicon wafer used for manufacturing a semiconductor integrated circuit.
A defect-free ingot having no COP, OSF and L / D and a silicon wafer sliced from the ingot are disclosed (for example, see Patent Document 1). This defect-free ingot is composed of a perfect region [P], where a perfect region in which an aggregate of vacancy type point defects and an aggregate of interstitial silicon type point defects in the ingot are not detected is [P]. An ingot, that is, a pure silicon single crystal ingot. The perfect region [P] includes a region [V] having a defect in which vacancy-type point defects are dominant and supersaturated vacancies are aggregated in the ingot, and a region [V] in which an interstitial silicon-type point defect is predominant in the ingot. The silicon intervenes between the region [I] having the aggregated defects.
[0005]
The pure silicon single crystal ingot comprising the perfect region [P] has an ingot pulling speed of V (mm / min) and an axial temperature gradient of G (° C./mm) near the solid-liquid interface between the silicon melt and the silicon ingot. When the thermal oxidation treatment is performed, the OSF (P band) generated in the shape of a ring disappears at the center of the wafer and the V / G (mm 2 / min) in the region where the L / D (B band) is not generated.・ ℃).
In order to improve the productivity, yield, and the like of the pure silicon single crystal, it is necessary to increase the pure margin. The pure margin is considered to have some correlation with the solid-liquid interface shape at the time of pulling.
Therefore, a method of using a solid-liquid interface shape as a control factor for producing a pure silicon single crystal ingot has been studied. For example, a method of manufacturing a defect-free crystal in consideration of a solid-liquid interface shape is disclosed (for example, see Patent Document 2). According to this method, a silicon ingot having a defect-free region over a wide area can be manufactured stably and with good reproducibility by considering the temperature distribution on the crystal side surface and the solid-liquid interface shape between the silicon melt and the silicon single crystal.
[0006]
[Patent Document 1]
JP-A-11-1393 [Patent Document 2]
JP 2001-261495 A
[Problems to be solved by the invention]
However, in the method disclosed in Patent Document 2 described above, the defect-free crystal is made stable and reproducible by appropriately adjusting the relationship between the shape of the solid-liquid interface and the temperature distribution on the side surface of the ingot near the solid-liquid interface. Although it is manufactured well, it does not consider the inert gas flowing down the outer peripheral surface of the ingot when pulling up the ingot, so even if the ingot is pulled up using the method shown in the above publication, the pure margin Since the width cannot be predicted, it was actually difficult to obtain a defect-free crystal stably and with good reproducibility.
An object of the present invention is to provide a method for estimating the relationship between the inert gas flow rate and the pure margin, which significantly reduces the work and cost of actually pulling up and confirming by estimating the width of the pure margin. It is in.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 numerically simulates the convection of a silicon melt by using a comprehensive thermal analysis method by arbitrarily determining pulling conditions for pulling a silicon single crystal ingot from a silicon melt melted by a heater. To estimate the relationship between the flow velocity of the inert gas flowing near the meniscus and the pure margin of the ingot at the boundary between the outer peripheral surface of the ingot and the surface of the silicon melt.
[0009]
The characteristic point is that when the radial distance between the center of the convection generated in the silicon melt near the meniscus and the center of the ingot obtained by the simulation is Rf, and the radius of the ingot is Rc, the equation (1) is satisfied. It is predicted that the pure margin increases with an increase in the flow velocity of the inert gas flowing near the meniscus, and when the equation (2) is satisfied, it is predicted that both the flow velocity of the inert gas flowing near the meniscus and the pure margin are irrelevant. It is expected that when 3) is satisfied, the pure margin will decrease as the flow rate of the inert gas flowing near the meniscus increases.
Rf ≦ (Rc / 2) (1)
(Rc / 2) <Rf ≦ Rc (2)
Rc <Rf (3)
[0010]
In the invention according to claim 1, the relationship between Rc and Rf obtained by setting an arbitrary pulling condition and performing a numerical simulation using a comprehensive thermal analysis method is represented by the above equations (1) to (3). It is possible to predict the relationship between the inert gas flow rate and the pure margin depending on which of the above, and to increase the width of the pure margin by changing the inert gas flow rate etc. based on the relationship. Become. By setting the pulling condition in which the width of the pure margin is enlarged, the work and cost for actually pulling up and confirming can be significantly reduced.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have found that the convection generated in the silicon melt near the meniscus at the boundary between the outer surface of the ingot and the surface of the silicon melt due to the flow rate of the inert gas flowing down the outer surface of the ingot when pulling up the ingot. The present invention has been derived from the knowledge of change. That is, the convection of the silicon melt during the growth of the silicon single crystal ingot is numerically included, including the flow rate of the inert gas flowing down the outer peripheral surface of the ingot into the control factors that define the pulling conditions of the pure silicon single crystal composed of the perfect region. It was derived by simulation analysis.
[0012]
