JP2004159583A - Method for producing coffee drink containing aroma component in pulverizing - Google Patents

Method for producing coffee drink containing aroma component in pulverizing Download PDF

Info

Publication number
JP2004159583A
JP2004159583A JP2002330446A JP2002330446A JP2004159583A JP 2004159583 A JP2004159583 A JP 2004159583A JP 2002330446 A JP2002330446 A JP 2002330446A JP 2002330446 A JP2002330446 A JP 2002330446A JP 2004159583 A JP2004159583 A JP 2004159583A
Authority
JP
Japan
Prior art keywords
coffee
aroma
gas
concentrated
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002330446A
Other languages
Japanese (ja)
Other versions
JP4745591B2 (en
Inventor
Osamu Kashiwai
治 柏井
Hiroshi Hisamori
博 久守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCC Ueshima Coffee Co Ltd
Original Assignee
UCC Ueshima Coffee Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCC Ueshima Coffee Co Ltd filed Critical UCC Ueshima Coffee Co Ltd
Priority to JP2002330446A priority Critical patent/JP4745591B2/en
Publication of JP2004159583A publication Critical patent/JP2004159583A/en
Application granted granted Critical
Publication of JP4745591B2 publication Critical patent/JP4745591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tea And Coffee (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing coffee drink rich in aroma through collecting good-quality and rich flavor components. <P>SOLUTION: The method for producing a coffee concentrated aroma solution comprises (1) a process of pulverizing roasted coffee beans with a closed pulverizer, (2) a process of conveying coffee pulverized gas containing aroma components released in the (1) process to introduce into a solvent by using inactive gas, (3) a process of collecting the introduced pulverized gas in the solvent to prepare the aroma solution and (4) a process of heating the aroma solution, cooling and condensing flavor components which transpire together with the solvent to prepare the concentrated aroma solution. The method for producing the coffee drink further comprises (5) a process of extracting coffee components from coffee beans after collecting the pulverized gas to prepare a coffee extract, a coffee concentrate or dry coffee and (6) a process of mixing the concentrated aroma solution with the coffee extract, the coffee concentrate or the dry coffee. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、コーヒー飲料の製造方法に関する。詳しくは、風味、特にアロマに優れたコーヒー飲料を工業的に製造する方法に関する。
【0002】
【従来の技術】
コーヒーは、独特な香りや風味を特徴とする嗜好性飲料である。コーヒーの特徴的な風味は飲用時のアロマとフレーバーで特徴付けられるが、一般家庭、喫茶店またはコーヒーショップ等の調理場に漂う香りもコーヒーの嗜好性を語る上で非常に重要である。この調理場に漂う香りは、ドリップ法、サイフォン法、エスプレッソ法等で抽出される抽出液そのものの香りに加え、焙煎コーヒー豆の粉砕時および粉砕後のコーヒー豆から発生する香りも関与している。
【0003】
近年、特に容器入りコーヒーでも、香りに対する要望が強く、とくにコーヒー豆粉砕時のフレッシュな風味を持つ製品が求められている。
【0004】
しかしながら、焙煎コーヒー豆が有する香気成分の多くは、粉砕中に大気中に放出され、粉砕後に残存する香気成分だけが熱水で抽出中に溶出される。しかも、抽出時においても、香気成分は大気中に放出される。
【0005】
焙煎コーヒー豆が有する揮発性成分の一つに炭酸ガスが存在するが、Heiss とRadtkeは、焙煎コーヒー豆を細かい粒度に粉砕した場合、粉砕後5分以内に45%が揮散することを報告している(例えば、非特許文献1を参照)。このことは、焙煎コーヒー豆が有するその他の揮発性の香気成分もそれぞれ任意の飽和蒸気圧に基づき大気中に揮散することを意味する。
【0006】
したがって、従来のコーヒー飲料の香り品質は粉砕後に残存する粉砕コーヒー豆中の香気成分の抽出液に対する溶解量によって決定され、嗜好的に不足する香気は、製造工程で香料などを添加することで補っている。
【0007】
この課題を解決するため、粉砕コーヒー豆の香気ガスを捕集するための技術が知られている。例えば、粉砕したコーヒー豆にキャリアガスを送り、香気成分をグリセリン、エタノール等で捕集する方法が知られているが、粉砕時に揮散する香気成分の捕集に関しては考慮されていない(例えば、特許文献1を参照)。また、エタノールを含む水溶液および不活性ガスを送給、接触させる方法が知られているが、この方法も粉砕時に揮散する香気成分の捕集に関しては考慮されていない(例えば、特許文献2を参照)。さらに、粉砕コーヒー豆を80〜120℃に加温するため、良質な風味のコーヒー抽出液を得るためには別途新しいコーヒー豆を必要とし、コスト高になる。また、コーヒー加工中に発生するガスを液体窒素により凝縮しアロマフロストを収集する方法も知られているが、この方法は設備装置が大掛かりになり、コスト高である(例えば、特許文献3を参照)。
【0008】
一方、コーヒー粉砕ガスを低温凝縮させて得られるアロマフロストには硫黄臭、キャベツ臭を有するアロマがあり、望ましくない香気(アロマ)として、温度−18℃〜−34℃での分留アロマ成分を廃棄し、コーヒーへの再添加をしないことが開示されている(例えば、特許文献4を参照)。さらに、このように得られた極低温の粉砕アロマフロストは安定性に欠け、不活性ガス雰囲気下での低温保存でも香の劣化が認められ、水を除去した食品オイルと混合することで安定性を保つことが開示されている(例えば、特許文献5を参照)。
【0009】
このことは、極低温で収集される香は極端に不安定であり、収集後の温度、水、酸素の存在により変質し悪臭になりかねない香成分が含まれるため、常温、5℃程度の冷蔵、−25℃程度の冷凍で流通・供給されるコーヒー飲料に添加して提供するには適さないといえる。
【0010】
【特許文献1】
特開平4−252153号公報
【特許文献2】
特開平6−276941号公報
【特許文献3】
特開平5−211840号公報
【特許文献4】
米国特許第5,323,623号明細書
【特許文献5】
米国特許第3,821,447号明細書
【非特許文献1】
クラーク(R.J.Clarke)、コーヒー(COFFEE)第2 巻、「テクノロジー(TECHNOLOGY)」ELSEVIER APPLIED SCIENCE 1987,p.208 。
【0011】
【発明が解決しようとする課題】
前記従来技術の多くは、香料の製造に適した技術である。本発明の目的は、アロマに富むコーヒー飲料を製造するための良質かつ濃厚な香気成分の回収方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討したところ、コーヒー豆の粉砕時のアロマ成分を効率的に回収し濃縮する方法を見出し、本発明を完成するに至った。
【0013】
すなわち、本発明のコーヒーの濃縮アロマ溶液の製造方法は、下記工程:
(1)焙煎コーヒー豆を密閉された粉砕機で粉砕する工程、
(2)工程(1)で放出したアロマ成分を含有するコーヒー粉砕ガスを不活性ガスにより搬送して溶媒中に導入する工程、
(3)導入した前記粉砕ガスを前記溶媒で捕集してアロマ溶液を調製する工程、および
(4)前記アロマ溶液を加熱し、溶媒とともに蒸散する香気成分を冷却し凝縮させて濃縮アロマ溶液を調製する工程、
を含むことを特徴とする。
【0014】
前記工程(4)の濃縮アロマ溶液は、前記工程(3)のアロマ溶液の3〜20重量%であることが好ましい。
【0015】
本発明のコーヒー飲料の製造方法は、焙煎コーヒー豆からコーヒー成分を抽出するコーヒー飲料の製造方法において、
(1)前記コーヒー豆を密閉された粉砕機で粉砕する工程、
(2)工程(1)で放出したアロマ成分を含有するコーヒー粉砕ガスを不活性ガスにより搬送して溶媒中に導入する工程、
(3)導入した前記粉砕ガスを前記溶媒で捕集してアロマ溶液を調製する工程、
(4)前記アロマ溶液を加熱し、溶媒とともに蒸散する香気成分を冷却し凝縮させて濃縮アロマ溶液を調製する工程、
(5)粉砕ガスを捕集した後のコーヒー豆からコーヒー成分を抽出し、コーヒー抽出液、コーヒー濃縮液または乾燥コーヒーを調製する工程、および
(6)前記濃縮アロマ溶液と前記コーヒー抽出液、コーヒー濃縮液または乾燥コーヒーとを混合する工程
を含むことを特徴とする。
【0016】
前記工程(4)の濃縮アロマ溶液は、前記工程(3)のアロマ溶液の3〜20重量%であることが好ましい。
【0017】
本発明のコーヒーの濃縮アロマ溶液は、前記濃縮アロマ溶液の製造方法により得られることを特徴とする。
【0018】
また、本発明のコーヒー飲料の製造方法は、前記濃縮アロマ溶液とコーヒー抽出液、コーヒー濃縮液または乾燥コーヒーとを混合することを特徴とする。
【0019】
[作用効果]
本発明のコーヒーの濃縮アロマ溶液の製造方法によると、粉砕時および粉砕直後に放出されるアロマ成分を積極的に捕集し濃縮することにより、簡便かつ低コストで、粉砕時のアロマに富む濃縮アロマ溶液を製造することができる。このようにして得られた本発明の濃縮アロマ溶液は、あらゆるコーヒー抽出液、コーヒー濃縮液または乾燥コーヒーと混合することにより、粉砕時のアロマに富むコーヒー飲料を提供することができる。本発明のコーヒー飲料の製造方法によると、粉砕時および粉砕直後に放出されるアロマ成分を積極的に捕集し濃縮してコーヒー抽出液、コーヒー濃縮液または乾燥コーヒーに還元することにより、簡便かつ低コストで、粉砕時のアロマに富むコーヒー飲料を製造することができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について、図1を参照しながら説明する。
【0021】
図1は、本発明の工程(1)〜(3)で使用される装置の一例を示す。密閉され外界と遮断された粉砕機1と、ガス捕集装置2と、送ガスポンプ3とからなり、その間はシリコン製、テフロン(登録商標)製またはステンレス製等の配管10で接続されている。粉砕機1にはガス入口4が設けてあり、三方コック5により不活性ガス6または送ガスポンプ3通過後の粉砕ガスを導入したり、循環させることができる。
【0022】
密閉された粉砕機としては、粉砕中に発生するガスが装置外に放出されない構造を有するものであれば特に制限されるものではない。たとえば、金属製またはプラスチック製の密封容器の胴体下部に回転式のステンレス製等のカッター9を備え、胴体横にガス入口4、上部にガス出口8を設けたもの(大型機としてはスカニマ社製、混合粉砕装置ターボミキサSRB−50)、あるいは通常のロール型の粉砕機(ビュラー社製SKV1250 )等を外界と遮断されたハウジング内(ハウジングにはガス入口とガス出口を設けている)に設置したもの等が挙げられる。
【0023】
粉砕機1にコーヒー豆7を充填し、所定の時間、所定の回転数で粉砕する(工程1)。
【0024】
粉砕時ならびに粉砕後に発生するコーヒー粉砕ガスを、ガス出口8からガス捕集装置2に導入する(工程2)。
【0025】
このとき、粉砕と同時または粉砕後に粉砕機1内にガス入口4から不活性ガス6を導入し、発生したコーヒー粉砕ガスを搬送させる。
【0026】
前記不活性ガスは特に制限されるものではないが、扱いやすさや費用の点から窒素ガスまたは炭酸ガスであることが好ましく、窒素ガスがより好ましい。
【0027】
粉砕機1のガス出口8は、ガス捕集装置2の配管10と接続しており、配管10は、ガス捕集装置2内の下方部で開口している。粉砕ガスは、ガス出口8から配管10を通って配管10の先端の開口部からガス捕集装置2内の溶媒中に導入される。
【0028】
ガス捕集装置2は、ガラスまたはステンレス製の密封容器で、内部に溶媒を充填でき、溶媒充填後に埋没される位置に小孔径の開口部を有する配管10を配置する。必要に応じて、ガス捕集装置2は複数個連結することができる。
【0029】
ガス捕集装置2内の溶媒に導入された粉砕ガスは、溶媒との接触中にガスに含まれるアロマ成分が溶媒に捕集される(工程3)。
【0030】
アロマ成分が捕集された粉砕ガスは、溶媒を通過し、当該装置上部に設けられたガス捕集装置出口11から送ガスポンプ3により搬出され、三方コック12により装置外に排出されるか、または粉砕機のガス入口4に再度導入され、粉砕コーヒー豆を通過して再度溶媒に導入される。
【0031】
また、ガス捕集装置2は、所定の温度に設定された恒温槽13中に設置することにより、捕集溶媒の温度を一定範囲内に調節することができる。
【0032】
ここで得られた捕集溶媒は、本発明のアロマ溶液となる。
【0033】
次に、工程(1)〜(4)を含むコーヒーの濃縮アロマ溶液の製造方法について説明する。
【0034】
工程(1)について
コーヒー豆の粉砕サイズは、粉砕時に溶媒に吸収・捕集される香気成分の量とその後の抽出操作の容易性を考慮して、予め実験的に最適の範囲を決めるのが好ましい。例えば、粒度の細かい場合、単位時間当たりの水に対する香気成分の捕集量は多くなる。しかしながら、あまりに細かい粒度では通常のドリップ型、カラム型の抽出器を用いて抽出した場合、粉砕コーヒー豆が抽出液の通過を閉塞させて抽出品質に問題を発生させることがある。一般的な工業用ドリップ抽出機を用いた場合、粉砕コーヒー豆の粒度は、1.7mm(10mesh)以上が4〜60%、好ましくは5〜50%、より好ましくは5〜15%が適している。
【0035】
粉砕コーヒー豆の粒度は、標準ふるいを用いたふるい振盪器で粉砕コーヒー豆を分画し、分画した豆の重量を測定して、粒度分布を求める。
【0036】
粉砕時の温度は、アロマ成分を含むコーヒー粉砕ガスの発生量に影響を与える。一般的には、雰囲気温度の上昇により気体の拡散速度は増加するため、粉砕ガス発生量は増加し、短時間で捕集量を稼げるが、80℃以上の温度で行うと当該コーヒー豆から抽出されるコーヒー液の品質を劣化させる可能性があり、80℃未満の温度で最適な条件を決めることが好ましい。
【0037】
工程(2)について
放出されたコーヒー粉砕ガスは、ガス捕集装置内の溶媒に導入・接触させる。溶媒の種類は特に制限されないが、水、水性溶媒、油脂、アルコール等が挙げられる。溶媒の量は、少なすぎるとアロマ成分の捕集効率が低下し、多すぎると工程(4)での濃縮操作に時間を要するので、両者のバランスを考慮し、溶媒に応じて適宜設定することができる。水の場合、溶媒の量は、通常焙煎コーヒー豆の重量に対して10〜30倍程度である。
【0038】
