JP2004161512A - Low thermal expansion ceramic member, method of manufacturing the same, and member for semiconductor manufacture apparatus - Google Patents

Low thermal expansion ceramic member, method of manufacturing the same, and member for semiconductor manufacture apparatus Download PDF

Info

Publication number
JP2004161512A
JP2004161512A JP2002327037A JP2002327037A JP2004161512A JP 2004161512 A JP2004161512 A JP 2004161512A JP 2002327037 A JP2002327037 A JP 2002327037A JP 2002327037 A JP2002327037 A JP 2002327037A JP 2004161512 A JP2004161512 A JP 2004161512A
Authority
JP
Japan
Prior art keywords
thermal expansion
low thermal
less
heat treatment
ceramic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002327037A
Other languages
Japanese (ja)
Other versions
JP4062059B2 (en
Inventor
Yasuki Yoshitomi
靖樹 吉富
Manabu Tanaka
学 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002327037A priority Critical patent/JP4062059B2/en
Publication of JP2004161512A publication Critical patent/JP2004161512A/en
Application granted granted Critical
Publication of JP4062059B2 publication Critical patent/JP4062059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low thermal expansion ceramic member containing cordierite, spodumene and eucryptite, etc., in which high precision is maintained by clarifying a treatment method for suppressing crack by working and minimizing residual stress on the highly precisely finished surface and the change of precision. <P>SOLUTION: The low thermal expansion ceramic member is composed of a ceramic having ≤0.5×10<SP>-6</SP>/°C thermal expansion coefficient at 10-40°C, ≤0.5% porosity and has ≤20 MPa residual stress. As the ceramic, a ceramic containing at least one kind selected from a group composed of cordierite, spodumene and eucryptite is suitably used. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路あるいは液晶集積回路などを作製する際に、半導体ウェーハあるいは液晶ガラス基板に露光処理を施す際に用いられる半導体あるいは液晶露光装置用部材、具体的には真空チャック、ステージあるいはステージ位置測定ミラーなどの半導体製造プロセスにおける治具などに適した、コーディエライト、スポジューメンまたはユークリプタイトを主体とする低熱膨張セラミックス部材およびその製造方法に関する。
【0002】
【従来の技術】
LSIなどの高集積化に伴い、回路の超微細化が進められ、その線幅は半導体においては0.1ミクロンを切るレベルにまで到達しようとしている。そして、このような回路を形成するための露光装置に要求される精度も年々高くなってきており、それに伴い、露光装置に使用される部材として熱膨張係数の低いものが開発されてきている。たとえば、コーディエライトを80質量%以上、望ましくは希土類元素を酸化物換算で1〜20質量%含有し、気孔率が0.1%以下、10〜40℃における熱膨張係数が1×10−6/℃以下である緻密質低熱膨張セラミックスからなる半導体製造装置用部材が開示されている(特許文献1参照)。
【0003】
また、コーディエライトを80質量%以上、望ましくは希土類元素を酸化物換算で1〜20質量%含有し、気孔率が0.5%以下、カーボン含有量が0.1〜2.0質量%であり、10〜40℃における熱膨張係数が0.5×10−6/℃以下である低熱膨張性黒色セラミックスおよびそのような緻密質低熱膨張セラミックスからなる半導体製造装置用部材が開示されている(特許文献2参照)。
【0004】
さて、回路の超微細化が進むにつれて、半導体あるいは液晶ガラス基板の露光精度を確保するため、たとえば、露光装置用真空チャック、ステージ位置測定ミラー向けの材料には、低い熱膨張係数および高い剛性(ヤング率)が求められる。従来より、低熱膨張材として利用されてきた材料のうち、石英、β−スポジューメン、チタン酸アルミニウム、結晶化ガラスなどは、剛性に問題がある。一方、従来の緻密質コーディエライト材、あるいは、コーディエライトを主成分とする低熱膨張セラミックス(特許文献1、特許文献2参照)、あるいは、ユークリプタイトを主成分とする低熱膨張セラミックス(特許文献3参照)は、低い熱膨張係数および製品として使用し得るレベルの高い剛性という上記の条件を満たし得る。
【0005】
これらのセラミックスは、一般には常圧焼結、高圧付与のホットプレス焼結あるいはHIP焼結などの手法により、焼結される。しかし、この焼結により素材には応力が残留する。また、焼結後の加工においても、加工面には応力が残留する。かかる残留応力により、製品は変形および割れなどの影響を受けることとなる。
【0006】
たとえば、変形においては、これらのセラミックスは前述のとおり製品として使用しうるレベルの剛性を備えてはいるが、アルミナまたはSiCセラミックスに比べて約1/2〜1/3程度のヤング率しか備えておらず、付加された応力により変形しやすい。また、焼結または加工工程で製品に付与された残留応力が瞬間的にあるいは長期間をかけて解放される際に、製品は変形し、たとえば、平面度が変化するなど、精度が狂いやすい。さらに、このように長期間をかけて製品平面度などの製品精度の経時変化が発生した場合、折角、初期に高精度に加工したとしても残留応力解放要因による製品精度が変化し、あらためて修正加工が必要とされるケースが生じうる。一方、割れにおいては、焼結体を所望の形状に加工する際に加工応力が素材に付与され、素材中に残留応力があれば、加工割れが発生するリスクが高まる。
【0007】
さて、研削加工により製品表層に生じたマイクロクラックによる素材強度回復策としては、たとえば、セラミックス焼結体を所定の形状に研削加工した後、800〜1100℃で1〜24時間の熱処理を施す方法があり、これにより研削加工の際に生じたミクロな鋭角状の切欠きが丸められ、機械的強度が向上することができる(特許文献4参照)。また、研削加工が施された焼結体に最後に加熱処理として1000〜1550℃の温度で0.1〜6時間にわたり加熱処理する方法があり、マイクロクラックの先端部が丸みを帯びるようになり、割れ感受性が低下し、プラズマイオンの照射を受けてもセラミックス粒子の飛散を抑止することが可能である(特許文献5参照)。
【0008】
【特許文献1】
特開平11−209171号公報
【0009】
【特許文献2】
特開平11−343168号公報
【0010】
【特許文献3】
特開2000−219572号公報
【0011】
【特許文献4】
特開昭63−55180号公報
【0012】
【特許文献5】
特許3126635号公報
【0013】
【発明が解決しようとする課題】
しかし、これらはいずれもアルミナ、窒化ケイ素、SiCなど高いヤング率を有し、応力により変形しにくいセラミックスに対するマイクロクラック対策であり、コーディエライトなどの低熱膨張セラミックスのように比較的ヤング率が低く、応力の解放により変形が生じやすいセラミックス製品について精度の向上を図るという課題認識はない。
【0014】
本発明の課題は、コーディエライト、スポジューメンおよびユークリプタイトなどを含む低熱膨張セラミックス部材において、加工による割れを抑え、高精度に仕上げた表面の残留応力を極小にし、かつ精度の変化を極小にするための処理方法を明らかにし、高精度を維持した部材を提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、上記課題に対し鋭意研究を重ねた結果、10〜40℃における熱膨張係数が0.5×10−6/℃以下で、気孔率が0.5%以下のセラミックスの焼結後、最終の加工工程までの間に、500〜1200℃で0.3〜200時間の熱処理を少なくとも1回行なうことにより、加工による割れを抑え、セラミックス部材の表面における残留応力を低減し、高精度を維持した低熱膨張セラミックス部材を製造することができることを見出した。かかる熱処理は、セラミックスの焼結後、最初の加工工程までの間に、500〜1200℃で0.3〜200時間の熱処理を行ない、最終の加工工程の直前に、500〜1100℃で0.3〜200時間の熱処理をさらに行なう態様が望ましい。また、熱処理においては、加熱後、600℃以下の温度までの冷却速度を毎時20℃以下とすることが望ましい。
【0016】
本発明の低熱膨張セラミックス部材は、10〜40℃における熱膨張係数が0.5×10−6/℃以下で、気孔率が0.5%以下の低熱膨張セラミックスからなり、残留応力が20MPa以下であることを特徴とし、かかるセラミックスとしては、コーディエライトと、スポジューメンと、ユークリプタイトとからなる群より選択された少なくとも1種を含むものが好適である。また、本発明の半導体製造装置用部材は、10〜40℃における熱膨張係数が0.5×10−6/℃以下で、気孔率が0.5%以下で、残留応力が20MPa以下である低熱膨張セラミックス部材からなることを特徴とする。
【0017】
【発明の実施の形態】
(低熱膨張セラミックス部材の製造方法)
本発明の低熱膨張セラミックス部材の製造方法は、セラミックスの焼結後、最終の加工工程までの間に、500〜1200℃で0.3〜200時間の熱処理を少なくとも1回行なうことを特徴とする。かかる熱処理を施すことにより、焼結時あるいは加工時に付与された残留応力を緩和して、加工時の割れのリスクを低減し、セラミックス部材の製品精度を高く維持することができるようになる。セラミックス部材の表面における残留応力を20MPa以下にすると、精度変化を低減することができる。部材表面の残留応力は、加工時の割れをより少なくし、製品精度をより高める点で、15MPa以下が望ましい。ここに加工とは、セラミックスの焼結後に行なう厚み加工、外径加工、両面粗研磨加工または両面精度出し研磨加工などを指す。コーディエライト、ユークリプタイトなどの低熱膨張セラミックスは低強度材であるため、残留応力があると、加工時の加工応力により割れが生じやすい。
【0018】
熱処理の温度は、500〜1200℃とする。500℃未満では応力の解放は少なくなり、1200℃より高温では、素材の変形が大きくなる。なお、最高温度については、たとえば、コーディエライトを主成分とする場合は、1200℃を上限とし、スポジューメンを主成分とする場合は、1150℃を上限とし、また、ユークリプタイトを主成分とする場合は、1100℃を上限とするのが望ましい。
【0019】
熱処理の時間は、0.3〜200時間とする。たとえば、外径30mm程度の小型製品であれば0.3時間が最低必要で、0.3時間未満では充分な効果が望めない。また、外径300mm以上の大型製品においては、2時間以上が望ましく、より望ましくは3時間以上である。処理時間は長い方が効果があるが、200時間を超える処理時間は実用上困難である。
【0020】
熱処理の回数は、少なくとも1回である。たとえば、加工毎に予め熱処理を実施するなど、製品の特性に影響を及ぼさない範囲内で、何度実施しても良い。また、製品の要求精度により、たとえば、1回だけの熱処理としてもよい。
【0021】
熱処理の時期は、セラミックスの焼結後、最終の加工工程までの間である。焼結や加工により付与された残留応力を緩和し、割れおよび変形を抑制するためである。熱処理の時期は、セラミックスの焼結後、最初の加工工程までの間、および最終の加工工程の直前に行なうことが望ましい。セラミックスの焼結後、最初の加工工程までの間に熱処理を行なうことにより、焼結時に焼結体に残留している応力を解放し、以降の加工時に付与される加工応力による製品の割れを抑えることができる。
【0022】
焼結後、最初の加工工程までの間に熱処理を行なうことにより、焼結体中の残留応力を緩和できるが、その後の加工工程で製品表面に応力が付与されるため、加工工程における残留応力によって、製品加工中の精度、あるいは製品化後の製品精度を高く維持することができなくなる可能性がある。そのため、製品化直前において、たとえば、最終の精度出し加工前に熱処理を行なうのが望ましい。熱処理により応力が解放し、これに伴い加工品の形状がわずかに変形するから、熱処理後に最終の精度出し加工を行なうことにより、所期の形状寸法に調整することができる。なお、最終の精度出し加工によっても製品に応力が付与されるが、かかる応力は微小であるため、影響は小さい。
【0023】
最終の加工工程の直前に行なう熱処理は、500〜1100℃で0.3〜200時間とするのが望ましい。処理温度が、500℃未満では応力の解放は少なく、製品の変形を抑えるためには1100℃以下とするのが望ましい。処理時間は、0.3〜200時間とするのが望ましい。外径30mm程度の小型製品でも0.3時間未満では充分な効果が望めない。また、外径300mm以上の大型製品においては、2時間以上が望ましく、より望ましくは3時間以上である。処理時間は長い方が効果があるが、200時間を超える処理時間は実用上困難である。
【0024】
熱処理における冷却操作は、加熱後、600℃以下の温度までの冷却速度を、毎時20℃以下で徐冷することが望ましい。加熱により残留応力は緩和するが、冷却時の温度勾配が大きいと、製品に温度分布が大きく生じ、それにより残留応力が付与されるためである。最高温度から毎時20℃以下の温度で徐冷する温度範囲(以下、「徐冷区間」という。)は、600℃あるいは、それ以下の温度までとするのが望ましい。徐冷区間の下限は、600℃以下の温度まで行なえば、残留応力が付与されるのを低減することができるが、たとえば、下記に示す転移点を下回る温度とすると、より望ましい。
【0025】
図2に、温度変化と熱膨張係数の変化の関係を示す。図2は、純度99%以上で平均粒径3μmのコーディエライト粉末、平均粒径1μmの窒化珪素粉末、平均粒径0.1μmのカーボン粉末を、各々96.5vol%、2vol%、1.5vol%となるように調合し、焼結して得たサンプル(3mm×3mm×15mm)について、線膨張計により熱膨張係数を測定して作成したものである。測定条件は、
(1)測定区間:RT〜1350℃
(2)加熱速度:10℃/分
(3)測定環境:Nガスフロー中
コーディエライトなどの低熱膨張セラミックスの場合、図2に示すように温度の上昇に従い、熱膨張係数は直線的に増加するが、たとえば、300〜600℃の間でグラフに屈曲が見られる。この屈曲が生じる温度(以下、「転移点」と称する。)以下まで徐冷することが望ましい。転移点以下の温度では、徐冷による残留応力の緩和や製品平面度の抑制効果はあまり見られないため、たとえば100℃以下の温度まで徐冷しても時間がかかるばかりであり、転移点以下で、300〜400℃程度の温度を徐冷区間の下限とすることが望ましい。
【0026】
熱処理炉は、主原料以外の添加材が非酸化物である場合、または、カーボン分を添加材として使用している場合においては、窒素またはアルゴン雰囲気に置換が可能な炉を使用する。真空炉に、これらの不活性ガスを置換する手法が望ましいが、製品の導電性や膨張係数などの特性に悪影響がない範囲ならば、たとえば真空構造でなく、ガスフローのみの炉であっても使用は可能である。真空炉を使用する場合には、炉内は真空ではなく、少なくとも0.5気圧以上のガス圧がある方が望ましい。これは、真空ならば、製品への熱伝達が輻射および熱伝導に頼る必要があって、炉内の位置により温度分布が生じやすくなり、製品に温度分布が発生すると、製品の残留応力が強くなりやすいためである。一方、ガス圧があれば、熱伝達に炉内の対流が加わるため、製品への熱伝達が比較的均一に進行し、製品の温度分布を小さくし、製品の残留応力を抑えることができる。主原料以外の添加材が酸化物である場合には、大気雰囲気炉、たとえばガス炉や電気炉を使用することができる。
【0027】
本発明の低熱膨張セラミックス部材の製造方法において使用するセラミックスは、10〜40℃における熱膨張係数が0.5×10−6/℃以下であり、気孔率が0.5%以下である。10〜40℃における熱膨張係数を0.5×10−6/℃以下と限定しているのは、高精度が要求される部材においては使用時の温度変化による精度への影響が無視できないからである。たとえば、露光装置用真空チャックまたはステージ位置測定ミラー向け材料では、10〜40℃における熱膨張係数が0.5×10−6/℃以下、より望ましくは0.3×10−6/℃以下である。一方、気孔率を0.5%以下と限定しているのは、0.5%より大きくなると、強度およびヤング率などの特性が低下するためであり、また、たとえば、製品をSiウェーハ搭載用の治具として使用した場合においては、気孔へのパーティクル付着によるウェーハ自体の精度変化、および製品の吸水による精度変化が問題となるからである。
【0028】
かかるセラミックスは、コーディエライト、スポジューメン、ユークリプタイトまたはそれらの組合せを主材とするものが好適である。低熱膨張材として知られているチタン酸アルミニウムは、緻密化が困難であり、緻密化できたとしても剛性が低く使用に耐えることができない。前述したとおりスポジューメンは、それ自体剛性が比較的低いが、比較的高い剛性を有するコーディエライトまたはユークリプタイトとともに焼結体を構成することにより、剛性の高いセラミックス材料をもたらすことができる。
【0029】
かかるセラミックスには、必要な特性に応じて、4a族元素、5a族元素もしくは6族の炭化物、窒化物、硼化物、珪化物、SiC、BC、窒化珪素またはカーボン源を、低熱膨張性を阻害しない程度に添加しても良い。また、セラミックスは、希土類元素を含んでいても、含まなくともよい。希土類元素の化合物、典型的には希土類元素酸化物を使用しなくとも、下記に示すような製造方法により十分緻密な低熱膨張セラミックスを得ることができる。
【0030】
かかるセラミックスは、具体的には、つぎの方法により焼結する。主材としては、平均粒径が10μm以下、たとえば、2〜3μmのコーディエライト粉末、β−スポジューメン粉末、β−ユークリプタイト粉末のうちの少なくとも1種を使用する。特性上、必要に応じて、4a族元素、5a族元素もしくは6族の炭化物、窒化物、硼化物、珪化物、SiC、BC、窒化珪素またはカーボン源を低熱膨張性を阻害しない程度に添加する。これらは市販されているが、カーボン源については粉末カーボンでもフェノール樹脂やフラン樹脂などを使用しても良い。
【0031】
熱処理前の焼結体の調製方法には、たとえば、つぎの3種の方法がある。第1の方法としては、常圧で焼結する方法がある。まず、原料を調合し、アルコールまたは水などの溶媒を加え、必要に応じて、PVAやアクリル樹脂などの樹脂バインダを配合してボールミル混合し、乾燥させて、原料粉末を得る。得られた粉末から、金型プレス成形あるいはCIP成形などの手法によって、成形体を得る。その成形体を所望の形状に生加工し、焼結を実施する。
【0032】
焼結は、大気雰囲気、不活性雰囲気または非酸化性雰囲気下で実施し、たとえば、コーディエライト主材においては1300〜1450℃、β−スポジューメン主材においては1200〜1350℃、β−ユークリプタイト主材においては1150〜1300℃などの焼結温度が適している。得られた焼結体は、研削や研磨などにより所望の製品形状に機械加工することができる。
【0033】
焼結体の別の調製方法としては、ホットプレス焼結をする方法がある。この方法は、まず、原料を調合し、アルコールや水などの溶媒でボールミル混合する。それを乾燥させて、原料粉末を得、この原料粉末を窒素やアルゴンなどの不活性雰囲気下でホットプレスにより焼結する。たとえば、コーディエライト主材においては1300〜1450℃で4.9〜49MPa、β−スポジューメン主材においては1200〜1350℃で4.9〜49MPa、β−ユークリプタイト主材においては1150〜1300℃で4.9〜49MPaなどの条件が適している。得られた焼結体は、研削や研磨などにより所望の製品形状に機械加工することができる。
【0034】
焼結体の別の調製方法としては、高温等方加圧焼結(HIP)をする方法がある。この方法によれば、たとえば、常圧で焼結したコーディエライト主材の焼結体を、窒素やアルゴンなどの不活性雰囲気下、1250〜1400℃、雰囲気圧力が20〜200MPaなどの条件で焼結する。得られた焼結体は、研削や研磨などにより所望の製品形状に機械加工することができる。
【0035】
(低熱膨張セラミックス部材)
本発明の低熱膨張セラミックス部材は、10〜40℃における熱膨張係数が0.5×10−6/℃以下で、気孔率が0.5%以下のセラミックスからなり、残留応力が20MPa以下であることを特徴とする。焼結時または加工時に付与された残留応力が緩和されているため、セラミックス部材の製品精度を高く維持することができる。セラミックスとしては、コーディエライトと、スポジューメンと、ユークリプタイトとからなる群より選択された少なくとも1種を含むものが好適である。
【0036】
(半導体製造装置用部材)
本発明の半導体製造装置用部材は、10〜40℃における熱膨張係数が0.5×10−6/℃以下で、気孔率が0.5%以下のセラミックスで、残留応力が20MPa以下である低熱膨張セラミックス部材からなることを特徴とする。かかる半導体製造装置用部材は、表面の残留応力が低いため変形が少なく、精度の経時変化も小さい。したがって、特に、高精度が要求される露光装置用真空チェック、ステージ部材などの半導体製造装置用部材あるいは液晶製造装置用部材、加えて、光学精密部品や精密測定治具類など幅広い分野に適用することができる。
【0037】
【実施例】
実施例1
純度99%以上で平均粒径3μmのコーディエライト粉末、平均粒径1μmの窒化珪素粉末、平均粒径0.1μmのカーボン粉末を、各々96.5vol%、2vol%、1.5vol%となるように調合した後、溶媒としてエタノールを使用し、ボールミルで24時間混合した。得られた混合物を乾燥した後、1380℃で窒素雰囲気下、49MPaの圧力下でホットプレス焼結した。得られた焼結体のサイズは外径320mm×高さ23mmであり、気孔率は0.1%以下であり、10〜40℃における熱膨張係数は0.1×10−6/℃であった。
【0038】
焼結体の気孔率は、外径320mm×高さ23mmの試料について、アルキメデス法により測定した。また、焼結体の熱膨張係数は、3mm×3mm×15mmの試料について、レーザ干渉法により測定した。レーザ干渉法は、レーザ熱膨張計を用いて、ヘリウム中、温度10〜40℃、昇温速度1℃/分で測定した。
【0039】
得られた焼結体を、図1の製法1に示す方法で処理した。すなわち、焼結体に、第1回目の熱処理を施した後、厚み加工、外径加工、両面粗研磨加工、第2回目の熱処理をし、最後に両面精度出し加工を行なった。また、第1回目の熱処理は、1100℃で5時間、400℃までの冷却速度15℃/時とした。厚み加工は、ロータリ平面研削盤により、素材の厚さ20.1mm、平面度10μm程度になるように粗加工を実施した。平面度は、接触型真直度測定機(測定子は電気マイクロメータを使用した。)を用いて評価した。
【0040】
外径加工は、万能研削盤により、外径300mmに仕上げた。両面粗研磨加工は、両面研磨機で平均粒径10μmのダイヤモンド砥粒を使用し、素材の両面を同時に研磨をした。加工後の両面の平面度は2〜3μmであった。第2回目の熱処理は、1000℃で20時間、350℃までの冷却速度15℃/時とした。最後の両面精度出し加工は、片面研磨機により、平均粒径4μmのダイヤモンド砥粒を使用し、素材の片面ずつ研磨した。加工後の両面の平面度は、0.5〜1.0μmであり、加工後、外径300mm×高さ20mmの円板状になるようにした。
【0041】
得られたセラミックス部材について、平面度の変化と残留応力を測定した。平面度の変化は、最終加工日から1日後と、10日後の平面度を測定し、両面の平面度の平均値を計算し、最初の平面度からの変化量で表した。残留応力は、表1に示す条件で測定し、最終加工直後の表面の残留応力を、表、裏の各面について、外周部2方向(箇所)、中心部2方向(箇所)測定し、表裏全8方向(箇所)の平均値を計算し、この絶対値をもって残留応力とした。平面度の変化と残留応力の測定結果を表2に示す。
【0042】
【表1】

Figure 2004161512
【0043】
【表2】
Figure 2004161512
【0044】
実施例2
実施例1における第1回目の熱処理条件を、900℃で40時間、400℃までの冷却速度10℃/時とし、また、第2回目の熱処理条件を、400℃で100時間、350℃までの冷却速度10℃/時とした以外は、実施例1と同様にして、セラミックス部材を製造し、平面度変化および残留応力を測定した。その結果を表2に示す。
【0045】
実施例3
実施例1で実施した製造方法を、図1における製法2とし、第1回目の熱処理時間を8時間とした以外は、実施例1と同様にして、セラミックス部材を製造し、平面度変化および残留応力を測定した。その結果を表2に示す。
【0046】
実施例4
実施例3で実施した熱処理条件を、800℃で100時間、400℃までの冷却速度10℃/時とした以外は、実施例3と同様にして、セラミックス部材を製造し、平面度変化および残留応力を測定した。その結果を表2に示す。
【0047】
比較例1
実施例1で実施した製造方法を、図1における製法3とし、熱処理を一切行なわなかった以外は、実施例1と同様にして、セラミックス部材を製造し、平面度変化および残留応力を測定した。その結果を表2に示す。
【0048】
比較例2
実施例1における第1回目の熱処理を、250℃で200時間、150℃までの冷却速度10℃/時とし、また、第2回目の熱処理を、250℃で200時間、100℃までの冷却速度10℃/時とした以外は、実施例1と同様にして、セラミックス部材を製造し、平面度変化および残留応力を測定した。その結果を表2に示す。
【0049】
比較例3
実施例3で実施した熱処理を、250℃で200時間とした以外は、実施例3と同様にして、セラミックス部材を製造し、平面度変化および残留応力を測定した。その結果を表2に示す。
【0050】
表2の結果から明らかなとおり、実施例1〜実施例4においては、最終加工日から1日後の平面度変化は0.0〜0.15μmであり、また、最終加工から10日後の平面度変化はいずれも0.3μm以下であり、精度が高く維持されていた。これに対して、比較例1〜比較例3においては、10日後の平面度変化が1.5〜2μmであり、本発明の実施例と比較して精度の維持が困難であることがわかった。
【0051】
また、残留応力については、実施例1〜実施例4では5〜15MPaであるのに対して、比較例1〜比較例3では25〜40MPaであり、本発明の実施例では熱処理により製品表面の残留応力が十分に緩和されていることがわかった。また、セラミックス部材の表面の残留応力を20MPa以下とすることにより、精度変化を低減できることがわかった。
【0052】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0053】
【発明の効果】
本発明の低熱膨張セラミックス部材は、焼結時または加工時に付与された残留応力が緩和されているため、セラミックス部材の製品精度を高く維持することができる。かかる低熱膨張セラミックス部材は、セラミックスの焼結後、最終の加工工程までの間に、500〜1200℃で0.3〜200時間の熱処理を少なくとも1回行なうことにより製造することができる。本発明の半導体製造装置用部材は、表面の残留応力が低いため変形が少なく、精度の経時変化も小さい。したがって、特に、高精度が要求される半導体製造装置用部材、液晶製造装置用部材、光学精密部品および精密測定治具類などに適用することができる。
【図面の簡単な説明】
【図1】焼結後、最終加工工程が終了するまでの、低熱膨張セラミックス部材の製造方法を示す工程図である。
【図2】温度変化と熱膨張係数の変化の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor or liquid crystal exposure apparatus member used when a semiconductor wafer or a liquid crystal glass substrate is subjected to an exposure process when producing a semiconductor integrated circuit or a liquid crystal integrated circuit, specifically a vacuum chuck, a stage or The present invention relates to a low thermal expansion ceramic member mainly composed of cordierite, spodumene or eucryptite suitable for a jig in a semiconductor manufacturing process such as a stage position measuring mirror, and a method for manufacturing the same.
[0002]
[Prior art]
Along with the high integration of LSIs and the like, ultra-fine circuits are being advanced, and the line width is about to reach a level of less than 0.1 microns in a semiconductor. Further, the accuracy required for an exposure apparatus for forming such a circuit is increasing year by year, and accordingly, a member having a low thermal expansion coefficient has been developed as a member used in the exposure apparatus. For example, cordierite is contained in an amount of 80% by mass or more, preferably 1 to 20% by mass of a rare earth element in terms of oxide, a porosity of 0.1% or less, and a thermal expansion coefficient at 10 to 40 ° C. of 1 × 10 -6 A member for a semiconductor manufacturing apparatus made of a dense low thermal expansion ceramic having a temperature of / ° C. or lower is disclosed (see Patent Document 1).
[0003]
Further, cordierite is contained in an amount of 80% by mass or more, preferably 1 to 20% by mass of rare earth element in terms of oxide, the porosity is 0.5% or less, and the carbon content is 0.1 to 2.0% by mass. The coefficient of thermal expansion at 10 to 40 ° C. is 0.5 × 10 -6 A low thermal expansion black ceramic having a temperature of / ° C. or less and a semiconductor manufacturing apparatus member made of such a dense low thermal expansion ceramic are disclosed (see Patent Document 2).
[0004]
Now, as circuit miniaturization progresses, in order to ensure the exposure accuracy of a semiconductor or a liquid crystal glass substrate, for example, a material for a vacuum chuck for an exposure apparatus and a stage position measuring mirror has a low thermal expansion coefficient and a high rigidity ( Young's modulus) is required. Conventionally, among materials that have been used as low thermal expansion materials, quartz, β-spodumene, aluminum titanate, crystallized glass, and the like have a problem in rigidity. On the other hand, conventional dense cordierite materials, low thermal expansion ceramics mainly composed of cordierite (see Patent Documents 1 and 2), or low thermal expansion ceramics mainly composed of eucryptite (patents) Document 3) can meet the above conditions of low coefficient of thermal expansion and high level of stiffness that can be used as a product.
[0005]
These ceramics are generally sintered by a technique such as atmospheric pressure sintering, hot press sintering with high pressure, or HIP sintering. However, stress remains in the material due to this sintering. Further, in the processing after sintering, stress remains on the processed surface. The product is affected by deformation and cracking due to such residual stress.
[0006]
For example, in deformation, these ceramics have a level of rigidity that can be used as a product as described above, but only have a Young's modulus of about 1/2 to 1/3 compared to alumina or SiC ceramics. They are easily deformed by the applied stress. Further, when the residual stress applied to the product in the sintering or processing process is released instantaneously or over a long period of time, the product is deformed, and for example, the flatness changes, and the accuracy is likely to go wrong. In addition, when the product accuracy such as product flatness changes over time over such a long time, the product accuracy changes due to the residual stress release factor even if it is processed with high accuracy at the initial stage, and correction processing is performed again. There may be cases where this is required. On the other hand, in cracking, when a sintered body is processed into a desired shape, processing stress is applied to the material, and if there is residual stress in the material, the risk of processing cracking increases.
[0007]
As a material strength recovery measure due to microcracks generated on the product surface layer by grinding, for example, a method of performing a heat treatment at 800 to 1100 ° C. for 1 to 24 hours after grinding a ceramic sintered body into a predetermined shape As a result, a micro sharp notch generated during grinding is rounded, and the mechanical strength can be improved (see Patent Document 4). In addition, there is a method in which the sintered body subjected to the grinding process is finally subjected to a heat treatment at a temperature of 1000 to 1550 ° C. for 0.1 to 6 hours as a heat treatment, and the tip portion of the microcrack becomes rounded. The susceptibility to cracking is reduced, and it is possible to suppress scattering of ceramic particles even when irradiated with plasma ions (see Patent Document 5).
[0008]
[Patent Document 1]
JP-A-11-209171
[0009]
[Patent Document 2]
JP-A-11-343168
[0010]
[Patent Document 3]
JP 2000-219572 A
[0011]
[Patent Document 4]
JP-A-63-55180
[0012]
[Patent Document 5]
Japanese Patent No. 3126635
[0013]
[Problems to be solved by the invention]
However, they all have a high Young's modulus such as alumina, silicon nitride, and SiC, and are countermeasures against microcracks against ceramics that are difficult to deform due to stress, and have a relatively low Young's modulus like low thermal expansion ceramics such as cordierite. There is no recognition of the problem of improving the accuracy of ceramic products that are easily deformed by releasing stress.
[0014]
The object of the present invention is to suppress cracking due to processing in a low thermal expansion ceramic member including cordierite, spodumene, eucryptite, etc., minimize the residual stress on the surface finished with high accuracy, and minimize the change in accuracy. It is an object to provide a member that maintains a high accuracy by clarifying a processing method for achieving this.
[0015]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventors have a coefficient of thermal expansion at 10 to 40 ° C. of 0.5 × 10 5. -6 By performing at least one heat treatment at 500 to 1200 ° C. for 0.3 to 200 hours after sintering of ceramics having a porosity of 0.5% or less at / ° C. or less, It has been found that it is possible to produce a low thermal expansion ceramic member that suppresses cracking due to processing, reduces residual stress on the surface of the ceramic member, and maintains high accuracy. The heat treatment is performed at a temperature of 500 to 1200 ° C. for 0.3 to 200 hours after sintering of the ceramics and before the first processing step, and at a temperature of 500 to 1100 ° C. immediately before the final processing step. An embodiment in which the heat treatment for 3 to 200 hours is further performed is desirable. In the heat treatment, it is desirable that the cooling rate to a temperature of 600 ° C. or less after heating is 20 ° C. or less per hour.
[0016]
The low thermal expansion ceramic member of the present invention has a thermal expansion coefficient of 0.5 × 10 10 at 10 to 40 ° C. -6 It is composed of a low thermal expansion ceramic having a porosity of 0.5% or less at / ° C. or less, and having a residual stress of 20 MPa or less. Such ceramics include cordierite, spodumene, and eucryptite. What contains at least 1 sort (s) selected from the group which consists of is suitable. Moreover, the member for a semiconductor manufacturing apparatus of the present invention has a thermal expansion coefficient at 10 to 40 ° C. of 0.5 × 10 -6 It is characterized by comprising a low thermal expansion ceramic member having a porosity of 0.5% or less and a residual stress of 20 MPa or less at / ° C or less.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
(Manufacturing method of low thermal expansion ceramic member)
The method for producing a low thermal expansion ceramic member of the present invention is characterized in that a heat treatment is performed at least once at a temperature of 500 to 1200 ° C. for 0.3 to 200 hours between the sintering of the ceramic and the final processing step. . By performing such heat treatment, the residual stress applied during sintering or processing can be relaxed, the risk of cracking during processing can be reduced, and the product accuracy of the ceramic member can be maintained high. When the residual stress on the surface of the ceramic member is 20 MPa or less, the change in accuracy can be reduced. The residual stress on the surface of the member is preferably 15 MPa or less from the viewpoint of reducing cracks during processing and improving product accuracy. Here, processing refers to thickness processing, outer diameter processing, double-sided rough polishing processing, double-sided precision polishing processing, etc., performed after sintering of the ceramic. Since low thermal expansion ceramics such as cordierite and eucryptite are low-strength materials, if there is residual stress, cracking is likely to occur due to processing stress during processing.
[0018]
The temperature of heat processing shall be 500-1200 degreeC. When the temperature is lower than 500 ° C., the release of stress is small, and when the temperature is higher than 1200 ° C., the deformation of the material increases. Regarding the maximum temperature, for example, when cordierite is the main component, the upper limit is 1200 ° C., when spodumene is the main component, the upper limit is 1150 ° C., and eucryptite is the main component. In this case, it is desirable that the upper limit is 1100 ° C.
[0019]
The heat treatment time is 0.3 to 200 hours. For example, a small product having an outer diameter of about 30 mm requires a minimum of 0.3 hours, and a sufficient effect cannot be expected in less than 0.3 hours. In a large product having an outer diameter of 300 mm or more, 2 hours or more is desirable, and more desirably 3 hours or more. A longer treatment time is more effective, but a treatment time exceeding 200 hours is practically difficult.
[0020]
The number of heat treatments is at least once. For example, the heat treatment may be performed before and after the processing within a range that does not affect the product characteristics. Further, depending on the required accuracy of the product, for example, only one heat treatment may be performed.
[0021]
The time for the heat treatment is between the sintering of the ceramics and the final processing step. This is because the residual stress imparted by sintering or processing is relaxed and cracking and deformation are suppressed. It is desirable that the heat treatment be performed after the ceramic is sintered until the first processing step and immediately before the final processing step. After sintering the ceramics, heat treatment is performed before the first processing step to release the stress remaining in the sintered body during sintering, and cracking of the product due to processing stress applied during subsequent processing. Can be suppressed.
[0022]
Residual stress in the sintered body can be reduced by performing heat treatment between sintering and the first processing step, but since the stress is applied to the product surface in the subsequent processing step, the residual stress in the processing step Therefore, there is a possibility that the accuracy during product processing or the product accuracy after commercialization cannot be maintained high. Therefore, it is desirable to perform the heat treatment immediately before commercialization, for example, before the final accuracy-determining process. The stress is released by the heat treatment, and the shape of the workpiece is slightly deformed accordingly. Therefore, the final shape can be adjusted after the heat treatment, so that the desired shape dimension can be adjusted. In addition, although stress is applied to the product also by the final accuracy-determining process, since the stress is minute, the influence is small.
[0023]
The heat treatment performed immediately before the final processing step is desirably performed at 500 to 1100 ° C. for 0.3 to 200 hours. When the processing temperature is less than 500 ° C., the release of stress is small, and in order to suppress deformation of the product, it is desirable that the temperature is 1100 ° C. or less. The treatment time is preferably 0.3 to 200 hours. Even for a small product having an outer diameter of about 30 mm, a sufficient effect cannot be expected in less than 0.3 hours. In a large product having an outer diameter of 300 mm or more, 2 hours or more is desirable, and more desirably 3 hours or more. A longer treatment time is more effective, but a treatment time exceeding 200 hours is practically difficult.
[0024]
As for the cooling operation in the heat treatment, it is desirable to slowly cool the cooling rate to a temperature of 600 ° C. or lower after heating at a temperature of 20 ° C. or lower per hour. This is because the residual stress is relaxed by heating, but if the temperature gradient during cooling is large, a large temperature distribution is generated in the product, thereby imparting residual stress. It is desirable that the temperature range (hereinafter referred to as “slow cooling section”) for slow cooling from the maximum temperature to 20 ° C. or less per hour is 600 ° C. or lower. If the lower limit of the slow cooling section is reduced to a temperature of 600 ° C. or lower, it is possible to reduce the application of residual stress. For example, it is more desirable to set the temperature below the transition point shown below.
[0025]
FIG. 2 shows the relationship between the change in temperature and the change in thermal expansion coefficient. 2 shows a cordierite powder having a purity of 99% or more and an average particle diameter of 3 μm, a silicon nitride powder having an average particle diameter of 1 μm, and a carbon powder having an average particle diameter of 0.1 μm, respectively, 96.5 vol%, 2 vol%, 1. The sample (3 mm × 3 mm × 15 mm) obtained by blending and sintering to 5 vol% was prepared by measuring the thermal expansion coefficient with a linear dilatometer. The measurement conditions are
(1) Measurement section: RT to 1350 ° C
(2) Heating rate: 10 ° C / min
(3) Measurement environment: N 2 During gas flow
In the case of low thermal expansion ceramics such as cordierite, the thermal expansion coefficient increases linearly as the temperature rises as shown in FIG. 2, but for example, bending is seen in the graph between 300 and 600 ° C. It is desirable to slowly cool to a temperature at which this bending occurs (hereinafter referred to as “transition point”) or lower. At temperatures below the transition point, the effects of relaxation of residual stress and product flatness due to gradual cooling are not so much seen, so it takes time even when gradual cooling to a temperature of, for example, 100 ° C. or less. Therefore, it is desirable to set the temperature of about 300 to 400 ° C. as the lower limit of the slow cooling section.
[0026]
When the additive other than the main raw material is a non-oxide, or when a carbon component is used as the additive, the heat treatment furnace uses a furnace that can be replaced with a nitrogen or argon atmosphere. A method of replacing these inert gases in a vacuum furnace is desirable, but as long as it does not adversely affect the electrical conductivity and expansion coefficient of the product, for example, a furnace with only a gas flow, not a vacuum structure. Use is possible. When a vacuum furnace is used, it is desirable that the inside of the furnace is not a vacuum but has a gas pressure of at least 0.5 atm or more. In a vacuum, it is necessary to rely on radiation and heat conduction for heat transfer to the product, and the temperature distribution is likely to occur depending on the position in the furnace. It is because it is easy to become. On the other hand, if there is a gas pressure, the convection in the furnace is added to the heat transfer, so that the heat transfer to the product proceeds relatively uniformly, the product temperature distribution can be reduced, and the residual stress of the product can be suppressed. When the additive other than the main raw material is an oxide, an air atmosphere furnace such as a gas furnace or an electric furnace can be used.
[0027]
The ceramic used in the manufacturing method of the low thermal expansion ceramic member of the present invention has a thermal expansion coefficient of 0.5 × 10 at 10 to 40 ° C. -6 / ° C. or less, and the porosity is 0.5% or less. The thermal expansion coefficient at 10 to 40 ° C. is 0.5 × 10 -6 The reason why the temperature is limited to / ° C. or less is that, in a member that requires high accuracy, the influence on accuracy due to temperature change during use cannot be ignored. For example, in a material for a vacuum chuck for an exposure apparatus or a stage position measuring mirror, the thermal expansion coefficient at 10 to 40 ° C. is 0.5 × 10 6. -6 / ° C. or less, more desirably 0.3 × 10 -6 / ° C or less. On the other hand, the porosity is limited to 0.5% or less because, when it exceeds 0.5%, properties such as strength and Young's modulus are deteriorated. This is because, when used as a jig for this, a change in accuracy of the wafer itself due to adhesion of particles to the pores and a change in accuracy due to water absorption of the product become problems.
[0028]
As such ceramics, those mainly composed of cordierite, spodumene, eucryptite, or a combination thereof are suitable. Aluminum titanate, which is known as a low thermal expansion material, is difficult to densify, and even if it can be densified, its rigidity is low and cannot be used. As described above, the spodumene has a relatively low rigidity, but by forming a sintered body with cordierite or eucryptite having a relatively high rigidity, a ceramic material having a high rigidity can be provided.
[0029]
Such ceramics include 4a group element, 5a group element or 6 group carbide, nitride, boride, silicide, SiC, B, depending on the required characteristics. 4 C, silicon nitride, or a carbon source may be added to such an extent that the low thermal expansion is not hindered. In addition, the ceramic may or may not contain a rare earth element. Even without using a rare earth element compound, typically a rare earth element oxide, a sufficiently dense low thermal expansion ceramic can be obtained by the production method shown below.
[0030]
Specifically, such ceramics are sintered by the following method. As the main material, at least one of cordierite powder, β-spodumene powder, β-eucryptite powder having an average particle size of 10 μm or less, for example, 2 to 3 μm, is used. If necessary, 4a group element, 5a group element or 6 group carbide, nitride, boride, silicide, SiC, B 4 C, silicon nitride or a carbon source is added to such an extent that the low thermal expansion is not hindered. These are commercially available, but as the carbon source, powdered carbon or phenol resin or furan resin may be used.
[0031]
For example, there are the following three methods for preparing the sintered body before the heat treatment. As a first method, there is a method of sintering at normal pressure. First, a raw material is prepared, a solvent such as alcohol or water is added, and if necessary, a resin binder such as PVA or acrylic resin is blended, ball mill mixed, and dried to obtain a raw material powder. A molded body is obtained from the obtained powder by a technique such as die press molding or CIP molding. The green body is raw-processed into a desired shape and sintered.
[0032]
Sintering is performed in an air atmosphere, an inert atmosphere, or a non-oxidizing atmosphere. For example, the cordierite main material is 1300 to 1450 ° C., the β-spodumene main material is 1200 to 1350 ° C., β-eucrypt. For tight main materials, sintering temperatures such as 1150-1300 ° C. are suitable. The obtained sintered body can be machined into a desired product shape by grinding or polishing.
[0033]
As another method for preparing the sintered body, there is a method of performing hot press sintering. In this method, first, raw materials are prepared and ball mill mixed with a solvent such as alcohol or water. It is dried to obtain a raw material powder, and this raw material powder is sintered by hot pressing under an inert atmosphere such as nitrogen or argon. For example, the cordierite main material is 4.9 to 49 MPa at 1300 to 1450 ° C., the β-spodumene main material is 4.9 to 49 MPa at 1200 to 1350 ° C., and the β-eucryptite main material is 1150 to 1300. Conditions such as 4.9 to 49 MPa at a temperature are suitable. The obtained sintered body can be machined into a desired product shape by grinding or polishing.
[0034]
As another method for preparing the sintered body, there is a method of performing high temperature isostatic pressing (HIP). According to this method, for example, a cordierite main material sintered body sintered at normal pressure is subjected to conditions such as 1250 to 1400 ° C. and atmospheric pressure of 20 to 200 MPa in an inert atmosphere such as nitrogen or argon. Sinter. The obtained sintered body can be machined into a desired product shape by grinding or polishing.
[0035]
(Low thermal expansion ceramic materials)
The low thermal expansion ceramic member of the present invention has a thermal expansion coefficient of 0.5 × 10 10 at 10 to 40 ° C. -6 It is characterized by being made of ceramics having a porosity of 0.5% or less at / ° C or less and a residual stress of 20 MPa or less. Since the residual stress applied at the time of sintering or processing is relaxed, the product accuracy of the ceramic member can be maintained high. As the ceramic, one containing at least one selected from the group consisting of cordierite, spodumene and eucryptite is preferable.
[0036]
(Semiconductor manufacturing equipment)
The member for a semiconductor manufacturing apparatus of the present invention has a thermal expansion coefficient of 0.5 × 10 at 10 to 40 ° C. -6 It is characterized by being made of a low thermal expansion ceramic member having a residual stress of 20 MPa or less and a ceramic having a porosity of 0.5% or less at / ° C or less. Such a member for a semiconductor manufacturing apparatus has little deformation due to low residual stress on the surface, and the change with time of accuracy is also small. Therefore, in particular, it is applicable to a wide range of fields such as vacuum check for exposure apparatus requiring high precision, members for semiconductor manufacturing equipment such as stage members or liquid crystal manufacturing equipment, optical precision parts and precision measuring jigs. be able to.
[0037]
【Example】
Example 1
Cordierite powder having a purity of 99% or more and an average particle diameter of 3 μm, a silicon nitride powder having an average particle diameter of 1 μm, and a carbon powder having an average particle diameter of 0.1 μm are 96.5 vol%, 2 vol%, and 1.5 vol%, respectively. Then, ethanol was used as a solvent and mixed for 24 hours by a ball mill. The obtained mixture was dried and then hot-press sintered at 1380 ° C. in a nitrogen atmosphere under a pressure of 49 MPa. The size of the obtained sintered body is an outer diameter of 320 mm × height of 23 mm, the porosity is 0.1% or less, and the thermal expansion coefficient at 10 to 40 ° C. is 0.1 × 10. -6 / ° C.
[0038]
The porosity of the sintered body was measured by the Archimedes method for a sample having an outer diameter of 320 mm and a height of 23 mm. Further, the thermal expansion coefficient of the sintered body was measured by a laser interference method for a sample of 3 mm × 3 mm × 15 mm. The laser interferometry was measured using a laser thermal dilatometer in helium at a temperature of 10 to 40 ° C. and a heating rate of 1 ° C./min.
[0039]
The obtained sintered body was processed by the method shown in production method 1 in FIG. That is, after the first heat treatment was performed on the sintered body, the thickness processing, the outer diameter processing, the double-sided rough polishing processing, and the second heat treatment were performed, and finally double-sided accuracy was obtained. The first heat treatment was performed at 1100 ° C. for 5 hours and at a cooling rate of 15 ° C./hour up to 400 ° C. Thickness processing was carried out with a rotary surface grinder so that the thickness of the material was 20.1 mm and the flatness was about 10 μm. The flatness was evaluated using a contact-type straightness measuring instrument (the measuring element used an electric micrometer).
[0040]
The outer diameter processing was finished to an outer diameter of 300 mm with a universal grinder. In the double-sided rough polishing process, diamond abrasive grains having an average particle diameter of 10 μm were used with a double-side polishing machine, and both surfaces of the material were simultaneously polished. The flatness of both surfaces after processing was 2-3 μm. The second heat treatment was performed at 1000 ° C. for 20 hours and at a cooling rate of 15 ° C./hour up to 350 ° C. In the final double-sided accuracy processing, diamond abrasive grains having an average particle diameter of 4 μm were used to polish each side of the material by a single-side polishing machine. The flatness of both surfaces after processing was 0.5 to 1.0 μm, and after processing, it was formed into a disk shape having an outer diameter of 300 mm × height of 20 mm.
[0041]
About the obtained ceramic member, the change of flatness and the residual stress were measured. The change in flatness was measured by measuring the flatness 1 day and 10 days after the final processing date, calculating the average value of the flatness on both sides, and expressing the change from the initial flatness. The residual stress is measured under the conditions shown in Table 1, and the surface residual stress immediately after the final processing is measured on the front and back surfaces in two directions (outside) and two directions in the center (location). The average value in all eight directions (locations) was calculated, and this absolute value was used as the residual stress. Table 2 shows the measurement results of changes in flatness and residual stress.
[0042]
[Table 1]
Figure 2004161512
[0043]
[Table 2]
Figure 2004161512
[0044]
Example 2
The first heat treatment conditions in Example 1 were 900 ° C. for 40 hours and the cooling rate to 400 ° C. was 10 ° C./hour, and the second heat treatment conditions were 400 ° C. for 100 hours and 350 ° C. A ceramic member was produced in the same manner as in Example 1 except that the cooling rate was 10 ° C./hour, and the change in flatness and the residual stress were measured. The results are shown in Table 2.
[0045]
Example 3
A ceramic member was manufactured in the same manner as in Example 1 except that the manufacturing method performed in Example 1 was manufacturing method 2 in FIG. 1 and the first heat treatment time was 8 hours. Stress was measured. The results are shown in Table 2.
[0046]
Example 4
A ceramic member was manufactured in the same manner as in Example 3 except that the heat treatment conditions performed in Example 3 were 800 ° C. for 100 hours and the cooling rate to 400 ° C. was 10 ° C./hour. Stress was measured. The results are shown in Table 2.
[0047]
Comparative Example 1
The manufacturing method carried out in Example 1 was changed to Production Method 3 in FIG. 1, and a ceramic member was produced in the same manner as in Example 1 except that no heat treatment was performed, and the change in flatness and residual stress were measured. The results are shown in Table 2.
[0048]
Comparative Example 2
The first heat treatment in Example 1 was performed at 250 ° C. for 200 hours and the cooling rate to 150 ° C. was 10 ° C./hour, and the second heat treatment was performed at 250 ° C. for 200 hours and the cooling rate to 100 ° C. A ceramic member was produced in the same manner as in Example 1 except that the temperature was changed to 10 ° C./hour, and the change in flatness and the residual stress were measured. The results are shown in Table 2.
[0049]
Comparative Example 3
A ceramic member was produced in the same manner as in Example 3 except that the heat treatment performed in Example 3 was performed at 250 ° C. for 200 hours, and the change in flatness and residual stress were measured. The results are shown in Table 2.
[0050]
As is apparent from the results in Table 2, in Examples 1 to 4, the change in flatness after 1 day from the final processing date is 0.0 to 0.15 μm, and the flatness after 10 days from the final processing. All the changes were 0.3 μm or less, and the accuracy was maintained high. On the other hand, in Comparative Examples 1 to 3, the change in flatness after 10 days was 1.5 to 2 μm, and it was found that it was difficult to maintain accuracy compared to the examples of the present invention. .
[0051]
Further, the residual stress is 5 to 15 MPa in Examples 1 to 4, whereas it is 25 to 40 MPa in Comparative Examples 1 to 3, and in the examples of the present invention, the surface of the product is subjected to heat treatment. It was found that the residual stress was sufficiently relaxed. Moreover, it turned out that a precision change can be reduced by making the residual stress of the surface of a ceramic member 20 MPa or less.
[0052]
It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0053]
【The invention's effect】
In the low thermal expansion ceramic member of the present invention, since the residual stress applied during sintering or processing is relaxed, the product accuracy of the ceramic member can be maintained high. Such a low thermal expansion ceramic member can be manufactured by performing a heat treatment at 500 to 1200 ° C. for 0.3 to 200 hours at least once after sintering the ceramic and before the final processing step. The member for a semiconductor manufacturing apparatus of the present invention has little deformation due to low residual stress on the surface, and the accuracy change with time is also small. Therefore, the present invention can be applied particularly to semiconductor manufacturing apparatus members, liquid crystal manufacturing apparatus members, optical precision parts, precision measurement jigs, and the like that require high accuracy.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a method for producing a low thermal expansion ceramic member after sintering until the final processing step is completed.
FIG. 2 is a diagram showing a relationship between a temperature change and a change in thermal expansion coefficient.

Claims (6)

10〜40℃における熱膨張係数が0.5×10−6/℃以下で、気孔率が0.5%以下の低熱膨張セラミックスからなり、残留応力が20MPa以下であることを特徴とする低熱膨張セラミックス部材。A thermal expansion coefficient at 10 to 40 ° C. is 0.5 × 10 -6 / ℃ less, the porosity is 0.5% or less of the low thermal expansion ceramic, low thermal expansion residual stress is equal to or less than 20MPa Ceramic member. 前記低熱膨張セラミックスが、コーディエライトと、スポジューメンと、ユークリプタイトとからなる群より選択された少なくとも1種を含むことを特徴とする請求項1に記載の低熱膨張セラミックス部材。2. The low thermal expansion ceramic member according to claim 1, wherein the low thermal expansion ceramic includes at least one selected from the group consisting of cordierite, spodumene, and eucryptite. セラミックスの焼結後、最終の加工工程までの間に、500℃以上、1200℃以下の温度で0.3〜200時間の熱処理を少なくとも1回行なうことを特徴とする請求項1または2に記載の低熱膨張セラミックス部材の製造方法。3. The heat treatment for 0.3 to 200 hours is performed at least once at a temperature of 500 ° C. or more and 1200 ° C. or less between the sintering of the ceramics and the final processing step. Manufacturing method of low thermal expansion ceramic member. セラミックスの焼結後、最初の加工工程までの間に、500℃以上、1200℃以下の温度で0.3〜200時間の熱処理を行ない、最終の加工工程の直前に、500℃以上、1100℃以下の温度で、0.3〜200時間の熱処理をさらに行なうことを特徴とする請求項1または2に記載の低熱膨張セラミックス部材の製造方法。After sintering the ceramics, heat treatment is performed at a temperature of 500 ° C. or more and 1200 ° C. or less for 0.3 to 200 hours before the first processing step, and immediately before the final processing step, 500 ° C. or more and 1100 ° C. The method for producing a low thermal expansion ceramic member according to claim 1 or 2, further comprising performing a heat treatment for 0.3 to 200 hours at the following temperature. 前記熱処理において、加熱後、600℃以下の温度までの冷却速度が、毎時20℃以下であることを特徴とする請求項3または4に記載の低熱膨張セラミックス部材の製造方法。5. The method for producing a low thermal expansion ceramic member according to claim 3, wherein in the heat treatment, a cooling rate to a temperature of 600 ° C. or less after heating is 20 ° C. or less per hour. 請求項1または2に記載の低熱膨張セラミックス部材からなる半導体製造装置用部材。A member for a semiconductor manufacturing apparatus, comprising the low thermal expansion ceramic member according to claim 1.
JP2002327037A 2002-11-11 2002-11-11 Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus Expired - Lifetime JP4062059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327037A JP4062059B2 (en) 2002-11-11 2002-11-11 Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327037A JP4062059B2 (en) 2002-11-11 2002-11-11 Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2004161512A true JP2004161512A (en) 2004-06-10
JP4062059B2 JP4062059B2 (en) 2008-03-19

Family

ID=32805811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327037A Expired - Lifetime JP4062059B2 (en) 2002-11-11 2002-11-11 Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4062059B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191376A (en) * 2006-01-23 2007-08-02 Fujifilm Corp Polycrystalline material and method for heat treating the same
JP2009290071A (en) * 2008-05-30 2009-12-10 Ngk Spark Plug Co Ltd Ceramic joint and its production process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191376A (en) * 2006-01-23 2007-08-02 Fujifilm Corp Polycrystalline material and method for heat treating the same
JP2009290071A (en) * 2008-05-30 2009-12-10 Ngk Spark Plug Co Ltd Ceramic joint and its production process

Also Published As

Publication number Publication date
JP4062059B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JPWO2009142238A1 (en) Sintered body, manufacturing method thereof, and optical component
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JPWO2003040059A1 (en) Manufacturing method of silicon carbide sintered body jig used for semiconductor manufacturing and silicon carbide sintered body jig obtained by the manufacturing method
JP5396176B2 (en) Wafer mounting table and manufacturing method thereof
JP5270306B2 (en) Ceramic bonded body and manufacturing method thereof
EP0743677A2 (en) Dummy Wafer
JP4062059B2 (en) Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP2003197725A (en) Vacuum chuck
JP4446611B2 (en) Black low thermal expansion ceramics and exposure apparatus components
JP4976973B2 (en) Manufacturing method of composite ceramics
JP2006232667A (en) Low thermal expansion ceramic and member for device for manufacturing semiconductor using it
KR20060063667A (en) Ceramics for a glass mold
JP2006347802A (en) Low-thermal expansion/high-specific rigidity ceramic, its production method, and electrostatic chuck
JP3805119B2 (en) Method for producing low thermal expansion ceramics
JP4540598B2 (en) Ceramics for glass molds
JP4460804B2 (en) Low thermal expansion ceramics and exposure device components
JP2002283244A (en) Finishing grinding wheel and method of manufacture
JP2003095744A (en) Silicon carbide sintered compact and member for manufacturing semiconductor using the same, member for manufacturing magnetic head, wear resistant sliding member and method of manufacturing the same
JP2006182641A (en) Silicon carbide-based sintered compact, its producing method, and member for semiconductor production device using the same
JP2001302340A (en) High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device
KR102352039B1 (en) Manufacturing Method Edge Ring of Electrostatic Chuck and Electrostatic Chuck Comprising Same
JP3890915B2 (en) Free-cutting ceramics and manufacturing method thereof
JPH11255523A (en) Mold for forming glass mold and its production
JP2007031269A (en) Machinable glass ceramic and process for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4062059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term