As shown in FIG. 1, first, a pull-up condition for pulling a silicon single crystal ingot from a silicon melt melted by a heater is arbitrarily determined, a steady calculation is performed, and a solid-liquid interface shape in consideration of a convection of the silicon melt is obtained. Analyzed. Arbitrary pulling conditions include the rotation speed of the crucible, the rotation speed of the ingot, the flow rate of the inert gas flowing through the chamber, the shape of the hot zone, the shape of the heat cap, the shape and arrangement of the heater, the shape of the bottom heater, and the like. The arrangement, the magnitude of the heater power, the distance (Gap) between the heat cap and the silicon melt surface, the type of applied magnetic field, the shape of the coil, the position of the coil, the magnetic field strength, the state of external mechanical vibration, and the like are listed. . From this analysis, it was found that the convection patterns at the time of lifting were classified into the following three types. That is, when the radial distance between the center of the convection generated in the silicon melt near the meniscus and the center of the ingot is Rf, and the radius of the ingot is Rc, Rf ≦ (Rc / 2) as shown in FIG. (Formula (1)), a pattern of (Rc / 2) <Rf ≦ Rc as shown in FIG. 2B (Formula (2)), and a pattern of Rc <Rf as shown in FIG. 2 (c) (Equation (3)).
[0013]
Next, many simulation analyzes were performed on the convection patterns classified into the above three types. First, the convection of the silicon melt as shown in FIG. 2B was analyzed by simulation. The analysis diagram is shown in FIG. As is clear from FIG. 3, it was found that a small convection vortex was generated in the convection of the silicon melt immediately below the highest displacement point A on the periphery of the ingot. That is, assuming that the radius of the ingot is Rc and the radial distance between the center of the convection generated in the silicon melt near the meniscus and the center of the ingot is Rf, the relationship of the formula (2) represented by (Rc / 2) <Rf ≦ Rc is satisfied. It was confirmed that the condition was satisfied. By changing the flow rate of the inert gas flowing through the chamber without changing other conditions, a simulation analysis was performed on how the shape of the solid-liquid interface changes. As a result, it was not found that the convection pattern was changed even when the flow rate of the inert gas was changed.
[0014]
In addition, simulation analysis was performed on the convection of the silicon melt as shown in FIG. The analysis diagram is shown in FIG. As is clear from FIG. 4, it was confirmed that the convection of the silicon melt generated a small convection vortex outside the periphery of the ingot. That is, it was found that when the relationship of the formula (3), which satisfies Rc <Rf, was satisfied, a downward-convex solid-liquid interface was generated due to the flow of the inert gas flowing near the meniscus. By changing the flow rate of the inert gas flowing through the chamber without changing other conditions, a simulation analysis was performed on how the shape of the solid-liquid interface changes. As a result, when the flow rate of the inert gas is increased, the rate of protrusion below the center of the solid-liquid interface increases, and when the flow rate of the inert gas is reduced, the rate of protrusion below the center of the solid-liquid interface decreases. It turns out.
[0015]
Further, the convection of the silicon melt as shown in FIG. The analysis diagram is shown in FIG. As is clear from FIG. 5, it was confirmed that a small convection vortex was generated near the center of the ingot in the convection of the silicon melt. That is, it was found that when the relationship of the formula (1), which satisfies Rf ≦ (Rc / 2), was satisfied, an upwardly convex solid-liquid interface was generated due to the flow of the inert gas flowing near the meniscus. By changing the flow rate of the inert gas flowing through the chamber without changing other conditions, a simulation analysis was performed on how the shape of the solid-liquid interface changes. As a result, when the flow rate of the inert gas is increased, the rate of protrusion above the center of the solid-liquid interface increases, and when the flow rate of the inert gas is reduced, the rate of protrusion above the center of the solid-liquid interface decreases. understood.
[0016]
On the other hand, the axial temperature gradient at the displacement point A shown in FIG. In the vicinity of the displacement point A, the heat flux from the silicon melt is also particularly large compared to other portions, and the axial temperature gradient at the displacement point A is larger than the axial temperature gradient at other solid-liquid interface shape positions. It turns out to be. Here, based on the Bornkov's theory, it is necessary to make the radial distribution of the temperature gradient in the axial direction of the silicon single crystal rod substantially uniform by pulling the silicon single crystal rod at an optimum pulling speed. Thus, the width of the pure margin is determined by whether or not the radial distribution of the temperature gradient is substantially uniform.
[0017]
Therefore, the relationship between the radial distribution of the temperature gradient in the axial direction of the pulled silicon single crystal rod and the flow rate of the inert gas is examined for each of the three types of convection patterns. First, in the case of the convection pattern shown in FIG. 3, since the convection pattern is not changed even if the flow rate of the inert gas is changed, the flow rate of the inert gas and the pure margin have no relation. Therefore, it can be predicted that when the above-mentioned expression (2) is satisfied, the flow velocity of the inert gas flowing near the meniscus and the pure margin are both irrelevant. Therefore, in this case, in order to increase the pure margin, other conditions, that is, the shape of the hot zone in the chamber, the shape of the heat cap, the shape and arrangement of the heater, the shape and arrangement of the bottom heater, and the heater power It is necessary to change the size, the distance (Gap) between the heat cap and the silicon melt surface, the type of applied magnetic field, the shape of the coil, the position of the coil, the strength of the magnetic field, the state of external mechanical vibration, and the like. You can see that.