アロマ成分の溶媒に対する溶解量は、一般に溶媒を低温にすることにより増加するが、低温下での溶媒の物性と捕集されるアロマ成分の量と質を考慮し、1℃〜50℃、好ましくは1℃〜25℃、より好ましくは1℃〜5℃に調整する。
【0039】
粉砕コーヒー豆への不活性ガスの流速ならびに循環される粉砕ガスの流速は、コーヒー粒子の内部からのコーヒー表面へのアロマ成分の拡散速度を促す目的で適宜設定することができる。通常、粉砕コーヒー豆100g当たり0.1〜0.4L/分程度であれば、粉砕ガスの発生効率に影響を与えず、実際的な範囲である。
【0040】
また、粉砕コーヒー豆への不活性ガスおよび循環される粉砕ガスの流量または送風期間の増加は、粉砕コーヒー豆から新たな粉砕ガスの放散を増大させるが、一定の流量または送風期間を超えると次第に減少し、効果は低くなる。
【0041】
実際的には、粉砕コーヒー豆の粒子が1.70mm(10mesh)以上の粒径を12%〜60%程度含む場合、粉砕コーヒー豆100g当たり3.5〜30L送風することが好ましく、10〜25Lがより好ましい。
【0042】
工程(3)について
粉砕ガスの捕集に要する溶媒の量は、粉砕時に発生するアロマ量およびアロマ成分の溶解度等に応じて適宜設定されるものであり、特に限定されるものでない。
【0043】
アロマ成分と溶媒との接触は、ガス分散型の気泡塔もしくは泡鐘塔等または液分散型のスクラバーもしくは多管式濡れ壁塔等を用いることが好ましいが、効率的な接触を可能にする装置であれば、特に限定されるものではない。
【0044】
コーヒー粉砕ガスを搬送させて溶媒と接触させた後、接触後のコーヒー粉砕ガスを再度粉砕機に導入し、粉砕コーヒー豆と溶媒との間を循環させることが好ましい。循環させることにより、粉砕ガスの溶媒に対する接触効率やアロマ成分の捕集効率を高めると同時に、溶媒に吸収されなかった粉砕ガス中のアロマ成分は、再度粉砕コーヒー豆に吸着されるため、その後に行う抽出において抽出液の品質の向上に効果的である。
【0045】
このようにして粉砕ガスを捕集した溶媒は、アロマ溶液となり、下記工程(4)で濃縮される。
【0046】
工程(4)について
前記アロマ溶液を加熱し、溶媒とともに蒸散する香気成分を冷却し凝縮させて本発明の濃縮アロマ溶液を調製する。加熱温度は香気成分を蒸散可能な温度であれば特に制限はなく、溶媒に応じて適宜設定することができる。溶媒の加熱時の雰囲気は、大気圧下、減圧下または加圧下が挙げられるが、アロマの濃縮効率の点から大気圧下または加圧下が好ましい。蒸散した溶媒と香気成分は、凝縮器により冷却、凝縮させる。冷却温度は溶媒に応じて適宜設定することができるが、通常0〜10℃である。
【0047】
凝縮率は、アロマ溶液の3〜20重量%が好ましく、5〜15重量%がより好ましい。かかる範囲の凝縮率であれば、良質で濃厚な濃縮アロマ溶液が得られる。
【0048】
このようにして得られた本発明の濃縮アロマ溶液は、下記工程(6)で使用される。
【0049】
また、前記濃縮アロマ溶液は、あらゆる方法により製造されたあらゆる種類のコーヒー抽出液、コーヒー濃縮液または乾燥コーヒーと混合することにより、アロマに富むコーヒー飲料の製造に用いられる。本発明は、かかるコーヒー飲料の製造方法をも提供する。
【0050】
別の態様として、本発明のコーヒー飲料の製造方法は、前記工程(1)〜(4)に加え、下記工程(5)および(6)を含むことを特徴とする。
【0051】
工程(5)について
粉砕ガスを捕集した後のコーヒー豆は、コーヒー抽出用に汎用されている抽出機に充填する。ここで、別途粉砕したコーヒー豆を前記コーヒー豆に補充してもよい。コーヒーの抽出は、常法により行う。
【0052】
抽出方法の一例として、コーヒー豆の乾燥重量1部に対して、90℃を超え100℃以下に加温された水を1〜18部ピストンフローで送液して抽出する。
【0053】
得られたコーヒー抽出液は、そのまま下記工程(6)で使用することができる。
【0054】
あるいは、前記コーヒー抽出液は、必要に応じて、減圧加熱濃縮、凍結濃縮または逆浸透膜濃縮などによってコーヒー濃縮液に加工されたり、さらに噴霧乾燥機または凍結乾燥機によって乾燥コーヒーに加工される。
【0055】
工程(6)について
工程(5)で調製されたコーヒー抽出液、コーヒー濃縮液または乾燥コーヒーは、調合用タンクに貯留、計量され、工程(4)で調製された濃縮アロマ溶液、必要に応じて希釈用水を混合することにより規定濃度に希釈され、コーヒー飲料が製造される。
【0056】
ここで混合される濃縮アロマ溶液は、濃縮アロマ溶液単独でもよく、または濃縮アロマ溶液にさらに粉乳、砂糖もしくは添加物等を溶解させたものでもよい。
【0057】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例等について説明するが、本発明はこれらの実施例等により限定されるものではない。
【0058】
[評価試験]
ガスクロマトグラフィー
a)試料の調製
実施例および比較例で得られた試料の10mlを22mlのバイアル瓶に採取し、密栓した。密栓したバイアル瓶を、Tekmar社製ガスクロマトグラフィー用オートサンプラにて80℃で20分間加温した後サンプリングし、ガスクロマトグラフィーで分析した。
【0059】
b)測定条件
測定装置:日立製ガスクロマトグラフィーG−3000
カラム:ジーエルサイエンス(株)製TC−WAX 0.53mm×30m
キャリヤーガス:ヘリウム
キャリヤーガス流量:1ml/分
カラム温度:40℃(5分)→220℃(5℃/分で昇温)
検出器:FID(検出器温度230℃)。
【0060】
ガスクロマトグラフィー分析によるピークの総面積を、総香気量として算出し、基準となる試料の値を100%として比較した。また、各ピークを分析時のカラム温度を基に下記のように3つのエリアに分類し、各エリア別のピーク面積を算出し、香気成分の構成を調べた。
【0061】
高沸点エリア:カラム温度101℃〜200℃
中沸点エリア:カラム温度41℃〜100℃
低沸点エリア:カラム温度40℃。
【0062】
(実施例1)
大気圧下での蒸散による濃縮アロマ溶液の製造
図1に示されるように、ポリスチレンの胴体の下部に回転式のステンレス製カッター9を備え、胴体横にガス入口4、上部にガス出口8を設けた300ml容量の密閉型粉砕機1を使用した。粉砕機1には、焙煎コーヒー豆70gを充填した。
【0063】
ガス捕集装置2は、予め沸騰冷却した5℃の純水1000gを充填したガラス製の1200ml容量捕集管を1本用い、5 ℃の冷水で満たした恒温槽13内に設置した。
【0064】
粉砕は、カッター9を13600rpmで20秒間回転させ、密閉状態で行った。
【0065】
粉砕と同時に、250ml/分の速度でガス入口4から窒素ガスを2分間送り、コーヒー粉砕ガスを窒素ガスで搬送し、ガス捕集装置2内の水に導入した。前記粉砕ガスは、小孔径の開口部を有する配管10から水中に導入され、水と接触した後、ガス捕集装置出口から排出された。その後、三方コック5を切り替え、窒素ガスの送風を停止した。ガス捕集装置出口から排出されたガスは、送ガスポンプ3により粉砕機1のガス入口4から再び粉砕機1に導入され、粉砕機とガス捕集装置との間の循環系で60分間循環し、アロマ成分を水に吸収・捕集させ、アロマ溶液1000gを得た。得られたアロマ溶液は、101kPaの大気圧下にて100℃の水蒸気を導入し加熱した。蒸散したアロマ成分を含む捕集液は、5℃の冷却管によって凝縮させ、前記アロマ溶液の11.0重量%を採取し、濃縮アロマ溶液を得た。
【0066】
得られた濃縮アロマ溶液をガスクロマトグラフィーで分析し、香気量を測定した。
【0067】
(比較例1)
捕集溶媒量を減らすことによる濃厚捕集
実施例1において、香気捕集溶媒として予め沸騰冷却した5℃の純水200gを用いたこと以外は実施例と同様にしてアロマ溶液(濃厚香気液)200gを得た。
【0068】
得られた濃厚香気液は、さらに濃縮することなくガスクロマトグラフィーで分析し、香気量を測定した。
【0069】
実施例1と比較例1の結果を比較すると、実施例1による濃縮アロマ溶液は、比較例1の濃厚香気液に比べて良好なアロマが含まれる中沸点部のアロマ成分の回収率が高く、全香気成分の回収率も高かった。したがって、多量の捕集溶媒でアロマを捕集した後に濃縮する方法は、最初から少量の捕集溶媒でアロマを捕集した濃厚香気液を調製する方法よりも優れていることが示唆された。
【0070】
(実施例2)
減圧下での蒸散による濃縮アロマ溶液の製造
実施例1と同様にして、アロマ溶液1000gを得た。得られたアロマ溶液は、61kPaの減圧下にて87℃で蒸散させ、蒸散したアロマ成分を含む捕集液は、5℃の冷却管によって凝縮させ、前記アロマ溶液の11.6重量%を採取し、濃縮アロマ溶液を得た。
【0071】
得られた濃縮アロマ溶液をガスクロマトグラフィーで分析し、香気量を測定した。結果を下記表1に示す。
【0072】
【表1】

