JP2004158707A - High heat radiation silicon wafer and semiconductor device and method for manufacturing the same - Google Patents

High heat radiation silicon wafer and semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
JP2004158707A
JP2004158707A JP2002324163A JP2002324163A JP2004158707A JP 2004158707 A JP2004158707 A JP 2004158707A JP 2002324163 A JP2002324163 A JP 2002324163A JP 2002324163 A JP2002324163 A JP 2002324163A JP 2004158707 A JP2004158707 A JP 2004158707A
Authority
JP
Japan
Prior art keywords
silicon wafer
mass
heat radiation
parts
high heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002324163A
Other languages
Japanese (ja)
Other versions
JP3930796B2 (en
Inventor
Kohei Ueda
浩平 植田
Masamoto Tanaka
将元 田中
Hiroshi Kanai
洋 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002324163A priority Critical patent/JP3930796B2/en
Publication of JP2004158707A publication Critical patent/JP2004158707A/en
Application granted granted Critical
Publication of JP3930796B2 publication Critical patent/JP3930796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To improve the heat radiating performance from the back face of a silicon chip, to improve heat radiating performance from a semiconductor device including a silicon chip, and to stably cool a semiconductor device, and to perform a stable operation. <P>SOLUTION: High radiation painting constituted of a binder solid content 100 pts. mass and heat absorption pigment 10 to 150 pts. mass is painted on the back face of a silicon wafer, and a metal plate treated with high heat radiation painting is adhered to the back face of the silicon wafer. It is desired that an integrated circuit is formed on the silicon wafer, and then the high heat radiation painting or high heat radiation painting metal plate adhering is preferable in a process prior to dicing. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は高放熱性シリコンウェハー及びそれから製造された半導体装置に係り、より詳しくはシリコンウェハーの裏面に高級熱塗料を塗布または高吸熱塗料を塗布した金属板をウェハー裏面に接着することにより、電子素子の放熱効率を高めたシリコンウェハー及びそれから製造された半導体装置とそれらの製法に関する。
【0002】
【従来の技術】
シリコン半導体装置は、シリコンウェハーに電子回路を素描して積層回路を形成してから、チップにダイシングして製造された後、基板に直接にあるいはカプセル化して実装されている。電子回路を描画されたシリコンチップが発熱して一定温度以上に昇温すると誤動作を起こしたり、暴走を起こして、所期の回路特性が発揮できないことが起きるので、シリコンチップあるいはICパッケージなどの実装部品は放熱性が考慮され、特にシリコンチップの裏側は放熱に利用されている。特に、CPUなどではICの裏側にCPUクーラー、放熱フィン等を貼り付けて冷却を行っている。
【0003】
また、昨今ではシリコンチップデバイスを基板に直接実装するベアチイプ実装、フリップチップ実装等の盛んに行われており、シリコンチップ自身、即ちシリコンウェハー自身からの高い放熱特性が求められている。
【特許文献1】
特開平9−186168号公報
【0004】
【発明が解決しようとする課題】
しかしながら、昨今の超高集積化、細線配線化によりデバイスの温度上昇が激しく、誤動作、動作温度の低下等の問題に対処することは益々必要になっており、シリコンチップ及びそれを含む半導体装置の放熱性を向上させることに対する需要は尽きない。
本発明は、従来技術のこのような現状に鑑み、シリコンチップの裏面からの放熱性を向上させて、シリコンチップを含む半導体装置からの放熱性を向上させ、半導体装置を安定に冷却し、安定動作させることを可能にするシリコンウェハー、及びそれを用いて製造された半導体装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明によれば、高放熱性塗料をシリコンウェハー裏面に塗布し、又は高放熱性塗料を塗布した金属板をシリコンウェハー裏面に接着することにより、シリコンチップ裏面の吸熱放熱特性を向上させることで、シリコンデバイスの放熱効率を高め、安定動作するデバイを提供することが可能とされる。
【0006】
即ち、本発明によれば下記が提供される。
(1)シリコンウェハーの裏面にバインダー固形分100質量部及び熱吸収性顔料10〜150質量部から構成される高放熱塗装を塗布し、実装後の放熱特性を高めたことを特徴とするシリコンウェハー。
(2)シリコンウェハーの裏面にバインダー固形分100質量部及び熱吸収性顔料10〜150質量部から構成される高放熱塗装を施した金属板を接着したことを特徴とするシリコンウェハー。
【0007】
(3)高放熱塗料がバインダー固形分100質量部に対して熱吸収性顔料として粒径0.1μm未満のカーボンを1〜20質量部と粒径0.1μm以上30μm以下のカーボンを1〜140質量部含み、且つ粒径0.1μm未満のカーボンと粒径0.1μm以上50μm未満のカーボンとの合計が10〜150質量部である上記(1)(2)記載のシリコンウェハー。
(4)前記高放熱塗装が、バインダー固形分100質量部に対して導電性顔料1〜150重量部をさらに含む上記(1)〜(3)記載のシリコンウェハー。
【0008】
(5)シリコンウェハーに集積回路を形成した後、ダイシング前の工程でシリコンウェハーの裏面に高放熱塗装を施し又はシリコンウェハーの裏面に高放熱塗装を施した金属板を接着することを特徴とする上記(1)〜(4)記載のシリコンウェハーの製造方法。
(6)上記(1)〜(5)記載のシリコンウェハーを用いて製造されたシリコンチップを実装した半導体装置。
(7)上記(1)〜(5)記載のシリコンウェハーを用いてシリコンチップを実装した半導体装置を製造することを特徴とする半導体装置の製造方法。
【0009】
【発明の実施の形態】
本発明者は、シリコンウェハーの裏面に高放熱塗料を塗布しておくことにより、半導体装置の実装後に、シリコンチップの放熱効率が高まり、半導体装置の冷却が安定し、誤動作や性能低下を抑制する効果を奏することを見出し、またシリコンチップの裏面に高放熱塗料を塗布するにはダイシングより前のウェハー段階で塗布することが簡便であることを認識し、本発明を完成した。
【0010】
本発明において、高放熱塗料とは80℃で測定した波数600〜3000cm−1の領域における全放射率が0.70以上、より好ましくは0.80以上、さらには0.90以上であるものをいう。
熱放射に関するキルヒホッフの法則によれば、一定温度では物体の吸収率と放射率は同じになる。従って、放射率が高いものは熱吸収性も高いので、熱線である赤外線領域の放射率の高い物質(高放熱塗料)はシリコンチップからの発熱をよく吸収しかつよく放熱することが可能であるので、放熱効率が高められ、シリコンチップあるいはそれを含む半導体装置の温度上昇が抑制される効果が奏されると考えられるものである。
【0011】
周波数600cm−1未満、もしくは、3000cm−1超の波数領域の放射線吸収は、温度低下効果が非常に小さいため、これらの波数領域の放射線を含めた放射率は不適である。また、波数600〜3000cm−1の領域における全放射率が0.70未満の熱吸収性皮膜層を被覆した場合は、温度低下効果が小さいため、不適である。
【0012】
熱吸収性顔料として、カーボン、炭、黒鉛など、一般的に公知のものを使用でき、市販のものを用いてもよい。上記熱吸収性顔料の中でもカーボンブラックは粒径が非常に小さくて、皮膜中に広く分散するので好適な顔料であり、特に、数平均分子量が1〜100nmのものが好適である。
【0013】
カーボンなど熱吸収性物質を直接にシリコンウェハーの裏面に付着させると放熱性に関しては有効であるが、加工工程の途中で剥離など取り扱いの問題があるので、本発明ではバインダーを用いる。バインダーとして、樹脂やゾルゲル法によって形成される無機被膜や、ゾルゲル法によって形成される無機有機複合被膜など、一般に公知の皮膜用バインダーを使用することができる。樹脂を塗料のような形態で用いることは、取り扱い、皮膜形成方法の容易さなどから好適である。
【0014】
樹脂としては、一般に公知のもの、例えば、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、メラミン樹脂、塩化ビニル樹脂などを用いることができ、熱可塑タイプ、熱硬化タイプのいずれのタイプであってもよい。これらの樹脂は、必要に応じて数種のものを併用してもよい。
熱吸収性に優れた高放熱塗料は、バインダー固形分100質量部に対し熱吸収性顔料10〜150質量部から構成される。熱吸収性顔料10質量部未満では所望の高放熱性が得られず、150質量部を超えると皮膜の物性が劣るものとなり、また密着性も低下するためシリコンウェハープロセスに耐えることができないなど、好適でない。
【0015】
本発明のより好適な高放熱塗料としては、バインダー固形分100質量部に対して粒径0.1μm未満のカーボンを1〜20質量部と粒径0.1μm以上30μm以下のカーボンを1〜140質量部含み、且つ粒径0.1μm未満のカーボンと粒径0.1μm以上50μm未満のカーボンとの合計が10〜150質量部である高放熱塗料がある。微粒系カーボンの粒径の下限は特に規定するものではないが、0.1μmを超えるとカーボンとカーボンの間に隙間ができやすく、微粒子カーボンとしての役割を発揮しないため不適である。微粒系カーボンの添加量は1質量部未満であると、金属板の隠蔽効果に劣り熱吸収性が劣るため不適であり、20質量部超では塗液の粘度が高くなったり、経時でゲル状になったりするため不適である。大粒径カーボンの粒径が0.1μm未満であると大粒径カーボンとしての役割を発揮せずに、微粒子カーボンと同じ挙動を示す、ため不適である。大粒径カーボンの粒径が50μm超であると、これを含む塗液を塗布する際に塗布性が低下したり、塗布後の皮膜外観が悪くなったりするため不適である。大粒径カーボンの添加量は、1質量部未満であると熱吸収性が劣り、140質量部超では皮膜が脆くなり、皮膜の加工性に劣るため不適である。更に、微粒子カーボンと大粒径カーボンの合計添加量が10質量部未満であると熱吸収性が劣り、150質量部超では皮膜が脆くなり皮膜の加工性や密着性に劣る、塗液が増粘して塗布作業性が劣るため不適である。
【0016】
高放熱皮膜の膜厚は1〜1000μmであることが望ましい。皮膜が1μm未満であると、皮膜の熱吸収性が劣るため不適である。皮膜が1000μm超であると、皮膜の熱吸収性が飽和して、経済的に意味をなさないため、好適でない。より好ましくは10〜500μmである。
本発明の高放熱塗料は、シリコンウェハーの裏面に塗布するが、限定するわけではないが、集積回路形成後でウェハーダイシング工程前等のウェハーの表面を汚染することのない工程で行うことが望ましい。また、集積回路形成工程では高温熱処理が行われることが多いので、高放熱塗料に樹脂製バインダーを用いる場合には集積回路形成工程前に塗装すると不適であることが多い。
【0017】
ウェハーの裏面に高放熱塗料を塗布したシリコンウェハーから半導体装置を製造する工程は従来と同様であることができ、特に限定されない。
本発明によれば、シリコンウェハーの裏面に直接に高放熱塗装を施すのではなく、シリコンウェハーの裏面にバインダー固形分100質量部及び熱吸収性顔料10〜150質量部から構成される高放熱塗装を施した金属板を接着することにより、シリコンウェハーの放熱効果がより向上することを見出した。
【0018】
金属板としては、鋼板、又は銅板、さらにはアルミ板に高放熱塗装を施した金属板を用いることが望ましい。
また接着する金属板の表面は、放熱効率を高める為、波型、凹凸等を施すことにより、更なる効率が得られる。
【0019】
高放熱塗料を塗布した金属板は、限定するわけではないが、集積回路形成後でウェハーダイシング工程前等のウェハーの表面を汚染することのない工程で接着することが望ましい。また、集積回路形成工程では高温熱処理が行われることが多いので、高放熱塗料に樹脂製バインダーを用いる場合には集積回路形成工程前に塗装すると不適であることが多い。
本発明のシリコンウェハーを実装することにより、放熱特性を高めることができ素子の動作を安定することが可能となる。更に加えて、ウェハー裏面に金属板を接着したことにより、α線、宇宙線との高エネルギー粒子により誤動作も抑制でき、高い信頼性を有するICチップ素子に活用できるシリコンウェハーを提供できる。
【0020】
【実施例】
(実施例1)
以下、実験に用いた吸熱皮膜塗料の作成方法について詳細を説明する。
市販の常温乾燥型の溶剤系クリヤー塗料中に、次に示すカーボンを添加し、撹拌することで熱吸収性皮膜塗料を得た。作成した塗料の明細を表1に示す。なお、表中のカーボン添加量は、樹脂固形分100質量部に対する添加顔料の質量部を表す。
【0021】
[微粒子カーボン]
粒径28nmの東海カーボン社製「トナーカーボン#7350F」を使用。
[大粒径カーボンA]
最大粒径5μmの協同組合ラテスト製「備長炭パウダー」を使用。
[大粒径カーボンB]
試薬として市販されている黒鉛を粉砕し、ふるい分け分級機にて平均粒径を40μmとしたものを使用。
[大粒径カーボンC]
試薬として市販されている黒鉛を乳鉢にて擦り潰し、フルイにて大きな粒径のものを取り除き、平均粒径を60μmとしたものを使用。
【0022】
以下、実験に用いた熱吸収性塗装板の作成方法について詳細に説明する。
シリコンウェハー上に、表1に示した熱吸収性皮膜塗料を塗装し、常温にて約24時間乾燥した。作成した表面塗装板の詳細を表2に示す。
【0023】
以下、作成した表面処理シリコンウェハーの評価試験について詳細を説明する。
1)表面塗装シリコンウェハーの放射率測定
日本分光社製のフーリエ変換赤外分光光度計「VALOR−III 」を用いて、表面塗装カバー材料の温度を80℃にしたときの波数600〜3000cm−1の領域における赤外発光スペクトルを測定し、これを標準黒体の発光スペクトルと比較することで、表面塗装シリコンウェハーの全放射率を測定した。なお、標準黒体は鉄板にタコスジャパン社販売(オキツモ社製造)の「THI−1B黒体スプレー」を30±2μmの膜厚でスプレー塗装したものを用いた。
【0024】
2)表面塗装シリコンウェハーの放熱性測定試験
表面塗装シリコンウェハーの塗装されていない表面側に半導体プロセスで電子回路を素描し、その電子回路に電流を一定時間流して、シリコンウェハーの温度をデジタル温度計で測定した。更に、塗装しないシリコンウェハーについても、同様の測定を行い、測定値を比較して、以下の基準で評価した。
[{(未処理板の測定値)−(評価する表面処理板での測定値)}≧4℃]のとき:○
[4℃>{(未処理板の測定値)−(評価する表面処理板での測定値)}≧2℃]のとき:△
[2℃>{(未処理板の測定値)−(評価する表面処理板での測定値)}]のとき:×
【0025】
3)塗膜の耐衝撃性試験
JIS K 5400 8.3.2のデュポン式耐衝撃性試験を実施した。なお、試験実施時の打ち型のサイズは1/2インチ(12.7mm)、重りの質量は500g、重りの高さは20cmとした。そして、試験後のサンプル表面を目視にて観察し、以下の基準で評価した。
塗膜の割れや剥離が確認できない場合:○
塗膜の割れや剥離が確認できる場合:×
【0026】
4)吸熱塗料の経時の状態観察
シリコンウェハーに塗装した各吸熱性皮膜塗料を常温で1ヶ月放置した後、塗液の状態を目視で観察し、次のように評価した。
塗液を作成した時の状態と比べて変化無し:○
塗液を作成した時の状態と比べて粘度が増加している:△
塗液がゲル状になっている、又は、固まっている:×
【0027】
5)吸熱性皮膜の外観
シリコンウェハー上に被覆した皮膜の外観を目視にて観察し、次のように評価した。
平滑な表面である:○
添加顔料が皮膜厚より僅かに大きいため、皮膜表面に僅かな凹凸がある:△
添加顔料が皮膜厚より非常に大きいため、皮膜表面に激しい凹凸がある:×
6)塗膜密着性試験
表面処理シリコンウエハーの高放熱性皮膜層に、1mm角の碁盤目状の切れ目をカッターナイフで入れた後に、テープ剥離試験を行った。
碁盤目状の切れ目の入れ方、テープ剥離方法についてはJIS−K5400.8.5に準じて実施した。また、テープ剥離後の評価は、JIS−K5400.8.5記載の評価の例の図に従って行い、評点10点の時に〇、8点以上10点未満の時に△、8点未満の時に×と評価した。
【0028】
以下、作成した表面塗装板の評価結果について詳細を説明する。
表2に示したように、本発明の表面塗装板は、樹脂固形分100質量部に対して、粒径0.1μm未満のカーボンを1〜20質量部と粒径0.1μm以上30μm以下のカーボンを1〜140質量部を含み、かつ、粒径0.1μm未満のカーボンと粒径0.1μm以上50μm未満のカーボンとの合計が10〜150質量部である熱吸収性皮膜層を乾燥膜厚で1μm以上被覆することで、熱吸収性の高い表面塗装板を得ることができた。
【0029】
【表1】

Figure 2004158707
【0030】
【表2】
Figure 2004158707
【0031】
(実施例2)
(1)シリコンウェハー裏面に実施例1で調整した高放熱塗料(塗料2)を乾燥膜厚100μmに施したシリコンウェハーと、(2)シリコンウェハー裏面に高放熱塗装を施ししていないシリコンウェハーを用意し、其々の下部に10wの平面発熱体を設置し、10時間後表面温度を熱伝対で測定した。
シリコンウェハー表面温度の測定結果は、(1)75℃、(2)80℃であった。高放熱塗装を施したシリコンウェハーは、放熱特性が良い為、温度上昇が抑制できた。
【0032】
(実施例3)
(1)シリコンウェハー裏面に実施例1で調整した高放熱塗料(塗料2)を乾燥膜厚100μmに施した金属板を接着したシリコンウェハーと、(2)シリコンウェハー裏面に高放熱塗装を施した金属板を接着していないシリコンウェハーを用意し、其々の下部に10wの平面発熱体を設置し、10h後の表面温度を熱伝対で測定した。
シリコンウェハー表面温度の測定結果は、(1)65℃、(2)80℃であった。高放熱塗装を施した金属板を接着したシリコンウェハーは、放熱特性が良い為、温度上昇が抑制できた。
更に、放熱効率を高める為、金属板表面を波型、凹凸等の形状に付加することにより、より放射効率が高まり、更なる効率が得られた。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high heat dissipation silicon wafer and a semiconductor device manufactured therefrom. The present invention relates to a silicon wafer with improved heat dissipation efficiency of elements, a semiconductor device manufactured therefrom, and a method of manufacturing the same.
[0002]
[Prior art]
A silicon semiconductor device is manufactured by forming a laminated circuit by drawing an electronic circuit on a silicon wafer, and then dicing the chip, and then mounting it directly or encapsulated on a substrate. If the silicon chip on which the electronic circuit is drawn generates heat and rises above a certain temperature, malfunction or runaway may occur and the desired circuit characteristics may not be exhibited. The heat dissipation of the components is considered, and the back side of the silicon chip is used for heat dissipation. Particularly, in a CPU or the like, cooling is performed by attaching a CPU cooler, a radiation fin, or the like to the back side of the IC.
[0003]
In recent years, a silicon chip device is directly mounted on a substrate, and a chip-type mounting, a flip-chip mounting, and the like are actively performed, and a high heat radiation characteristic from a silicon chip itself, that is, a silicon wafer itself is required.
[Patent Document 1]
JP-A-9-186168
[Problems to be solved by the invention]
However, due to the recent ultra-high integration and fine wiring, the temperature of the device is rapidly increasing, and it is increasingly necessary to deal with problems such as malfunctions and lowering of operating temperature. The demand for improving heat dissipation is not exhausted.
In view of the above situation of the prior art, the present invention improves heat dissipation from the back surface of a silicon chip, improves heat dissipation from a semiconductor device including a silicon chip, stably cools the semiconductor device, It is an object of the present invention to provide a silicon wafer that can be operated and a semiconductor device manufactured using the same.
[0005]
[Means for Solving the Problems]
According to the present invention, by applying a high heat dissipation paint to the backside of a silicon wafer, or by bonding a metal plate coated with a high heat dissipation paint to the backside of a silicon wafer, the heat absorption and heat dissipation properties of the backside of the silicon chip are improved. Therefore, it is possible to improve the heat radiation efficiency of the silicon device and provide a device that operates stably.
[0006]
That is, according to the present invention, the following is provided.
(1) A silicon wafer characterized by applying a high heat radiation coating composed of 100 parts by mass of a binder solid content and 10 to 150 parts by mass of a heat absorbing pigment on the back surface of the silicon wafer to enhance heat radiation characteristics after mounting. .
(2) A silicon wafer characterized in that a metal plate having a high heat radiation coating composed of 100 parts by mass of a binder solid content and 10 to 150 parts by mass of a heat-absorbing pigment is adhered to the back surface of the silicon wafer.
[0007]
(3) The heat-radiating paint contains 1 to 20 parts by mass of carbon having a particle size of less than 0.1 μm and 1 to 140 parts by mass of carbon having a particle size of 0.1 μm or more and 30 μm or less as a heat-absorbing pigment based on 100 parts by mass of the binder solids. The silicon wafer according to (1) or (2), wherein the total of carbon having a particle size of less than 0.1 μm and carbon having a particle size of 0.1 μm or more and less than 50 μm is 10 to 150 parts by mass.
(4) The silicon wafer according to any one of (1) to (3), wherein the high heat radiation coating further contains 1 to 150 parts by weight of a conductive pigment based on 100 parts by weight of a binder solid content.
[0008]
(5) After forming an integrated circuit on a silicon wafer, a high heat radiation coating is applied to the back surface of the silicon wafer in a process before dicing, or a metal plate coated with high heat radiation is bonded to the back surface of the silicon wafer. The method for producing a silicon wafer according to the above (1) to (4).
(6) A semiconductor device mounted with a silicon chip manufactured using the silicon wafer according to (1) to (5).
(7) A method for manufacturing a semiconductor device, comprising manufacturing a semiconductor device on which a silicon chip is mounted using the silicon wafer described in (1) to (5).
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventor has applied a high heat dissipation paint to the back surface of a silicon wafer, so that after mounting the semiconductor device, the heat dissipation efficiency of the silicon chip is increased, the cooling of the semiconductor device is stabilized, and malfunctions and performance degradation are suppressed. The present inventors have found that the present invention has an effect, and have recognized that it is easy to apply a high heat radiation paint to the back surface of a silicon chip at a wafer stage before dicing, and thus completed the present invention.
[0010]
In the present invention, a high heat-radiation paint is a material having a total emissivity of 0.70 or more, more preferably 0.80 or more, and further 0.90 or more in a region of a wave number of 600 to 3000 cm −1 measured at 80 ° C. Say.
According to Kirchhoff's law for thermal radiation, the absorption and emissivity of an object are the same at a constant temperature. Therefore, a substance having a high emissivity has a high heat absorption, and a substance having a high emissivity in the infrared region, that is, a heat ray (high heat dissipation paint) can absorb heat generated from the silicon chip well and radiate heat well. Therefore, it is considered that the heat radiation efficiency is enhanced, and the effect of suppressing the temperature rise of the silicon chip or the semiconductor device including the same is exerted.
[0011]
Radiation absorption in a wavenumber region having a frequency of less than 600 cm -1 or more than 3000 cm -1 has a very small temperature lowering effect, and thus the emissivity including radiation in these wavenumber regions is inappropriate. Further, when the heat-absorbing coating layer having a total emissivity of less than 0.70 in a wave number range of 600 to 3000 cm -1 is not suitable, the effect of decreasing the temperature is small.
[0012]
As the heat absorbing pigment, generally known pigments such as carbon, charcoal and graphite can be used, and commercially available pigments may be used. Among the above-mentioned heat-absorbing pigments, carbon black is a suitable pigment because it has a very small particle size and is widely dispersed in a film, and particularly preferably a carbon black having a number average molecular weight of 1 to 100 nm.
[0013]
Direct attachment of a heat-absorbing substance such as carbon to the back surface of the silicon wafer is effective in terms of heat dissipation, but there is a handling problem such as peeling during the processing step, so a binder is used in the present invention. As the binder, a generally known coating binder such as a resin or an inorganic coating formed by a sol-gel method, or an inorganic-organic composite coating formed by a sol-gel method can be used. It is preferable to use the resin in the form of a paint from the viewpoints of handling, ease of film formation, and the like.
[0014]
As the resin, generally known ones, for example, polyester resin, urethane resin, acrylic resin, epoxy resin, melamine resin, vinyl chloride resin and the like can be used, and any of thermoplastic type and thermosetting type can be used. Is also good. These resins may be used in combination of several kinds as necessary.
The high heat radiation paint having excellent heat absorption is composed of 10 to 150 parts by mass of the heat absorbing pigment per 100 parts by mass of the solid content of the binder. If the heat-absorbing pigment is less than 10 parts by mass, the desired high heat radiation property cannot be obtained, and if it exceeds 150 parts by mass, the physical properties of the film become inferior, and the adhesiveness also decreases, so that it cannot withstand the silicon wafer process, Not suitable.
[0015]
As a more preferable high heat radiation paint of the present invention, 1 to 20 parts by mass of carbon having a particle size of less than 0.1 μm and carbon having a particle size of 0.1 to 30 μm to 1 to 140 parts by mass per 100 parts by mass of a binder solid content. There is a high heat radiation paint containing 10 parts by mass of carbon having a particle size of less than 0.1 μm and carbon having a particle size of 0.1 μm or more and less than 50 μm. The lower limit of the particle size of the fine carbon is not particularly specified, but if it exceeds 0.1 μm, a gap is easily formed between the carbons, which is not suitable because it does not serve as fine carbon. If the added amount of the fine carbon is less than 1 part by mass, the effect of hiding the metal plate is inferior and the heat absorbing property is inadequate. It is not suitable because it becomes If the particle diameter of the large-diameter carbon is less than 0.1 μm, it does not function as the large-diameter carbon and exhibits the same behavior as the fine-particle carbon, which is not suitable. If the particle size of the large-diameter carbon is more than 50 μm, it is unsuitable because the coating properties are reduced when a coating liquid containing the same is applied, or the appearance of the coating after coating is deteriorated. If the added amount of the large-diameter carbon is less than 1 part by mass, the heat absorption is poor, and if it is more than 140 parts by mass, the coating becomes brittle and the workability of the coating is poor, which is not suitable. Further, when the total amount of the fine carbon particles and the large carbon particles is less than 10 parts by mass, the heat absorption is poor. When the total amount is more than 150 parts by mass, the film becomes brittle and the workability and adhesion of the film are poor. It is not suitable because it is sticky and coating workability is inferior.
[0016]
The thickness of the high heat radiation film is desirably 1 to 1000 μm. If the thickness of the coating is less than 1 μm, the heat absorption of the coating is inferior, which is not suitable. If the thickness of the coating is more than 1000 μm, the heat absorption of the coating is saturated and is not economically meaningful. More preferably, it is 10 to 500 μm.
The high heat radiation paint of the present invention is applied to the back surface of a silicon wafer, but is not limited thereto, but is desirably performed in a process that does not contaminate the surface of the wafer, such as after an integrated circuit is formed and before a wafer dicing process. . In addition, since high-temperature heat treatment is often performed in the integrated circuit forming step, when a resin binder is used for the high heat radiation paint, it is often inappropriate to apply the resin before the integrated circuit forming step.
[0017]
The process of manufacturing a semiconductor device from a silicon wafer having a high heat dissipation paint applied to the back surface of the wafer can be the same as the conventional process, and is not particularly limited.
According to the present invention, instead of directly applying high heat radiation coating to the back surface of a silicon wafer, high heat radiation coating comprising 100 parts by mass of a binder solid content and 10 to 150 parts by mass of a heat absorbing pigment is applied to the back surface of the silicon wafer. It has been found that by adhering the metal plate subjected to the above, the heat radiation effect of the silicon wafer is further improved.
[0018]
As the metal plate, it is desirable to use a steel plate, a copper plate, or a metal plate obtained by applying a high heat radiation coating to an aluminum plate.
Further, the surface of the metal plate to be bonded is corrugated, uneven, or the like in order to increase the heat radiation efficiency, so that further efficiency can be obtained.
[0019]
The metal plate coated with the high heat radiation paint is preferably, but not limited to, bonded in a process that does not contaminate the surface of the wafer, such as after the integrated circuit is formed and before the wafer dicing process. In addition, since high-temperature heat treatment is often performed in the integrated circuit forming step, when a resin binder is used for the high heat radiation paint, it is often inappropriate to apply the resin before the integrated circuit forming step.
By mounting the silicon wafer of the present invention, the heat radiation characteristics can be improved, and the operation of the element can be stabilized. In addition, by adhering a metal plate to the back surface of the wafer, malfunctions due to high energy particles such as α rays and cosmic rays can be suppressed, and a silicon wafer that can be used for highly reliable IC chip elements can be provided.
[0020]
【Example】
(Example 1)
Hereinafter, a method of preparing the heat-absorbing coating material used in the experiment will be described in detail.
The following carbon was added to a commercially available room temperature drying type solvent-based clear coating material, and the mixture was stirred to obtain a heat-absorbing film coating material. Table 1 shows the details of the prepared paint. In addition, the carbon addition amount in a table | surface represents the mass part of the addition pigment with respect to 100 mass parts of resin solid contents.
[0021]
[Particulate carbon]
"Toner Carbon # 7350F" manufactured by Tokai Carbon Co., Ltd. having a particle size of 28 nm is used.
[Large particle size carbon A]
Uses "Bincho charcoal powder" manufactured by the cooperative lastest with a maximum particle size of 5μm.
[Large particle size carbon B]
Commercially available graphite as a reagent is pulverized and used with an average particle size of 40 μm by a sieving classifier.
[Large particle size carbon C]
Commercially available graphite as a reagent is crushed in a mortar, and particles having a large particle size are removed with a sieve, and a material having an average particle size of 60 μm is used.
[0022]
Hereinafter, a method of preparing the heat-absorbing coated plate used in the experiment will be described in detail.
The heat-absorbing coating shown in Table 1 was applied on a silicon wafer and dried at room temperature for about 24 hours. Table 2 shows details of the prepared surface coated plate.
[0023]
Hereinafter, the evaluation test of the prepared surface-treated silicon wafer will be described in detail.
1) Measurement of emissivity of surface-coated silicon wafer Using a Fourier transform infrared spectrophotometer “VALOR-III” manufactured by JASCO Corporation, a wave number of 600 to 3000 cm −1 when the temperature of the surface-coated cover material is 80 ° C. By measuring the infrared emission spectrum in the region of, and comparing this with the emission spectrum of a standard black body, the total emissivity of the surface-coated silicon wafer was measured. As the standard black body, an iron plate spray-coated with a thickness of 30 ± 2 μm using “THI-1B black body spray” sold by Taco Japan Co., Ltd. (manufactured by Okitsumo Co., Ltd.) was used.
[0024]
2) Heat dissipation measurement test of surface-coated silicon wafer An electronic circuit is drawn by a semiconductor process on the uncoated surface side of the surface-coated silicon wafer, and a current is passed through the electronic circuit for a certain period of time to convert the temperature of the silicon wafer into a digital temperature. It was measured with a meter. Further, the same measurement was performed on an unpainted silicon wafer, and the measured values were compared and evaluated according to the following criteria.
When [{(measured value of untreated plate)-(measured value of surface treated plate to be evaluated)} ≧ 4 ° C.]: ○
When [4 ° C.> {(Measured value of untreated plate) − (measured value of surface treated plate to be evaluated)} ≧≧ 2 ° C.]:
When [2 ° C.> {(Measured value of untreated plate) − (measured value of surface treated plate to be evaluated)]}: ×
[0025]
3) Impact resistance test of coating film A DuPont type impact resistance test of JIS K 5400 8.3.2 was performed. In addition, the size of the punch at the time of the test was イ ン チ inch (12.7 mm), the mass of the weight was 500 g, and the height of the weight was 20 cm. Then, the sample surface after the test was visually observed and evaluated according to the following criteria.
When cracking or peeling of the coating film cannot be confirmed: ○
When cracking or peeling of the coating film can be confirmed: ×
[0026]
4) Observation of the state of the endothermic coating over time Each endothermic coating applied to the silicon wafer was allowed to stand at room temperature for one month, and then the state of the coating liquid was visually observed and evaluated as follows.
No change compared to the state when the coating liquid was created: ○
The viscosity has increased compared to the state when the coating liquid was prepared:
The coating liquid is gelled or solidified: ×
[0027]
5) Appearance of endothermic film The appearance of the film coated on the silicon wafer was visually observed and evaluated as follows.
The surface is smooth: ○
Since the added pigment is slightly larger than the film thickness, there are slight irregularities on the film surface:
Because the added pigment is much larger than the film thickness, there are severe irregularities on the film surface: ×
6) Coating film adhesion test A 1 mm square cut-like cut was made in the high heat radiation coating layer of the surface-treated silicon wafer with a cutter knife, and then a tape peeling test was performed.
The method of making a grid-like cut and the method of peeling off the tape were carried out in accordance with JIS-K540.8.5. The evaluation after peeling off the tape was performed according to the diagram of the evaluation example described in JIS-K540.8.5, and was evaluated as Δ when the score was 10 points, Δ when the score was 8 or more and less than 10 points, and X when the score was less than 8 points. evaluated.
[0028]
Hereinafter, the evaluation results of the prepared surface coated plate will be described in detail.
As shown in Table 2, the surface coated plate of the present invention has a resin solid content of 100 parts by mass, 1 to 20 parts by mass of carbon having a particle size of less than 0.1 μm, and a particle size of 0.1 to 30 μm. A heat-absorbing coating layer containing 1 to 140 parts by mass of carbon and having a total of 10 to 150 parts by mass of carbon having a particle size of less than 0.1 μm and carbon having a particle size of 0.1 μm or more and less than 50 μm is a dried film. By coating with a thickness of 1 μm or more, a surface coated plate having high heat absorption could be obtained.
[0029]
[Table 1]
Figure 2004158707
[0030]
[Table 2]
Figure 2004158707
[0031]
(Example 2)
(1) A silicon wafer in which the high heat radiation paint (paint 2) prepared in Example 1 was applied to the back surface of the silicon wafer to a dry film thickness of 100 μm, and (2) a silicon wafer in which the high heat radiation paint was not applied to the back surface of the silicon wafer. A 10-w flat heating element was placed under each of the prepared elements, and after 10 hours, the surface temperature was measured with a thermocouple.
The measurement results of the silicon wafer surface temperature were (1) 75 ° C. and (2) 80 ° C. The silicon wafer coated with high heat radiation has good heat radiation characteristics, so that the temperature rise could be suppressed.
[0032]
(Example 3)
(1) A silicon wafer to which a metal plate coated with a high heat radiation paint (paint 2) prepared in Example 1 to a dry film thickness of 100 μm was adhered to the back surface of the silicon wafer, and (2) a high heat radiation paint was applied to the back surface of the silicon wafer. A silicon wafer to which a metal plate was not adhered was prepared, a 10-w flat heating element was installed under each of the silicon wafers, and the surface temperature after 10 hours was measured with a thermocouple.
The measurement results of the silicon wafer surface temperature were (1) 65 ° C. and (2) 80 ° C. The silicon wafer to which the metal plate coated with the high heat radiation was bonded had good heat radiation characteristics, so that the temperature rise could be suppressed.
Further, by adding the surface of the metal plate to a shape such as a corrugation, irregularities, etc. in order to enhance the heat radiation efficiency, the radiation efficiency was further increased, and further efficiency was obtained.

Claims (7)

シリコンウェハーの裏面にバインダー固形分100質量部及び熱吸収性顔料10〜150質量部から構成される高放熱塗装を塗布し、実装後の放熱特性を高めたことを特徴とするシリコンウェハー。A silicon wafer characterized in that a heat radiation coating composed of 100 parts by mass of a binder solid content and 10 to 150 parts by mass of a heat absorbing pigment is applied to the back surface of the silicon wafer to enhance heat radiation characteristics after mounting. シリコンウェハーの裏面にバインダー固形分100質量部及び熱吸収性顔料10〜150質量部から構成される高放熱塗装を施した金属板を接着したことを特徴とするシリコンウェハー。A silicon wafer having a metal plate having a high heat radiation coating composed of 100 parts by mass of a binder solid content and 10 to 150 parts by mass of a heat-absorbing pigment adhered to the back surface of the silicon wafer. 高放熱塗料がバインダー固形分100質量部に対して及び熱吸収性顔料として粒径0.1μm未満のカーボンを1〜20質量部と粒径0.1μm以上30μm以下のカーボンを1〜140質量部含み、且つ粒径0.1μm未満のカーボンと粒径0.1μm以上50μm未満のカーボンとの合計が10〜150質量部である請求項1又は2記載のシリコンウェハー。The high heat radiation paint has 1 to 20 parts by mass of carbon having a particle size of less than 0.1 μm and 1 to 140 parts by mass of carbon having a particle size of 0.1 μm or more and 30 μm or less based on 100 parts by mass of a binder solid content and as a heat absorbing pigment. 3. The silicon wafer according to claim 1, wherein the total amount of carbon having a particle size of less than 0.1 μm and carbon having a particle size of 0.1 μm or more and less than 50 μm is 10 to 150 parts by mass. 4. 前記高放熱塗装が、バインダー固形分100質量部に対して導電性顔料1〜150重量部をさらに含む請求項1〜3のいずれかに記載のシリコンウェハー。The silicon wafer according to any one of claims 1 to 3, wherein the high heat dissipation coating further includes 1 to 150 parts by weight of a conductive pigment based on 100 parts by weight of a binder solid content. シリコンウェハーに集積回路を形成した後、ダイシング前の工程でシリコンウェハーの裏面に高放熱塗装を施し又はシリコンウェハーの裏面に高放熱塗装を施した金属板を接着することを特徴とする請求項1〜4のいずれか1項に記載のシリコンウェハーの製造方法。2. The method according to claim 1, wherein after the integrated circuit is formed on the silicon wafer, a high heat radiation coating is applied to the back surface of the silicon wafer in a step before dicing, or a metal plate coated with the high heat radiation is bonded to the back surface of the silicon wafer. 5. The method for producing a silicon wafer according to any one of items 4 to 4. 請求項1〜5のいずれか1項に記載のシリコンウェハーを用いて製造されたシリコンチップを実装した半導体装置。A semiconductor device mounted with a silicon chip manufactured using the silicon wafer according to claim 1. 請求項1〜5のいずれか1項に記載のシリコンウェハーを用いてシリコンチップを実装した半導体装置を製造することを特徴とする半導体装置の製造方法。A method for manufacturing a semiconductor device, comprising: manufacturing a semiconductor device having a silicon chip mounted thereon using the silicon wafer according to claim 1.
JP2002324163A 2002-11-07 2002-11-07 High heat dissipation silicon wafer, semiconductor device and manufacturing method thereof Expired - Fee Related JP3930796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324163A JP3930796B2 (en) 2002-11-07 2002-11-07 High heat dissipation silicon wafer, semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324163A JP3930796B2 (en) 2002-11-07 2002-11-07 High heat dissipation silicon wafer, semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004158707A true JP2004158707A (en) 2004-06-03
JP3930796B2 JP3930796B2 (en) 2007-06-13

Family

ID=32803839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324163A Expired - Fee Related JP3930796B2 (en) 2002-11-07 2002-11-07 High heat dissipation silicon wafer, semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3930796B2 (en)

Also Published As

Publication number Publication date
JP3930796B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
TWI335207B (en) Thermally conductive composite material, electronic component comprising the same and method of reducing electromagnetic emissions
US20150313041A1 (en) Graphene dissipation structure
JP2019057731A (en) Electromagnetic wave-absorbing composition coating material
US20100301261A1 (en) Electromagnetic wave absorbing and heat dissipation material
JP2015122463A (en) Cooling structure
US10978369B2 (en) Devices for absorbing energy from electronic components
JP6413478B2 (en) Granulated powder, heat radiation resin composition, heat radiation sheet, semiconductor device, and heat radiation member
JP6565157B2 (en) Granulated powder, heat radiation resin composition, heat radiation sheet, semiconductor device, and heat radiation member
TW202019268A (en) Device and heat-dissipation method
WO2015019770A1 (en) Resin sheet for sealing electronic device, and method for manufacturing electronic device package
US7491421B2 (en) Graphite base for heat sink, method of making graphite base and heat sink
JP2004158707A (en) High heat radiation silicon wafer and semiconductor device and method for manufacturing the same
CN109996423B (en) Composite multilayer graphite sheet structure, manufacturing method, heat dissipation structure and electronic device
JP2004158706A (en) Substrate for electronic equipment treated with high heat absorption painting, and electronic part
JP5495429B2 (en) Heat dissipation composite sheet
JP7101871B2 (en) Agglomerated boron nitride particles, heat conductive resin composition and heat dissipation member
JP2021044403A (en) Heat-dissipating material, manufacturing method of the same, and heat-generating body
CN209759368U (en) Black conductive nano copper carbon
WO2005015112A1 (en) Heat radiating member, device using the heat radiating member, casing, computer support stand, and radiating member manufacturing method
JP2004122674A (en) Heat radiation coated metal plate
CN108841362A (en) Composition metal heat sink material and its manufacturing process
JP2016074935A (en) Composite powder material for flame spray and flame sprayed insulation base plate
WO2022191308A1 (en) Thermally conductive sheet
JP2018145090A (en) Granulated powder, heat radiation resin composition, heat radiation sheet, semiconductor device, and heat radiation member
JP2022096533A (en) Heat radiation film, method for producing heat radiation film and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

R151 Written notification of patent or utility model registration

Ref document number: 3930796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees