JP2004158396A - Conductor connection method and conductor connection structure - Google Patents

Conductor connection method and conductor connection structure Download PDF

Info

Publication number
JP2004158396A
JP2004158396A JP2002325570A JP2002325570A JP2004158396A JP 2004158396 A JP2004158396 A JP 2004158396A JP 2002325570 A JP2002325570 A JP 2002325570A JP 2002325570 A JP2002325570 A JP 2002325570A JP 2004158396 A JP2004158396 A JP 2004158396A
Authority
JP
Japan
Prior art keywords
electrodes
resin
electrode
conductive connection
conductor connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002325570A
Other languages
Japanese (ja)
Inventor
Takuo Suzuki
卓夫 鈴木
Koji Watabe
功治 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002325570A priority Critical patent/JP2004158396A/en
Publication of JP2004158396A publication Critical patent/JP2004158396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multi-Conductor Connections (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductor connection method and a conductor connection structure with improving reliability of connection by preventing the generation of oxide film on an electrode to be pressed for connection contact, and stopping the growth of the oxide film. <P>SOLUTION: As for the conductor connection method and the conductor connection structure, a reducing material or an antioxidant is adhered to either or both of electrodes of micro electrodes to be pressed for connection contact, and the electrodes are made of plated particles having resin core, and the electrodes are fixed by an adhesive agent. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、微細電極の導通接続方法及びこれにより得られた導電接続構造体に関する。
【0002】
【従来の技術】
液晶ディスプレー、パーソナルコンピュータ、携帯通信機器等のエレクトロニクス製品では、半導体素子等の小型部品を基板に電気的に接続したり、基板同士を電気的に接続するなど対向する微細な電極を接続している。微細な電極は金属バンプ等を用いハンダや導電ペーストで接続したり、金属バンプ等を直接圧着したりする方法で接続されている。
【0003】
対向する微細な電極を接続する方法では、低温低圧で接続できるため部品を損傷しにくく低コストで接続できることから接触型の導電接続方法が増えてきている。例えば、金属バンプ電極をシート状の接着剤を介して直接圧着して接続する方法が挙げられる。しかし、接触型の導電接続方法はハンダ等の合金接合に比べると高温高湿環境下において接着力が持続しにくく接続信頼性が著しく低いといった問題があった。
【0004】
このような問題点を解決する方法として、部品全体を封止樹脂に封入したり、導電性微粒子を含む接着剤で強固に接着する方法がある。例えば、特開昭63―231889号公報、特開平4―259766号公報等があげられる。また、導電性微粒子を対向する電極ではさんで電極間を接続したり、導電ペーストを固め表面に金メッキを施した接続材料を電極間にはさんで電極間を接続するなど接続信頼性をより高める方法もある。
【0005】
しかし、一定の効果は得られるものの信頼性を著しく改善できるものではなかった。本発明者らは、高温高湿環境下において接続信頼性が低下する最大の原因は接触する電極表面に金属酸化膜が形成されているためであることを見出した。通常、電極表面には薄い金属酸化膜が存在しており、電極を接続する際に押圧により酸化膜が破れ導通するものと考えられていたが、実際には導通部分に残った酸化膜がしだいに成長するため接続信頼性が低下することを見出した。この現象は電極表面がたとえ金であっても発生することも見出された。
【0006】
【発明が解決しようとする課題】
本発明は、上記に鑑み、電極表面に存在する酸化膜を発生させない、あるいは成長させない導電接続方法を提供することにより接続信頼性の高い導電接続構造体を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明では、押圧接触接続させる微細電極の片方または両方の電極に還元材または酸化防止材を付着させる。また、少なくとも片方の電極が樹脂成分を含み、電極が樹脂コアを持つメッキ粒子とする。更に、少なくとも片方の電極表面がアルミとする。そして、上記接続方法を用いて接続してなる導電接続構造体と電極間の固定を接着剤により行う接続方法であり及び導電接続構造体である。
【0008】
本発明の導電接続方法は、押圧接触接続させる微細電極の片方または両方の電極に還元材または酸化防止材を付着させる。
【0009】
本発明で用いる還元材または酸化防止材としては、例えば、フェノール系酸化防止剤;2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール(BHA)、ビスフェノール系酸化防止剤;2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、高分子型フェノール系酸化防止剤;1,1,3−トリス(2−)メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、トコフェロール、硫黄系酸化防止剤;ジラウリル3,3’−チオジプロピネート、リン系酸化防止剤;トリフェニルホスファイト、芳香族アミン;ジフェニルアミン、フェニレンジアミン誘導体、亜燐酸エステル;亜燐酸トリフェニルや二酸化チオ尿素、ジエチルヒドロキシルアミン、ヒドロキシキノン等のキノン類が挙げられるが、これらの混合物や含有物でも良く、還元作用や酸化防止作用があるものであれば特にこれらに限定されるものではない。
【0010】
上記微細電極は少なくとも片方の電極が導電性微粒子を含む樹脂であることが好ましい。両方の電極が金属電極であると接触時に弾性反発がすくなく電極間に隙間が生まれ導通不良を起こす可能性があるが、樹脂を含む電極材料は電極に弾性があるため隙間が生まれにくい。導電性微粒子を含む樹脂である電極とは特に限定されるものではないが、例えば導電ペーストを固め金属メッキを施した電極材料などが挙げられる。また、樹脂に金属メッキを施した電極材料なども電極に弾性があるため隙間が生まれにくく好ましい。特に金属メッキが施された樹脂微粒子は、対向する電極間の間にはさんだ場合は電極材料でありながら対向する電極間を接続するギャップ調整材として用いることもでき好ましい。
【0011】
なお、微細電極を接続するという観点から金属メッキが施された樹脂微粒子の平均粒径は、15〜300μmであることが好ましく、より好ましくは30〜150μmである。
【0012】
また、金属メッキが施された樹脂微粒子のアスペクト比はギャップ間を均一に保つという点から1.2未満であることが好ましく、より好ましくは1.05未満である。ここでいうアスペクト比とは粒子の平均長径を平均短径で割った値である。
【0013】
金属メッキが施された樹脂微粒子のCV値は5%以下であることが好ましく、より好ましくは1%以下である。CV値が5%を超えるとギャップ間を均一に保つことが困難となる。CV値は、(σ/Dn)×100%(σは粒子径の標準偏差を表し、Dnは数平均粒子径を表す)で表される。
【0014】
なお、樹脂微粒子としては、例えば、フェノール樹脂、アミノ樹脂、アクリル樹脂、エチレン−酢酸ビニル樹脂、スチレン−ブタジエンブロック共重合体、ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、ポリイミド樹脂、ウレタン樹脂、エポキシ樹脂等の熱可塑性樹脂や、熱硬化性樹脂、光硬化性樹脂などの硬化性樹脂、架橋樹脂、有機無機ハイブリッド重合体などからなる粒子が挙げられる。これらのうち、耐熱性に優れることから微粒子は架橋樹脂であることが好ましい。また、必要に応じて樹脂微粒子は充填材を含んでいてもよい。
【0015】
電極間が接着されている場合は、ペースト状の接着剤で接着されていてもシート状の接着剤で接着されていてもよい。例えば、フェノール樹脂、アミノ樹脂、アクリル樹脂、エチレン−酢酸ビニル樹脂、スチレン−ブタジエンブロック共重合体、ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、ポリイミド樹脂、ウレタン樹脂、エポキシ樹脂等の熱可塑性樹脂や、熱硬化性樹脂、光硬化性樹脂などの硬化性樹脂、架橋樹脂、有機無機ハイブリッド重合体等を用いた接着剤が挙げられる。これらのうち、不純物が少なく電極の接続に適した特性を有する点からエポキシ樹脂を用いた接着剤が特に好ましい。なお、未硬化のエポキシ樹脂だけでなく半硬化状態のエポキシ樹脂を含む接着剤を用いてもよい。また、接着剤は必要に応じてガラス繊維やアルミナ粒子等の補強材を含んでいてもよい。
なかでも、熱硬化性樹脂を用いた接着剤は加熱しながら押しつけることにより強固な接着力が得られ接続信頼性が高く好ましい。
【0016】
本発明の導電接続方法の用途としては特に限定されず、例えば、液晶ディスプレー、パーソナルコンピュータ、携帯通信機器等のエレクトロニクス製品における、半導体素子等の小型部品と基板の接続、基板同士の接続、対向する微細な電極端子の接続に好適である。
【0017】
より具体的には例えば、IC、LSI等の半導体等の能動部品;コンデンサ、水晶振動子等の受動部品;ベアチップ等と基板の接続が挙げられる。特に、本発明の導電接続方法は、ベアチップ同士もしくはベアチップと基板とを接続する方法として好適である。
【0018】
電極の形状としては特に限定されず、例えば、縞状、ドット状、任意形状のもの等が挙げられる。電極の材質としては、例えば、金、銀、銅、ニッケル、パラジウム、カーボン、アルミニウム、ITO等が挙げられる。接触抵抗を低減させるために、銅、ニッケル等の上に更に金を被覆されていてもよい。電極の厚みは、0.1〜300μmが好ましい。電極の幅は、1〜500μmが好ましい。
【0019】
ICチップ等の電極には種々の事情から通常アルミ電極が用いられるが、アルミ電極は表面の酸化が早いため、電極に還元作用を与える本発明の接続方法は、少なくとも片方の電極表面がアルミである場合に特に好ましい。さらに、電極を接触させ接続する場合は電極同士を常に一定以上の力で押しつけておく必要があることから電極間を接着して固定することが好ましい。
【0020】
本発明の導電接続方法において還元材または酸化防止材を電極に付着させる方法としては、例えば、電極に直接シリンジなどを用いて少量付着させる方法や表面に電極が形成された基板又は部品の電極の位置に孔の空いたフィルムを乗せスキージで付着させる方法があげられる。また、溶液または分散液としてインクジェット方式または印刷により付着させる方法もあげられる。少量を均一に付着させることができる点で優れている。
【0021】
(実施例)
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
(実施例1)
0.2μmのニッケルメッキが施された樹脂微粒子に更に金を1.3μm電気メッキした。得られた粒子を分級し平均粒径100μm、アスペクト比1.03、CV値1%、回復率60%、抵抗値0.01Ωの金属被覆微粒子を得た。また、厚さ80μmの熱硬化性エポキシ樹脂テープにICチップの電極位置に合うように約200μmのピッチで160個の穴を空けた。穴はCO2レーザーを用いて表面が130μmであり裏面が80μmであるテーパー状の穴を空けた。また、CV値2%、アスペクト比1.04の穴を空けた。この穴に金属被覆微粒子を配置しテープに埋め込み導電接続テープを得た。電極パターンが描かれた回路基板(「FR−4」)の電極位置と導電接続テープの金属被覆微粒子の位置を合わせ軽く押しつけ仮固定した。
【0022】
アルミ電極にブチル化ヒドロキシアニソールのエタノール溶液をICテストチップ(10mm角、電極は0.1mm角、配線はデイジーチェーン状)の電極に塗布し乾燥させたあと、ICテストチップの電極と金属被覆微粒子の位置を合わせ1mあたり4kgの圧力で加熱しながら圧着し、エポキシ樹脂シートを硬化させ導電接続を行った。
【0023】
これにより得られた接続構造体は、全ての電極で安定した導通が得られ、隣接する電極間でのリークもなく、デイジーチェーン状の配線部分の抵抗は配線抵抗を入れても約30Ωと低抵抗であった。また、冷熱サイクルテストを1000サイクル(−40℃〜125℃、各30分)と高温高湿テストを500時間(85℃、85%)を行ったが、全ての電極で安定した導通が維持されており隣接電極間でのリークもなく、デイジーチェーン状の配線部分の抵抗もほとんど変化が見られず高い接続信頼性が得られた。
【0024】
(実施例2)
回路基板(「FR−4」)の電極上に銀ペーストを印刷し加熱してペーストを硬化させた。硬化したペーストの上に更に金メッキを施した。一方、シリンジを用いてICテストチップの電極にトコフェロールを付着させた。ついで、電極を熱硬化性エポキシ樹脂シートを介して対向するよう位置を合わせ加熱しながら圧着し、エポキシ樹脂に電極を埋め込みつつ電極同士を接触させ接続した。得られた接続構造体は、全ての電極で安定した導通が維持されており隣接電極でのリークもなく、デイジーチェーン状の配線部分の抵抗は配線抵抗を入れても約30Ωと低抵抗であった。また、冷熱サイクルテストを1000サイクル(−40℃〜125℃、各30分)と高温高湿テストを500時間(85℃、85%)を行ったが全ての電極で安定した導通がとれ隣接電極でのリークもなく、デイジーチェーン状の抵抗部分の抵抗は若干上昇したもののわずかであり高い接続信頼性が得られた。
【0025】
(実施例3)
回路基板(「FR−4」)の電極上にジフェニルアミンを付着させた。この基板と、アルミ電極に金ワイヤーを接続したICテストチップのスタッドバンプを熱硬化性エポキシ樹脂テープを介して対向させ加熱しながら圧着し、エポキシ樹脂に電極を埋め込ませつつ電極同士を接触させて接続した。得られた接続構造体は、全ての電極で安定した導通が維持さて隣接電極でのリークもなく、デイジーチェーン状の配線部分の抵抗は配線抵抗を入れて約30Ωと低抵抗であった。また、高温高湿テスト500時間(85℃、85%)を行ったが全ての電極で安定した導通が維持され隣接電極でのリークもなく、デイジーチェーン状の配線部分の抵抗は若干上昇したもののほとんど変わらなかった。冷熱サイクルテストを1000サイクル(−40℃〜125℃、各30分)おこなったところ、800サイクルで導通不良が発生したものの、−25℃〜110℃の条件では1000サイクルでも導通不良は発生せず液晶分野等の使用では十分に実使用に耐えられるものと判断された。
【0026】
(比較例1)
アルミ電極にブチル化ヒドロキシアニソールを塗布されていないICテストチップを用いたこと以外は実施例1と同様に行って導電接続構造体を作成した。
【0027】
得られた導電接続構造体は全ての電極で安定した導通が維持され隣接電極でのリークもなかったが、デイジーチェーン状の配線部分の抵抗は配線抵抗を入れると約40Ωであり高い抵抗値となった。また、冷熱サイクルテストを1000サイクル(−40℃〜125℃、各30分)と高温高湿テストを500時間(85℃、85%)を行ったが、徐々に抵抗値が上がり冷熱サイクルでは500サイクルで抵抗値が初期に比べて1.5倍以上となり、高温高湿テストでは200時間で初期の抵抗値に比べて1.5倍以上となった。
【0028】
(比較例2)
電極にトコフェロールを付着させないことを除いては実施例2と同様に行って導電接続構造体を作成した。全ての電極で安定した導通が維持され隣接電極でのリークもなかったが、デイジーチェーン状の配線部分の抵抗は配線抵抗を入れると約40Ωとなり高い抵抗値となった。また、冷熱サイクルテストを1000サイクル(−40℃〜125℃、各30分)と高温高湿テストを500時間(85℃、85%)を行ったが、徐々に抵抗値が上がり冷熱サイクルでは100サイクルで初期の抵抗値に比べて1.5倍以上となり、高温高湿テストでは50時間で初期の抵抗値に比べて1.5倍以上になった。
【0029】
(比較例3)
回路基板(「FR−4」)の電極上にジフェニルアミンを付着させないこと以外は同様に行って導電接続構造体を作成した。全ての電極で安定した導通が維持され隣接電極でのリークもなかったが、デイジーチェーン状の抵抗は配線抵抗を入れて約30Ωと低抵抗であった。また、冷熱サイクルテストを1000サイクル(−40℃〜125℃、各30分)と高温高湿テストを500時間(85℃、85%)を行ったが、徐々に抵抗値が上がり冷熱サイクルでは100サイクルで、高温高湿テストでは100時間で導通不良が発生した。冷熱サイクルテストについては、−25℃〜110℃の条件でもテストを行ったが、500サイクルで導通不良が発生した。
【0030】
【発明の効果】
本発明の導電接続方法により信頼性の高い導電接続構造体が得られる。
また、少なくとも片方の微細電極が導電性微粒子を含む樹脂である場合は、接触時に弾性反発により、小さなギャップの変化による導通不良を防止できる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for electrically connecting fine electrodes and a conductive connection structure obtained by the method.
[0002]
[Prior art]
In electronic products such as liquid crystal displays, personal computers, and mobile communication devices, opposing fine electrodes are connected, such as electrically connecting small components such as semiconductor elements to substrates, or electrically connecting substrates. . The fine electrodes are connected by using a metal bump or the like with a solder or a conductive paste, or by directly pressing the metal bump or the like.
[0003]
In the method of connecting opposing fine electrodes, contact-type conductive connection methods have been increasing because they can be connected at low temperature and low pressure and can be connected at low cost without damaging components. For example, there is a method of connecting the metal bump electrodes by directly pressing them via a sheet-like adhesive. However, the contact-type conductive connection method has a problem in that the adhesive force is hardly maintained in a high-temperature and high-humidity environment and connection reliability is extremely low as compared with alloy bonding such as solder.
[0004]
As a method of solving such a problem, there is a method of enclosing the entire part in a sealing resin or firmly bonding with an adhesive containing conductive fine particles. For example, JP-A-63-231889 and JP-A-4-259766 can be mentioned. Further, the connection reliability is further improved by connecting the electrodes by sandwiching the conductive fine particles between the electrodes facing each other, or connecting the electrodes by sandwiching the conductive paste between the electrodes with a conductive paste solidified between the electrodes. There are ways.
[0005]
However, although a certain effect is obtained, the reliability cannot be remarkably improved. The present inventors have found that the greatest cause of the decrease in connection reliability under a high-temperature and high-humidity environment is that a metal oxide film is formed on the surface of the contacting electrode. Usually, a thin metal oxide film exists on the electrode surface, and it was thought that the oxide film was broken by the pressure when connecting the electrodes, and it was thought that the oxide film would be conductive. It has been found that the connection reliability decreases due to the growth of the connection. It has also been found that this phenomenon occurs even if the electrode surface is gold.
[0006]
[Problems to be solved by the invention]
In view of the above, an object of the present invention is to provide a conductive connection structure having high connection reliability by providing a conductive connection method that does not generate or grow an oxide film present on an electrode surface.
[Means for Solving the Problems]
[0007]
In the present invention, a reducing agent or an antioxidant is attached to one or both of the fine electrodes to be pressed and connected. Further, at least one of the electrodes contains a resin component, and the electrodes are plated particles having a resin core. Further, at least one electrode surface is made of aluminum. A conductive connection structure and a conductive connection structure in which an electrode is used to fix the conductive connection structure formed using the above-described connection method and an electrode.
[0008]
In the conductive connection method of the present invention, a reducing agent or an antioxidant is attached to one or both of the fine electrodes to be pressed and connected.
[0009]
Examples of the reducing agent or antioxidant used in the present invention include phenolic antioxidants; 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole (BHA), bisphenol antioxidants; 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), high-molecular-weight phenolic antioxidant; 1,1,3- Tris (2-) methyl-4-hydroxy-5-t-butylphenyl) butane, tocopherol, sulfur antioxidant; dilauryl 3,3'-thiodipropionate, phosphorus antioxidant; triphenyl phosphite, aroma Aromatic amines: diphenylamine, phenylenediamine derivatives, phosphites; triphenyl phosphite, thiourea dioxide, diethylhydrogen Shiruamin, although quinones such as hydroxy quinone may be mentioned, may be a mixture thereof or inclusions, there is no particular limitation as long as there is a reduction action and antioxidant action.
[0010]
It is preferable that at least one of the fine electrodes is a resin containing conductive fine particles. If both electrodes are metal electrodes, there is a possibility that a gap is formed between the electrodes due to a small elastic repulsion at the time of contact, causing a conduction failure. However, a gap is hard to be formed because the electrode material containing resin has elasticity of the electrodes. The electrode that is a resin containing conductive fine particles is not particularly limited, and examples thereof include an electrode material obtained by solidifying a conductive paste and performing metal plating. Also, an electrode material made of resin-plated metal or the like is preferable since a gap is not easily formed because the electrode has elasticity. In particular, when the metal fine particles are sandwiched between opposing electrodes, the resin fine particles can be used as a gap adjusting material for connecting the opposing electrodes while being an electrode material.
[0011]
In addition, from the viewpoint of connecting the fine electrodes, the average particle diameter of the metal fine-plated resin fine particles is preferably 15 to 300 μm, and more preferably 30 to 150 μm.
[0012]
In addition, the aspect ratio of the metal-plated resin fine particles is preferably less than 1.2, more preferably less than 1.05, from the viewpoint of keeping the gap uniform. Here, the aspect ratio is a value obtained by dividing the average major axis by the average minor axis.
[0013]
The CV value of the metal fine-plated resin fine particles is preferably 5% or less, more preferably 1% or less. If the CV value exceeds 5%, it becomes difficult to keep the gap uniform. The CV value is represented by (σ / Dn) × 100% (σ represents the standard deviation of the particle diameter, and Dn represents the number average particle diameter).
[0014]
In addition, as resin fine particles, for example, phenol resin, amino resin, acrylic resin, ethylene-vinyl acetate resin, styrene-butadiene block copolymer, polyester resin, urea resin, melamine resin, alkyd resin, polyimide resin, urethane resin, Examples include particles made of a thermoplastic resin such as an epoxy resin, a curable resin such as a thermosetting resin or a photocurable resin, a crosslinked resin, and an organic-inorganic hybrid polymer. Among these, the fine particles are preferably a crosslinked resin because of their excellent heat resistance. In addition, the resin fine particles may include a filler as needed.
[0015]
When the electrodes are bonded, they may be bonded with a paste adhesive or a sheet adhesive. For example, thermoplastic resins such as phenolic resins, amino resins, acrylic resins, ethylene-vinyl acetate resins, styrene-butadiene block copolymers, polyester resins, urea resins, melamine resins, alkyd resins, polyimide resins, urethane resins, and epoxy resins And an adhesive using a thermosetting resin, a curable resin such as a photocurable resin, a crosslinked resin, an organic-inorganic hybrid polymer, or the like. Among these, an adhesive using an epoxy resin is particularly preferable because it has few impurities and has characteristics suitable for electrode connection. Note that an adhesive containing not only an uncured epoxy resin but also a semi-cured epoxy resin may be used. Further, the adhesive may include a reinforcing material such as glass fiber or alumina particles as necessary.
Above all, an adhesive using a thermosetting resin is preferable because a strong adhesive force can be obtained by pressing while heating, and connection reliability is high.
[0016]
The application of the conductive connection method of the present invention is not particularly limited. For example, in electronic products such as a liquid crystal display, a personal computer, and a portable communication device, a connection between a small component such as a semiconductor element and a substrate, a connection between substrates, and a connection between substrates. It is suitable for connecting fine electrode terminals.
[0017]
More specifically, for example, an active component such as a semiconductor such as an IC or an LSI; a passive component such as a capacitor or a crystal oscillator; and a connection between a bare chip or the like and a substrate. In particular, the conductive connection method of the present invention is suitable as a method for connecting bare chips or between a bare chip and a substrate.
[0018]
The shape of the electrode is not particularly limited, and examples thereof include a stripe shape, a dot shape, and an arbitrary shape. Examples of the material of the electrode include gold, silver, copper, nickel, palladium, carbon, aluminum, and ITO. Gold may be further coated on copper, nickel, etc. to reduce contact resistance. The thickness of the electrode is preferably 0.1 to 300 μm. The width of the electrode is preferably 1 to 500 μm.
[0019]
Aluminum electrodes are usually used for electrodes such as IC chips for various reasons. However, since aluminum electrodes are oxidized quickly, the connection method of the present invention that gives a reducing action to the electrodes requires that at least one electrode surface be made of aluminum. It is particularly preferred in some cases. Furthermore, when the electrodes are brought into contact with each other and connected, it is necessary to always press the electrodes with a certain force or more, and therefore it is preferable to bond and fix the electrodes.
[0020]
In the conductive connection method of the present invention, as a method of attaching a reducing agent or an antioxidant to an electrode, for example, a method of attaching a small amount directly to the electrode using a syringe or the like or an electrode of a substrate or a component having an electrode formed on the surface. There is a method in which a perforated film is placed at a position and attached with a squeegee. Further, a method of attaching the solution or the dispersion liquid by an ink jet method or printing may be used. It is excellent in that a small amount can be uniformly attached.
[0021]
(Example)
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(Example 1)
Gold was further electroplated to 1.3 μm on the 0.2 μm nickel-plated resin fine particles. The obtained particles were classified to obtain metal-coated fine particles having an average particle diameter of 100 μm, an aspect ratio of 1.03, a CV value of 1%, a recovery rate of 60%, and a resistance value of 0.01Ω. In addition, 160 holes were made in a thermosetting epoxy resin tape having a thickness of 80 μm at a pitch of about 200 μm so as to match the electrode position of the IC chip. The hole was formed into a tapered hole having a front surface of 130 μm and a back surface of 80 μm by using a CO2 laser. In addition, a hole having a CV value of 2% and an aspect ratio of 1.04 was formed. Metal-coated fine particles were arranged in the holes and embedded in the tape to obtain a conductive connection tape. The electrode position of the circuit board ("FR-4") on which the electrode pattern was drawn and the position of the metal-coated fine particles of the conductive connection tape were aligned and lightly pressed to temporarily fix them.
[0022]
An ethanol solution of butylated hydroxyanisole is applied to an aluminum electrode on an electrode of an IC test chip (10 mm square, 0.1 mm square electrode, daisy chain wiring) and dried. Were pressed together while heating at a pressure of 4 kg per 1 m 2 , and the epoxy resin sheet was cured to make conductive connection.
[0023]
The connection structure thus obtained has stable conduction with all electrodes, there is no leakage between adjacent electrodes, and the resistance of the daisy-chain-shaped wiring portion is as low as about 30Ω even when wiring resistance is inserted. It was resistance. In addition, 1000 cycles of the cooling / heating cycle test (−40 ° C. to 125 ° C., 30 minutes each) and 500 hours (85 ° C., 85%) of the high temperature and high humidity test were performed. As a result, there was no leakage between the adjacent electrodes, and the resistance of the daisy chain wiring portion was hardly changed, and high connection reliability was obtained.
[0024]
(Example 2)
A silver paste was printed on electrodes of a circuit board ("FR-4") and heated to cure the paste. Gold plating was further performed on the cured paste. On the other hand, tocopherol was attached to the electrode of the IC test chip using a syringe. Next, the electrodes were positioned so as to face each other via a thermosetting epoxy resin sheet, and were pressed while heating, and the electrodes were contacted and connected while embedding the electrodes in the epoxy resin. In the obtained connection structure, stable conduction was maintained at all the electrodes, there was no leakage at the adjacent electrodes, and the resistance of the daisy chain wiring portion was as low as about 30Ω even when the wiring resistance was inserted. Was. In addition, 1000 cycles of the cooling / heating cycle test (−40 ° C. to 125 ° C., 30 minutes each) and 500 hours of the high temperature and high humidity test (85 ° C., 85%) were performed. And the resistance of the daisy-chain-shaped resistance portion increased slightly, but was small, and high connection reliability was obtained.
[0025]
(Example 3)
Diphenylamine was deposited on the electrodes of the circuit board ("FR-4"). This board and the stud bump of the IC test chip which connected the gold wire to the aluminum electrode faced each other through the thermosetting epoxy resin tape, pressed and heated, and brought the electrodes into contact with each other while embedding the electrode in the epoxy resin. Connected. In the obtained connection structure, stable conduction was maintained at all the electrodes, there was no leakage at adjacent electrodes, and the resistance of the daisy chain wiring portion was as low as about 30Ω including the wiring resistance. Although a high-temperature and high-humidity test was performed for 500 hours (85 ° C., 85%), stable conduction was maintained at all the electrodes, there was no leakage at the adjacent electrodes, and although the resistance of the daisy chain wiring portion was slightly increased. Hardly changed. When a cooling / heating cycle test was performed for 1000 cycles (−40 ° C. to 125 ° C., 30 minutes each), conduction failure occurred at 800 cycles, but no conduction failure occurred at −25 ° C. to 110 ° C. even at 1000 cycles. It was determined that use in the liquid crystal field and the like was sufficient for practical use.
[0026]
(Comparative Example 1)
A conductive connection structure was prepared in the same manner as in Example 1 except that an IC test chip not coated with butylated hydroxyanisole was used for the aluminum electrode.
[0027]
The obtained conductive connection structure maintained stable continuity at all electrodes and did not leak at adjacent electrodes, but the resistance of the daisy chain wiring portion was about 40Ω when wiring resistance was added, and a high resistance value was obtained. became. In addition, 1000 cycles of the cooling / heating cycle test (−40 ° C. to 125 ° C., 30 minutes each) and 500 hours of the high temperature and high humidity testing (85 ° C., 85%) were performed. In the cycle, the resistance value was 1.5 times or more as compared with the initial value, and in the high-temperature and high-humidity test, the resistance value was 1.5 times or more as compared with the initial value in 200 hours.
[0028]
(Comparative Example 2)
A conductive connection structure was prepared in the same manner as in Example 2 except that tocopherol was not attached to the electrode. Although stable conduction was maintained at all the electrodes and there was no leakage at the adjacent electrodes, the resistance of the daisy-chain wiring portion was about 40Ω when the wiring resistance was added, and the resistance value was high. In addition, 1000 cycles of the cooling / heating cycle test (−40 ° C. to 125 ° C., 30 minutes each) and 500 hours of the high temperature and high humidity testing (85 ° C., 85%) were performed. In the cycle, the resistance was 1.5 times or more the initial resistance, and in the high temperature and high humidity test, it was 1.5 times or more the initial resistance in 50 hours.
[0029]
(Comparative Example 3)
A conductive connection structure was prepared in the same manner except that diphenylamine was not attached on the electrodes of the circuit board ("FR-4"). Although stable conduction was maintained at all the electrodes and there was no leakage at the adjacent electrodes, the resistance in the daisy chain was as low as about 30Ω including the wiring resistance. In addition, 1000 cycles of the cooling / heating cycle test (−40 ° C. to 125 ° C., 30 minutes each) and 500 hours of the high temperature and high humidity testing (85 ° C., 85%) were performed. In the high-temperature and high-humidity test, conduction failure occurred in 100 hours. Regarding the thermal cycle test, the test was performed under the condition of −25 ° C. to 110 ° C., but conduction failure occurred in 500 cycles.
[0030]
【The invention's effect】
A highly reliable conductive connection structure can be obtained by the conductive connection method of the present invention.
Further, when at least one of the fine electrodes is made of a resin containing conductive fine particles, elastic repulsion at the time of contact can prevent conduction failure due to a small gap change.

Claims (6)

片方または両方の微細電極にあらかじめ還元材または酸化防止材を付着させておいた微細電極を押圧し接続することを特徴とする導電接続方法。A conductive connection method characterized in that one or both of the fine electrodes is pressed and connected to a fine electrode on which a reducing material or an antioxidant has been previously attached. 少なくとも片方の電極が導電性微粒子を含む樹脂であることを特徴とする請求項1記載の導電接続方法。2. The conductive connection method according to claim 1, wherein at least one of the electrodes is a resin containing conductive fine particles. 少なくとも片方の電極がメッキされた樹脂微粒子であることを特徴とする請求項1記載の導電接続方法。2. The conductive connection method according to claim 1, wherein at least one of the electrodes is made of plated resin fine particles. 少なくとも片方の電極表面がアルミであることを特徴とする請求項1,2及び3の何れかに記載の導電接続方法。4. The conductive connection method according to claim 1, wherein at least one electrode surface is made of aluminum. 請求項1、2、3、又は4の何れかに記載の方法を用いて接続された導電接続構造体。A conductive connection structure connected using the method according to claim 1. 接続された電極間が接着されている請求項5記載の導電接続構造体。The conductive connection structure according to claim 5, wherein the connected electrodes are bonded to each other.
JP2002325570A 2002-11-08 2002-11-08 Conductor connection method and conductor connection structure Pending JP2004158396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325570A JP2004158396A (en) 2002-11-08 2002-11-08 Conductor connection method and conductor connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325570A JP2004158396A (en) 2002-11-08 2002-11-08 Conductor connection method and conductor connection structure

Publications (1)

Publication Number Publication Date
JP2004158396A true JP2004158396A (en) 2004-06-03

Family

ID=32804748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325570A Pending JP2004158396A (en) 2002-11-08 2002-11-08 Conductor connection method and conductor connection structure

Country Status (1)

Country Link
JP (1) JP2004158396A (en)

Similar Documents

Publication Publication Date Title
US4917466A (en) Method for electrically connecting IC chips, a resinous bump-forming composition used therein and a liquid-crystal display unit electrically connected thereby
JP2000195339A (en) Anisotropic conductive adhesive film
KR100713333B1 (en) Multi-layered anisotropic conductive film
TWI390647B (en) Method and device for mounting electric component
JPH07157720A (en) Film having anisotropic electrical conductivity
JPH0513119A (en) Tape connector for connecting electronic parts
US20020098319A1 (en) Connection material
JP3581618B2 (en) Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JPH06187834A (en) Anisotropic conductive film
JP2010251336A (en) Anisotropic conductive film and method for manufacturing connection structure using the same
JP2004140366A (en) Method for connecting electrode
JPH06103819A (en) Anisotropic conductive adhesive film
JP3219140B2 (en) Electrical and electronic equipment
JP2003336016A (en) Anisotropically electrically conductive double-sided tape and method of mounting electronic part by using the same
JP3640268B2 (en) Connector and connector manufacturing method
JP2001052780A (en) Electric connector and its manufacture
JP5798848B2 (en) Connection method and method for manufacturing connection structure
JP2004158396A (en) Conductor connection method and conductor connection structure
JP6370562B2 (en) CONNECTION MANUFACTURING METHOD, FLEXIBLE BOARD CONNECTION METHOD, CONNECTION BODY AND FLEXIBLE SUBSTRATE
JP3367076B2 (en) Connection structure and connection method for electrical members
JPS63110506A (en) Anisotropic conducting sheet
JP2001155540A (en) Conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
KR20070079219A (en) Anisotropic conductive film with different conductive ball density, manufacturing method thereof, connecting structure of pcb using anisotropic conductive film and manufacturing method thereof
KR20030037017A (en) Anisotropic conductive adhesive film
JP2828851B2 (en) How to repair electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080611