[0018]
Next, considering the case where a convection pattern as shown in FIG. 4 is generated, when the flow rate of the inert gas is increased, the ratio of projecting below the center of the solid-liquid interface increases. The radial distribution of the temperature gradient in the direction will increase with an increase in the flow rate of the inert gas. On the other hand, when the flow rate of the inert gas is reduced, the ratio of the temperature gradient in the axial direction of the silicon single crystal rod to the radial distribution of the inert gas is reduced because the rate of protrusion below the center of the solid-liquid interface decreases. It will decrease with the decrease of. Therefore, it can be predicted that the pure margin decreases with an increase in the flow velocity of the inert gas flowing near the meniscus when the above equation (3) is satisfied.
[0019]
Further, when considering the case where a convection pattern as shown in FIG. 5 is generated, when the flow rate of the inert gas is increased, the ratio of projecting above the center of the solid-liquid interface increases. The radial distribution of the temperature gradient will decrease as the flow rate of the inert gas increases. On the other hand, if the flow rate of the inert gas is reduced, the ratio of the temperature gradient in the axial direction of the silicon single crystal rod to the radial distribution of the inert gas is reduced because the rate of protrusion above the center of the solid-liquid interface decreases. It will increase with the decrease. Therefore, it can be predicted that the pure margin increases with an increase in the flow velocity of the inert gas flowing near the meniscus when the above equation (1) is satisfied.
[0020]
Based on the above, as shown in FIG. 1, before actually pulling the ingot, first set an arbitrary pulling condition and perform a steady-state calculation, and then, from this condition, use a comprehensive thermal analysis method to obtain a melt. When the convection is numerically simulated and the radial distance between the center of the convection generated in the silicon melt near the meniscus and the center of the ingot obtained by the simulation is Rf, and the radius of the ingot is Rc, the above equation (2) ) Is satisfied, the flow velocity of the inert gas flowing near the meniscus and the pure margin are both irrelevant. Therefore, if the temperature gradient distribution is simulated as it is, it can be actually pulled up and confirmed. Change conditions.
[0021]
When the relationship between Rc and Rf obtained by performing the simulation corresponds to the above equation (1), it can be predicted that the pure margin increases with an increase in the flow velocity of the inert gas flowing near the meniscus. A change is input so as to increase the flow rate of the active gas, the convection linked to the flow rate of the inert gas is further analyzed, and then, if the temperature gradient distribution is simulated, it is actually pulled up and confirmed.
Further, when the relationship between Rc and Rf obtained by performing the simulation corresponds to the above-described expression (3), it can be predicted that the pure margin decreases as the flow rate of the inert gas flowing near the meniscus increases. A change is input so as to decrease the flow rate of the inert gas, the convection linked to the flow rate of the inert gas is further analyzed, and if the temperature gradient distribution is simulated, it is actually pulled up and confirmed. In this way, since the pulling condition in which the width of the pure margin is enlarged can be predicted, the work and cost for actually pulling and checking can be significantly reduced.
[0022]
On the other hand, if the temperature gradient distribution after changing the flow rate of the inert gas and performing the gas flow linked convection analysis is inappropriate, check the temperature gradient distribution and adjust the gas flow to correct the temperature gradient distribution. Determine if you can get it. If the temperature gradient distribution is within a range that can be corrected by adjusting the gas flow, the gas flow is further adjusted.If the temperature gradient distribution is within a range that cannot be corrected by adjusting the gas flow, Change any pull-up condition entered first. As described above, even when the temperature gradient distribution after the flow rate of the inert gas is changed and the gas flow interlocking convection analysis is inappropriate is performed, the work and cost for actually pulling up and confirming can be greatly reduced.
[0023]
【Example】
Next, embodiments of the present invention will be described in detail.
<Example>
First, an arbitrary pull-up condition is set, and two types, a convection pattern having a relationship of Rc <Rf shown in FIG. 4 and a convection pattern having a relationship of Rf ≦ (Rc / 2) shown in FIG. 5, are generated. The conditions for raising were determined. Then, the flow rate of the inert gas flowing near the meniscus at the boundary between the outer peripheral surface of the ingot and the surface of the silicon melt is gradually changed by changing the flow rate of the inert gas flowing through the chamber without changing other conditions. And a numerical simulation analysis was performed using the integrated thermal analysis method to predict the relationship between the inert gas flow velocity and the pure margin. The flow velocity of the inert gas flowing in the vicinity of the meniscus is 0.1 to 0.5 m / sec, 0.5 to 1.0 m / sec, 1.0 to 3.0 m / sec, and 3.0 to 5.0 m / sec. A range was selected.
[0024]
As a result, when the flow velocity of the inert gas flowing in the vicinity of the meniscus is 0.1 to 0.5 m / sec, the pure margin when the convection pattern having the relationship of Rc <Rf shown in FIG. 4 is slightly reduced. No change was observed in the pure margin when the convection pattern having the relationship of Rf ≦ (Rc / 2) shown in FIG. 5 was generated. When the flow velocity of the inert gas flowing in the vicinity of the meniscus is 0.5 to 1.0 m / sec, the pure margin when the convection pattern having the relationship of Rc <Rf shown in FIG. No change was observed in the pure margin when the convection pattern having the relationship of Rf ≦ (Rc / 2) shown in FIG. When the flow velocity of the inert gas flowing in the vicinity of the meniscus is 1.0 to 3.0 m / sec, the pure margin when the convection pattern having the relationship of Rc <Rf shown in FIG. The pure margin when the convection pattern having the relationship of Rf ≦ (Rc / 2) shown in FIG. 5 is slightly increased. When the flow velocity of the inert gas flowing in the vicinity of the meniscus is 3.0 to 5.0 m / sec, the pure margin disappears when the convection pattern having the relationship of Rc <Rf shown in FIG. 4 is generated. The pure margin when the convection pattern having the relationship of Rf ≦ (Rc / 2) shown in FIG.
[0025]
Next, the flow rate of the inert gas flowing near the meniscus is changed to 0.3 m / sec, 0.8 m / sec, and 2.0 m by changing the flow rate of the inert gas flowing in the chamber without changing other conditions. / Sec and 4.0 m / sec, the convection pattern having the relationship of Rc <Rf shown in FIG. 4 and the convection pattern having the relationship of Rf ≦ (Rc / 2) shown in FIG. In each case, four patterns were set. Using these pulling conditions, four silicon single crystal ingots were actually pulled from the silicon melt. Next, the pulled silicon single crystal ingot was sliced in the axial direction, and mirror-etched to produce a silicon sample having a mirror-finished surface. Next, the sliced silicon sample was heat-treated under a predetermined heat treatment condition to produce a sample including the perfect region [P]. The heat treatment was performed at 800 ° C. for 4 hours in a nitrogen or oxidizing atmosphere, and subsequently at 1000 ° C. for 16 hours. The heat-treated sample is measured by a method such as copper decoration (copperdecoration), secco-etching, X-ray topographic image analysis (X-Ray Topography) analysis, recombination lifetime (lifetime) measurement, etc. The speed range corresponding to [P] was defined as a pure margin.
[0026]
Specifically, as shown in FIG. 6, first, a region [V], a region [P], and a region [I] were observed by the above-described respective measurement methods. Then, among the inflection point represented by × mark the boundary position of the region [V] and region [P], defines the pulling rate in most areas [I] inflection point located closer to the pulling speed V 1. Then, among the inflection point represented by × mark the boundary position of the region [P] and region [I], defines the pulling rate in most areas [V] inflection point located closer to the pulling speed V 2. And it defines the range of the pulling rate V 1 ~V 2 and pure margin. As a result, FIG. 7 shows the relationship between the flow velocity of the inert gas flowing near the meniscus and the pure margin when the convection pattern having the relationship of Rc <Rf shown in FIG. 4 is generated, and Rf ≦ Rf shown in FIG. FIG. 8 shows a relationship between the flow velocity of the inert gas flowing near the meniscus and the pure margin when a convection pattern having the relationship of (Rc / 2) occurs. The pure margin was relatively expressed by dividing by the maximum value of the pure margin.
[0027]
As is clear from FIG. 7, it can be seen that the pure margin decreases as the flow rate of the inert gas flowing near the meniscus increases when the convection pattern having the relationship of Rc <Rf shown in FIG. 4 occurs. As is clear from FIG. 8, the pure margin increases as the flow velocity of the inert gas flowing near the meniscus increases when the convection pattern having the relationship of Rf ≦ (Rc / 2) shown in FIG. 5 occurs. It turns out that it is. On the other hand, when a convection pattern having a relationship of (Rc / 2) <Rf ≦ Rc shown in FIG. 3 is generated between them, the pure margin may be a relationship in which the flow rate of the inert gas flowing near the meniscus is rich. Inferred. From these results, it was confirmed that the control factor according to the prediction method of the present invention was effective in setting the pulling condition.
[0028]
【The invention's effect】
As described above, in the prediction method of the present invention, the arbitrary pulling conditions including the flow rate of the inert gas are set, and the silicon near the meniscus obtained by performing a numerical simulation using the comprehensive thermal analysis method. The relationship between the flow rate of the inert gas and the pure margin is predicted based on which of the above equations (1) to (3) corresponds to the relationship between the center of the convection generated in the melt and the radial distance between the center of the ingot. By changing the flow rate of the inert gas or the like based on the relationship, the width of the pure margin can be increased. By setting the pulling condition in which the width of the pure margin is enlarged, the work and cost for actually pulling up and confirming can be significantly reduced.
[Brief description of the drawings]
FIG. 1 is a flowchart showing setting of pulling conditions including a method for predicting a relationship between a flow rate of an inert gas and a pure margin according to the present invention.
FIG. 2 is a diagram showing differences in convection patterns due to differences in pulling conditions.
FIG. 3 is a simulation diagram showing convection in FIG. 2 (b).
FIG. 4 is a simulation diagram showing convection in FIG. 2 (c).
FIG. 5 is a simulation diagram showing convection in FIG. 2 (a).
FIG. 6 is an explanatory diagram for defining a pure margin.
FIG. 7 is a diagram showing a relationship between a flow velocity of an inert gas and a pure margin when the convection pattern shown in FIG. 4 occurs.
FIG. 8 is a diagram showing a relationship between a flow velocity of an inert gas and a pure margin when the convection pattern shown in FIG. 5 occurs.