Figure 2004159583
表1より、液量を約9倍に濃縮した際の香気濃縮倍率は、実施例1での6.6倍に対して、実施例2では3.1倍となり、大気圧下での蒸散の方が高い。また、焙煎豆量当りの捕集量に換算した結果も同様であった。アロマ溶液の濃縮は、減圧下よりも大気圧下で行う方が望ましい。
【0073】
(実施例3)
実施例1において、濃縮アロマ溶液の採取量(ストリップ率)をアロマ溶液の5.5重量%としたこと以外は実施例1と同様にして濃縮アロマ溶液を得た。
【0074】
(実施例4)
実施例1と同様にして、ストリップ率をアロマ溶液の11.0重量%として濃縮アロマ溶液を得た。
【0075】
(実施例5)
実施例1において、ストリップ率をアロマ溶液の16.7重量%としたこと以外は実施例1と同様にして、濃縮アロマ溶液を得た。
【0076】
(実施例6)
実施例1において、ストリップ率をアロマ溶液の22.4重量%としたこと以外は実施例1と同様にして、濃縮アロマ溶液を得た。
【0077】
(評価結果)
実施例3〜6のそれぞれについて、ガスクロマトグラフィーによる分析結果を表2に示す。
【0078】
【表2】
Figure 2004159583
表2より、ストリップ率が約10重量%の場合、アロマ溶液に含まれる約70%の香気成分が回収される。そして、ストリップ率を20重量%以上に増やしても香気成分の回収量は増加しない。以上の結果より、大気圧下での蒸散、凝縮によるアロマ溶液の濃縮は、5〜15重量%のストリップ率で行うことが適切である。
【0079】
(比較例2)
比較例1と同様の方法により得られた濃厚香気液を、減圧加熱濃縮にて製造されたコーヒー濃縮液(固形分43.6重量%)に加え、固形分濃度10重量%の濃縮コーヒー液を作製した。前記コーヒー液をイオン交換水にて飲用濃度(固形分1.2重量%)に希釈し、飲用サンプルを調製した。
【0080】
(実施例7)
実施例1において、濃縮アロマ溶液の採取量(ストリップ率)をアロマ溶液の5.0重量%としたこと以外は実施例1と同様の方法により得られた濃縮アロマ溶液を、減圧加熱濃縮にて製造されたコーヒー濃縮液(固形分43.6重量%)に加え、固形分濃度10重量%の濃縮コーヒー液を作製した。前記コーヒー液をイオン交換水にて飲用濃度(固形分1.2重量%)に希釈し、飲用サンプルを調製した。
【0081】
(比較例3)
実施例1と同様にして得たアロマ溶液を、さらに濃縮せずに、減圧加熱濃縮にて製造されたコーヒー濃縮液(固形分43.6重量%)に加え、飲用濃度(固形分1.2重量%)に希釈し、飲用サンプルを調製した。
【0082】
(実施例8)
実施例1において、濃縮アロマ溶液の採取量(ストリップ率)をアロマ溶液の20.0重量%としたこと以外は実施例1と同様の方法により得られた濃縮アロマ溶液を、減圧加熱濃縮にて製造されたコーヒー濃縮液(固形分43.6重量%)に加え、固形分濃度10重量%の濃縮コーヒー液を作製した。前記コーヒー液をイオン交換水にて飲用濃度(固形分1.2重量%)に希釈し、飲用サンプルを調製した。
【0083】
(比較例4)
減圧加熱濃縮にて製造されたコーヒー濃縮液(固形分43.6重量%)にイオン交換水を加え、飲用濃度(固形分1.2重量%)に希釈し、飲用サンプルを調製した。
【0084】
(官能評価)
実施例7、8および比較例2〜4のそれぞれの飲用サンプルについて、65℃で官能評価を行った。評価方法は、香りについて、強い:++、やや強い:+、普通:±、弱い:−、として専門パネラーにより評価し、最も評価の多かったものを示した。総合評価は、良い:◎、普通:○、悪い:×で示した。ガスクロマトグラフィーの香気面積値と官能試験の結果を表3に示す。
【0085】
【表3】
Figure 2004159583
実施例のサンプルは、アロマに富んだ芳香臭が強く、減圧加熱濃縮された原料コーヒー液に特有の加熱臭もマスキングされており、総合評価もよかった。また、実施例のサンプルは、香気面積値も大きかった。比較例のサンプルは、芳香臭が弱く、原料コーヒー液に特有の加熱臭が感じられ、総合評価も比較例3を除いてよくなかった。また、比較例のサンプルは、香気面積値も小さかった。
【図面の簡単な説明】
【図1】本発明の工程(1)〜(3)で使用される装置の一例
【符号の説明】
1 粉砕機
2 ガス捕集装置
3 送ガスポンプ
4 ガス入口
5 三方コック
6 不活性ガス
7 コーヒー豆
8 ガス出口
9 カッター
10 配管
11 ガス捕集装置出口
12 三方コック
13 恒温槽[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a coffee beverage. More particularly, the present invention relates to a method for industrially producing a coffee beverage having excellent flavor, particularly excellent aroma.
[0002]
[Prior art]
Coffee is a palatable beverage characterized by a unique aroma and flavor. The characteristic flavor of coffee is characterized by its aroma and flavor during drinking, but the aroma of cooking in a home, coffee shop or coffee shop is also very important in describing the taste of coffee. The scent floating in the cooking place involves not only the scent of the extract itself extracted by the drip method, siphon method, espresso method, etc., but also the scent generated from the roasted coffee beans during and after grinding. I have.
[0003]
In recent years, there has been a strong demand for aroma especially in coffee in containers, and in particular, a product having a fresh flavor when coffee beans are ground has been demanded.
[0004]
However, most of the flavor components of roasted coffee beans are released into the atmosphere during grinding, and only the flavor components remaining after grinding are eluted with hot water during extraction. Moreover, even at the time of extraction, the aroma components are released into the atmosphere.
[0005]
Carbon dioxide is one of the volatile components of roasted coffee beans. Heiss and Radtke have reported that 45% of the roasted coffee beans will volatilize within 5 minutes after grinding when the coffee beans are ground to a fine particle size. (For example, see Non-Patent Document 1). This means that the other volatile odor components of the roasted coffee beans also volatilize into the atmosphere based on an arbitrary saturated vapor pressure.
[0006]
Therefore, the fragrance quality of the conventional coffee beverage is determined by the amount of the fragrance component in the ground coffee beans remaining after the crushing in the extract, and the fragrance that is insufficient in taste is supplemented by adding a fragrance or the like in the production process. ing.
[0007]
In order to solve this problem, a technique for collecting aroma gas of ground coffee beans is known. For example, a method is known in which a carrier gas is sent to pulverized coffee beans to collect aroma components with glycerin, ethanol, or the like. Reference 1). Further, a method of feeding and contacting an aqueous solution containing ethanol and an inert gas is known, but this method is also not considered with respect to collection of aroma components volatilized at the time of pulverization (for example, see Patent Document 2). ). Furthermore, since the ground coffee beans are heated to 80 to 120 ° C, new coffee beans are separately required to obtain a high-quality flavored coffee extract, which increases the cost. Further, a method of collecting aroma frost by condensing gas generated during coffee processing with liquid nitrogen is also known, but this method requires a large equipment and is expensive (for example, see Patent Document 3). ).
[0008]
On the other hand, aroma frost obtained by condensing coffee ground gas at a low temperature has an aroma having a sulfur odor and a cabbage odor. As an undesirable aroma (aroma), a fractionated aroma component at a temperature of -18 ° C to -34 ° C is used. It is disclosed that they are discarded and not added to coffee again (for example, see Patent Document 4). Furthermore, the cryogenic aroma frost obtained in this way lacks stability, and even when stored at low temperatures under an inert gas atmosphere, the aroma deterioration is observed. (For example, see Patent Document 5).
[0009]
This means that scents collected at extremely low temperatures are extremely unstable, and contain scent components that can be altered and become foul odors due to the temperature, water, and oxygen after collection. It can be said that it is not suitable for being added to coffee beverages distributed and supplied in refrigeration and frozen at about -25 ° C.
[0010]
[Patent Document 1]
JP-A-4-252153 [Patent Document 2]
Japanese Patent Application Laid-Open No. 6-276,941 [Patent Document 3]
JP-A-5-212840 [Patent Document 4]
US Patent No. 5,323,623 [Patent Document 5]
US Patent No. 3,821,447 [Non-Patent Document 1]
Clark, R. COFFEE, Volume 2, "TECHNOLOGY" ELSEVIER APPLIED SCIENCE 1987, p. 208.
[0011]
[Problems to be solved by the invention]
Many of the above-mentioned conventional techniques are techniques suitable for manufacturing fragrances. An object of the present invention is to provide a method for recovering a high-quality and rich flavor component for producing an aroma-rich coffee beverage.
[0012]
[Means for Solving the Problems]
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and have found a method of efficiently collecting and concentrating aroma components at the time of grinding coffee beans, and have completed the present invention.
[0013]
That is, the method for producing a concentrated aroma solution of coffee of the present invention comprises the following steps:
(1) crushing the roasted coffee beans with a sealed crusher,
(2) a step of conveying the ground coffee gas containing the aroma component released in the step (1) by an inert gas and introducing it into a solvent;
(3) collecting the introduced pulverized gas with the solvent to prepare an aroma solution, and (4) heating the aroma solution to cool and condense the fragrance component evaporating with the solvent to form a concentrated aroma solution. The process of preparing,
It is characterized by including.
[0014]
The concentration of the concentrated aroma solution in the step (4) is preferably 3 to 20% by weight of the aroma solution in the step (3).
[0015]
The method for producing a coffee beverage of the present invention is a method for producing a coffee beverage for extracting a coffee component from roasted coffee beans,
(1) a step of crushing the coffee beans with a closed crusher,
(2) a step of conveying the ground coffee gas containing the aroma component released in the step (1) by an inert gas and introducing it into a solvent;
(3) a step of preparing the aroma solution by collecting the introduced pulverized gas with the solvent,
(4) heating the aroma solution to cool and condense the fragrance component evaporating with the solvent to prepare a concentrated aroma solution;
(5) a step of extracting a coffee component from coffee beans after collecting the pulverized gas to prepare a coffee extract, a coffee concentrate, or a dry coffee; and (6) the concentrated aroma solution and the coffee extract, coffee It is characterized by including a step of mixing with a concentrated liquid or dried coffee.
[0016]
The concentration of the concentrated aroma solution in the step (4) is preferably 3 to 20% by weight of the aroma solution in the step (3).
[0017]
The concentrated aroma solution of coffee of the present invention is obtained by the method for producing a concentrated aroma solution.
[0018]
Further, the method for producing a coffee beverage of the present invention is characterized in that the concentrated aroma solution is mixed with a coffee extract, a coffee concentrate or dried coffee.
[0019]
[Effects]
According to the method for producing a concentrated aroma solution of coffee of the present invention, by actively collecting and concentrating the aroma components released during and immediately after pulverization, at a simple and low cost, the concentration rich in aroma during pulverization Aroma solutions can be produced. The thus obtained concentrated aroma solution of the present invention can be mixed with any coffee extract, coffee concentrate or dried coffee to provide a coffee beverage rich in aroma at the time of grinding. According to the method for producing a coffee beverage of the present invention, aroma components released during and immediately after pulverization are positively collected and concentrated to reduce to a coffee extract, a coffee concentrate or dried coffee. It is possible to produce a coffee beverage which is low in cost and rich in aroma at the time of grinding.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
[0021]
FIG. 1 shows an example of an apparatus used in steps (1) to (3) of the present invention. It comprises a hermetically sealed pulverizer 1 that is isolated from the outside world, a gas trapping device 2, and a gas sending pump 3, which are connected by a pipe 10 made of silicon, Teflon (registered trademark), stainless steel, or the like. The crusher 1 is provided with a gas inlet 4, and the three-way cock 5 can introduce or circulate the inert gas 6 or the crushed gas after passing through the gas feed pump 3.
[0022]
The sealed pulverizer is not particularly limited as long as it has a structure in which gas generated during pulverization is not released out of the apparatus. For example, a metal or plastic sealed container provided with a rotary stainless steel cutter 9 at the lower part of the body, a gas inlet 4 at the side of the body, and a gas outlet 8 at the upper part (a large machine manufactured by Skanima Co., Ltd.) , A mixing and pulverizing device turbo mixer SRB-50), or a normal roll type pulverizing machine (SKV1250 manufactured by Buller Co., Ltd.) or the like was installed in a housing (a housing is provided with a gas inlet and a gas outlet) which was shielded from the outside. And the like.
[0023]
The grinder 1 is filled with the coffee beans 7 and crushed at a predetermined rotation speed for a predetermined time (step 1).
[0024]
Coffee ground gas generated during and after grinding is introduced into the gas collecting device 2 from the gas outlet 8 (step 2).
[0025]
At this time, an inert gas 6 is introduced into the crusher 1 from the gas inlet 4 simultaneously with or after the crushing, and the generated coffee crushed gas is conveyed.
[0026]
The inert gas is not particularly limited, but is preferably nitrogen gas or carbon dioxide gas, and more preferably nitrogen gas, in terms of ease of handling and cost.
[0027]
The gas outlet 8 of the pulverizer 1 is connected to a pipe 10 of the gas trap 2, and the pipe 10 is open at a lower part in the gas trap 2. The pulverized gas passes through the pipe 10 from the gas outlet 8 and is introduced into the solvent in the gas collector 2 from the opening at the tip of the pipe 10.
[0028]
The gas collecting device 2 is a hermetically sealed container made of glass or stainless steel and can be filled with a solvent, and a pipe 10 having an opening with a small hole is arranged at a position where it is buried after filling with the solvent. If necessary, a plurality of gas collecting devices 2 can be connected.
[0029]
In the pulverized gas introduced into the solvent in the gas collecting device 2, the aroma component contained in the gas is collected by the solvent during the contact with the solvent (Step 3).
[0030]
The pulverized gas from which the aroma components have been collected passes through the solvent, is carried out by the gas pump 3 from the gas collecting device outlet 11 provided at the upper part of the device, and is discharged out of the device by the three-way cock 12, or It is re-introduced into the gas inlet 4 of the crusher, passes through the crushed coffee beans and is again introduced into the solvent.
[0031]
Further, by installing the gas collecting device 2 in the thermostatic bath 13 set to a predetermined temperature, the temperature of the collecting solvent can be adjusted within a certain range.
[0032]
The collection solvent obtained here becomes the aroma solution of the present invention.
[0033]
Next, a method for producing a concentrated aroma solution of coffee including the steps (1) to (4) will be described.
[0034]
Regarding the process (1), the optimal size of the ground coffee beans should be determined experimentally in advance in consideration of the amount of flavor components absorbed and collected by the solvent during the grinding and the ease of the subsequent extraction operation. preferable. For example, when the particle size is small, the amount of the fragrance component trapped in water per unit time increases. However, when extraction is performed using a normal drip-type or column-type extractor with an excessively fine particle size, ground coffee beans may block the passage of the extract and cause a problem in extraction quality. When a general industrial drip extractor is used, the particle size of the ground coffee beans is 4 to 60%, preferably 5 to 50%, more preferably 5 to 15% for 1.7 mm (10 mesh) or more. I have.
[0035]
The particle size of the ground coffee beans is determined by fractionating the ground coffee beans with a sieve shaker using a standard sieve, measuring the weight of the fractionated beans, and determining the particle size distribution.
[0036]
The temperature during grinding affects the amount of coffee ground gas containing aroma components. In general, the diffusion rate of gas increases with an increase in ambient temperature, so the amount of crushed gas generated increases, and the amount of collected gas can be obtained in a short time. There is a possibility of deteriorating the quality of the obtained coffee liquid, and it is preferable to determine the optimum conditions at a temperature lower than 80 ° C.
[0037]
The ground coffee gas released in the step (2) is introduced and brought into contact with the solvent in the gas collecting device. The type of the solvent is not particularly limited, and examples thereof include water, an aqueous solvent, oil and fat, and alcohol. If the amount of the solvent is too small, the collection efficiency of the aroma component decreases, and if the amount is too large, the concentration operation in step (4) takes time. Therefore, the amount of the solvent should be appropriately set in consideration of the balance between the two. Can be. In the case of water, the amount of the solvent is usually about 10 to 30 times the weight of the roasted coffee beans.
[0038]
The amount of the aroma component dissolved in the solvent is generally increased by lowering the temperature of the solvent. However, in consideration of the physical properties of the solvent at a low temperature and the amount and quality of the aroma component to be collected, 1 ° C to 50 ° C is preferable. Is adjusted to 1 ° C to 25 ° C, more preferably 1 ° C to 5 ° C.
[0039]
The flow rate of the inert gas to the ground coffee beans and the flow rate of the circulated ground gas can be appropriately set in order to promote the diffusion rate of the aroma component from inside the coffee particles to the coffee surface. Usually, if it is about 0.1 to 0.4 L / min per 100 g of ground coffee beans, it does not affect the generation efficiency of the ground gas and is within a practical range.
[0040]
Also, increasing the flow rate or ventilation period of the inert gas and the circulated grinding gas to the ground coffee beans increases the emission of new ground gas from the ground coffee beans, but gradually increases beyond a certain flow rate or ventilation period. Decrease and the effect is lower.
[0041]
Practically, when the particles of the ground coffee beans include a particle size of 1.70 mm (10 mesh) or more at about 12% to 60%, it is preferable to blow 3.5 to 30 L per 100 g of ground coffee beans, and 10 to 25 L. Is more preferred.
[0042]
In step (3), the amount of the solvent required for collecting the pulverized gas is appropriately set according to the amount of aroma generated during pulverization, the solubility of the aroma component, and the like, and is not particularly limited.
[0043]
The contact between the aroma component and the solvent is preferably performed using a gas-dispersed bubble column or bubble-bell tower, or a liquid-dispersed scrubber or a multitubular wet-wall tower. If so, there is no particular limitation.
[0044]
After the coffee ground gas is conveyed and brought into contact with the solvent, it is preferable that the ground coffee gas after the contact be introduced again into the mill and circulated between the ground coffee beans and the solvent. By circulating, the contact efficiency of the ground gas with the solvent and the collection efficiency of the aroma components are increased, and at the same time, the aroma components in the ground gas that have not been absorbed by the solvent are again adsorbed to the ground coffee beans. It is effective in improving the quality of the extract in the extraction performed.
[0045]
The solvent that has collected the pulverized gas in this way becomes an aroma solution and is concentrated in the following step (4).
[0046]
In the step (4), the aroma solution is heated, and aroma components evaporating together with the solvent are cooled and condensed to prepare a concentrated aroma solution of the present invention. The heating temperature is not particularly limited as long as the fragrance component can be evaporated, and can be appropriately set according to the solvent. The atmosphere at the time of heating the solvent may be at atmospheric pressure, under reduced pressure, or under pressure, but is preferably at atmospheric pressure or under pressure from the viewpoint of aroma concentration efficiency. The evaporated solvent and aroma component are cooled and condensed by a condenser. The cooling temperature can be appropriately set according to the solvent, but is usually 0 to 10 ° C.
[0047]
The condensation rate is preferably 3 to 20% by weight of the aroma solution, more preferably 5 to 15% by weight. If the condensation rate is within such a range, a high-quality and concentrated concentrated aroma solution can be obtained.
[0048]
The concentrated aroma solution of the present invention thus obtained is used in the following step (6).
[0049]
Further, the concentrated aroma solution is used for producing an aroma-rich coffee beverage by mixing it with any kind of coffee extract, coffee concentrate or dried coffee produced by any method. The present invention also provides a method for producing such a coffee beverage.
[0050]
In another aspect, the method for producing a coffee beverage of the present invention includes the following steps (5) and (6) in addition to the steps (1) to (4).
[0051]
After the pulverized gas is collected in the step (5), the coffee beans are filled in an extractor generally used for coffee extraction. Here, separately ground coffee beans may be supplemented to the coffee beans. Extraction of coffee is performed by a conventional method.
[0052]
As an example of the extraction method, 1 to 18 parts of water heated to a temperature of more than 90 ° C. and heated to 100 ° C. or less is sent to a dry weight of 1 part of coffee beans by a piston flow and extracted.
[0053]
The obtained coffee extract can be used as it is in the following step (6).
[0054]
Alternatively, the coffee extract may be processed into a coffee concentrate by heat concentration under reduced pressure, freeze concentration, reverse osmosis membrane concentration, or the like, or may be further processed into dried coffee by a spray dryer or freeze dryer, as necessary.
[0055]
About the step (6) The coffee extract, the coffee concentrate or the dried coffee prepared in the step (5) is stored and weighed in a blending tank, and the concentrated aroma solution prepared in the step (4) is optionally prepared. By mixing the water for dilution, the mixture is diluted to a specified concentration to produce a coffee beverage.
[0056]
The concentrated aroma solution to be mixed here may be a concentrated aroma solution alone, or may be a solution obtained by further dissolving milk powder, sugar, additives or the like in the concentrated aroma solution.
[0057]
【Example】
Hereinafter, examples and the like that specifically show the configuration and effects of the present invention will be described, but the present invention is not limited to these examples and the like.
[0058]
[Evaluation test]
Gas Chromatography a) Preparation of Samples 10 ml of the samples obtained in Examples and Comparative Examples were collected in 22 ml vials and sealed. The sealed vial was heated at 80 ° C. for 20 minutes using a gas chromatography autosampler manufactured by Tekmar, sampled, and analyzed by gas chromatography.
[0059]
b) Measurement conditions Measuring device: Hitachi Gas Chromatography G-3000
Column: TC-WAX 0.53 mm x 30 m, manufactured by GL Sciences Corporation
Carrier gas: Helium carrier gas flow rate: 1 ml / min Column temperature: 40 ° C. (5 minutes) → 220 ° C. (heating at 5 ° C./min)
Detector: FID (detector temperature 230 ° C.).
[0060]
The total area of the peaks in the gas chromatography analysis was calculated as the total odor, and the comparison was made with the value of the reference sample as 100%. Further, each peak was classified into the following three areas based on the column temperature at the time of analysis, the peak area for each area was calculated, and the configuration of the fragrance component was examined.
[0061]
High boiling point area: Column temperature 101 ° C to 200 ° C
Medium boiling point area: Column temperature 41 ° C to 100 ° C
Low boiling point area: column temperature 40 ° C.
[0062]
(Example 1)
1. Production of concentrated aroma solution by evaporation under atmospheric pressure As shown in FIG. 1, a rotatable stainless steel cutter 9 is provided at the lower part of the polystyrene body, and a gas inlet 4 is provided at the side of the body and a gas outlet 8 is provided at the upper part. A closed type pulverizer 1 having a capacity of 300 ml was used. The grinder 1 was filled with 70 g of roasted coffee beans.
[0063]
The gas collecting device 2 was provided in a thermostat 13 filled with cold water at 5 ° C. using one 1200 ml capacity glass collecting tube filled with 1000 g of pure water at 5 ° C. which had been cooled in advance.
[0064]
The pulverization was performed in a closed state by rotating the cutter 9 at 13600 rpm for 20 seconds.
[0065]
Simultaneously with the pulverization, nitrogen gas was sent from the gas inlet 4 at a rate of 250 ml / min for 2 minutes, and the pulverized coffee gas was conveyed by the nitrogen gas and introduced into the water in the gas collector 2. The pulverized gas was introduced into water through a pipe 10 having a small-diameter opening, and was contacted with water, and then discharged from a gas collector outlet. Thereafter, the three-way cock 5 was switched, and the blowing of the nitrogen gas was stopped. The gas discharged from the outlet of the gas collector is introduced again into the crusher 1 from the gas inlet 4 of the crusher 1 by the gas feed pump 3 and circulated in the circulation system between the crusher and the gas collector for 60 minutes. Then, the aroma component was absorbed and collected in water to obtain 1000 g of an aroma solution. The obtained aroma solution was heated by introducing steam at 100 ° C. under an atmospheric pressure of 101 kPa. The collected liquid containing the evaporated aroma component was condensed by a cooling pipe at 5 ° C., and 11.0% by weight of the aroma solution was collected to obtain a concentrated aroma solution.
[0066]
The obtained concentrated aroma solution was analyzed by gas chromatography, and the amount of aroma was measured.
[0067]
(Comparative Example 1)
Concentrated Collection by Reducing the Amount of Collecting Solvent In Example 1, an aroma solution (concentrated fragrant liquid) was prepared in the same manner as in Example 1, except that 200 g of 5 ° C. pure water which had been cooled by boiling was used as a fragrance collecting solvent. 200 g were obtained.
[0068]
The obtained concentrated fragrance liquid was analyzed by gas chromatography without further concentration, and the fragrance amount was measured.
[0069]
Comparing the results of Example 1 and Comparative Example 1, the concentrated aroma solution according to Example 1 has a higher recovery rate of the medium-boiling-point aroma component containing a better aroma than the concentrated aroma liquid of Comparative Example 1, The recovery of all aroma components was also high. Therefore, it was suggested that the method of collecting aroma with a large amount of collecting solvent and then concentrating it was superior to the method of preparing a concentrated fragrance liquid by collecting aroma with a small amount of collecting solvent from the beginning.
[0070]
(Example 2)
Production of a concentrated aroma solution by evaporation under reduced pressure In the same manner as in Example 1, 1000 g of an aroma solution was obtained. The obtained aroma solution was evaporated at 87 ° C. under a reduced pressure of 61 kPa, and the collected liquid containing the evaporated aroma component was condensed by a cooling pipe at 5 ° C. to collect 11.6% by weight of the aroma solution. Then, a concentrated aroma solution was obtained.
[0071]
The obtained concentrated aroma solution was analyzed by gas chromatography, and the amount of aroma was measured. The results are shown in Table 1 below.
[0072]
[Table 1]
Figure 2004159583
From Table 1, the aroma concentration ratio when the liquid amount was concentrated to about 9 times was 6.6 times in Example 1 and 3.1 times in Example 2, and the evaporation rate under atmospheric pressure was 3.1 times. Is higher. The same result was obtained by converting the amount collected to the amount of roasted beans. It is preferable that the concentration of the aroma solution is performed under atmospheric pressure rather than under reduced pressure.
[0073]
(Example 3)
A concentrated aroma solution was obtained in the same manner as in Example 1 except that the amount of the concentrated aroma solution (strip ratio) was 5.5% by weight of the aroma solution.
[0074]
(Example 4)
In the same manner as in Example 1, a concentrated aroma solution was obtained by setting the strip rate to 11.0% by weight of the aroma solution.
[0075]
(Example 5)
A concentrated aroma solution was obtained in the same manner as in Example 1 except that the strip ratio was changed to 16.7% by weight of the aroma solution.
[0076]
(Example 6)
A concentrated aroma solution was obtained in the same manner as in Example 1 except that the strip ratio was changed to 22.4% by weight of the aroma solution.
[0077]
(Evaluation results)
Table 2 shows the results of gas chromatography analysis of Examples 3 to 6.
[0078]
[Table 2]
Figure 2004159583
According to Table 2, when the strip ratio is about 10% by weight, about 70% of the fragrance component contained in the aroma solution is recovered. And, even if the strip ratio is increased to 20% by weight or more, the recovery amount of the fragrance component does not increase. From the above results, it is appropriate to concentrate the aroma solution by evaporation and condensation under atmospheric pressure at a strip rate of 5 to 15% by weight.
[0079]
(Comparative Example 2)
The concentrated aroma liquid obtained by the same method as in Comparative Example 1 was added to a coffee concentrate (solids content 43.6% by weight) produced by heating under reduced pressure, and a concentrated coffee solution having a solids concentration of 10% by weight was added. Produced. The coffee liquid was diluted with ion-exchanged water to a drinking concentration (solid content of 1.2% by weight) to prepare a drinking sample.
[0080]
(Example 7)
The concentrated aroma solution obtained in the same manner as in Example 1 except that the amount of the concentrated aroma solution (strip ratio) was 5.0% by weight of the aroma solution in Example 1, was concentrated by heating under reduced pressure. In addition to the manufactured coffee concentrate (solid content 43.6% by weight), a concentrated coffee solution having a solid content concentration of 10% by weight was prepared. The coffee liquid was diluted with ion-exchanged water to a drinking concentration (solid content of 1.2% by weight) to prepare a drinking sample.
[0081]
(Comparative Example 3)
The aroma solution obtained in the same manner as in Example 1 was added to a coffee concentrate (solid content: 43.6% by weight) produced by heating under reduced pressure without further concentration, and a drinking concentration (solid content: 1.2) was obtained. % By weight) to prepare a drinking sample.
[0082]
(Example 8)
The concentrated aroma solution obtained in the same manner as in Example 1 except that the amount of the concentrated aroma solution (strip ratio) was set to 20.0% by weight of the aroma solution in Example 1, was concentrated by heating under reduced pressure. In addition to the manufactured coffee concentrate (solid content 43.6% by weight), a concentrated coffee solution having a solid content concentration of 10% by weight was prepared. The coffee liquid was diluted with ion-exchanged water to a drinking concentration (solid content of 1.2% by weight) to prepare a drinking sample.
[0083]
(Comparative Example 4)
Ion-exchanged water was added to the coffee concentrate (solids 43.6% by weight) produced by heating under reduced pressure and concentrated to a drinking concentration (solids 1.2% by weight) to prepare a drinking sample.
[0084]
(sensory evaluation)
Sensory evaluation was performed at 65 ° C. on each of the drinking samples of Examples 7 and 8 and Comparative Examples 2 to 4. Regarding the evaluation method, the fragrance was evaluated by a specialized panelist as strong: ++, moderately strong: +, normal: ±, weak:-, and the one with the highest evaluation was shown. The overall evaluation was indicated by good: 、, normal: 、, bad: x. Table 3 shows the aroma area value of gas chromatography and the results of the sensory test.
[0085]
[Table 3]
Figure 2004159583
The sample of the example had a strong aromatic odor rich in aroma, masked a heating odor peculiar to the raw coffee liquid concentrated by heating under reduced pressure, and had a good overall evaluation. Moreover, the sample of the example had a large odor area value. The sample of the comparative example had a weak aromatic odor, a heating odor peculiar to the raw coffee liquid was felt, and the comprehensive evaluation was not good except for the comparative example 3. The sample of the comparative example also had a small fragrance area value.
[Brief description of the drawings]
FIG. 1 shows an example of an apparatus used in steps (1) to (3) of the present invention.
DESCRIPTION OF SYMBOLS 1 Crusher 2 Gas collection device 3 Gas pump 4 Gas inlet 5 Three-way cock 6 Inert gas 7 Coffee beans 8 Gas outlet 9 Cutter 10 Pipe 11 Gas collection device outlet 12 Three-way cock 13 Thermostat

Claims (6)

下記工程:
(1)焙煎コーヒー豆を密閉された粉砕機で粉砕する工程、
(2)工程(1)で放出したアロマ成分を含有するコーヒー粉砕ガスを不活性ガスにより搬送して溶媒中に導入する工程、
(3)導入した前記粉砕ガスを前記溶媒で捕集してアロマ溶液を調製する工程、および
(4)前記アロマ溶液を加熱し、溶媒とともに蒸散する香気成分を冷却し凝縮させて濃縮アロマ溶液を調製する工程、
を含むコーヒーの濃縮アロマ溶液の製造方法。
The following process:
(1) crushing the roasted coffee beans with a sealed crusher,
(2) a step of conveying the ground coffee gas containing the aroma component released in the step (1) by an inert gas and introducing it into a solvent;
(3) collecting the introduced pulverized gas with the solvent to prepare an aroma solution, and (4) heating the aroma solution to cool and condense the fragrance component evaporating with the solvent to form a concentrated aroma solution. The process of preparing,
A method for producing a concentrated aroma solution of coffee, comprising:
前記工程(4)の濃縮アロマ溶液が前記工程(3)のアロマ溶液の3〜20重量%である請求項1に記載の製造方法。The method according to claim 1, wherein the concentrated aroma solution in the step (4) is 3 to 20% by weight of the aroma solution in the step (3). 焙煎コーヒー豆からコーヒー成分を抽出するコーヒー飲料の製造方法において、
(1)前記コーヒー豆を密閉された粉砕機で粉砕する工程、
(2)工程(1)で放出したアロマ成分を含有するコーヒー粉砕ガスを不活性ガスにより搬送して溶媒中に導入する工程、
(3)導入した前記粉砕ガスを前記溶媒で捕集してアロマ溶液を調製する工程、
(4)前記アロマ溶液を加熱し、溶媒とともに蒸散する香気成分を冷却し凝縮させて濃縮アロマ溶液を調製する工程、
(5)粉砕ガスを捕集した後のコーヒー豆からコーヒー成分を抽出し、コーヒー抽出液、コーヒー濃縮液または乾燥コーヒーを調製する工程、および
(6)前記濃縮アロマ溶液と前記コーヒー抽出液、コーヒー濃縮液または乾燥コーヒーとを混合する工程
を含むことを特徴とするコーヒー飲料の製造方法。
In a method for producing a coffee beverage for extracting a coffee component from roasted coffee beans,
(1) a step of crushing the coffee beans with a closed crusher,
(2) a step of conveying the ground coffee gas containing the aroma component released in the step (1) by an inert gas and introducing it into a solvent;
(3) a step of preparing the aroma solution by collecting the introduced pulverized gas with the solvent,
(4) heating the aroma solution to cool and condense the fragrance component evaporating with the solvent to prepare a concentrated aroma solution;
(5) a step of extracting a coffee component from coffee beans after collecting the pulverized gas to prepare a coffee extract, a coffee concentrate, or a dry coffee; and (6) the concentrated aroma solution and the coffee extract, coffee A method for producing a coffee beverage, comprising a step of mixing a concentrated liquid or dried coffee.
前記工程(4)の濃縮アロマ溶液が前記工程(3)のアロマ溶液の3〜20重量%である請求項3に記載の製造方法。The method according to claim 3, wherein the concentrated aroma solution in the step (4) is 3 to 20% by weight of the aroma solution in the step (3). 請求項1または2に記載の製造方法により得られたコーヒーの濃縮アロマ溶液。A concentrated aroma solution of coffee obtained by the production method according to claim 1. 請求項5に記載の濃縮アロマ溶液とコーヒー抽出液、コーヒー濃縮液または乾燥コーヒーとを混合することを特徴とするコーヒー飲料の製造方法。A method for producing a coffee beverage, comprising mixing the concentrated aroma solution according to claim 5 with a coffee extract, a coffee concentrate, or dried coffee.
JP2002330446A 2002-11-14 2002-11-14 Method for producing coffee beverage containing aroma components during grinding Expired - Fee Related JP4745591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002330446A JP4745591B2 (en) 2002-11-14 2002-11-14 Method for producing coffee beverage containing aroma components during grinding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002330446A JP4745591B2 (en) 2002-11-14 2002-11-14 Method for producing coffee beverage containing aroma components during grinding

Publications (2)

Publication Number Publication Date
JP2004159583A true JP2004159583A (en) 2004-06-10
JP4745591B2 JP4745591B2 (en) 2011-08-10

Family

ID=32808133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330446A Expired - Fee Related JP4745591B2 (en) 2002-11-14 2002-11-14 Method for producing coffee beverage containing aroma components during grinding

Country Status (1)

Country Link
JP (1) JP4745591B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535323A (en) * 2010-07-28 2013-09-12 ビューラー アクツィエンゲゼルシャフト Coffee beans
JP6184627B1 (en) * 2017-02-17 2017-08-23 長谷川香料株式会社 Method for producing fragrance composition from roasted coffee beans and apparatus for collecting aroma from roasted coffee beans
KR102324943B1 (en) * 2021-08-02 2021-11-10 송현 Method for producing supercritical cold brew coffee with flavor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200080024A1 (en) 2016-12-16 2020-03-12 T. Hasegawa Co., Ltd. Method for producing aroma composition from animal or plant material and apparatus for collecting aroma from animal and plant material
US20190313661A1 (en) 2016-12-16 2019-10-17 T. Hasegawa Co., Ltd. Coffee flavor improver and method for producing the same
KR102236433B1 (en) 2016-12-16 2021-04-05 하세가와 고오료오 가부시끼가이샤 Method for producing flavor composition from roasted coffee beans and device for recovering fragrance from roasted coffee beans

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4020660B1 (en) * 1963-06-22 1965-09-14
JPH01112949A (en) * 1987-10-28 1989-05-01 Morinaga & Co Ltd Extraction of flavor component for tasty drink
JPH0227946A (en) * 1988-07-14 1990-01-30 Nippon Sanso Kk Preparation of coffee
JPH04252153A (en) * 1991-01-29 1992-09-08 Nagaoka Koryo Kk Apparatus and method for collection of perfume

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4020660B1 (en) * 1963-06-22 1965-09-14
JPH01112949A (en) * 1987-10-28 1989-05-01 Morinaga & Co Ltd Extraction of flavor component for tasty drink
JPH0227946A (en) * 1988-07-14 1990-01-30 Nippon Sanso Kk Preparation of coffee
JPH04252153A (en) * 1991-01-29 1992-09-08 Nagaoka Koryo Kk Apparatus and method for collection of perfume

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535323A (en) * 2010-07-28 2013-09-12 ビューラー アクツィエンゲゼルシャフト Coffee beans
JP6184627B1 (en) * 2017-02-17 2017-08-23 長谷川香料株式会社 Method for producing fragrance composition from roasted coffee beans and apparatus for collecting aroma from roasted coffee beans
JP2018093858A (en) * 2017-02-17 2018-06-21 長谷川香料株式会社 Method for producing flavor composition from roasted coffee bean, and flavor recovery device from roasted coffee bean
KR102324943B1 (en) * 2021-08-02 2021-11-10 송현 Method for producing supercritical cold brew coffee with flavor

Also Published As

Publication number Publication date
JP4745591B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
KR100847718B1 (en) Coffee aroma recovery process
RU2216194C2 (en) Method for extracting of aromatic components from coffee and aromatized instant powdered coffee (versions)
US7767246B2 (en) Method for preparing a coffee extract
JP5748994B2 (en) Tea product manufacturing method
TWI563921B (en) Concentrated coffee extract
IE881476L (en) Commercially processed orange juice products having a more¹hand-squeezed character
KR960007096B1 (en) Process for the preparation of soluble coffee
JP4182471B2 (en) Method for producing coffee fragrance
JP4694884B2 (en) Moisture removal method and moisture removal device
CN101292695B (en) Method for preparing coffee condensed juice
JP4745591B2 (en) Method for producing coffee beverage containing aroma components during grinding
JP4308724B2 (en) Method for producing aromatic coffee oil and use thereof
JP3719995B2 (en) Method for producing coffee beverage
JP4961509B2 (en) Taste enhancing composition and method for producing the same
JP2002306075A (en) Method for manufacturing coffee beverage
JP2003204757A (en) Method for producing concentrated coffee liquid where aroma component is recovered
JP2558539B2 (en) How to collect flavor
JP2004298065A (en) Method for producing coffee concentrate and method for producing coffee liquid
JP2004008102A (en) Method for producing coffee aroma liquid
WO2021235183A1 (en) Method for producing alcohol-containing green coffee beans
JP3656115B2 (en) Method for producing high-quality instant coffee
JP2004008146A (en) Aroma-enriched miso and method for producing the same
JP2003319749A (en) Recovery of flavor component in production of coffee concentrate
CA1242921A (en) Method for aromatizing soluble coffee
JP2003199496A (en) Method of preventing precipitation in coffee beverage and production of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090127

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4745591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees