JP2004160625A - Deep hole cutting tool - Google Patents

Deep hole cutting tool Download PDF

Info

Publication number
JP2004160625A
JP2004160625A JP2002332125A JP2002332125A JP2004160625A JP 2004160625 A JP2004160625 A JP 2004160625A JP 2002332125 A JP2002332125 A JP 2002332125A JP 2002332125 A JP2002332125 A JP 2002332125A JP 2004160625 A JP2004160625 A JP 2004160625A
Authority
JP
Japan
Prior art keywords
cutting
shank
discharge groove
head
tool shank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002332125A
Other languages
Japanese (ja)
Other versions
JP4047703B2 (en
Inventor
Takuji Nomura
倬司 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitac Inc
Original Assignee
Unitac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitac Inc filed Critical Unitac Inc
Priority to JP2002332125A priority Critical patent/JP4047703B2/en
Priority to US10/695,842 priority patent/US7004691B2/en
Priority to KR1020030079803A priority patent/KR100674665B1/en
Priority to EP03026108A priority patent/EP1419839B1/en
Priority to DE60308291T priority patent/DE60308291T2/en
Publication of JP2004160625A publication Critical patent/JP2004160625A/en
Application granted granted Critical
Publication of JP4047703B2 publication Critical patent/JP4047703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deep hole cutting tool applied to a gun drill system, for heightening cutting efficiency by forming a tool shank and a cutting head as separate members and enough securing the strength of a connecting part by screw engagement in the case of using the cutting head including a plurality of cutting blades to thereby improve performance of discharging chips using a coolant supplied through an intermediate inside. <P>SOLUTION: The outer peripheral surface of the cutting head 2 is provided with one discharge groove 6 linearly connected to a longitudinal discharge groove of the tool shank, a by-pass flow passage hole 7 extending from the tip part of the cutting head 2 though the inside of the head to the discharge groove 6 is formed thereon, and a plurality of cutting blades 9a to 9c are formed to be distributed, facing on the discharge groove 6 and a discharge port 7a on the by-pass flow passage hole 7 side, respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガンドリルシステムに適用されるドリルの如き深穴切削具に関するものである。
【0002】
【従来の技術】
深穴加工システムとして、ガンドリルシステム、BTAシステム、エジェクタシステムなどが知られているが、比較的小径の深穴加工には簡単な構成のガンドリルシステムが汎用されている。
【0003】
ガンドリルシステムは、図11に示すように、中空筒状で外面に長手方向に沿う断面V字状の凹溝を形成した工具シャンク31の先端に、ドリルヘッド32を一体的に固着したガンドリル30を用い、その工具シャンク31の中空部内をクーラントCの供給通路33、凹溝を切屑Sの排出溝34とし、深穴加工時に、高圧のクーラントCを供給通路33を通してドリルヘッド32の先端側より吐出させ、被加工物Wの切削穴H内で発生した切屑Tを当該クーラントCと共に排出溝34を通して外部に排出するように構成されている。しかして、このガンドリルシステムでは、小径でも排出溝34のスペースを大きくとれることで、切屑Tを比較的容易に排出できる利点がある。
【0004】
このようなガンドリル30として、図12に示す構成のものが一般的に知られている。その工具シャンク31は、チャックなどに保持されて回転駆動力を受ける円筒状のドライバ部31aに、比較的薄肉のパイプ材の基端部を除くダイス成形によって外面に長手方向に沿う断面V字状の排出溝34aを形成した筒軸部31bの基端部を嵌入固定した構造を備えている。また、ドリルヘッド32は、鋼材の研削加工によって外周面に前記筒軸部31bと同様の排出溝34bが形成され、先端部に該排出溝34bの一側面に臨んで切刃を形成する超硬チップ35がロウ付けされると共に、内部に工具シャンク31の供給通路33aに連通する供給通路33bを有し、先端面に該供給通路33bに連通する吐出口36が開口している。なお、ドリルヘッド32としては、全体が工具鋼からなって先端部に研削加工による切刃を形成したものや、超硬チップからなる切刃をねじ止めしたものも使用されている。そして、工具シャンク31とドリルヘッド32とは、筒軸部31bのV字状をなす先端にドリルヘッド32の山形基端部32aを嵌合し、この嵌合部でロウ付けすることによって一体化されている。
【0005】
しかるに、上記の従来汎用のガンドリル30では、ドリルヘッド32の切刃の消耗や折損を生じた際に工具シャンク31を含めて切削具全体を取り替える必要があってコスト高になる上、段取り替えにおいても長尺の切削具全体を交換するのに長時間を要して加工効率の低下を招き、また切刃の消耗に伴う再研磨作業も容易ではなく再研磨コストが高く付き、更にドリリングの他にリーミング行う場合は工具シャンク31の先端にリーマヘッドを固着したリーマ専用工具が必要になって一層コスト高になるという問題があった。
【0006】
そこで、本出願人は、先に特願2002−295789において、中空内部をクーラント供給通路とし、外周面に長手方向に沿う断面V字状の排出溝を有する工具シャンクの先端に、切削ヘッドをねじ孔係合にて着脱可能に取り付けた深穴切削具を提案している。
【0007】
この提案に係る深穴切削具では、例えば図8に示すように、工具シャンク21は、円筒状のドライバ部21aにパイプ材からなるシャンク部21bが基端側を嵌入固定され、その先端に中空筒状の被装着部21cが一体的に設けられており、これらの全体にわたって連通する中空内部をクーラント供給通路23aとし、シャンク部21bの基端部を除いて当該シャンク部21bから被装着部21cの先端までの外周面に長手方向に沿う断面V字状の排出溝24aを有すると共に、被装着部21cの先端側に雌ねじ27aが形成されている。そして、切削ヘッド22は、図9でも示すように、基端側に前記被装着部21cの雌ねじ27aに螺合する雄ねじ27bを備え、内部には被装着部21cに螺合連結した状態で工具シャンク21側のクーラント供給通路23aに連通する連通孔23bを有すると共に、外周面には同じく螺合連結した状態で工具シャンク21側の排出溝24aと直線的に繋がる断面V字状の凹溝24bが雄ねじ27b部分を含めて全長に形成され、先端部には排出溝24bの一側に臨んで設けられた切刃25と前記連通孔23bの開口部である吐出口26とを備えている。
【0008】
このような深穴切削具によれば、切刃25の消耗や折損を生じた際、切削ヘッド22のみを取り替えるだけで工具シャンク21は継続使用できるから、切削ヘッドが一体型の切削具に比較して大幅なコスト低減が図れる上、段取り替えに際しても切削ヘッド22のみをねじ込み交換するだけでよいため、簡単に短時間で作業を行えて生産効率が向上し、また切刃25の消耗に伴う再研磨や交換の作業も切削ヘッド22だけを取り外して容易に行え、ドリリリングとリーミングのように他の切削作業に切り換える場合にも、対応する種類の切削ヘッド22…だけを用意しておけばよいので、備品コストを低減できると共に交換作業も短時間で容易に行えるという利点がある。
【0009】
一方、比較的に大きな径の削孔に用いる油孔付き工具として、複数の切刃を備えたドリルが汎用されている。しかして、このような複数の切刃はドリル先端部の径方向の両側で互いに向きが逆になるように配置するため、ガンドリルシステムにおいて複数の切刃を備えた切削ヘッドを用いる場合、加工中の切屑を効率よく排出するために、前記の長手方向に沿う断面V字状の排出溝を工具シャンク及び切削ヘッドの径方向の両側に設けることになる。
【0010】
【発明が解決しようとする課題】
しかしながら、前記提案の深穴切削具のように、工具シャンクと切削ヘッドとを別部材として両者をねじ係合にて連結する構成では、工具シャンク及び切削ヘッド径方向両側に排出溝を設けると、両側の排出溝によってねじ係合部におけるねじ部分が少なくなり、これによって両者の連結部の強度が非常に弱くなるため、切削負荷に耐えられなくなるという難点があった。
【0011】
例えば、図10はガンドリルシステムに適用する3つの切刃を有する切削ヘッドを工具シャンクとは別部材とする場合の仮定構成を示しており、(A)はヘッド先端面、(B)は基端側のねじ係合部(雄ねじ部)の断面である。図示のように、切削ヘッド22Pは、径方向両側に断面V字状をなす大小の排出溝24L,24Sを有しており、ヘッド先端部には、大きい排出溝24Lの片側(ヘッド回転方向後方側)の側面に臨んで中央部切刃25aと周辺部切刃25cが設けられると共に、小さい排出溝25Sの同じく片側(ヘッド回転方向後方側)の側面に臨んで中間部切刃25bが設けられ、両排出溝25L,25Sによる括れで分かたれた両側の略扇形の肉部28a,28bに各々クーラント供給孔23が貫設され、各供給孔23がヘッド先端面で吐出口26として開口している。29は肉部28a,28bの外周面に固着されたガイドパッドである。
【0012】
しかして、このような切削ヘッド22Sでは、基端側のねじ係合部における雄ねじ27bの領域は、図10(B)の如く、両排出溝25L,25Sによって切り欠かれて2つの円弧部に分離する上、その2つの円弧部を合わせても全周の1/2をやや上回る程度でしかなく、当然に対応する工具シャンク側のねじ係合部の雌ねじ(図示省略)の領域も同じになる。従って、当該切削ヘッド22Sを工具シャンクにねじ係合で連結した深穴切削具では、両者の連結部の強度が非常に弱くなってしまい、切削負荷による連結部の折損、曲がりや捻じれ等の変形を生じ易くなる。
【0013】
本発明は、上述の情況に鑑み、工具シャンクと切削ヘッドとを別部材として両者をねじ係合にて連結する構成において、該切削ヘッドに複数の切刃を備えたものを用いる場合に、工具シャンクと切削ヘッドと連結部の強度を充分に確保して、しかも切屑の排出性をよくして切削効率を高め得る深穴切削具を提供することを目的としている。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係る深穴切削具は、中空内部をクーラント供給通路とし、外周面の長手方向に沿って形成した断面V字状の1本の排出溝を有する工具シャンクと、この工具シャンクの先端部に基端部をねじ係合にて同軸状に着脱可能に連結される切削ヘッドとを備え、前記切削ヘッドは、連結状態において前記工具シャンクのクーラント供給通路に連通するクーラント供給孔と、該工具シャンクの排出溝に直線的に連なる1本の排出溝と、この排出溝に対して径方向の略対向位置で先端面から外周面にわたって開口した排出口と、該排出口からヘッド内部を通って前記排出溝に至るバイパス流路孔とを備え、該切削ヘッドの先端部には、複数の切刃が前記排出溝と前記排出口とに各々臨んで分配形成されると共に、先端面に前記クーラント供給孔に連通する2つの吐出口が径方向の略対向位置に開口してなる構成を採用したものである。
【0015】
上記構成の深穴切削具によれば、工具シャンク及び切削ヘッドの外周面に長手方向に沿って形成される断面V字状の排出溝が1本であるため、両者のねじ係合部の雄ねじ及び雌ねじの領域は、該排出溝によって周方向の1箇所で切り欠かれるだけで、略3/4にわたって周方向に連続した形になる。従って、工具シャンクと切削ヘッドのねじ係合による連結部は、切削負荷に耐える充分な強度が付与され、加工中の折損、曲がりや捻じれ等の変形を生じ難くなる。しかして、前記排出溝は1本であり、この排出溝に臨む一側の切刃によって切削された切屑は、先端の吐出口から吐出されるクーラントに伴ってそのまま当該排出溝を通って排出されるが、他側の切刃によって切削された切屑も、吐出口から吐出されるクーラントと共にバイパス流路を通って該排出溝に流入し、当該排出溝を通って排出され、もって切屑の良好な排出性に基づく高い切削効率が得られる。
【0016】
このような構成において、前記切削ヘッドの先端面に、前記排出溝の先端開放部とそのヘッド回転方向前方側に位置する吐出口との間、ならびに前記排出口とそのヘッド回転方向前方側に位置する吐出口との間に、それぞれクーラント誘導凹所を形成すれば、ヘッド先端部で吐出されるクーラントを排出溝とバイパス流路孔とに偏りなく分配できるから、各々に臨む切刃より発生する切屑を共に効率よく排出できる。
【0017】
また、前記切削ヘッドが中央部切刃及び周辺部切刃と中間部切刃の3つの切刃を有する構成では、前記排出溝側に中央部切刃及び周辺部切刃を、前記バイパス流路孔側に中間部切刃を、それぞれ配置させることが推奨される。これは、切屑がヘッド先端の排出溝側では直接に当該排出溝に流入するのに対し、バイパス流路孔側では曲がった流路を経て該排出溝に合流するため、両者間で流通抵抗による排出性の差があり、切屑発生量が多くなる方を排出性の高い排出溝側とするのが好ましいことによる。
【0018】
しかして、前記工具シャンクは、回転駆動力を受けるドライバ部を備えた工具シャンク本体と、この工具シャンク本体の先端部に一端側をねじ係合して同軸状に着脱可能に連結される連結用シャンク軸とで構成し、該連結用シャンク軸の他端側に前記切削ヘッドに対するねじ係合部を有するものとしてもよい。このように工具シャンクを分割構成とすれば、連結用シャンク軸として長さの異なるものを着脱交換することにより、削孔深さに対応した適正なシャンク長さを選択できると共に、連結用シャンク軸の経時的を損耗、加工中の突発的な折損や変形等を生じた際に、該連結用シャンク軸のみを交換すればよく、工具シャンク本体は継続使用できることになる。
【0019】
また、上記のように工具シャンクを分割構成とする場合に、工具シャンク本体と連結用シャンク軸とのねじ係合部を、連結用シャンク軸と切削ヘッドとのねじ係合部と同一寸法形状に設定すれば、必要に応じて複数本の連結用シャンク軸を連結したり、連結用シャンク軸を介さずに工具シャンク本体に対して切削ヘッドを直接に連結して所用の切削加工を施すことが可能となる。
【0020】
一方、ねじ係合部の雌ねじと雄ねじを角ねじにて構成すれば、結合強度が大きくなると共に、隙間を生じにくいためにねじ係合部からのクーラントの漏れを防止できる。
【0021】
更に、ねじ係合部における雌ねじの奥端部に、ねじ切り用のぬすみ部を埋める埋込部材を配置し、この埋込部材に雄ねじの端面が密接するように構成すれば、部材製作の際にねじ切りを容易に行うためにぬすみ部が生じても、そのぬすみ部が埋められて隙間を生じないので、隙間に切屑が引っ掛かって円滑に排出できないというような不具合の発生を防止できる。
【0022】
【発明の実施の形態】
以下に本発明に係る深穴切削具の好適実施形態について、図面を参照して具体的に説明する。図1〜図4は第一実施形態のガンドリル、図5〜図7は第二実施形態のガンドリルをそれぞれ示す。
【0023】
第一実施形態のガンドリルは、図1(A)〜(C)に示すように、工具シャンク1と、その先端に基端部をねじ係合して同軸状に着脱可能に連結された切削ヘッド3とで構成されている。
【0024】
工具シャンク1は、チャックなどに保持されて回転駆動力を受ける円筒状のドライバ部10aと、このドライバ部10aに基端側を嵌入固定した略丸軸状のシャンク部10bとで構成されている。このシャンク部10bは、パイプ材の先端に筒状部材をV字カットで突き合わせて溶接固着したものであり、外周面には基端側を除いて長手方向に沿う断面V字状の排出溝3が先端まで形成されると共に、先端側には有底の接続筒部1aが設けてあり、この接続筒部1aの内奥側に角ねじにて構成される雌ねじ4aが刻設されている。しかして、排出溝3は、シャンク部10bの略中心から略90°の開きをなす扇形で、パイプ材にはダイス成形によって形成されており、接続筒部1aにおいては周側壁の略1/4を切り欠く形になっている。また、工具シャンク1には、各構成部材の中空部の連通により、ドライバ部10aの基端から接続筒部1aの内底に至るクーラント供給通路5が排出溝3には開口しない状態で形成されている。
【0025】
切削ヘッド2は、図2(A)〜(C)で詳細に示すように、基端側が工具シャンク1の接続筒部1a内に密に嵌入し得る外径の接続軸部2aをなし、この接続軸部2aの先端側に前記接続筒部1aの雌ねじ4aに螺合する角ねじからなる雄ねじ4bが刻設されると共に、外周面には該接続軸部2aを含む全長にわたって長手方向に沿う断面V字状の1本の排出溝6が形成される一方、先端側の該排出溝6とは径方向で略対向する位置に、先端面2bから外周面にわたって開口した排出口7aを有し、該排出口7aからヘッド内部を通って前記排出溝6に至るバイパス流路孔7が形成されている。7bは該バイパス流路孔7の排出溝5に開口した合流口である。また、切削ヘッド2の内部には、接続軸部2aの端面から当該切削ヘッド2の先端面2bに至る2本のクーラント供給孔8a,8bが、排出溝6及びバイパス流路孔7を避けて、且つ径方向に略対向する配置で穿設されている。
【0026】
しかして、該切削ヘッド2の先端部には、超硬チップからなる中央部切刃9aと周辺部切刃9bとが排出溝6のヘッド回転方向後方側の側面に臨んでねじ止めされると共に、同じく超硬チップからなる周辺部切刃9cが排出口7aに臨んで且つ中央部切刃9a及び周辺部切刃9bとは逆向きになる配置でねじ止めされ、また排出溝6及び排出口7aを外れた外周部の二箇所にガイドパッド13が固着されている。更に、先端面2bには、両クーラント供給孔8a,8bの開口部である吐出口80a,80bを有し、排出溝6の先端開放部6aとそのヘッド回転方向前方側に位置する吐出口80aとの間、ならびに前記排出口7aとそのヘッド回転方向前方側に位置する吐出口80bとの間に、それぞれクーラント誘導凹所81が形成されている。なお、排出溝6に対応するクーラント供給孔8aとその吐出口80aは、排出口7aに対応するクーラント供給孔8bとその吐出口80bよりも径を大きくしている。
【0027】
工具シャンク1と切削ヘッド2とは、図1に示すように、両者の連結状態、つまり工具シャンク1の接続筒部1aに切削ヘッド2の接続軸部2aを一杯に嵌入螺合して、接続軸部2aの基部側の段部2cが接続筒部1aの端面に密接した状態で、両者1,2の排出溝3,6同士がずれなく直線的に連なると共に、前者1のクーラント供給通路5と後者のクーラント供給孔8a,8bとが連通するように設定されている。なお、工具シャンク1の接続筒部1aにおける端面と雌ねじ4aとの間、ならびに切削ヘッド2の接続軸部2aにおける基部側の段部2cと雄ねじ4bとの間は、同一長さで且つ略同じ内外径のパイロット部として、接続筒部1aに接続軸部2aが円滑に嵌入して正確に同芯状態に螺合できるように構成されている。
【0028】
また、工具シャンク1の接続筒部1aにおける雌ねじ4aの奥端は、これに螺入する切削ヘッド2の接続軸部2aの雄ねじ4bの端面が密接状態で当接して隙間が生じないように軸芯に垂直な平坦面に形成されている。このように雌ねじ4aの奥端が平坦面になるようにねじ切り加工するのは実際には困難であるため、具体的には、図1に示すように、雌ねじ4aの奥端部に、ねじ切り用のぬすみ部を埋める金属片から成る埋込部材14を配置し、ロウ付け等にて一体固着している。
【0029】
上記構成のガンドリルでは、工具シャンク1及び切削ヘッド2の外周面に長手方向に沿って形成される断面V字状の排出溝3,6が1本であるため、両者のねじ係合部の雌ねじ4a及び雄ねじ4bの領域は、該排出溝3,6によって周方向の1箇所で切り欠かれるだけで、略3/4にわたって周方向に連続した形になる。従って、工具シャンク1と切削ヘッド2のねじ係合による連結部は、切削負荷に耐える充分な強度を具備し、加工中の折損、曲がりや捻じれ等の変形を生じ難くなる。しかして、切削ヘッド2の排出溝6は1本であるが、中央部切刃9a及び周辺部切刃9bによって切削された切屑は、先端の吐出口80aから吐出されるクーラントに伴ってそのまま当該排出溝6と工具シャンク1の排出溝3とを通って排出される一方、中間部切刃9bによって切削された切屑も、吐出口80bから吐出されるクーラントと共に排出口7aよりバイパス流路7を通って、合流口7bより該排出溝6に流入し、当該排出溝6と工具シャンク1の排出溝3とを通って排出される。従って、このガンドリルによれば、切屑の良好な排出性に基づく高い切削効率が得られる。
【0030】
また、この実施形態では、切削ヘッド2の先端面2bに、吐出口80a,80bから排出溝6と排出口7aに至るクーラント誘導凹所81が形成されていることから、ヘッド先端部で吐出されるクーラントを排出溝6とバイパス流路孔7とに偏りなく分配でき、これによって各々に臨む切刃9a〜9cより発生する切屑を共に効率よく排出できる。更に、排出溝6側に中央部切刃9a及び周辺部切刃9cが臨み、排出口7a側つまりバイパス流路孔7側に中間部切刃9bが臨んでいるから、中央部切刃9aと周辺部切刃9cから多量に発生する切屑が直接に排出溝6に流入する一方、曲がった流路き流通抵抗で排出性に劣るバイパス流路孔7側には中間部切刃9bによる比較的少量の切屑が流入することになり、排出溝6とバイパス流路孔7との排出性の差に対応して流入する切屑量のバランスがとれ、もって全体として高い切屑排出性が確保される。
【0031】
更に、本実施形態では、工具シャンク1と切削ヘッド2とのねじ係合部における雌ねじ4a及び雄ねじ4bを角ねじにて構成しているので、高い結合強度が得られると共に、螺合部に隙間が生じ難いため、ねじ係合部からのクーラントの漏れが防止される。また、雌ねじ4aの奥端部に雄ねじ4bの先端面が密接するように、ねじ切り用のぬすみ部を埋める埋込部材14を配置しているので、ねじ切りを容易に行うためにぬすみ部が生じても、そのぬすみ部が埋められて隙間を生じず、クーラントの漏れがより確実に防止される。なお又、工具シャンク1の雌ねじ4aの開口端側と、切削ヘッド2の雄ねじ5bの末端側において、雌雄ねじ4a,5bの不完全ねじ部を排出溝3,6の両側面で完全なねじ断面形状でねじ端が終了し、排出溝3,6に臨むねじ端で隙間が生じないようになっている。
【0032】
一方、このガンドリルでは、工具シャンク1に対して切削ヘッド2が着脱自在であるから、該切削ヘッド2の切刃9a〜9cの消耗や折損を生じた際は、該切削ヘッド2のみを取り替えるだけでよく、工具シャンク1をそのまま継続使用でき、段取り替えに際しても該切削ヘッド2のみをねじ込み交換するだけでよいため、簡単に短時間で作業を行えて生産効率が向上し、また切刃9a〜9cの消耗に伴う交換についても切削ヘッド2だけを取り外して単独で取り扱えるから、それらの作業を容易に行え、更にドリリリングとリーミングのように他の切削作業に切り換える場合にも、対応する種類の切削ヘッドだけを用意しておけばよいので、備品コストを低減できると共に交換作業も短時間で容易に行える。
【0033】
第二実施形態のガンドリルは、図5(A)に示すように、工具シャンク1が工具シャンク本体11と連結用シャンク軸12とに分割構成されている。しかるに、切削ヘッド2については、前記第一実施形態のガンドリルと同様構成であるため、各構成部分に第一実施形態と同じ符号を付して、その説明を省略する。
【0034】
工具シャンク本体11は、図6(A)〜(C)で詳細に示すように、チャックなどに保持されて回転駆動力を受ける太径のドライバ部11aの先端側に、細径丸軸状の基部シャンク11bが同軸状に一体形成されており、基部シャンク11bの外周面には基端側を除いて断面V字状の排出溝3aが長手方向に沿って先端まで形成されると共に、基部シャンク11bの先端側には前記第一実施形態の工具シャンク1における接続筒部1aと同様の接続筒部1bが設けてあり、この接続筒部1bの内奥側に角ねじにて構成される雌ねじ4aが刻設されている。しかして、排出溝3aは、図6(B),(C)に示すように、基部シャンク11bの略中心から略90°の開きをなす扇形で、基部シャンク11bの円形断面の略1/4を欠いた形になっており、接続筒部1bでは周側壁を切り欠いている。また、ドライバ部11aには基端から中間位置に達する中心孔50が形成され、この中心孔50の内底から基部シャンク11の接続筒部1aの内底に至る2本のクーラント供給通路5a,5aが排出溝3aを避けて穿設されている。
【0035】
連結用シャンク軸12は、工具シャンク本体11の基部シャンク11bと同一外径の丸軸状であり、図7(A)〜(C)で詳細に示すように、その一端側には該工具シャンク本体11の接続筒部1b内に密に嵌入し得る外径の接続軸部12aを有し、この接続軸部12aの先端側に前記接続筒部1bの雌ねじ4aに螺合する角ねじからなる雄ねじ4bが刻設されると共に、他端側には工具シャンク本体11の接続筒部1bと同一寸法形状で内奥に角ねじからなる雌ねじ4aを刻設した接続筒部12bが形成されている。また、この連結用シャンク軸12の外周面には、長手方向に沿う断面V字状の排出溝3bが接続軸部12a及び接続筒部12bの部分を含む全長にわたって形成され、また該連結用シャンク軸12の内部には、接続軸部12aの端面から接続筒部12bの内底に至る2本のクーラント供給通路5b,5bが排出溝3bを避けて穿設されている。
【0036】
しかして、工具シャンク本体11と連結用シャンク軸12とは、図5(A),(C)に示すように、両者の連結状態、つまり工具シャンク本体11の接続筒部1bに連結用シャンク軸12の接続軸部12aを一杯に嵌入螺合して、接続軸部12aの基部側の段部12cが接続筒部1bの端面に密接した状態で、両者の排出溝3a,3b同士がずれなく直線的に連なると共に、前者のクーラント供給通路5a,5aと後者のクーラント供給通路5b,5bとが連通するように設定されている。また、連結用シャンク軸12と切削ヘッド2の接続軸部12a,2aは同一寸法形状であり、図5(A),(B)に示すように、切削ヘッド2の接続軸部2aを連結用シャンク軸12の接続筒部12bに一杯に嵌入螺合して、接続軸部2aの基部側の段部2cが接続筒部12bの端面に密接した状態で、排出溝6が連結用シャンク軸12の排出溝3bにずれなく直線的に連なると共に、クーラント供給通路8a,8bが連結用シャンク軸12のクーラント供給孔5b,5bに連通するように設定されている。
【0037】
工具シャンク本体11及び連結用シャンク軸12の接続筒部1b,12bにおける雌ねじ4aの奥端には、前記第一実施形態ちおける工具シャンク1の接続筒部1aと同様に、ねじ切り用のぬすみ部を埋める金属片から成る埋込部材14を配置してロウ付け等にて一体固着している。また、連結用シャンク軸12及び切削ヘッド2の接続軸部12a,2aにおける基部側の段部12c,2cと雄ねじ5bとの間、ならびにこれらに各々対応する工具シャンク本体11及び連結用シャンク軸12の接続筒部1b,12bにおける端面と雌ねじ5aとの間は、同一長さで且つ略同じ内外径のパイロット部として、接続筒部1b,2bに接続軸部12a,2aが円滑に嵌入して正確に同芯状態に螺合できるように構成されている。
【0038】
上記第二実施形態のガンドリルによれば、切削ヘッド2での良好な切屑の排出性によって高い切削効率が得られることと、切削ヘッド2と連結用シャンク軸12とのねじ係合による連結部に充分な強度を確保できることは前記第一実施形態と同様であるが、これに加えて、工具シャンク1が工具シャンク本体11と独立部材である連結用シャンク軸12とから構成されているから、連結用シャンク軸12として異なる複数本の連結用シャンク軸2…を用意しておけば、その交換によってシャンク長さを変更でき、もって同じ工具シャンク本体11を用いて適用する削孔深さに応じた適正なシャンク長さに設定できるという利点がある。従って、シャンク長さが数段階に異なる複数種の深穴切削具を用意する場合に比較して、備品コストが大幅に低減される。また、経時的なシャンク側の損耗、ならびに使用中におけるシャンク側の突発的な折損や変形の殆どは、切削負荷による捩れ応力が集中し易いシャンク中間部で生起するが、上記構成のガンドリルでは、該捩れ応力の集中部分が概して連結用シャンク軸2になるため、傷んだ連結用シャンク軸12のみを新品と交換することにより、傷みにくいが構造的及びサイズ的に製作コストの高い工具シャンク本体11を長期にわたって継続使用でき、これによって保全コストも大きく低減できる。
【0039】
更に、本実施形態のガンドリルにあっては、連結用シャンク軸12の一端側が雄ねじ4bを有する接続軸部12a、他端側が雌ねじ4aを有する接続筒部12bを構成し、工具シャンク本体11と該連結用シャンク軸12の接続筒部1b,12b、ならびに該連結用シャンク軸12と切削ヘッド2の接続軸部12a,2aが同一寸法形状に設定されているから、複数本の連結用シャンク軸12…を直線状に連結したり、連結用シャンク軸12を介さずに工具シャンク本体11に対して切削ヘッド2を直接に連結することも可能であり、複数本の連結用シャンク軸12…の連結によって極端に長い削孔にも対応できる一方、逆に工具シャンク本体11への切削ヘッド2の直接連結によって比較的に短い削孔にも対応できる。
【0040】
一方、切削ヘッド2の切刃9a〜9cの消耗や折損を生じたり、段取り替えを行う場合は、前記第一実施形態と同様に該切削ヘッド2のみを取り替えるだけでよく、工具シャンク本体11及び連結用シャンク軸12をそのまま継続使用でき、簡単に短時間で作業を行えて生産効率が向上する。また、本実施形態でも、連結用シャンク軸12と工具シャンク本体11及び切削ヘッド2との各ねじ係合部における雌ねじ4a及び雄ねじ4bを角ねじにて構成しているので、高い結合強度が得られると共に、螺合部に隙間が生じ難いため、ねじ係合部からのクーラントの漏れが防止される。また、雌ねじ4aの奥端部に雄ねじ4bの先端面が密接するように、ねじ切り用のぬすみ部を埋める埋込部材14を配置しているので、クーラントの漏れがより確実に防止される。
【0041】
なお、上記第一及び第二実施形態では工具シャンク1及び工具シャンク本体11のねじ係合部を雌ねじ4aとしているが、逆に該ねじ係合部を雄ねじ4bとし、これに対応して切削ヘッド2及び連結用シャンク軸12の一端側のねじ係合部を雌ねじ4aとすることも可能である。排出孔3,3a,3b,5については、V字状断面の開き角が90°のものを例示したが、略90°〜130°の範囲の適当な開き角に設定することができ、また各部材1,11,12,2の中心側の肉部増加による強度向上を図るために底部をアール状としもよい。一方、切削ヘッドとしては、実施形態のように3つ切刃9a〜9cを有するもの以外に、2つあるいは4つ以上の切刃を有するものでもよく、また切刃の超硬チップをロウ付けしたり、切削ヘッド全体を工具鋼にて構成してその先端に切刃を直接形成したものも使用可能である。
【0042】
【発明の効果】
請求項1の発明によれば、ガンドリルシステムを適用する工具シャンクと切削ヘッドとを別部材として両者をねじ係合にて連結する構成において、該切削ヘッドに複数の切刃を備えたものを用いる深穴切削具として、工具シャンク及び切削ヘッドの外周面に工具シャンクの排出溝に直線的に連なる1本の排出溝を設けると共に、切削ヘッドには先端部からヘッド内部を通って前記排出溝に至るバイパス流路孔を設け、複数の切刃を前記排出溝とバイパス流路孔側の排出口とに各々臨んで分配形成していることから、工具シャンクと切削ヘッドと連結部の強度を充分に確保して、しかもクーラントによる切屑の排出性をよくして切削効率を高め得るものが提供される。
【0043】
請求項2の発明によれば、上記の深穴切削具において、切削ヘッドの先端面に、前記排出溝の先端開放部とそのヘッド回転方向前方側に位置するクーラントの吐出口との間、ならびに前記排出口とそのヘッド回転方向前方側に位置する同吐出口との間に、それぞれクーラント誘導凹所を形成していることから、ヘッド先端部で吐出されるクーラントを排出溝とバイパス流路孔とに偏りなく分配でき、もって各々に臨む切刃より発生する切屑を共に効率よく排出できる。
【0044】
請求項3の発明によれば、切削ヘッドに中央部切刃及び周辺部切刃と中間部切刃の3つの切刃を有する上記の深穴切削具において、該切削ヘッドの前記排出溝側に中央部切刃及び周辺部切刃を、前記バイパス流路孔側に中間部切刃を、それぞれ配置させることから、排出溝とバイパス流路孔との排出性の差に対応して流入する切屑量のバランスがとれ、全体として高い切屑排出性が確保される。
【0045】
請求項4の発明によれば、上記の深穴切削具において、工具シャンクを、工具シャンク本体と、その先端部にねじ係合して同軸状に着脱可能に連結される連結用シャンク軸とで構成し、該連結用シャンク軸の他端側に前記切削ヘッドに対するねじ係合部を有する構成としているから、連結用シャンク軸として長さの異なるものを着脱交換することにより、削孔深さに対応した適正なシャンク長さを選択でき、シャンク長さの異なる工具シャンクを用意する場合に比較して備品コストが大幅に低減すると共に、連結用シャンク軸の経時的を損耗、加工中の突発的な折損や変形等を生じた際に、該連結用シャンク軸のみを交換して工具シャンク本体は継続使用できるから、工具シャンク全体を新品と交換する場合に比較して保全コストを大きく低減できる。
【0046】
請求項5の発明によれば、工具シャンクが工具シャンク本体と連結用シャンク軸とに分割構成された上記の深穴切削具において、工具シャンク本体と連結用シャンク軸とのねじ係合部を、連結用シャンク軸と切削ヘッドとのねじ係合部と同一寸法形状に設定していることから、複数本の連結用シャンク軸を直線状に連結して極端に長い削孔にも対応できる一方、逆に連結用シャンク軸を介さずに工具シャンク本体に対してドリルヘッドを直接に連結して比較的に短い削孔にも対応できる。
【0047】
請求項6の発明によれば、上記の深穴切削具において、ねじ係合部の雌ねじと雄ねじを角ねじにて構成しているから、高い結合強度が得られると共に、螺合部に隙間が生じ難いため、ねじ係合部からのクーラントの漏れが防止されるという利点がある。
【0048】
請求項7の発明によれば、上記の深穴切削具において、ねじ係合部における雌ねじの奥端部に、ねじ切り用のぬすみ部を埋める埋込部材を配置し、この埋込部材に雄ねじの端面が密接するように構成していることから、部材製作の際にねじ切りを容易に行うためにぬすみ部が生じても、そのぬすみ部が埋められて隙間を生じないので、隙間に切屑が引っ掛かって円滑に排出できないというような不具合の発生を防止できる。
【図面の簡単な説明】
【図1】本発明の第一実施形態に係るガンドリルの全体構成を示す部分省略正面図である。
【図2】同第一実施形態のガンドリルに用いる切削ヘッドを示し、(A)は全体の正面図、(B)は先端から見た側面図、(C)は(A)のC−C線の矢視断面図である。
【図3】同切削ヘッドにおける図2(B)のIII −III 線の矢視断面図である。
【図4】同切削ヘッドの図2(A)とは反対側から見た背面図である。
【図5】本発明の第二実施形態に係るガンドリルを示し、(A)は全体構成を示す部分省略正面図、(B)は(A)の仮想線円B内の拡大図、(C)は(A)の仮想線円C内の拡大図である。
【図6】同第二実施形態のガンドリルに用いる工具シャンク本体を示し、(A)は全体構成を示す部分省略正面図、(B)は先端から見た側面図、(C)は(A)のC−C線の矢視断面図である。
【図7】同第二実施形態のガンドリルに用いる連結用シャンク軸を示し、(A)は全体構成を示す部分省略正面図、(B)は先端から見た側面図、(C)は(A)のC−C線の矢視断面図である。
【図8】本発明の先行技術に係る切削ヘッド交換型のガンドリルの全体構成を示す部分省略正面図である。
【図9】同先行技術に係るガンドリルに用いるドリルヘッドを示し、(A)は全体構成を示す部分省略正面図、(B)は先端から見た側面図、(C)は(A)のC−C線の断面図、(D)は基端から見た側面図である。
【図10】ガンドリルシステムに適用する3つの切刃を有する切削ヘッドを工具シャンクとは別部材とする場合の仮定構成を示し、(A)は切削ヘッドの先端から見た側面図、(B)は基端側のねじ係合部の断面である。
【図11】ガンドリルシステムの概略構成を示す断面図である。
【図12】従来例のガンドリルを示し、(A)は全体構成を示す部分省略正面図、(B)は先端から見た側面図、(C)は(A)のC−C線の矢視断面図、(D)は(A)のD−D線の矢視断面図である。
【符号の説明】
1 工具シャンク
1a,1b 接続筒部(ねじ係合部)
10a ドライバー部
10b シャンク部
11 工具シャンク本体
11a ドライバー部
11b 基部シャンク
12 連結用シャンク軸
12a 接続軸部(ねじ係合部)
12b 接続筒部(ねじ係合部)
2 切削ヘッド
2a 接続軸部(ねじ係合部)
2b 先端面
3,3a,3b 排出溝
4a 雌ねじ
4b 雄ねじ
5,5a,5b クーラント供給通路
50 中心孔(クーラント供給通路)
6 排出溝
6a 先端開放部
7 バイパス流路孔
7a 排出口
8a,8b クーラント供給孔
80a,80b 吐出口
81 クーラント誘導凹所
9a 中央部切刃
9b 中間部切刃
9c 周辺部切刃
14 埋込部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a deep hole cutting tool such as a drill applied to a gun drill system.
[0002]
[Prior art]
As a deep hole drilling system, a gun drill system, a BTA system, an ejector system and the like are known, but a gun drill system having a simple configuration is widely used for deep hole drilling of a relatively small diameter.
[0003]
As shown in FIG. 11, the gun drill system includes a gun drill 30 having a drill head 32 integrally fixed to the tip of a tool shank 31 having a hollow cylindrical shape and having a V-shaped cross-sectional groove formed in the outer surface along the longitudinal direction. The inside of the hollow portion of the tool shank 31 is used as a supply passage 33 for the coolant C, and the concave groove is used as a discharge groove 34 for the chips S. High-pressure coolant C is discharged from the tip side of the drill head 32 through the supply passage 33 during deep hole drilling. Then, the chip T generated in the cutting hole H of the workpiece W is discharged to the outside through the discharge groove 34 together with the coolant C. However, this gun drill system has an advantage that the chips T can be relatively easily discharged by allowing a large space for the discharge groove 34 even with a small diameter.
[0004]
As such a gun drill 30, the one shown in FIG. 12 is generally known. The tool shank 31 is formed in a cylindrical driver portion 31a, which is held by a chuck or the like and receives a rotational driving force, by die forming excluding the base end portion of a relatively thin pipe material, and has a V-shaped cross section along the longitudinal direction on the outer surface. A structure in which the base end of the cylindrical shaft portion 31b having the discharge groove 34a formed therein is fitted and fixed. Further, the drill head 32 has a discharge groove 34b similar to the cylindrical shaft portion 31b formed on the outer peripheral surface thereof by grinding of a steel material, and has a cutting edge formed at a tip portion facing one side surface of the discharge groove 34b. The tip 35 is brazed, and has a supply passage 33b communicating with the supply passage 33a of the tool shank 31 therein, and a discharge port 36 communicating with the supply passage 33b is opened at the front end surface. As the drill head 32, there is used a drill head which is entirely made of tool steel and has a cutting edge formed by grinding at the tip end, or a drill head which is formed by cutting a cutting edge made of a carbide tip. The tool shank 31 and the drill head 32 are integrated by fitting the angled base end 32a of the drill head 32 to the V-shaped tip of the cylindrical shaft portion 31b and brazing the fitting portion. Have been.
[0005]
However, in the conventional general-purpose gun drill 30 described above, when the cutting edge of the drill head 32 is worn out or broken, it is necessary to replace the entire cutting tool including the tool shank 31, which increases the cost and increases the setup cost. However, it takes a long time to replace the entire long cutting tool, resulting in a decrease in processing efficiency.Re-grinding work due to wear of the cutting edge is not easy, and the re-grinding cost is high. When the reaming is performed, a dedicated reamer tool having a reamer head fixed to the tip of the tool shank 31 is required, so that the cost is further increased.
[0006]
In view of the above, the present applicant has previously disclosed in Japanese Patent Application No. 2002-295789 a coolant supply passage having a hollow interior and a cutting head screwed to the tip of a tool shank having a discharge groove having a V-shaped cross section along the longitudinal direction on the outer peripheral surface. A deep hole cutting tool that is detachably attached by hole engagement has been proposed.
[0007]
In the deep hole cutting tool according to this proposal, for example, as shown in FIG. 8, the tool shank 21 has a cylindrical driver portion 21a, a shank portion 21b made of a pipe material inserted and fixed at the base end side, and a hollow at the tip end. A tubular mounting portion 21c is provided integrally, and a hollow interior communicating therewith is defined as a coolant supply passage 23a. Except for a base end of the shank portion 21b, the hollow mounting portion 21c is connected to the mounting portion 21c. A discharge groove 24a having a V-shaped cross section along the longitudinal direction is formed on the outer peripheral surface up to the end of the mounting portion 21c, and a female screw 27a is formed on the end side of the mounted portion 21c. As shown in FIG. 9, the cutting head 22 has a male screw 27 b screwed to the female screw 27 a of the mounted part 21 c on the base end side, and has a tool internally threadedly connected to the mounted part 21 c. It has a communication hole 23b communicating with the coolant supply passage 23a on the shank 21 side, and has a V-shaped concave groove 24b which is linearly connected to the discharge groove 24a on the tool shank 21 side in a state of being screwed to the outer peripheral surface. Is formed over the entire length including the male screw 27b, and has a cutting edge 25 provided at one end facing one side of the discharge groove 24b and a discharge port 26 which is an opening of the communication hole 23b.
[0008]
According to such a deep hole cutting tool, when the cutting blade 25 is worn or broken, the tool shank 21 can be continuously used only by replacing the cutting head 22 alone. In addition, a significant cost reduction can be achieved, and even when the setup is changed, only the cutting head 22 needs to be screwed in and replaced. Therefore, the work can be performed easily in a short time, the production efficiency is improved, and the cutting edge 25 is consumed. Re-grinding and replacement work can be easily performed by removing only the cutting head 22, and even when switching to another cutting work such as drilling and reaming, only the corresponding type of cutting head 22 needs to be prepared. Therefore, there is an advantage that equipment costs can be reduced and replacement work can be easily performed in a short time.
[0009]
On the other hand, a drill having a plurality of cutting edges is widely used as a tool with an oil hole used for drilling a hole having a relatively large diameter. However, since such a plurality of cutting edges are arranged so that the directions thereof are opposite to each other on both sides in the radial direction of the drill tip portion, when a cutting head having a plurality of cutting edges is used in a gun drill system, during machining. In order to efficiently discharge the chips, a discharge groove having a V-shaped cross section along the longitudinal direction is provided on both sides in the radial direction of the tool shank and the cutting head.
[0010]
[Problems to be solved by the invention]
However, in the configuration in which the tool shank and the cutting head are connected as separate members by screw engagement, as in the proposed deep hole cutting tool, when the tool shank and the cutting head are provided with discharge grooves on both sides in the radial direction, Due to the discharge grooves on both sides, the number of screw portions in the screw engagement portion is reduced, and the strength of the connection portion between the two becomes extremely weak.
[0011]
For example, FIG. 10 shows a hypothetical configuration in which a cutting head having three cutting edges applied to a gun drill system is formed as a separate member from a tool shank, (A) shows a head tip surface, and (B) shows a base end. It is a cross section of the screw engaging portion (male thread portion) on the side. As shown in the drawing, the cutting head 22P has large and small discharge grooves 24L and 24S having a V-shaped cross section on both sides in the radial direction, and one end of the large discharge groove 24L (rearward in the head rotation direction) is provided at the tip of the head. The center cutting edge 25a and the peripheral cutting edge 25c are provided facing the side surface of the small discharge groove 25S, and the intermediate cutting blade 25b is provided facing the same side surface (rear side in the head rotation direction) of the small discharge groove 25S. Coolant supply holes 23 are respectively provided in the substantially fan-shaped meat portions 28a, 28b on both sides separated by constriction by the two discharge grooves 25L, 25S, and each supply hole 23 opens as a discharge port 26 at the head end face. I have. Reference numeral 29 denotes a guide pad fixed to the outer peripheral surfaces of the meat portions 28a and 28b.
[0012]
Thus, in such a cutting head 22S, the area of the male screw 27b in the screw engaging portion on the proximal end side is cut off by the two discharge grooves 25L and 25S to form two arc portions as shown in FIG. In addition to the separation, even if the two arc portions are combined, it is only slightly more than の of the entire circumference, and the area of the corresponding female screw (not shown) of the screw engaging portion on the tool shank side is naturally the same. Become. Therefore, in the deep hole cutting tool in which the cutting head 22S is connected to the tool shank by screw engagement, the strength of the connection portion between the two becomes extremely weak, and the connection portion is broken, bent or twisted due to a cutting load. Deformation is likely to occur.
[0013]
The present invention has been made in view of the above circumstances, and has a configuration in which a tool shank and a cutting head are connected as separate members by screw engagement. It is an object of the present invention to provide a deep hole cutting tool capable of sufficiently securing the strength of a shank, a cutting head, and a connecting portion, and improving cutting efficiency by improving chip dischargeability.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a deep hole cutting tool according to claim 1 of the present invention has a hollow inside as a coolant supply passage, and one discharge groove having a V-shaped cross section formed along a longitudinal direction of an outer peripheral surface. And a cutting head having a base end coaxially detachably connected to a distal end of the tool shank by screw engagement, wherein the cutting head is provided with a coolant for the tool shank in a connected state. A coolant supply hole communicating with the supply passage, a single discharge groove linearly connected to the discharge groove of the tool shank, and a discharge opening opening from the front end surface to the outer peripheral surface at a position substantially radially opposed to the discharge groove; An outlet, and a bypass passage hole extending from the discharge port to the discharge groove through the inside of the head, and a plurality of cutting blades respectively face the discharge groove and the discharge port at the tip of the cutting head. When distribution is formed by A, it is obtained by adopting the configuration in which two ejection port communicating with the coolant supply hole to the tip surface is open to a substantially opposite position in the radial direction.
[0015]
According to the deep hole cutting tool having the above-described configuration, since there is only one discharge groove having a V-shaped cross section formed along the longitudinal direction on the outer peripheral surface of the tool shank and the cutting head, the male screw of the screw engaging portion of both is provided. The region of the internal thread and the internal thread is cut off at one location in the circumferential direction by the discharge groove, and becomes a shape continuous in the circumferential direction over approximately 3/4. Therefore, the connecting portion formed by the thread engagement between the tool shank and the cutting head is provided with sufficient strength to withstand the cutting load, and is less likely to be deformed during processing such as breakage, bending, and twisting. However, the number of the discharge grooves is one, and the chips cut by the cutting blade on one side facing the discharge grooves are discharged through the discharge grooves as they are with the coolant discharged from the discharge port at the tip. However, the chips cut by the other cutting edge also flow into the discharge groove through the bypass flow passage together with the coolant discharged from the discharge port, and are discharged through the discharge groove. High cutting efficiency based on dischargeability can be obtained.
[0016]
In such a configuration, on the distal end surface of the cutting head, between the distal end opening portion of the discharge groove and the discharge port located on the front side in the head rotation direction, and on the discharge port and the front side in the head rotation direction. If the coolant guiding recesses are respectively formed between the discharge ports to be discharged, the coolant discharged at the head end can be evenly distributed to the discharge groove and the bypass flow passage hole, and the coolant is generated from the cutting blade facing each. Chips can be efficiently discharged together.
[0017]
In the configuration in which the cutting head has three cutting edges, that is, a central cutting edge, a peripheral cutting edge, and an intermediate cutting edge, the central cutting edge and the peripheral cutting edge are provided on the discharge groove side, and the bypass passage is provided. It is recommended that an intermediate cutting edge be arranged on the hole side, respectively. This is because chips flow directly into the discharge groove on the discharge groove side at the head end, while they merge into the discharge groove via the curved flow path on the bypass flow path hole side, so that the flow resistance between the two causes This is because there is a difference in the dischargeability, and it is preferable that the side where the amount of chips generated is larger is set to the discharge groove side having the higher dischargeability.
[0018]
The tool shank is provided with a tool shank body having a driver portion for receiving a rotational driving force, and a connection for coaxially detachably connecting one end side to the tip of the tool shank body by screw engagement. The connecting shank shaft may have a screw engaging portion with the cutting head at the other end of the connecting shank shaft. If the tool shank is divided in this way, the appropriate shank length corresponding to the drilling depth can be selected by exchanging the connecting shank shaft with a different length and removing it. In the event that the tool is worn out over time or sudden breakage or deformation occurs during processing, only the connecting shank shaft needs to be replaced, and the tool shank main body can be used continuously.
[0019]
Further, when the tool shank is divided as described above, the screw engagement portion between the tool shank main body and the connection shank shaft has the same size and shape as the screw engagement portion between the connection shank shaft and the cutting head. If set, it is possible to connect multiple connecting shank shafts as necessary, or to perform the required cutting by connecting the cutting head directly to the tool shank body without going through the connecting shank shaft It becomes possible.
[0020]
On the other hand, if the female screw and the male screw of the screw engaging portion are formed of square screws, the coupling strength is increased and a gap is hardly generated, so that leakage of the coolant from the screw engaging portion can be prevented.
[0021]
Furthermore, an embedding member that fills a threaded incision portion is arranged at the deep end of the female screw in the screw engagement portion, and if the embedding member is configured so that the end surface of the male screw is in close contact with the embedding member, the member can be manufactured at the time of manufacturing the member. Even if a slackened portion is formed for easy threading, the slackened portion is buried and no gap is formed. Therefore, it is possible to prevent a problem that chips are caught in the gap and cannot be discharged smoothly.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the deep hole cutting tool according to the present invention will be specifically described with reference to the drawings. 1 to 4 show a gun drill according to the first embodiment, and FIGS. 5 to 7 show a gun drill according to the second embodiment.
[0023]
As shown in FIGS. 1A to 1C, the gun drill according to the first embodiment has a cutting head that is coaxially detachably connected to a tool shank 1 by screwing a base end portion to a tip end thereof. 3 is comprised.
[0024]
The tool shank 1 includes a cylindrical driver portion 10a held by a chuck or the like and receiving a rotational driving force, and a substantially round shaft-shaped shank portion 10b whose base end side is fixedly fitted into the driver portion 10a. . The shank portion 10b is formed by welding and fixing a cylindrical member to the distal end of a pipe material by a V-shaped cut, and has a V-shaped discharge groove 3 along the longitudinal direction except for the base end side on the outer peripheral surface. Is formed to the front end, and a connection cylinder portion 1a having a bottom is provided on the front end side, and a female screw 4a formed of a square screw is engraved on the inner side of the connection cylinder portion 1a. The discharge groove 3 is formed in a fan shape having an opening of approximately 90 ° from the approximate center of the shank portion 10b, and is formed by die forming in the pipe material. In the connection cylindrical portion 1a, approximately 1/4 of the peripheral side wall is formed. Is cut out. Further, in the tool shank 1, a coolant supply passage 5 from the base end of the driver portion 10 a to the inner bottom of the connection tube portion 1 a is formed so as not to open to the discharge groove 3 due to the communication of the hollow portion of each component. ing.
[0025]
As shown in detail in FIGS. 2A to 2C, the cutting head 2 has a connection shaft portion 2a having an outer diameter whose base end can be closely fitted into the connection tube portion 1a of the tool shank 1. A male screw 4b composed of a square screw that is screwed into the female screw 4a of the connection cylinder portion 1a is engraved on the distal end side of the connection shaft portion 2a, and extends along the entire length including the connection shaft portion 2a on the outer peripheral surface. While one discharge groove 6 having a V-shaped cross section is formed, a discharge port 7a opened from the distal end surface 2b to the outer peripheral surface is provided at a position substantially radially opposed to the discharge groove 6 on the distal end side. A bypass passage hole 7 is formed from the discharge port 7a to the discharge groove 6 through the inside of the head. Reference numeral 7b denotes a junction opening in the discharge groove 5 of the bypass passage hole 7. Further, inside the cutting head 2, two coolant supply holes 8 a and 8 b extending from the end face of the connection shaft portion 2 a to the tip end face 2 b of the cutting head 2 avoid the discharge groove 6 and the bypass flow passage hole 7. The holes are formed so as to be substantially opposed to each other in the radial direction.
[0026]
At the tip of the cutting head 2, a central cutting edge 9 a and a peripheral cutting edge 9 b made of a carbide tip are screwed together with the discharge groove 6 facing the side surface on the rear side in the head rotation direction. The peripheral cutting edge 9c, which is also made of a carbide tip, is screwed so as to face the outlet 7a and to face the central cutting edge 9a and the peripheral cutting edge 9b in a reverse direction. The guide pad 13 is fixed to two places on the outer peripheral part outside the area 7a. Further, the front end face 2b has discharge ports 80a, 80b which are openings of both coolant supply holes 8a, 8b, and the discharge port 80a located at the front end opening part 6a of the discharge groove 6 and the front side in the head rotation direction. , And between the discharge port 7a and the discharge port 80b located on the front side in the head rotation direction, a coolant guiding recess 81 is formed. The coolant supply hole 8a corresponding to the discharge groove 6 and the discharge port 80a have a larger diameter than the coolant supply hole 8b corresponding to the discharge port 7a and the discharge port 80b.
[0027]
As shown in FIG. 1, the tool shank 1 and the cutting head 2 are connected to each other, that is, the connection shaft portion 2a of the cutting head 2 is fully fitted and screwed into the connection cylindrical portion 1a of the tool shank 1. In a state where the step 2c on the base side of the shaft portion 2a is in close contact with the end face of the connection tube portion 1a, the discharge grooves 3, 6 of the two 1 and 2 are linearly connected without displacement, and the coolant supply passage 5 of the former 1 is formed. The coolant supply holes 8a and 8b are set to communicate with each other. The length between the end face of the connection cylinder 1a of the tool shank 1 and the female screw 4a, and the distance between the step 2c on the base side of the connection shaft 2a of the cutting head 2 and the male screw 4b are the same and substantially the same. The connection shaft portion 2a is smoothly fitted into the connection tube portion 1a as the pilot portion having the inner and outer diameters so that the connection shaft portion 2a can be accurately screwed into a concentric state.
[0028]
The inner end of the female screw 4a in the connecting cylinder portion 1a of the tool shank 1 is screwed so that the end surface of the male screw 4b of the connecting shaft portion 2a of the cutting head 2 that is screwed into the female screw 4a is in close contact with the shaft so that no gap is formed. It is formed on a flat surface perpendicular to the core. Since it is actually difficult to perform the thread cutting process so that the inner end of the female screw 4a becomes a flat surface, specifically, as shown in FIG. An embedding member 14 made of a metal piece for burying the sunk portion is disposed and integrally fixed by brazing or the like.
[0029]
In the gun drill having the above configuration, since there is one discharge groove 3 and 6 having a V-shaped cross section formed along the longitudinal direction on the outer peripheral surfaces of the tool shank 1 and the cutting head 2, the female screw of the screw engagement portion of both is used. The region of 4a and the external thread 4b is cut off at one location in the circumferential direction by the discharge grooves 3 and 6, and becomes a shape continuous in the circumferential direction for approximately 3/4. Therefore, the connecting portion of the tool shank 1 and the cutting head 2 formed by the screw engagement has a sufficient strength to withstand the cutting load, and is less likely to be deformed during processing such as breakage, bending or twisting. Thus, although the cutting groove 2 of the cutting head 2 is only one, the chips cut by the central cutting edge 9a and the peripheral cutting edge 9b are not affected by the coolant discharged from the discharge port 80a at the tip. While being discharged through the discharge groove 6 and the discharge groove 3 of the tool shank 1, the chips cut by the intermediate cutting blade 9b also pass through the bypass passage 7 from the discharge port 7a together with the coolant discharged from the discharge port 80b. Then, it flows into the discharge groove 6 from the junction 7b, and is discharged through the discharge groove 6 and the discharge groove 3 of the tool shank 1. Therefore, according to this gun drill, high cutting efficiency based on good chip dischargeability can be obtained.
[0030]
In this embodiment, since the coolant guiding recess 81 extending from the discharge ports 80a, 80b to the discharge groove 6 and the discharge port 7a is formed in the front end surface 2b of the cutting head 2, the discharge is performed at the head front end. Coolant can be evenly distributed to the discharge groove 6 and the bypass flow passage hole 7, whereby the chips generated from the cutting blades 9a to 9c facing each other can be efficiently discharged together. Further, the central cutting edge 9a and the peripheral cutting edge 9c face the discharge groove 6 side, and the intermediate cutting edge 9b faces the discharge port 7a side, that is, the bypass passage hole 7 side. While a large amount of chips generated from the peripheral cutting edge 9c directly flows into the discharge groove 6, the intermediate cutting edge 9b forms a relatively small portion of the bypass flow passage hole 7 which is inferior in dischargeability due to the flow resistance of the curved flow passage. Since a small amount of chips flows in, the amount of chips flowing in is balanced in accordance with the difference in dischargeability between the discharge groove 6 and the bypass passage hole 7, so that a high chip dischargeability as a whole is secured.
[0031]
Further, in the present embodiment, since the female screw 4a and the male screw 4b in the screw engagement portion between the tool shank 1 and the cutting head 2 are formed by square screws, high coupling strength is obtained, and a gap is formed in the screw engagement portion. Is less likely to occur, so that leakage of the coolant from the screw engaging portion is prevented. In addition, since the embedding member 14 that fills the threaded portion for threading is disposed such that the distal end surface of the male screw 4b is in close contact with the inner edge of the female screw 4a, the threaded portion is formed to facilitate threading. In addition, the clearance is not formed due to the buried portion being buried, and leakage of the coolant is more reliably prevented. At the open end of the female screw 4a of the tool shank 1 and at the distal end of the male screw 5b of the cutting head 2, the incompletely threaded female and female screws 4a, 5b are completely threaded on both sides of the discharge grooves 3, 6. The end of the screw ends in the shape, and no gap is formed at the screw end facing the discharge grooves 3 and 6.
[0032]
On the other hand, in this gun drill, since the cutting head 2 is detachable from the tool shank 1, when the cutting blades 9a to 9c of the cutting head 2 are worn out or broken, only the cutting head 2 is replaced. Since the tool shank 1 can be continuously used as it is, and only the cutting head 2 needs to be screwed in and replaced at the time of setup change, the work can be performed easily in a short time, and the production efficiency is improved. 9C can be handled alone by removing only the cutting head 2 and replacing it due to wear of 9c. Therefore, even when switching to another cutting operation such as drilling and reaming, a corresponding type of cutting can be performed. Since only the head needs to be prepared, the equipment cost can be reduced and the replacement operation can be easily performed in a short time.
[0033]
In the gun drill according to the second embodiment, as shown in FIG. 5A, the tool shank 1 is divided into a tool shank main body 11 and a connecting shank shaft 12. However, since the cutting head 2 has the same configuration as that of the gun drill of the first embodiment, each component is denoted by the same reference numeral as in the first embodiment, and description thereof is omitted.
[0034]
As shown in detail in FIGS. 6 (A) to 6 (C), the tool shank main body 11 is provided with a small-diameter round shaft-like shape on the distal end side of a large-diameter driver portion 11a which is held by a chuck or the like and receives rotational driving force. A base shank 11b is integrally formed coaxially. A discharge groove 3a having a V-shaped cross section excluding the base end side is formed on the outer peripheral surface of the base shank 11b to the tip along the longitudinal direction. A connection tube 1b similar to the connection tube 1a in the tool shank 1 of the first embodiment is provided at the tip end of the connection shank 1b, and a female screw composed of a square screw is provided inside the connection tube 1b. 4a is engraved. As shown in FIGS. 6 (B) and 6 (C), the discharge groove 3a is formed in a fan shape having an opening of approximately 90 ° from the approximate center of the base shank 11b, and is substantially 1 / of the circular cross section of the base shank 11b. And the peripheral side wall is cut out in the connection cylinder portion 1b. A center hole 50 extending from the base end to the intermediate position is formed in the driver portion 11a, and two coolant supply passages 5a, 5b, which extend from the inner bottom of the center hole 50 to the inner bottom of the connection tubular portion 1a of the base shank 11. 5a is formed so as to avoid the discharge groove 3a.
[0035]
The connecting shank shaft 12 has a round shaft shape having the same outer diameter as the base shank 11b of the tool shank main body 11, and as shown in detail in FIGS. It has a connection shaft portion 12a having an outer diameter that can be fitted tightly into the connection tube portion 1b of the main body 11, and is formed of a square screw that is screwed into the female screw 4a of the connection tube portion 1b at the tip end of the connection shaft portion 12a. A male screw 4b is engraved, and a connecting cylinder part 12b is formed on the other end side and has the same dimensions and shape as the connecting cylinder part 1b of the tool shank main body 11, and a female screw 4a formed of a square screw is engraved on the inner side. . On the outer peripheral surface of the connecting shank shaft 12, a discharge groove 3b having a V-shaped cross section along the longitudinal direction is formed over the entire length including the connecting shaft portion 12a and the connecting cylindrical portion 12b. Inside the shaft 12, two coolant supply passages 5b, 5b from the end face of the connection shaft portion 12a to the inner bottom of the connection cylinder portion 12b are formed so as to avoid the discharge groove 3b.
[0036]
As shown in FIGS. 5A and 5C, the tool shank main body 11 and the connection shank shaft 12 are connected to each other, that is, the connection shank shaft is connected to the connection cylinder portion 1b of the tool shank main body 11. 12 are fully fitted and screwed together, and in a state where the step 12c on the base side of the connection shaft portion 12a is in close contact with the end surface of the connection tube portion 1b, the two discharge grooves 3a and 3b are not shifted. The coolant supply passages 5a, 5a and the coolant supply passages 5b, 5b are set so as to be connected linearly. Further, the connecting shank shaft 12 and the connecting shaft portions 12a and 2a of the cutting head 2 have the same dimensions and shape, and as shown in FIGS. 5A and 5B, the connecting shaft portion 2a of the cutting head 2 is used for connecting. The discharge groove 6 is connected to the connection shank shaft 12a of the shank shaft 12a with the step 2c on the base side of the connection shaft portion 2a being in close contact with the end face of the connection tube portion 12b. And the coolant supply passages 8a and 8b are set so as to communicate with the coolant supply holes 5b and 5b of the connecting shank shaft 12.
[0037]
At the deep end of the internal thread 4a in the connection cylinder portions 1b, 12b of the tool shank main body 11 and the connecting shank shaft 12, like the connection cylinder portion 1a of the tool shank 1 according to the first embodiment, a thread cutting slimming portion. The embedding member 14 made of a metal piece for embedding is disposed and integrally fixed by brazing or the like. The tool shank body 11 and the connection shank shaft 12 between the connection shank shaft 12 and the base side steps 12c, 2c of the connection shaft portions 12a, 2a of the cutting head 2 and the male screw 5b, respectively, and the tool shank body 11 and the connection shank shaft 12 corresponding thereto. The connection shaft portions 12a and 2a are smoothly fitted into the connection cylinder portions 1b and 2b as pilot portions having the same length and substantially the same inner and outer diameters between the end surfaces of the connection cylinder portions 1b and 12b and the female screw 5a. It is configured so that it can be screwed exactly in a concentric state.
[0038]
According to the gun drill of the second embodiment, a high cutting efficiency can be obtained by good chip discharge performance at the cutting head 2, and a connecting portion formed by thread engagement between the cutting head 2 and the connecting shank shaft 12 can be provided. A sufficient strength can be ensured in the same manner as in the first embodiment, but in addition to this, the tool shank 1 is composed of the tool shank main body 11 and the connecting shank shaft 12 which is an independent member. If a plurality of different connecting shank shafts 2 are prepared as the tool shank shafts 12, the shank length can be changed by exchanging the shank shafts 2. There is an advantage that an appropriate shank length can be set. Therefore, the equipment cost is greatly reduced as compared with the case where a plurality of types of deep hole cutting tools having different shank lengths in several stages are prepared. In addition, most of the wear on the shank side over time, and sudden breakage and deformation on the shank side during use occur in the middle portion of the shank where torsional stress due to the cutting load tends to concentrate, but in the gun drill having the above configuration, Since the portion where the torsional stress is concentrated generally becomes the connecting shank shaft 2, by replacing only the damaged connecting shank shaft 12 with a new one, the tool shank body 11 which is hardly damaged but has a high manufacturing cost in terms of structure and size. Can be used continuously over a long period of time, which can greatly reduce maintenance costs.
[0039]
Further, in the gun drill of the present embodiment, one end of the connection shank shaft 12 forms a connection shaft portion 12a having a male screw 4b, and the other end forms a connection cylinder portion 12b having a female screw 4a. Since the connecting cylinder portions 1b and 12b of the connecting shank shaft 12 and the connecting shaft portions 12a and 2a of the connecting shank shaft 12 and the cutting head 2 are set to have the same dimensions and shape, a plurality of connecting shank shafts 12 are provided. Can be connected linearly, or the cutting head 2 can be directly connected to the tool shank main body 11 without the intermediation of the connecting shank shaft 12, and a plurality of connecting shank shafts 12 can be connected. Accordingly, it is possible to cope with extremely long holes, while conversely, it is possible to cope with relatively short holes by directly connecting the cutting head 2 to the tool shank body 11.
[0040]
On the other hand, when the cutting edges 9a to 9c of the cutting head 2 are worn out or broken, or when the setup is changed, only the cutting head 2 need be replaced similarly to the first embodiment, and the tool shank body 11 and The connection shank shaft 12 can be continuously used as it is, and the work can be performed easily and in a short time, thereby improving the production efficiency. Also in this embodiment, since the female screw 4a and the male screw 4b in each screw engaging portion of the connecting shank shaft 12, the tool shank main body 11, and the cutting head 2 are formed of square screws, high coupling strength is obtained. In addition, since a gap is hardly generated in the threaded portion, leakage of the coolant from the screw engaging portion is prevented. In addition, since the embedding member 14 that fills the threaded cutting portion is arranged so that the distal end surface of the male screw 4b is in close contact with the deep end of the female screw 4a, leakage of the coolant is more reliably prevented.
[0041]
In the first and second embodiments, the screw engaging portion of the tool shank 1 and the tool shank main body 11 is a female screw 4a. On the contrary, the screw engaging portion is a male screw 4b. The screw engaging portion on one end side of the connecting shank shaft 2 and the connecting shank shaft 12 may be a female screw 4a. As for the discharge holes 3, 3a, 3b, and 5, the opening angle of the V-shaped cross section is 90 °, but an appropriate opening angle in a range of approximately 90 ° to 130 ° can be set. The bottom may be rounded in order to improve the strength by increasing the thickness of the center side of each of the members 1, 11, 12, 2. On the other hand, as the cutting head, besides one having three cutting edges 9a to 9c as in the embodiment, one having two or four or more cutting edges may be used. Alternatively, it is also possible to use one in which the entire cutting head is made of tool steel and the cutting edge is formed directly at the tip.
[0042]
【The invention's effect】
According to the first aspect of the present invention, in a configuration in which the tool shank to which the gun drill system is applied and the cutting head are connected as separate members by screw engagement, the cutting head having a plurality of cutting blades is used. As a deep hole cutting tool, the tool shank and the outer peripheral surface of the cutting head are provided with one discharge groove linearly connected to the discharge groove of the tool shank, and the cutting head passes from the tip to the discharge groove through the inside of the head. By providing a bypass flow path hole to reach and distributing and forming a plurality of cutting blades facing the discharge groove and the discharge port on the bypass flow path hole side, the strength of the tool shank, the cutting head, and the connecting portion is sufficiently increased. That can improve the efficiency of cutting by improving the discharge of chips by the coolant.
[0043]
According to the invention of claim 2, in the above-described deep hole cutting tool, on the tip end surface of the cutting head, between the tip end opening portion of the discharge groove and the coolant discharge port located on the front side in the head rotation direction, and Since a coolant guide recess is formed between the discharge port and the discharge port located on the front side in the head rotation direction, the coolant discharged at the tip of the head is formed into a discharge groove and a bypass flow path hole. The chips generated from the cutting blades facing each can be efficiently discharged together.
[0044]
According to the invention of claim 3, in the above-described deep hole cutting tool having a cutting head having three cutting edges, a central cutting edge, a peripheral cutting edge, and an intermediate cutting edge, the cutting head is provided on the discharge groove side. Since the central cutting edge and the peripheral cutting edge and the intermediate cutting edge are arranged on the side of the bypass flow passage hole, chips flowing in corresponding to the difference in dischargeability between the discharge groove and the bypass flow passage hole. The balance of the amount is ensured, and high chip dischargeability is secured as a whole.
[0045]
According to the invention of claim 4, in the above-mentioned deep hole cutting tool, the tool shank is formed by the tool shank main body and the connecting shank shaft which is screw-engaged with the tip portion thereof and is coaxially detachably connected. Since the connecting shank shaft has a screw engaging portion for the cutting head at the other end side of the connecting shank shaft, by replacing a connecting shank shaft having a different length by attaching and detaching, the drilling depth can be reduced. Appropriate shank length can be selected correspondingly, equipment cost is greatly reduced compared to preparing tool shank with different shank length, and the aging of the connecting shank shaft is worn out, and unexpected during machining In case of severe breakage or deformation, the tool shank body can be used continuously by replacing only the connecting shank shaft, so the maintenance cost is greatly reduced compared to the case where the entire tool shank is replaced with a new one. It can be.
[0046]
According to the invention of claim 5, in the above-described deep hole cutting tool in which the tool shank is divided into the tool shank main body and the connection shank shaft, the screw engagement portion between the tool shank main body and the connection shank shaft is provided. Since the connecting shank shaft and the screw engaging part of the cutting head are set to the same dimensions and shape, it is possible to connect a plurality of connecting shank shafts linearly and cope with extremely long drilling, Conversely, the drill head can be directly connected to the tool shank main body without passing through the connecting shank shaft, so that relatively short drilling can be handled.
[0047]
According to the invention of claim 6, in the above deep hole cutting tool, since the female screw and the male screw of the screw engaging portion are formed of square screws, high coupling strength is obtained and a gap is formed in the screwing portion. Since it is unlikely to occur, there is an advantage that leakage of coolant from the screw engagement portion is prevented.
[0048]
According to the invention of claim 7, in the above deep hole cutting tool, an embedding member for embedding a threaded incision portion is arranged at a deep end portion of the female screw in the screw engagement portion, and the embedding member is provided with an embedding member. Since the end faces are configured to be close to each other, even if a slackened portion is formed to facilitate threading at the time of manufacturing the member, the slackened portion is filled and no gap is generated, so chips are caught in the gap. This makes it possible to prevent the occurrence of such a problem that discharge cannot be performed smoothly.
[Brief description of the drawings]
FIG. 1 is a partially omitted front view showing an entire configuration of a gun drill according to a first embodiment of the present invention.
2A and 2B show a cutting head used in the gun drill according to the first embodiment, wherein FIG. 2A is an overall front view, FIG. 2B is a side view seen from the tip, and FIG. 2C is a line CC in FIG. FIG.
FIG. 3 is a sectional view of the cutting head taken along line III-III of FIG. 2 (B).
FIG. 4 is a rear view of the same cutting head as viewed from a side opposite to FIG. 2A.
5A and 5B show a gun drill according to a second embodiment of the present invention, wherein FIG. 5A is a partially omitted front view showing the entire configuration, FIG. 5B is an enlarged view of a virtual line circle B in FIG. 4A is an enlarged view of the inside of a virtual line circle C of FIG.
6A and 6B show a tool shank main body used for the gun drill according to the second embodiment, wherein FIG. 6A is a partially omitted front view showing the entire configuration, FIG. 6B is a side view seen from the tip, and FIG. 5 is a sectional view taken along line CC of FIG.
7A and 7B show a connecting shank shaft used in the gun drill of the second embodiment, FIG. 7A is a partially omitted front view showing the entire configuration, FIG. 7B is a side view seen from the tip, and FIG. 2) is a sectional view taken along line CC of FIG.
FIG. 8 is a partially omitted front view showing the overall configuration of a cutting head exchange type gun drill according to the prior art of the present invention.
9A and 9B show a drill head used for the gun drill according to the prior art, in which FIG. 9A is a partially omitted front view showing the entire configuration, FIG. 9B is a side view seen from the tip, and FIG. FIG. 3D is a cross-sectional view taken along line C, and FIG.
FIG. 10 shows a hypothetical configuration in which a cutting head having three cutting edges applied to a gun drill system is formed as a separate member from a tool shank, (A) is a side view seen from the tip of the cutting head, and (B). Is a cross section of the screw engaging portion on the proximal end side.
FIG. 11 is a sectional view showing a schematic configuration of a gun drill system.
12A and 12B show a conventional gun drill, wherein FIG. 12A is a partially omitted front view showing the entire configuration, FIG. 12B is a side view seen from the tip, and FIG. 12C is a view taken along line CC of FIG. FIG. 3D is a cross-sectional view taken along line DD of FIG.
[Explanation of symbols]
1 Tool shank
1a, 1b Connection tube part (screw engagement part)
10a Driver section
10b Shank part
11 Tool shank body
11a Driver section
11b Base shank
12 Connection shank shaft
12a Connection shaft part (screw engagement part)
12b Connection tube part (screw engagement part)
2 Cutting head
2a Connection shaft part (screw engagement part)
2b Tip surface
3, 3a, 3b discharge groove
4a female screw
4b male screw
5,5a, 5b Coolant supply passage
50 center hole (coolant supply passage)
6 discharge grooves
6a Open end
7 Bypass channel hole
7a outlet
8a, 8b Coolant supply hole
80a, 80b outlet
81 Coolant guide recess
9a Central cutting edge
9b Intermediate cutting edge
9c Peripheral cutting blade
14 Embedded member

Claims (7)

中空内部をクーラント供給通路とし、外周面の長手方向に沿って形成した断面V字状の1本の排出溝を有する工具シャンクと、この工具シャンクの先端部に基端部をねじ係合にて同軸状に着脱可能に連結される切削ヘッドとを備え、
前記切削ヘッドは、連結状態において前記工具シャンクのクーラント供給通路に連通するクーラント供給孔と、該工具シャンクの排出溝に直線的に連なる1本の排出溝と、この排出溝に対して径方向の略対向位置で先端面から外周面にわたって開口した排出口と、該排出口からヘッド内部を通って前記排出溝に至るバイパス流路孔とを備え、
該切削ヘッドの先端部には、複数の切刃が前記排出溝と前記排出口とに各々臨んで分配形成されると共に、先端面に前記クーラント供給孔に連通する2つの吐出口が径方向の略対向位置に開口してなる深穴切削具。
A tool shank having a hollow inside as a coolant supply passage and having a single V-shaped discharge groove formed along the longitudinal direction of the outer peripheral surface, and a proximal end portion of the tool shank at the distal end portion by screw engagement. With a cutting head that is coaxially detachably connected,
The cutting head has a coolant supply hole communicating with a coolant supply passage of the tool shank in a connected state, a single discharge groove linearly connected to a discharge groove of the tool shank, and a radial direction with respect to the discharge groove. A discharge port that opens from the distal end surface to the outer peripheral surface at a substantially opposing position, and a bypass flow path hole that extends from the discharge port through the inside of the head to the discharge groove,
At the tip of the cutting head, a plurality of cutting blades are distributed and formed facing the discharge groove and the discharge port, respectively, and two discharge ports communicating with the coolant supply hole at the distal end face are formed in a radial direction. A deep hole cutting tool that is open at almost the opposite position.
前記切削ヘッドの先端面には、前記排出溝の先端開放部とそのヘッド回転方向前方側に位置する吐出口との間、ならびに前記排出口とそのヘッド回転方向前方側に位置する吐出口との間に、それぞれクーラント誘導凹所が形成されてなる請求項1記載の深穴切削具。On the tip end surface of the cutting head, between the tip opening portion of the discharge groove and the discharge port located on the front side in the head rotation direction, and between the discharge port and the discharge port located on the front side in the head rotation direction. The deep hole cutting tool according to claim 1, wherein a coolant guide recess is formed between the recesses. 前記切削ヘッドは、前記排出溝側に中央部切刃及び周辺部切刃が、前記バイパス流路孔側に中間部切刃が、それぞれ形成されてなる請求項1又は2に記載の深穴切削具。3. The deep hole cutting according to claim 1, wherein the cutting head has a central cutting edge and a peripheral cutting edge formed on the discharge groove side, and an intermediate cutting edge formed on the bypass flow passage hole side. 4. Utensils. 前記工具シャンクは、回転駆動力を受けるドライバ部を備えた工具シャンク本体と、この工具シャンク本体の先端部に一端側をねじ係合して同軸状に着脱可能に連結される連結用シャンク軸とからなり、該連結用シャンク軸の他端側に前記切削ヘッドに対するねじ係合部を有してなる請求項1〜3のいずれかに記載の深穴切削具。The tool shank includes a tool shank main body including a driver portion that receives a rotational driving force, and a connecting shank shaft that is coaxially detachably connected to one end of the tool shank main body by screwing one end to a tip end of the tool shank. The deep hole cutting tool according to any one of claims 1 to 3, further comprising a screw engaging portion for the cutting head at the other end of the connecting shank shaft. 工具シャンク本体と連結用シャンク軸とのねじ係合部が、連結用シャンク軸と切削ヘッドとのねじ係合部と同一寸法形状に設定されてなる請求項4記載の深穴切削具。5. The deep hole cutting tool according to claim 4, wherein a screw engaging portion between the tool shank main body and the connecting shank shaft has the same size and shape as a screw engaging portion between the connecting shank shaft and the cutting head. ねじ係合部の雌ねじと雄ねじが角ねじにて構成される請求項1〜5のいずれかに記載の深穴切削具。The deep hole cutting tool according to any one of claims 1 to 5, wherein the female screw and the male screw of the screw engaging portion are formed by square screws. ねじ係合部における雌ねじの奥端部に、ねじ切り用のぬすみ部を埋める埋込部材が配置され、この埋込部材に雄ねじの端面が密接するように構成されてなる請求項1〜6のいずれかに記載の深穴切削具。7. An embedding member for burying a threaded incision portion at an inner end portion of the female screw in the screw engaging portion, wherein the embedding member is configured such that an end face of the male screw is in close contact with the embedding member. Deep hole cutting tool according to Crab.
JP2002332125A 2002-11-15 2002-11-15 Deep hole cutting tool Expired - Fee Related JP4047703B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002332125A JP4047703B2 (en) 2002-11-15 2002-11-15 Deep hole cutting tool
US10/695,842 US7004691B2 (en) 2002-11-15 2003-10-29 Deep hole cutter
KR1020030079803A KR100674665B1 (en) 2002-11-15 2003-11-12 Deep hole cutter
EP03026108A EP1419839B1 (en) 2002-11-15 2003-11-13 Deep hole cutter
DE60308291T DE60308291T2 (en) 2002-11-15 2003-11-13 deep drilling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332125A JP4047703B2 (en) 2002-11-15 2002-11-15 Deep hole cutting tool

Publications (2)

Publication Number Publication Date
JP2004160625A true JP2004160625A (en) 2004-06-10
JP4047703B2 JP4047703B2 (en) 2008-02-13

Family

ID=32809295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332125A Expired - Fee Related JP4047703B2 (en) 2002-11-15 2002-11-15 Deep hole cutting tool

Country Status (1)

Country Link
JP (1) JP4047703B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061999A (en) * 2005-09-02 2007-03-15 Yunitakku Kk Drill
CN108972037A (en) * 2018-09-26 2018-12-11 哈尔滨理工大学 Chip removal knife handle in a kind of CFRP processing visual air suction type of efficient sealed negative pressure
CN113878146A (en) * 2020-07-03 2022-01-04 株式会社泰珂洛 Punching tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007061999A (en) * 2005-09-02 2007-03-15 Yunitakku Kk Drill
JP4644568B2 (en) * 2005-09-02 2011-03-02 ユニタック株式会社 Drill
CN108972037A (en) * 2018-09-26 2018-12-11 哈尔滨理工大学 Chip removal knife handle in a kind of CFRP processing visual air suction type of efficient sealed negative pressure
CN113878146A (en) * 2020-07-03 2022-01-04 株式会社泰珂洛 Punching tool
CN113878146B (en) * 2020-07-03 2024-01-30 株式会社泰珂洛 Punching tool

Also Published As

Publication number Publication date
JP4047703B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
KR100674665B1 (en) Deep hole cutter
US20090297285A1 (en) Deep hole drilling machine
US8091452B2 (en) Method for manufacturing drill head
EP2070617B2 (en) A basic body for tools for chip removing machining
US20110280675A1 (en) Method for Forming Through-Hole
KR20130018674A (en) Rotary cutting tool having an adjustable cooling mechanism
US20110008116A1 (en) Gun Drill
JP4895934B2 (en) Gun drill
JP4230878B2 (en) Deep hole cutting tool
JP4164337B2 (en) Deep hole cutting tool
JP3822506B2 (en) Tool holder, cutting edge member and cutting tool
JP4047703B2 (en) Deep hole cutting tool
JP4141297B2 (en) Deep hole cutting tool
JP4057936B2 (en) Deep hole cutting tool
KR20170135513A (en) A Machine Tools Having a Structure of Providing a Cutting Fluid through a Inner Path
JP4142930B2 (en) Deep hole cutting tool
JP4035415B2 (en) Deep hole cutting tool
JP4201627B2 (en) Deep hole cutting tool
KR101946199B1 (en) A Machine Tools Having a Structure of Providing a Cutting Fluid through a Inner Path
JP2006181647A (en) Tap, tap body and set screw
CN114012187A (en) Inner-cooling type screw tap
JP2006297577A (en) Tap and plug
KR20050007099A (en) Cutting head changing type cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees