JP2004158556A - 太陽電池 - Google Patents

太陽電池 Download PDF

Info

Publication number
JP2004158556A
JP2004158556A JP2002321380A JP2002321380A JP2004158556A JP 2004158556 A JP2004158556 A JP 2004158556A JP 2002321380 A JP2002321380 A JP 2002321380A JP 2002321380 A JP2002321380 A JP 2002321380A JP 2004158556 A JP2004158556 A JP 2004158556A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
solar cell
group
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002321380A
Other languages
English (en)
Inventor
Takuya Sato
▲琢▼也 佐藤
Takayuki Negami
卓之 根上
Yasuhiro Hashimoto
泰宏 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002321380A priority Critical patent/JP2004158556A/ja
Publication of JP2004158556A publication Critical patent/JP2004158556A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】Ib族元素とIIIb族元素とVIb族元素とを含むカルコパイライト構造の半導体を光吸収層に用いた特性が高い太陽電池を提供する。
【解決手段】導電層(第1の電極層)12と、光吸収層13として機能する化合物半導体層と、窓層と、透明導電層(第2の電極層)16とをこの順序で含む。光吸収層13は、Ib族元素とIIIb族元素とVIb族元素とを含むカルコパイライト構造の半導体で且つNaが添加された化合物半導体からなり、上記化合物半導体はIIIb族元素としてGaを含む。光吸収層13におけるNaとGaの濃度は、それぞれ、上記窓層側の表面が最も高く、導電層12側に向かって低下したのち、増大し、上記表面における濃度よりも低い濃度で一定となる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池に関する。
【0002】
【従来の技術】
Cu(In,Ga)Se(以下、CIGSと記述する)に代表されるカルコパイライト構造を有する化合物半導体を光吸収層に用いた太陽電池が高い変換効率を示すことが知られている。特に、膜厚方向へのバンドギャップに2段階の傾斜を持たせたCIGSを用いることによって、特性が高い太陽電池が得られることが知られている。このCIGS膜では、窓層側から裏面電極側に向かって最初はバンドギャップが減少しその後にバンドギャップが増加する、いわゆるダブルグレーデッドといわれる構造が用いられている(たとえば非特許文献1参照)。
【0003】
【非特許文献1】
ティー.ダルウィーバー(T. Dullweber), 「ア ニュー アプローチ トゥー ハイ−イフィシャンシー ソーラー セル バイ バンドギャップ グレーディング イン Cu(In,Ga)Se カルコパイライト セミコンダクターズ」(A new approach to high−efficiency solar cells by band gapgrading in Cu(In,Ga)Se chalcopyrite semiconductors), 「ソーラー エナジー マテリアル アンド ソーラー セルズ」(Solar Energy Materials& Solar Cells), Vol.67, p.145−150(2001)
【0004】
【発明が解決しようとする課題】
カルコパイライト構造の化合物半導体を用いた太陽電池では、特性のさらなる向上が求められている。
【0005】
このような状況に鑑み、本発明は、上記半導体を用いた特性が高い太陽電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の太陽電池は、第1の電極層と、光吸収層として機能する化合物半導体層と、窓層と、第2の電極層とをこの順序で含む太陽電池であって、前記化合物半導体層は、Ib族元素とIIIb族元素とVIb族元素とを含むカルコパイライト構造の半導体で且つNaが添加された化合物半導体からなり、前記化合物半導体は前記IIIb族元素としてGaを含み、前記化合物半導体層における前記Naと前記Gaの濃度は、それぞれ、前記窓層側の表面が最も高く、前記第1の電極層側に向かって低下したのち、増大し、前記表面における濃度よりも低い濃度で一定となることを特徴とする。この太陽電池によれば、変換効率などの特性が高い太陽電池が得られる。
【0007】
上記太陽電池では、前記化合物半導体層の厚さをDとしたときに、前記化合物半導体層における前記Naと前記Gaの濃度は、前記化合物半導体層の前記窓層側の表面からD/6〜D/3の範囲において最も低くなることが好ましい。
【0008】
上記太陽電池では、金属からなる基板上に形成されていてもよい。
【0009】
上記太陽電池では、前記化合物半導体が、SeおよびSから選ばれる少なくとも1つの元素と、Cuとを含んでもよい。この場合、前記化合物半導体が、InおよびAlから選ばれる少なくとも1つの元素をさらに含んでもよい。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。本発明の太陽電池の一例として、太陽電池10の断面図を図1に示す。
【0011】
図1を参照して、太陽電池10は、少なくとも一方の表面が絶縁性である基板11と、基板11上に順に形成された導電層(第1の電極層)12、光吸収層13、第1の半導体層14、第2の半導体層15および透明導電層(第2の電極層)16と、導電層12上に形成された取り出し電極17と、透明導電層16上に形成された取り出し電極18とを備える。第1の半導体層14および第2の半導体層15は、いわゆる窓層として機能し、光吸収層とともに接合を形成する。
【0012】
基板11は、絶縁性の材料で形成でき、たとえばガラス基板やポリイミド基板を用いることができる。また、基板11には、表面が絶縁処理された導電性の基板、または表面に絶縁膜が形成された導電性の基板を用いることもできる。導電性の基板としては、たとえば、ステンレスの薄板や、デュラルミンなどのアルミニウム合金の薄板を用いることができる。絶縁処理としては、たとえば酸化処理を適用できる。また、表面に形成する絶縁膜としては、たとえばSiO、Al、TiOを用いることができる。
【0013】
導電層12は、裏面側の電極である。導電層12は、金属で形成でき、たとえばMoを用いて形成できる。
【0014】
光吸収層13は、導電層12の上方に配置される。光吸収層13は、Ib族元素とIIIb族元素とVIb族元素とを含むカルコパイライト構造の半導体で且つNaが添加された化合物半導体からなる。カルコパイライト構造の半導体とは、カルコパイライト(chalcopyrite)と同様の結晶構造を有する半導体を意味する。この化合物半導体は、IIIb族元素として少なくともGaを含み、さらにInおよびAlから選ばれる少なくとも1つの元素を含んでもよい。Ib属元素には、たとえばCuを用いることができ、VIb属元素には、SeおよびSから選ばれる少なくとも1つの元素を用いることができる。たとえば、Cu(In,Ga)Se、Cu(Al,Ga)Se、Cu(In,Ga)(Se,S)といった化合物半導体にさらにNaを添加した化合物半導体を用いることができる。
【0015】
光吸収層13の厚さD(μm)は、たとえば0.5μm〜3.0μmの範囲である。光吸収層13におけるNaとGaの濃度(原子%)は、それぞれ、窓層14側の表面が最も高く、導電層層12側に向かって低下したのち、増大し、窓層14側の表面における濃度よりも低い濃度で一定となる。ここで、一定とは、濃度が、±2原子%の範囲内にあることを意味する。Naの濃度およびGaの濃度は、それぞれ、光吸収層13の厚さをDとしたときに、光吸収層13の窓層14側の表面からD/6〜D/3の範囲において最も低くなることが好ましい。
【0016】
NaおよびGaのこのような濃度分布は、実施例に示す製造方法によって実現できる。この方法では、導電層12と光吸収層13との間に、Naを含む層(たとえばNaF)層を形成する。その後、Naを含む層上に、Gaを含むIIIb族元素と、Ib族元素と、VIb族元素とを、それらの圧力を制御しながら蒸着する。各元素の圧力を一定に保ちながら一定の時間蒸着したのち、蒸着を続けながらGaの圧力を徐々に減少させ、Inの圧力を徐々に増加させる。この蒸着によって、Ib族元素とIIIb族元素とVIb族元素とからなる化合物半導体を基本構造とし、さらにNaが添加された化合物半導体層が形成される。Naは、下地のNaを含む層から供給される。この方法によれば、上述したようなGaとNaの濃度分布を実現できる。
【0017】
第1の半導体層14は、Znを含む化合物や、CdSで形成できる。Znを含む化合物としては、たとえば、Zn(O,S)や、ZnMgOなどを用いることができる。第2の半導体層15は、ZnO、またはZnOを含む材料によって形成できる。透明導電層16は、AlなどのIII族元素をドープしたZnOや、ITO(Indium Tin Oxide)を用いて形成できる。取り出し電極17および18は、導電性が高い金属を用いて形成できる。
【0018】
なお、太陽電池10は、本発明の太陽電池の一例であり、本発明の太陽電池は太陽電池10に限定されない。たとえば、第2の半導体層15は省略してもよい。また、導電層12と光吸収層13との間に、光吸収層にNaを供給するための層を備えてもよい。そのような層としては、NaF層やNaS層などを用いることができる。
【0019】
【実施例】
以下、実施例を用いて本発明をさらに詳細に説明する。
【0020】
まず、基板11として、Alでコートされたステンレス基板(厚さ:0.1mm)を準備した。次に、このステンレス基板上に、RFスパッタリングによってMo層(導電層12)を形成した。Mo層を形成する際には、スパッタ圧力を2.6Pa(2×10−2Torr)とした。Mo層の厚さは0.5μmとした。
【0021】
次に、RFスパッタリングによって、Mo層上にNaF層を堆積させた。NaF層の厚さは0.1μmとした。
【0022】
次に、以下に示す多元蒸着法によって、NaF層上にCu(In,Ga)Seを基本構造とする化合物半導体層(光吸収層13)を形成した。
【0023】
まず、電離真空計で圧力を制御しながら、Seの圧力を2.66×10−3Pa(2×10−5Torr)とし、Inの圧力を1.06×10−4Pa(8×10−7Torr)とし、Gaの圧力を3.99×10−5Pa(3×10−7Torr)とし、Cuの圧力が3.99×10−5Pa(3×10−7Torr)として、NaF層上にSeとInとGaとCuとを25分間堆積させた。その後、Inの圧力が2.13×10−3Pa(1.6×10−6Torr)となるように、且つGaの圧力を2.00×10−5Pa(1.5×10−7Torr)となるように徐々にInとGaのフラックスを制御しながら、さらにSeとInとGaとCuとを15分間堆積させた。このようにして、Cu(In,Ga)Seを基本構造とする化合物半導体層を40分間で形成した。なお、基板温度は500℃で一定に保った。
【0024】
このようにして作製したサンプルについて、二次イオン質量分析装置によって分析した結果を図2に示す。図2の横軸は、分析時のスパッタリング時間を示し、化合物半導体層の厚さ方向の位置に対応する。すなわち、スパッタリング時間が0の部分は、化合物半導体層の最表面に対応し、スパッタリング時間が約320秒の部分は、Cu(In,Ga)Se層とNaF層との界面に対応する。図2に示すように、化合物半導体層には、下地のNaF層からNaが拡散していた。そして、NaとGaの原子濃度は、化合物半導体層の最表面で最も高く、その後、基板側に向かって低下したのち、増大し、最表面における濃度よりも低い濃度で一定となった。このとき、濃度が最も低くなった箇所は、化合物半導体層の厚さをDとしたときに、化合物半導体層の最表面から約0.2D程度の深さであった。また、化合物半導体層の最表面から約0.5Dの深さから1Dの深さ(化合物半導体層の基板側の表面に対応)までは、NaとGaの原子濃度は、ほぼ一定であった。
【0025】
次に、二次イオン質量分析を行ったものと同様のサンプルを作製し、化学浴析出法によって、化合物半導体層上にCdS層(第1の半導体層14)を形成し、これによってpn接合を形成した。次に、ZnO層(第2の半導体層15)と、ITO層(透明導電層16)とをスパッタリング法で順次形成した。最後に、Auからなる取り出し電極を形成した。このようにして、実施形態1の太陽電池を作製した。一方、比較例として、NaF層を形成しないことを除いては上記の実施例と全く同様の方法で太陽電池を作製した。この比較例の太陽電池では、化合物半導体層中にNaが添加されていない。
【0026】
作製した2つの太陽電池について、Air Mass(AM)=1.5、100mW/cmの擬似太陽光を用いて特性を測定した。結果を表1に示す。
【0027】
【表1】
Figure 2004158556
【0028】
表1から明らかなように、本発明の実施例の太陽電池は、良好な特性を示した。
【0029】
以上、本発明の実施の形態について例を挙げて説明したが、本発明は、上記実施の形態に限定されず本発明の技術的思想に基づき他の実施形態に適用することができる。
【0030】
【発明の効果】
以上説明したように、本発明の太陽電池によれば、特性が高い太陽電池が得られる。
【図面の簡単な説明】
【図1】本発明の太陽電池の一例を示す断面図である。
【図2】本発明の太陽電池の光吸収層について二次イオン質量分析法の測定結果の一例を示す図である。
【符号の説明】
10 太陽電池
11 基板
12 導電層(第1の電極層)
13 光吸収層(化合物半導体層)
14 第1の半導体層
15 第2の半導体層
16 透明導電層(第2の電極層)
17、18 取り出し電極

Claims (5)

  1. 第1の電極層と、光吸収層として機能する化合物半導体層と、窓層と、第2の電極層とをこの順序で含む太陽電池であって、
    前記化合物半導体層は、Ib族元素とIIIb族元素とVIb族元素とを含むカルコパイライト構造の半導体で且つNaが添加された化合物半導体からなり、
    前記化合物半導体は前記IIIb族元素としてGaを含み、
    前記化合物半導体層における前記Naと前記Gaの濃度は、それぞれ、前記窓層側の表面が最も高く、前記第1の電極層側に向かって低下したのち、増大し、前記表面における濃度よりも低い濃度で一定となることを特徴とする太陽電池。
  2. 前記化合物半導体層の厚さをDとしたときに、前記化合物半導体層における前記Naと前記Gaの濃度は、前記化合物半導体層の前記窓層側の表面からD/6〜D/3の範囲において最も低くなる請求項1に記載の太陽電池。
  3. 金属からなる基板上に形成されていることを特徴とする請求項1または2に記載の太陽電池。
  4. 前記化合物半導体が、SeおよびSから選ばれる少なくとも1つの元素と、Cuとを含む請求項1ないし3のいずれかに記載の太陽電池。
  5. 前記化合物半導体が、InおよびAlから選ばれる少なくとも1つの元素をさらに含む請求項4に記載の太陽電池。
JP2002321380A 2002-11-05 2002-11-05 太陽電池 Withdrawn JP2004158556A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321380A JP2004158556A (ja) 2002-11-05 2002-11-05 太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321380A JP2004158556A (ja) 2002-11-05 2002-11-05 太陽電池

Publications (1)

Publication Number Publication Date
JP2004158556A true JP2004158556A (ja) 2004-06-03

Family

ID=32801952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321380A Withdrawn JP2004158556A (ja) 2002-11-05 2002-11-05 太陽電池

Country Status (1)

Country Link
JP (1) JP2004158556A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041657A1 (ja) 2007-09-28 2009-04-02 Fujifilm Corporation 太陽電池用基板および太陽電池
WO2010114159A1 (en) * 2009-03-30 2010-10-07 Fujifilm Corporation Photoelectric conversion device and manufacturing method thereof, solar cell, and target
WO2011040645A1 (en) * 2009-09-30 2011-04-07 Fujifilm Corporation Photoelectric conversion device, method for producing the same, and solar battery
EP2309548A2 (en) 2009-10-09 2011-04-13 FUJIFILM Corporation Photoelectric conversion device, method for producing the same and solar battery
US8415557B2 (en) 2009-03-09 2013-04-09 Fujifilm Corporation Photoelectric conversion device and solar cell using the photoelectric conversion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041657A1 (ja) 2007-09-28 2009-04-02 Fujifilm Corporation 太陽電池用基板および太陽電池
US8415557B2 (en) 2009-03-09 2013-04-09 Fujifilm Corporation Photoelectric conversion device and solar cell using the photoelectric conversion device
WO2010114159A1 (en) * 2009-03-30 2010-10-07 Fujifilm Corporation Photoelectric conversion device and manufacturing method thereof, solar cell, and target
JP2010258429A (ja) * 2009-03-30 2010-11-11 Fujifilm Corp 光電変換素子とその製造方法、太陽電池、及びターゲット
WO2011040645A1 (en) * 2009-09-30 2011-04-07 Fujifilm Corporation Photoelectric conversion device, method for producing the same, and solar battery
EP2309548A2 (en) 2009-10-09 2011-04-13 FUJIFILM Corporation Photoelectric conversion device, method for producing the same and solar battery

Similar Documents

Publication Publication Date Title
US6534704B2 (en) Solar cell
Tiwari et al. CdTe solar cell in a novel configuration
US7741560B2 (en) Chalcopyrite solar cell
JP6096790B2 (ja) 光電池のための導電性基材
JPH08222750A (ja) 基板上に太陽電池を製造する方法及びカルコパイライト吸収層を有する太陽電池
WO2004090995A1 (ja) 太陽電池
AU2011226881B2 (en) Photovoltaic device and method for making
EP2485272A2 (en) Solar power generation apparatus and manufacturing method thereof
WO2011158841A1 (ja) Cigs型の太陽電池およびそのための電極付きガラス基板
JP2001339081A (ja) 太陽電池およびその製造方法
JP2006080370A (ja) 太陽電池
JP2001044464A (ja) Ib―IIIb―VIb2族化合物半導体層の形成方法、薄膜太陽電池の製造方法
US9614111B2 (en) CIGS film, and CIGS solar cell employing the same
JP2007059484A (ja) 太陽電池の製造方法および太陽電池
JP6015994B2 (ja) 光学素子及びその製造方法
EP2383792A2 (en) Cadmium Sulfide Layers for Use in Cadmium Telluride Based Thin Film Photovoltaic Devices and Methods of their Manufacture
KR101734362B1 (ko) Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법
Sood et al. Electrical barriers and their elimination by tuning (Zn, Mg) O buffer composition in Cu (In, Ga) S2 solar cells: systematic approach to achieve over 14% power conversion efficiency
JP2004158556A (ja) 太陽電池
JP6297038B2 (ja) 薄膜太陽電池及び薄膜太陽電池の製造方法
US9147794B2 (en) Three terminal thin film photovoltaic module and their methods of manufacture
JP2006080371A (ja) 太陽電池及びその製造方法
EP2437289A2 (en) Photovoltaic device and method for making
WO2014080639A1 (ja) 太陽電池
US20170373213A1 (en) Photovoltaic devices with improved n-type partner and methods for making the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110