JP2004158587A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2004158587A
JP2004158587A JP2002322015A JP2002322015A JP2004158587A JP 2004158587 A JP2004158587 A JP 2004158587A JP 2002322015 A JP2002322015 A JP 2002322015A JP 2002322015 A JP2002322015 A JP 2002322015A JP 2004158587 A JP2004158587 A JP 2004158587A
Authority
JP
Japan
Prior art keywords
carrier substrate
semiconductor chip
semiconductor device
mounting
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002322015A
Other languages
Japanese (ja)
Inventor
Kaoru Mitsuzuka
薫 三塚
Kenji Tanaka
健司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2002322015A priority Critical patent/JP2004158587A/en
Publication of JP2004158587A publication Critical patent/JP2004158587A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To present a method for manufacturing a semiconductor device whereby the problem is avoided of poor contact attributed to carrier substrate surface roughness exceeding a given level. <P>SOLUTION: For the manufacture of this semiconductor device, projecting metal electrodes provided on a semiconductor chip are bonded to electrodes provided on a carrier substrate for mounting the semiconductor chip on the carrier substrate. Before the mounting, protrusions in the rough surface are measured for height by the phase shift method, and are compared with a predetermined reference value. A part with its measured height exceeding the reference value is identified, so that no semiconductor chip is mounted on the part thus identified. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、キャリア基板上に、ICチップ等の半導体チップをフリップチップ接合により実装する半導体装置の製造方法に関する。
【0002】
【従来の技術】
図3は、従来のフリップチップ実装タイプの半導体装置の断面図である。図中1は半導体チップ、2は金属バンプ(金属突起電極)、3はキャリア基板、4はキャリア基板3上に設けられた電極、5は封止樹脂である。
【0003】
このような構造の半導体装置は概略次のように形成される。まず集積回路等が形成された半導体チップ1上に、Au等よりなる金属バンプ2を形成する。一方、キャリア基板3が集合した基板上には、W/Ni/Au等の多層の金属層よりなる電極4を形成しておく。
【0004】
半導体チップ1上の金属バンプ2を基板の電極4と接触させ、適当な接合条件(温度、荷重、超音波印加等)下で、金属バンプ2と電極4を接合させる。その後、基板表面を封止樹脂5で被覆する。このように複数個の半導体チップが実装した基板は、封止樹脂と基板を切断することで、個々の半導体装置に個片化され、半導体装置の製造が完了する。
【0005】
ここで、キャリア基板表面は、必ずしも平坦ではない。例えば焼結体からなるフリップチップ実装用回路基板では、表面の平滑度が数10〜100μm程度の凹凸があり、接続不良の問題が発生することが知られている(特許文献1参照)。また、キャリア基板表面の平坦性は保たれていたとしても、基板表面にゴミなどが付着し、それが原因で金属バンプ2と電極4との接触不良が発生する場合がある。即ち、半導体チップ1に設けられている金属バンプ2の高さより、上記突起部6が高くなると、金属バンプ2が電極層4に届かなくなり、接合不良が発生してしまう。
【0006】
【特許文献1】
特開2001−102408号公報(図3参照)
【0007】
【発明が解決しようとする課題】
このようにフリップチップ実装工程においては、キャリア基板3表面に基板自体の凹凸やゴミなどによる突起部などの凹凸が存在し、その高さが所定の高さを超えると、接触不良の問題が発生してしまう。本発明は、上記問題点を解消し、フリップチップ実装工程における上記不良を回避できる製造方法を提供するものである。
【0008】
【課題を解決するための手段】
上記問題点を解消するため請求項1に係る発明は、半導体チップ上に設けた金属突起電極と、キャリア基板上に設けた電極とを接合し、キャリア基板上に半導体チップを実装する半導体装置の製造方法において、前記実装工程前に、前記キャリア基板表面の凹凸の高さを、位相シフト法により検出し、得られた検出値と予め設定した基準値とを比較することにより、前記検出値が前記基準値を超える部分を識別し、該識別されたキャリア基板表面には前記半導体チップを実装しないことを特徴とするものである。
【0009】
請求項2に係る発明は、請求項1記載の半導体装置の製造方法において、前記検出値が前記基準値を超える前記キャリア基板表面に不適合認識マークを付し、該不適合認識マークが付されたキャリア基板表面には、前記半導体チップを実装しないことを特徴とするものである。
【0010】
【発明の実施の形態】
図1は、本発明の実施の形態の説明図である。図中、3はキャリア基板、4は電極、6はキャリア基板3上に付着したゴミ等の突起部、7はスリット光光源、8は検出器、9はスリット光光源7、検出器8及びマーキング機のコントローラ、10はマーキング機である。また、図2は、本発明の製造方法のフリップチップ実装工程を模式的に示したフローチャートである。
【0011】
本発明では図2に示すように実装工程前に、キャリア基板検査(キャリア検査)の工程を設けている。キャリア基板検査で基板表面の凹凸の検査を行う場合、検出精度が高いことと、検出速度が速いことが好ましい。なぜなら通常の半導体装置では、フリップチップ実装後の半導体チップ1とキャリア基板3との隙間は10μm程度であるため、フリップチップ実装を阻害する大きさの突起部6を検出するためには、1μm程度の高い精度が要求されるからである。また、近年のフリップチップボンダは、超音波を使うことにより飛躍的に高速化しており、半導体チップ1個の実装時間は2秒/個以下である。このように実装スピードが高速化しているため、フリップチップ実装の連続動作を阻害させないためには、検出速度はフリップチップ実装の速度以上に速くするのが望ましいからである。
【0012】
そこで本発明では上記の条件を満たすものとして、光学測定による位相シフト法を用いることとした。位相シフト法とは、以下のような方法である。光源と被測定物との間にスリットを介在させたスリット光光源7から、被測定物(キャリア基板3)にスリット光を照射する。その結果、被測定物に縞模様が投影されるが、この縞模様を被測定物の垂直上面から見ると、被測定物の形状(凹凸)により縞模様がゆがんで見える。このゆがみをCCDカメラからなるラインセンサ(検出器8)で観察する。被測定物表面を移動させながら観察することにより被測定物表面全体の凹凸を検出することができる。この方法によると、縞模様より得られる位置情報を画像処理することにより、被測定物の三次元形状を精度良く、かつ高速に測定することができる。その方法では、視野幅35mmでスキャン速度10mm/s、高さ分解能0.14μm程度の測定が可能であり、上述の条件を満足している。
【0013】
以下、本発明の一実施例について説明する。まず前工程として、半導体チップ1上に高さ20μm程度のAuよりなる金属バンプ2を電解メッキ等により形成する。一方キャリア基板3上には、W/Ni/Au(15μm/5μm/0.5μm程度)、Cu/Ni/Au(12μm/5μm/0.3μm程度)等の金属層で構成された電極4を形成しておく。
【0014】
電極4を形成したキャリア基板3表面に、斜め方向に配置したスリット光光源7からスリット光を照射する。その結果、キャリア基板3表面に縞模様が投影される。この縞模様を検出器8で観察し、位置情報と画像情報をコントローラ9で画像処理し、キャリア基板3の三次元形状を検出する。キャリア基板3表面にゴミなどの突起部6がある場合、突起部6の検出値〈高さ情報〉は、コントローラ9で予め設定された基準値と比較され、検出値が基準値を超える場合は、実装不適合と判断され、キャリア基板上のその位置を記憶する。コントローラ9によって制御されるマーキング機10により、実装不適合の認識マークを付けることもできる。マーキングは、通常の半導体装置の製造装置に用いられる不良チップに不良マークを付ける場合のように、インクを吹き付けて行うことができる。マーキング位置は、実際に凹凸がある部分に設定することも、実装不適合部分を含む半導体チップ実装部分の中心に設定することもできる。
【0015】
次にフリップチップ実装を行う。この実装工程では、カメラにより実装不適合の認識マークの有無を確認し、半導体チップが実装される部分に認識マークが有る場合は、その部分は半導体チップの実装は行わずにスキップし、認識マークが無い場合は、フリップチップボンダを用いて半導体チップを実装する。カメラにより実装不適合の認識マークの有無を確認する場合、カメラ倍率によるカメラ視野の調整により、半導体チップ実装部分を自由に拡大、縮小して感知できるので、前述のマーキングの位置は実際に凹凸がある部分でも、半導体チップ実装部分の中心でも自由に設定できる。また、マーキングを行わず、検出値が基準値を超える位置を記憶している場合は、記憶した位置に半導体チップを実装しないようにすればよい。
【0016】
キャリア基板全体へ半導体チップを実装した後、表面に封止樹脂を塗布し、硬化させることによって、一括樹脂封止を行い、電気的試験等を行った後、封止樹脂5及びキャリア基板3を切断し、個々の半導体装置に個片化し、半導体装置を完成させる。
【0017】
本発明の位相シフト法は、上記のようなゴミなどの突起部だけでなく、基板全体の凹凸を広範囲で検査することもできる。
【0018】
このように接続不良が発生する可能性のある部分を実装工程前に認識することができるため、品質の良い半導体装置を形成することができる。
【0019】
【発明の効果】
以上述べたように、本発明によれば、フリップチップ実装の際に妨げとなるキャリア基板自体の凹凸、ごみによる突起部などの凹凸を精度良く、かつ高速に検出することができ、不適合な部分が存在する場合は、その部分をスキップして実装作業を続けることができるので、高速で安定した半導体装置の組立工程を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の説明図である。
【図2】本発明の製造方法の模式的なフローチャートである。
【図3】フリップチップ実装タイプ半導体装置の断面図である。
【符号の説明】
1:半導体チップ、2:金属バンプ、3:キャリア基板、4:電極、5:封止樹脂、6:突起部、7:スリット光光源、8:検出器、9:コントローラ、10:マーキング機。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device in which a semiconductor chip such as an IC chip is mounted on a carrier substrate by flip-chip bonding.
[0002]
[Prior art]
FIG. 3 is a sectional view of a conventional flip-chip mounting type semiconductor device. In the figure, 1 is a semiconductor chip, 2 is a metal bump (metal bump electrode), 3 is a carrier substrate, 4 is an electrode provided on the carrier substrate 3, and 5 is a sealing resin.
[0003]
The semiconductor device having such a structure is generally formed as follows. First, a metal bump 2 made of Au or the like is formed on a semiconductor chip 1 on which an integrated circuit or the like is formed. On the other hand, on a substrate on which the carrier substrates 3 are assembled, an electrode 4 made of a multilayer metal layer such as W / Ni / Au is formed.
[0004]
The metal bumps 2 on the semiconductor chip 1 are brought into contact with the electrodes 4 on the substrate, and the metal bumps 2 and the electrodes 4 are bonded under appropriate bonding conditions (temperature, load, application of ultrasonic waves, etc.). After that, the substrate surface is covered with the sealing resin 5. The substrate on which a plurality of semiconductor chips are mounted is cut into individual semiconductor devices by cutting the sealing resin and the substrate, and the manufacture of the semiconductor device is completed.
[0005]
Here, the surface of the carrier substrate is not necessarily flat. For example, it is known that a flip-chip mounting circuit board made of a sintered body has unevenness with a surface smoothness of about several tens to 100 μm, which causes a problem of poor connection (see Patent Document 1). Further, even if the flatness of the surface of the carrier substrate is maintained, dust may adhere to the surface of the substrate, which may cause poor contact between the metal bumps 2 and the electrodes 4. That is, if the height of the protrusions 6 is higher than the height of the metal bumps 2 provided on the semiconductor chip 1, the metal bumps 2 will not reach the electrode layer 4, and a bonding failure will occur.
[0006]
[Patent Document 1]
JP 2001-102408 A (see FIG. 3)
[0007]
[Problems to be solved by the invention]
As described above, in the flip chip mounting process, irregularities such as projections and depressions of the substrate itself and dust are present on the surface of the carrier substrate 3, and if the height exceeds a predetermined height, a problem of poor contact occurs. Resulting in. An object of the present invention is to provide a manufacturing method capable of solving the above-mentioned problems and avoiding the above-mentioned defect in a flip chip mounting process.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claim 1 is directed to a semiconductor device in which a metal projection electrode provided on a semiconductor chip is joined to an electrode provided on a carrier substrate, and the semiconductor chip is mounted on the carrier substrate. In the manufacturing method, before the mounting step, the height of the unevenness of the carrier substrate surface is detected by a phase shift method, and the detected value is compared with a preset reference value, whereby the detected value is A portion exceeding the reference value is identified, and the semiconductor chip is not mounted on the identified carrier substrate surface.
[0009]
According to a second aspect of the present invention, in the method of manufacturing a semiconductor device according to the first aspect, a nonconformity recognition mark is attached to the carrier substrate surface where the detection value exceeds the reference value, and the carrier having the nonconformity recognition mark is attached. The semiconductor chip is not mounted on the surface of the substrate.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an explanatory diagram of an embodiment of the present invention. In the figure, 3 is a carrier substrate, 4 is an electrode, 6 is a projection of dust or the like adhering to the carrier substrate 3, 7 is a slit light source, 8 is a detector, 9 is a slit light source 7, a detector 8, and marking. The machine controller 10 is a marking machine. FIG. 2 is a flowchart schematically showing a flip chip mounting process of the manufacturing method of the present invention.
[0011]
In the present invention, a carrier substrate inspection (carrier inspection) step is provided before the mounting step as shown in FIG. When inspecting the substrate surface for irregularities in the carrier substrate inspection, it is preferable that the detection accuracy be high and the detection speed be high. This is because, in a normal semiconductor device, the gap between the semiconductor chip 1 and the carrier substrate 3 after flip-chip mounting is about 10 μm. This is because high precision is required. The speed of recent flip chip bonders has been dramatically increased by using ultrasonic waves, and the mounting time of one semiconductor chip is 2 seconds / piece or less. Since the mounting speed is thus increased, it is desirable that the detection speed be higher than the flip-chip mounting speed in order not to hinder the continuous operation of flip-chip mounting.
[0012]
Therefore, in the present invention, the phase shift method based on optical measurement is used as satisfying the above conditions. The phase shift method is as follows. An object to be measured (carrier substrate 3) is irradiated with slit light from a slit light source 7 having a slit interposed between the light source and the object to be measured. As a result, a stripe pattern is projected on the object to be measured. When the stripe pattern is viewed from the vertical upper surface of the object to be measured, the stripe pattern looks distorted due to the shape (irregularities) of the object to be measured. This distortion is observed with a line sensor (detector 8) composed of a CCD camera. By observing the surface of the workpiece while moving it, it is possible to detect irregularities on the entire surface of the workpiece. According to this method, the three-dimensional shape of the object to be measured can be measured accurately and at high speed by performing image processing on the position information obtained from the striped pattern. According to this method, measurement can be performed at a scanning speed of 10 mm / s and a height resolution of about 0.14 μm with a visual field width of 35 mm, and the above conditions are satisfied.
[0013]
Hereinafter, an embodiment of the present invention will be described. First, as a pre-process, a metal bump 2 made of Au having a height of about 20 μm is formed on a semiconductor chip 1 by electrolytic plating or the like. On the other hand, an electrode 4 composed of a metal layer such as W / Ni / Au (about 15 μm / 5 μm / 0.5 μm) and Cu / Ni / Au (about 12 μm / 5 μm / 0.3 μm) is formed on the carrier substrate 3. It is formed.
[0014]
The surface of the carrier substrate 3 on which the electrodes 4 are formed is irradiated with slit light from a slit light source 7 arranged in an oblique direction. As a result, a stripe pattern is projected on the surface of the carrier substrate 3. The stripe pattern is observed by the detector 8, the position information and the image information are subjected to image processing by the controller 9, and the three-dimensional shape of the carrier substrate 3 is detected. When there is a protrusion 6 such as dust on the surface of the carrier substrate 3, the detection value <height information> of the protrusion 6 is compared with a reference value set in advance by the controller 9, and when the detection value exceeds the reference value, Is determined to be unsuitable for mounting, and its position on the carrier substrate is stored. By the marking machine 10 controlled by the controller 9, a recognition mark of non-compliance with the mounting can be provided. Marking can be performed by spraying ink, as in the case of marking a defective mark on a defective chip used in a normal semiconductor device manufacturing apparatus. The marking position can be set at a portion where there is actually unevenness or at the center of a semiconductor chip mounting portion including a mounting mismatch portion.
[0015]
Next, flip chip mounting is performed. In this mounting process, the presence or absence of a recognition mark for mounting non-conformity is checked by a camera, and if there is a recognition mark in the part where the semiconductor chip is mounted, that part is skipped without mounting the semiconductor chip and the recognition mark is If not, a semiconductor chip is mounted using a flip chip bonder. When checking the presence or absence of a recognition mark that is not compatible with the mounting by the camera, the semiconductor chip mounting part can be freely expanded and reduced by adjusting the camera field of view according to the camera magnification, so the above-mentioned marking position actually has irregularities It can be set freely at the part or at the center of the semiconductor chip mounting part. In the case where a position where the detection value exceeds the reference value is stored without performing the marking, the semiconductor chip may be prevented from being mounted at the stored position.
[0016]
After the semiconductor chip is mounted on the entire carrier substrate, a sealing resin is applied to the surface and cured to perform collective resin sealing, and after performing an electrical test and the like, the sealing resin 5 and the carrier substrate 3 are removed. The semiconductor device is cut and singulated into individual semiconductor devices to complete the semiconductor device.
[0017]
The phase shift method of the present invention can inspect not only the protrusions such as dust as described above but also the unevenness of the entire substrate in a wide range.
[0018]
Since a portion where a connection failure may occur can be recognized before the mounting process, a high-quality semiconductor device can be formed.
[0019]
【The invention's effect】
As described above, according to the present invention, it is possible to accurately and quickly detect unevenness of the carrier substrate itself, which is an obstacle to flip-chip mounting, and protrusions due to dust, and to detect unsuitable portions. Is present, the mounting operation can be continued by skipping that part, so that a high-speed and stable semiconductor device assembling process can be realized.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of the present invention.
FIG. 2 is a schematic flowchart of the manufacturing method of the present invention.
FIG. 3 is a cross-sectional view of a flip-chip mounting type semiconductor device.
[Explanation of symbols]
1: semiconductor chip, 2: metal bump, 3: carrier substrate, 4: electrode, 5: sealing resin, 6: protrusion, 7: slit light source, 8: detector, 9: controller, 10: marking machine.

Claims (2)

半導体チップ上に設けた金属突起電極と、キャリア基板上に設けた電極とを接合し、キャリア基板上に半導体チップを実装する半導体装置の製造方法において、
前記実装工程前に、前記キャリア基板表面の凹凸の高さを、位相シフト法により検出し、得られた検出値と予め設定した基準値とを比較することにより、前記検出値が前記基準値を超える部分を識別し、該識別されたキャリア基板表面には前記半導体チップを実装しないことを特徴とする半導体装置の製造方法。
In a method of manufacturing a semiconductor device in which a metal bump electrode provided on a semiconductor chip is bonded to an electrode provided on a carrier substrate, and the semiconductor chip is mounted on the carrier substrate,
Before the mounting step, the height of the irregularities on the carrier substrate surface is detected by a phase shift method, and the detected value is compared with a preset reference value, so that the detected value is equal to the reference value. A method for manufacturing a semiconductor device, comprising: identifying a portion exceeding a portion; and not mounting the semiconductor chip on the identified carrier substrate surface.
請求項1記載の半導体装置の製造方法において、前記検出値が前記基準値を超える前記キャリア基板表面に不適合認識マークを付し、該不適合認識マークが付されたキャリア基板表面には、前記半導体チップを実装しないことを特徴とする半導体装置の製造方法。2. The method for manufacturing a semiconductor device according to claim 1, wherein a nonconformity recognition mark is provided on a surface of the carrier substrate, wherein the detected value exceeds the reference value, and the semiconductor chip is provided on the carrier substrate surface having the nonconformity recognition mark. A method of manufacturing a semiconductor device, wherein the method is not implemented.
JP2002322015A 2002-11-06 2002-11-06 Method for manufacturing semiconductor device Pending JP2004158587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322015A JP2004158587A (en) 2002-11-06 2002-11-06 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322015A JP2004158587A (en) 2002-11-06 2002-11-06 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2004158587A true JP2004158587A (en) 2004-06-03

Family

ID=32802322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322015A Pending JP2004158587A (en) 2002-11-06 2002-11-06 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2004158587A (en)

Similar Documents

Publication Publication Date Title
KR100721739B1 (en) Semiconductor device, method and apparatus for testing same, and method for manufacturing semiconductor device
JP4187718B2 (en) Probe card
KR100681772B1 (en) Method and apparatus for testing semiconductor devices
JP4324081B2 (en) Optical device
US8860456B2 (en) Non-destructive tilt data measurement to detect defective bumps
KR101285473B1 (en) Semiconductor device, and testing method and device for the same
JP3414967B2 (en) Bump inspection method
JP2008098384A (en) Method and device for manufacturing semiconductor package
JP2007157970A (en) Bonding method and bonding device
JP5551396B2 (en) Inspection probe and method of manufacturing inspection probe
JP5050995B2 (en) Bumped electronic component mounting apparatus and mounting method
JP2001176907A (en) Bump inspection device
JP2001298036A (en) Methods and devices for measuring height and position of bump, and manufacturing and packaging methods of semiconductor device
KR20200096118A (en) Semiconductor component bonding equipment
JP2004146776A (en) Machine and method for mounting flip-chip
JP2004158587A (en) Method for manufacturing semiconductor device
JP2008041758A (en) Method and apparatus for inspecting transferred state of flux
JP2012243987A (en) Semiconductor device manufacturing method
JP2009152450A (en) Method of manufacturing semiconductor device
JPH07142545A (en) Mounter for flip chip component
JPH11135572A (en) Electronic component mounting device
JP4083533B2 (en) Manufacturing method of semiconductor device
JP7282450B2 (en) Package substrate processing method
JP4485931B2 (en) Focus adjustment method
KR20090044485A (en) Equipment of flip chip bonder and method for error detection of flip chip bonding using the same