Claims (1)

ヒータにより融解されたシリコン融液からシリコン単結晶インゴットを引上げる引上げ条件を任意に決めて総合熱解析手法を利用することにより前記シリコン融液の対流を数値的にシミュレーションを行って前記インゴットの外周面及び前記シリコン融液の表面の境界部分におけるメニスカス近傍を流れる不活性ガスの流速と前記インゴットのピュアマージンとの関係を予測する方法であって、
シミュレーションにより得られた前記メニスカス近傍のシリコン融液に生じる対流の中心と前記インゴット中心との半径方向距離をRfとし、前記インゴットの半径をRcとするとき、
式(1)を満たすとき前記メニスカス近傍を流れる不活性ガスの流速の増加とともに前記ピュアマージンが増加すると予測し、
式(2)を満たすとき前記メニスカス近傍を流れる不活性ガスの流速と前記ピュアマージンはともに無関係であると予測し、
式(3)を満たすとき前記メニスカス近傍を流れる不活性ガスの流速の増加とともに前記ピュアマージンが減少すると予測する方法。
Rf≦(Rc/2) …(1)
(Rc/2)<Rf≦Rc …(2)
Rc<Rf …(3)
The pulling condition for pulling the silicon single crystal ingot from the silicon melt melted by the heater is arbitrarily determined, and the convection of the silicon melt is numerically simulated by using a comprehensive thermal analysis method to perform the outer periphery of the ingot. A method for predicting the relationship between the flow rate of the inert gas flowing near the meniscus at the boundary between the surface and the surface of the silicon melt and the pure margin of the ingot,
When the radial distance between the center of the convection generated in the silicon melt near the meniscus obtained by simulation and the center of the ingot is Rf, and the radius of the ingot is Rc,
When satisfying Expression (1), it is predicted that the pure margin increases with an increase in the flow velocity of the inert gas flowing near the meniscus,
When satisfying Expression (2), it is predicted that the flow velocity of the inert gas flowing near the meniscus and the pure margin are both irrelevant,
A method of predicting that the pure margin decreases as the flow rate of the inert gas flowing near the meniscus increases when Expression (3) is satisfied.
Rf ≦ (Rc / 2) (1)
(Rc / 2) <Rf ≦ Rc (2)
Rc <Rf (3)
JP2002329118A 2002-11-13 2002-11-13 A method for predicting the relationship between the flow rate of inert gas and the pure margin. Expired - Lifetime JP4193470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329118A JP4193470B2 (en) 2002-11-13 2002-11-13 A method for predicting the relationship between the flow rate of inert gas and the pure margin.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329118A JP4193470B2 (en) 2002-11-13 2002-11-13 A method for predicting the relationship between the flow rate of inert gas and the pure margin.

Publications (2)

Publication Number Publication Date
JP2004161534A true JP2004161534A (en) 2004-06-10
JP4193470B2 JP4193470B2 (en) 2008-12-10

Family

ID=32807212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329118A Expired - Lifetime JP4193470B2 (en) 2002-11-13 2002-11-13 A method for predicting the relationship between the flow rate of inert gas and the pure margin.

Country Status (1)

Country Link
JP (1) JP4193470B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222539A (en) * 2007-03-16 2008-09-25 Covalent Materials Corp Method for manufacturing single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222539A (en) * 2007-03-16 2008-09-25 Covalent Materials Corp Method for manufacturing single crystal

Also Published As

Publication number Publication date
JP4193470B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
JP4743010B2 (en) Silicon wafer surface defect evaluation method
JP3565205B2 (en) Method for determining conditions for manufacturing silicon wafer and silicon single crystal and method for manufacturing silicon wafer
JP2000001391A (en) Silicon single crystal wafer and its production
US6174364B1 (en) Method for producing silicon monocrystal and silicon monocrystal wafer
JP2017528404A (en) Nitrogen-doped vacancy-dominant silicon ingot, and heat-treated wafer having a radially uniform density and size of oxygen precipitates formed therefrom
KR20140001815A (en) Method of manufacturing silicon substrate, and silicon substrate
JP2000053497A (en) Low defect density silicon single crystal wafer doped with nitrogen and its production
JP3787472B2 (en) Silicon wafer, method for manufacturing the same, and method for evaluating silicon wafer
KR100725671B1 (en) Single-crystal silicon wafer having few crystal defects and method for manufacturing the same
JP4701738B2 (en) Single crystal pulling method
JP3731417B2 (en) Method for producing silicon wafer free of agglomerates of point defects
JP2003055092A (en) Method of pulling silicon single crystal
JP4182691B2 (en) A method for predicting pulling conditions of pure silicon single crystals.
JP4193470B2 (en) A method for predicting the relationship between the flow rate of inert gas and the pure margin.
JP4102966B2 (en) Pulling method of silicon single crystal
JP2000044388A (en) Silicon single crystal wafer and its production
JP3915606B2 (en) Method for measuring point defect distribution of silicon single crystal ingot
US7014704B2 (en) Method for growing silicon single crystal
TW503463B (en) Silicon wafer and manufacture method thereof
JP2001089294A (en) Method of continuously pulling up silicon single crystal free from agglomerates of point defects
JP2000272997A (en) Growth of silicon single crystal and silicon wafer using the same and estimation of amount of nitrogen doped in the silicon wafer
JP2003335599A (en) Process for identifying defect distribution in silicon single crystal ingot
JP2003055091A (en) Method of pulling silicon single crystal
JP2007070132A (en) Method for manufacturing single crystal silicon wafer, single crystal silicon wafer, and method for inspecting wafer
JP2000327485A (en) Silicon single crystal ingot and silicon wafer made of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R150 Certificate of patent or registration of utility model

Ref document number: 4193470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term