JP2004155680A - Fluorine-containing vinyl ether and fluorine-containing polymer using the same and resist material using fluorine-containing polymer - Google Patents

Fluorine-containing vinyl ether and fluorine-containing polymer using the same and resist material using fluorine-containing polymer Download PDF

Info

Publication number
JP2004155680A
JP2004155680A JP2002320871A JP2002320871A JP2004155680A JP 2004155680 A JP2004155680 A JP 2004155680A JP 2002320871 A JP2002320871 A JP 2002320871A JP 2002320871 A JP2002320871 A JP 2002320871A JP 2004155680 A JP2004155680 A JP 2004155680A
Authority
JP
Japan
Prior art keywords
fluorine
vinyl ether
polymer
general formula
following general
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002320871A
Other languages
Japanese (ja)
Other versions
JP4166076B2 (en
Inventor
Satoru Kobayashi
悟 小林
Kazuhiko Maeda
一彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2002320871A priority Critical patent/JP4166076B2/en
Priority to KR1020057007904A priority patent/KR100740803B1/en
Priority to US10/533,788 priority patent/US7256316B2/en
Priority to PCT/JP2003/013924 priority patent/WO2004041762A1/en
Publication of JP2004155680A publication Critical patent/JP2004155680A/en
Application granted granted Critical
Publication of JP4166076B2 publication Critical patent/JP4166076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer which little scatters and absorbs light and can be used as a base for resist materials requiring high transparency, and to provide a monomer which can be used as a raw material for the polymer. <P>SOLUTION: This fluorine-containing vinyl ether compound represented by general formula (1) (R is a cyclic structure-comprising organic group containing one or more fluorine groups). The fluorine-containing vinyl ether can be copolymerized with various kinds of monomers to give fluorine-containing polymers having excellent transparency and excellent solubility in solvents. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、含フッ素ビニルエーテルおよびそれを使用した含フッ素重合体、ならびに含フッ素重合体を使用したレジスト材料に関する。
【0002】
【従来の技術】
従来より含フッ素高分子は耐熱性や耐薬品性に優れるために、種々の用途に使用されてきた。中でも非晶性の含フッ素高分子は、それら性能に加えその高い透明性から、光ファイバーやレジスト材料といった分野においても使用および研究されている(例えば、特許文献1参照。)。それら応用に対して、フッ素原子の導入は屈折率の低下あるいは真空紫外領域光の透明性の向上をもたらす。レジスト材料の開発(例えば、非特許文献1参照。)について記載すると、現在、レジストの主流タイプは光照射により発生する酸を触媒とし、その酸による樹脂の化学変化に伴って樹脂のアルカリに対する溶解性を増加させるポジ型レジスト材料である。ところがより微細加工に向けての光の短波長化に対し、現行のレジストに使用されているノボラック樹脂やアクリル系樹脂等では透明性が不充分であるといった問題がある。すなわち当該用途に対しては、フッ素原子を含み、カルボニル等の構造を含まず、耐熱性があり、さらには各種溶剤への溶解性に優れるといった重合体およびそれを合成するためのモノマーが望まれている。
【0003】
【特許文献1】
特開2002−201231号公報
【非特許文献1】
Y. Kamon, et. al, J. Photopolym. Sci. Technol., 15, 535(2002).
【0004】
【発明が解決しようとする課題】
本発明の課題は、光の散乱や吸収が少なく、高透明性が要求されるポリマー材料の原料となり得るモノマーおよびそれを使用した透明含フッ素重合体、ならびにその含フッ素重合体を使用したレジスト材料を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、鋭意検討を重ねた結果、新規な含フッ素ビニルエーテルがその課題を解決するのに有効であることを見出し本発明に至った。具体的には、本発明の新規な含フッ素ビニルエーテルは、単独重合体のみならず各種のモノマー群との共重合が可能であり、さらには、得られた含フッ素重合体が各種の有機溶媒に溶解すると同時に高い透明性を有することを見出した。
【0006】
すなわち、本発明は下記一般式(1)で表されるような含フッ素ビニルエーテルおよびそれを使用した含フッ素重合体、ならびに含フッ素重合体を使用したレジスト材料を提供するものである。
【0007】
【化8】

Figure 2004155680
【0008】
(式中、Rはフッ素原子を少なくとも1個含有し、環状構造を有する有機基を表す。)
以下、本発明を詳細に説明する。本発明の含フッ素ビニルエーテルは、下記一般式(1)で表される含フッ素ビニルエーテルである。
【0009】
【化9】
Figure 2004155680
【0010】
(式中、Rはフッ素原子を少なくとも1個含有し、環状構造を有する有機基を表す。)
それらをより具体的に例示するならば、下記構造式のものが挙げられる。
【0011】
【化10】
Figure 2004155680
【0012】
この中でも、ヘキサフルオロイソプロパノール単位(−C(CF−OH)またはヘキサフルオロイソプロパノールに由来した単位(−C(CF−OR)を含むものは、ポリマーとなった場合に基材への密着性を向上させる作用をもたらす。ここでRは、水素または酸不安定基で、酸不安定基には酸素等のヘテロ原子を含有してもよい。その酸不安定基を例示すると、t−ブトキシカルボニル基、メトキシメチル基、2−メチル−2−アダマンチルエステル基、2−エチル−2−アダマンチルエステル基等が挙げられる。またビシクロ[2.2.1]ヘプタンあるいはトリシクロデカンのような構造を含有するビニルエーテルは、ポリマーとなった場合に二重結合に由来する光吸収が少なく、さらにはポリマーの耐熱性が優れることから、好ましいものである。
【0013】
本発明の含フッ素ビニルエーテルの製造は、各種の既知の方法が採用できる。それらを例示するならば、含フッ素アルコールにアルカリ金属を作用させ、アセチレンまたはハロゲン化ビニルと反応させることにより得る方法で、その際のアルカリ金属としては、各種のアルカリ金属の化合物が使用できるが、例えば水素化ナトリウム、水素化カリウム、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等である。
【0014】
またPdを触媒とするビニル交換反応によるビニルエーテルの合成法が知られている。このビニル交換反応は、ビニルエーテルおよびアルコールの存在下に反応を行い、新たなビニルエーテルを得るものである。中でもPdを触媒とするビニル交換反応は、反応条件が温和であり、副反応が起こりにくいことから好ましい合成方法として採用される。その際のPdは、酢酸パラジウム(Pd(OAc))等の2価のPdが使用できる。またPdの反応活性を制御する目的で配位子を併用することもできる。この配位子の種類は特に限定はされないが、窒素を含む2座型のものが副生成物の生成量が少ないことから好ましいものとして挙げられ、それらを例示するならば、2,2’−ビピリジル、1,10−フェナントリン等である。Pdと配位子の調製は事前に行うことができるが、反応時に両者を別々に反応系内に加え、反応中に配位を行わせることでもその目的は達せられる。
【0015】
反応時には溶媒を使用することができる。それらは目的の反応を阻害しないものであれば特に限定はされないが、テトラヒドロフラン、ジエチルエーテル、ジメチルホルムアミド等の汎用有機溶剤が例示される。またビニル交換反応の基質となるビニルエーテルを溶媒として使用することもできる。すなわち本発明においてはフッ素を含有しないビニルエーテルを反応基質および溶媒として使用し、含フッ素アルコールとの反応によって含フッ素ビニルエーテルが得られることとなる。合成時の温度は特に制限されないが、反応性および周辺装置の取り扱いの容易さから、−80℃から200℃の範囲が望ましい。より好ましくは−30℃から150℃の範囲である。反応生成物の分離、精製は一般的な方法で行えばよく、それらを例示するならば、濃縮、抽出、蒸留、再結晶、ろ過、カラムクロマトグラフィーが挙げられる。またこれらを組み合わせて行ってもよい。
【0016】
次に、本発明の含フッ素重合体について説明する。本発明の含フッ素重合体とは、本発明中の含フッ素ビニルエーテルからなる単位を含む高分子のことであり、単独重合体または共重合体がそれに該当する。
【0017】
共重合体における共重合モノマーは特に限定されることなく使用でき、数種を複合して使用することもできる。それらを例示するならば、エチレン、プロピレンなどのα−オレフィン類、ノルボルネン、シクロヘキセンなどの環状オレフィン類、本発明以外のビニルエーテル、ビニルエステル、アクリル酸またはメタクリル酸、アクリル酸またはメタクリル酸エステル、α−トリフルオロメチルアクリル酸、α−トリフルオロメチルアクリル酸エステル、アリルエーテル、スチレン、ビニルシラン、無水マレイン酸等が挙げられる。そしてそれらはフッ素原子や、酸素等のヘテロ原子や、官能基を含有していてもよく、またアダマンチル基のように環状構造の有機基を有していてもよく、さらには、酸の作用で脱離するような反応性基を含有していてもよい。またテトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロイソブテン、ヘキサフルオロプロピレン、トリフルオロエチレン、パーフルオロビニルエーテル、オクタフルオロシクロペンテン、下記一般式(8)で表されるオレフィン等のフルオロオレフィンも使用することができる。Rは炭素数が1から15のアルキル基で、酸素等のヘテロ原子を含んでもよい。
【0018】
【化11】
Figure 2004155680
【0019】
それら共重合体における、含フッ素ビニルエーテルおよび共重合モノマーの比率は、特に限定されることなく任意の範囲が選択される。但し、本発明の含フッ素重合体が高い透明性を示すために、本発明の含フッ素ビニルエーテルに基づく単位は共重合体中に0.1モル%以上含有することが望ましい。より好ましくは1モル%以上である。
【0020】
本発明の含フッ素重合体の数平均分子量は、通常1,000〜1,000,000、好ましくは2,000〜100,000の範囲が適切である。分子量がそれよりも小さい場合には、高分子化合物としての強度が不充分であったり、各種材料として使用した場合の耐熱性に劣る。また、分子量は100,000を超える場合には溶剤への溶解性に劣る。
【0021】
本発明の含フッ素重合体の製造方法としては、特に限定されるものではないが、アニオン重合、ラジカル重合、カチオン重合、配位重合など公知の方法が採用できる。好ましくはラジカル重合が採用される。その際の重合形態としてはバルク重合、溶液重合、懸濁重合、乳化重合など公知の方法を使用できる。
【0022】
重合反応の温度は、重合方法や重合の形態、重合開始剤の種類等によって適宜選定でき、具体的には20〜200℃が、好ましくは40〜120℃である。
【0023】
ラジカル重合開始剤の例としては、特に限定されるものではないが、例としてアゾ系化合物、過酸化物系化合物、レドックス系化合物があげられる。
【0024】
本発明の含フッ素重合体を製造する際の重合反応においては、溶媒を使用して行ってもよい。その溶媒としては特に限定されないが、重合を大きく阻害しないものが望ましく、アセトン等のケトン系溶剤、トルエン等の芳香族系溶剤、シクロヘキサン等の炭化水素系溶剤、イソプロピルアルコール等のアルコール系溶剤、酢酸ブチル等のエステル系溶剤が例示される。またメルカプタンのような分子量調整剤を併用してもよい。
【0025】
乳化重合を行う際の乳化剤としては、アニオン系やノニオン系乳化剤またはその両方を使用することができる。またその際のラジカル開始剤は、特に限定されないが、過硫酸塩のような水溶性の開始剤が好ましく使用できる。
【0026】
懸濁重合を行う際の懸濁安定剤としては、特に限定されず、メチルセルロース等の一般的に使用されるような水溶性ポリマーが使用できる。
【0027】
本発明の含フッ素ビニルエーテルは、コーティング用透明高分子化合物の原料モノマーとして有用となる。そしてそれを原料として合成された含フッ素重合体は、各種の透明高分子として応用できる。
【0028】
すなわち本発明の含フッ素重合体は、半導体製造用のレジスト材料や反射防止膜材料として有用となる。また、樹脂光ファイバーや光導波路用のコア材料、クラッド材料、被覆材料、光学用接着剤等としても有用である。
【0029】
本発明によるレジスト材料においては、本発明中の含フッ素重合体の使用方法は特に限定はされないが、その例として、酸やアミンの発生によりアルカリ性水溶液に対する溶解性が変化する高分子化合物として応用され、そのタイプはポジ型、ネガ型の両方に適用が可能である。その際に使用できる酸不安定性基としては、含フッ素ビニルエーテルまたは共重合成分に導入、あるいはそれらに複合して導入することでその目的が達せられる。
【0030】
その際は、本発明中の含フッ素重合体に加え、有機溶剤、光酸発生剤、その他添加剤によりレジストを構成することができる。また樹脂をブレンドにて使用すべく、その他の重合体を溶液中に任意の割合で混合させることも可能である。
【0031】
有機溶剤は本発明中の含フッ素重合体を溶解せしめ、コーティング材料とするものである。その有機溶剤は特に限定はされないが、アセトンやメチルエチルケトンのようなケトン類、エチレングリコールモノアセテート、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテルアセテート等の多価アルコールまたはその誘導体、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル等のエステル類、キシレン、トルエン等の芳香族系溶剤、フロン等のフッ素系溶剤が例示され、これらは単独または併用することができる。
【0032】
光酸発生剤は特に制限はなく、化学増幅型レジストの酸発生剤として使用されるものの中から任意のものを選択して使用することができる。このような酸発生剤の例としては、ビススルホニルジアゾメタン類、ニトロベンジル誘導体類、オニウム塩類、ハロゲン含有トリアジン化合物類、シアノ基含有オキシムスルホネート化合物類、その他のオキシムスルホネート化合物類が挙げられる。これらの酸発生剤は単独で使用してもよく、また2種以上を組み合わせて使用してもよい。その含有量は、高分子化合物100重量部に対して、通常0.5〜20重量部の範囲で使用される。
【0033】
その他添加剤としては、溶解性抑制剤、可塑剤、安定剤、着色剤、光増感剤、界面活性剤、増粘剤、レベリング剤、消泡剤、密着剤、クェンチャー等が例示される。
【0034】
本発明のレジスト材料の使用は、従来のフォトレジスト技術と同様の方法で行える。例えば本発明の含フッ素重合体を、酸の発生によりアルカリ性水溶液に対する溶解性が変化する高分子化合物として応用する場合は、シリコンウエハーにレジスト組成の溶液をスピンコートした後に乾燥および成膜し、これに露光装置によりマスクを介してパターンを照射する。これを加熱、アルカリ現像することで樹脂層に所望のパターンを形成することができる。
【0035】
また反射防止膜材料の用途においては、本発明の含フッ素重合体の溶液を基板上に塗布し、乾燥と必要により加熱し、反射防止性能を示す膜厚および膜構成に成膜することにより達成することができる。
【0036】
【発明の実施の形態】
次に本発明を実施例によりさらに詳細に説明するが、本発明はなんらこれらに限定されるものではない。
【0037】
【実施例】
[合成例1]
100mLのガラス容器に、11.2gの酢酸パラジウム、1Lのトルエンを入れ溶液を作製した。そこに別に作製した8gのビピリジル、200mLのトルエン溶液を徐々に加え、10分間攪拌した。得られた析出物をろ過し、エーテルにて洗浄の後、500mLのジクロロメタン中で再結晶を行った。3時間後、結晶をろ過処理にて取り出し、12時間真空乾燥を行なってPd触媒を調製した。
【0038】
[実施例1]
100mLのガラス容器に、2.96gの以下に示したアルコール1、0.19gの合成例1にて調製したPd触媒、19mLのエチルビニルエーテルを入れ、水浴での冷却下に24時間攪拌した。反応混合液をセライトにてろ過、水および飽和食塩水による洗浄、無水硫酸マグネシウムによる乾燥の後に溶媒を留去し、シリカゲルクロマトグラフによって以下に示した目的のビニルエーテル1を1.7g得た。なおビニルエーテル1は2種類の立体異性体の混合物である。得られた化合物の同定を、核磁気共鳴法および質量分析法にて行った。
物性データ
H NMR(CDCl, TMS基準, 400 MHz)
δ 1.70−1.73(m, 2H), 2.0−2.5(m, 2H), 2.8−3.8(m, 2H), 4.1−4.5(m, 3H), 6.29(dd, J = 6.8, 14.4 Hz, 0.4H)異性体1, 6.31(dd, J = 6.8, 14.4 Hz, 0.6H)異性体2
MS m/z (%) 322(M, 100), 239(36), 95(45)
【0039】
【化12】
Figure 2004155680
【0040】
[実施例2]
100mLのガラス容器に、2.36gの以下に示したアルコール2、0.19gの合成例1にて調製したPd触媒、26mLのt−ブチルビニルエーテルを入れ、還流温度にて4時間攪拌した。以下実施例1と同様の操作にて以下に示した目的のビニルエーテル2を1.2g得た。得られた化合物の同定を、核磁気共鳴法および質量分析法にて行った。
物性データ
H NMR(CDCl, TMS基準, 400 MHz)
δ 1.3−1.4(m, 3H), 2.1−2.3(m, 3H), 2.32−2.36(m, 2H), 3.72−3.83(m, 1H), 4.11(dd, J = 2.0, 6.6 Hz, 1H), 4.34(dd, J = 2.0, 14.0 Hz, 1H), 6.30(dd, J
= 6.6, 14.0 Hz, 1H)
MS m/z (%) 262(M, 47), 199(75), 109(100)
【0041】
【化13】
Figure 2004155680
【0042】
[実施例3]
100mLのガラス容器に、2.92gの以下に示したアルコール3、0.19gの合成例1にて調製したPd触媒、19mLのエチルビニルエーテルを入れ、水浴での冷却下に24時間攪拌した。以下実施例1と同様の操作にて以下に示した目的のビニルエーテル3を1.2g得た。得られた化合物の同定を、核磁気共鳴法および質量分析法にて行った。
物性データ
H NMR(CDCl, TMS基準, 400 MHz)
δ 1.1−2.3(m, 11H), 2.85−2.95(m, 1H), 3.81−3.88(m, 1H), 3.98−4.01(m, 1H), 4.11−4.19(m, 1H), 6.31(dd, J = 6.8, 14.4 Hz, 1H)
MS m/z (%) 318(M, 41), 275(100), 233(28)
【0043】
【化14】
Figure 2004155680
【0044】
[実施例4]
100mLのガラス容器に、4.32gの以下に示したアルコール4、0.19gの合成例1にて調製したPd触媒、19mLのエチルビニルエーテルを入れ、水浴での冷却下に3時間攪拌した。以下実施例1と同様の操作にて以下に示した目的のビニルエーテル4を1.1g得た。得られた化合物の同定を、核磁気共鳴法および質量分析法にて行った。
物性データ
H NMR(CDCl, TMS基準, 400 MHz)
δ 1.1−1.6(m, 4H), 2.31(d, J = 14.0 Hz, 2H), 2.42−2.50(m, 2H), 3.13(s, 2H), 4.12(dd, J = 1.6, 6.8 Hz, 1H), 4.29−4.32(m, 1H), 4.35(dd, J = 1.6, 14.0 Hz, 1H), 6.27(dd, J = 6.8, 14.0 Hz, 1H)
MS m/z (%) 458(M, 1), 377(19), 247(100)
【0045】
【化15】
Figure 2004155680
【0046】
[実施例5]
10mLの耐圧容器に、0.64gのビニルエーテル1、0.007gのジ−t−ブチルパーオキシピバレート、0.13gの酢酸ブチルを入れ、窒素にて容器内を置換した。その後、反応容器を60℃に20時間保って反応を行った。反応終了後、冷却した反応液から、30mLのn−ヘキサンにてポリマーを再沈させ、ろ過、減圧乾燥により0.07gの白色ポリマーを得た。得られたポリマーの、GPC測定により求めたポリスチレン換算の重量平均分子量は5,000であった。さらに得られたポリマーはプロピレングリコールモノメチルアセテートに可溶であり、その溶液から作製した塗膜の、100nm厚み換算の193nm波長での光透過率は98%であった。
【0047】
[実施例6]
10mLの耐圧容器に、0.32gのビニルエーテル3、0.003gのアゾビスイソブチロニトリルを入れ、窒素にて容器内を置換した。その後、反応容器を60℃に20時間保って反応を行った。反応終了後、冷却した反応液に0.5gの酢酸ブチルを加えて均一溶液とし、30mLのn−ヘキサンにてポリマーを再沈させ、ろ過、減圧乾燥により0.05gの白色ポリマーを得た。得られたポリマーの重量平均分子量は5,600であった。さらに得られたポリマーはプロピレングリコールモノメチルアセテートに可溶であり、その溶液から作製した塗膜の、100nm厚み換算の193nm波長での光透過率は99%であった。
【0048】
[実施例7]
10mLの耐圧容器に、0.48gのビニルエーテル1、0.29gのα−トリフルオロメチルアクリル酸t−ブチル(以下TFMA−Bと略す)、0.01gのジ−t−ブチルパーオキシピバレート、0.16gの酢酸ブチルを入れ、窒素にて容器内を置換した。その後、反応容器を60℃に20時間保って反応を行った。反応終了後、冷却した反応液に1gの酢酸ブチルを加えて均一溶液とし、30mLのn−ヘキサンにてポリマーを再沈させ、ろ過、減圧乾燥により0.52gの白色ポリマーを得た。得られたポリマーの、GPC測定により求めたポリスチレン換算の重量平均分子量は48,200であった。また19F NMRのピーク強度から求めたポリマーのモル組成比は、ビニルエーテル1:TFMA−B=47:53%であった。さらに得られたポリマーはプロピレングリコールモノメチルアセテートに可溶であり、その溶液から作製した塗膜の、100nm厚み換算の193nm波長での光透過率は98%であった。
【0049】
[実施例8]
50mLの耐圧容器に、0.48gのビニルエーテル1、0.32gのオクタフルオロシクロペンテン(以下OFCPEと略す)、0.01gのジ−t−ブチルパーオキシピバレート、0.21gの酢酸ブチルを入れ、窒素にて容器内を置換した。その後、反応容器を60℃に20時間保って反応を行った。反応終了後、冷却した反応液に1gの酢酸ブチルを加えて均一溶液とし、30mLのn−ヘキサンにてポリマーを再沈させ、ろ過、減圧乾燥により0.41gの白色ポリマーを得た。得られたポリマーの重量平均分子量は4,800であった。さらに得られたポリマーはプロピレングリコールモノメチルアセテートに可溶であり、その溶液から作製した塗膜の、100nm厚み換算の193nm波長での光透過率は99%であった。
【0050】
[実施例9]
10mLの耐圧容器に、0.48gのビニルエーテル3、0.29gのα−トリフルオロメチルアクリル酸t−ブチル(以下TFMA−Bと略す)、0.01gのジ−t−ブチルパーオキシピバレート、0.16gの酢酸ブチルを入れ、窒素にて容器内を置換した。その後、反応容器を60℃に20時間保って反応を行った。反応終了後、冷却した反応液に1gの酢酸ブチルを加えて均一溶液とし、30mLのn−ヘキサンにてポリマーを再沈させ、ろ過、減圧乾燥により0.55gの白色ポリマーを得た。得られたポリマーの、GPC測定により求めたポリスチレン換算の重量平均分子量は7,600であった。また19F NMRのピーク強度から求めたポリマーのモル組成比は、ビニルエーテル1:TFMA−B=50:50%であった。さらに得られたポリマーはプロピレングリコールモノメチルアセテートに可溶であり、その溶液から作製した塗膜の、100nm厚み換算の193nm波長での光透過率は99%であった。
【0051】
[実施例10]
実施例9で得られたポリマーを10重量%の固形分濃度になるようにプロピレングリコールモノメチルエーテルアセテートに溶解させ、次いでポリマー100重量部に対して、酸発生剤として、みどり化学製トリフェニルスルホニウムトリフレートを2重量部になるように溶解し、0.2ミクロンのメンブランフィルターにてろ過してレジスト溶液を調製した。これをシリコンウェハー上にスピンコートし、膜厚500nmのレジスト膜を得た。110℃でのプリベークの後、KrFエキシマレーザー248nmでの露光を行い、その後120℃でポストエクスポーザーベークを行った。次いで、2.38重量%のテトラメチルアンモニウムヒドロキシド水溶液を使用し、23℃で1分間、パドル法により現像したのち、純水で洗浄し、乾燥した。その結果、レーザー未照射部位がテトラメチルアンモニウムヒドロキシド水溶液に不溶であったのに対し、レーザー照射部は完全に溶解しており、レジストとして必要なポジ型挙動が観測された。
【0052】
【発明の効果】
本発明の含フッ素ビニルエーテル化合物を原料モノマーに使用して重合または共重合して得られる高分子化合物は、光の散乱や吸収が少なく、溶媒への溶解性に優れるといった特徴を有し、コーティングに適した透明レジスト材料として有用となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluorine-containing vinyl ether, a fluorine-containing polymer using the same, and a resist material using the fluorine-containing polymer.
[0002]
[Prior art]
Conventionally, fluoropolymers have been used for various applications because of their excellent heat resistance and chemical resistance. Above all, amorphous fluorine-containing polymers have been used and studied in the fields of optical fibers and resist materials because of their high transparency in addition to their performance (for example, see Patent Document 1). For these applications, the introduction of fluorine atoms results in a decrease in the refractive index or an increase in the transparency of light in the vacuum ultraviolet region. The development of resist materials (for example, see Non-Patent Document 1) is described. Currently, the mainstream type of resist uses an acid generated by light irradiation as a catalyst, and dissolves the resin in alkali with a chemical change of the resin due to the acid. It is a positive resist material that increases the properties. However, there is a problem that the transparency of the novolak resin, acrylic resin, or the like used in the current resist is insufficient for shortening the wavelength of light for finer processing. That is, for such uses, a polymer containing a fluorine atom, containing no structure such as carbonyl, having heat resistance, and further having excellent solubility in various solvents, and a monomer for synthesizing the same are desired. ing.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-201231 [Non-Patent Document 1]
Y. Kamon, et. al, J .; Photopolym. Sci. Technol. , 15, 535 (2002).
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a monomer which can be used as a raw material of a polymer material requiring low transparency and light absorption and high transparency, a transparent fluorinated polymer using the monomer, and a resist material using the fluorinated polymer. Is to provide.
[0005]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that a novel fluorine-containing vinyl ether is effective in solving the problem, and have reached the present invention. Specifically, the novel fluorinated vinyl ether of the present invention can be copolymerized not only with a homopolymer but also with various monomer groups, and furthermore, the obtained fluorinated polymer can be used in various organic solvents. It has been found that it has high transparency at the same time as dissolution.
[0006]
That is, the present invention provides a fluorine-containing vinyl ether represented by the following general formula (1), a fluorine-containing polymer using the same, and a resist material using the fluorine-containing polymer.
[0007]
Embedded image
Figure 2004155680
[0008]
(In the formula, R represents an organic group containing at least one fluorine atom and having a cyclic structure.)
Hereinafter, the present invention will be described in detail. The fluorinated vinyl ether of the present invention is a fluorinated vinyl ether represented by the following general formula (1).
[0009]
Embedded image
Figure 2004155680
[0010]
(In the formula, R represents an organic group containing at least one fluorine atom and having a cyclic structure.)
More specifically, those having the following structural formulas are exemplified.
[0011]
Embedded image
Figure 2004155680
[0012]
Among them, those containing a hexafluoroisopropanol unit (—C (CF 3 ) 2 —OH) or a unit derived from hexafluoroisopropanol (—C (CF 3 ) 2 —OR 3 ) are considered as base groups when a polymer is obtained. It has the effect of improving the adhesion to the material. Here, R 3 is hydrogen or an acid labile group, and the acid labile group may contain a hetero atom such as oxygen. Examples of the acid labile group include a t-butoxycarbonyl group, a methoxymethyl group, a 2-methyl-2-adamantyl ester group, and a 2-ethyl-2-adamantyl ester group. In addition, vinyl ether having a structure such as bicyclo [2.2.1] heptane or tricyclodecane, when formed into a polymer, has little light absorption derived from a double bond, and further has excellent heat resistance of the polymer. Is preferred.
[0013]
Various known methods can be employed for producing the fluorine-containing vinyl ether of the present invention. If they are exemplified, by a method obtained by reacting an alkali metal on a fluorinated alcohol and reacting it with acetylene or vinyl halide, various alkali metal compounds can be used as the alkali metal at that time. For example, sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, potassium carbonate and the like.
[0014]
Further, a method of synthesizing vinyl ether by a vinyl exchange reaction using Pd as a catalyst is known. In this vinyl exchange reaction, the reaction is carried out in the presence of vinyl ether and alcohol to obtain a new vinyl ether. Above all, the vinyl exchange reaction using Pd as a catalyst is adopted as a preferred synthesis method because the reaction conditions are mild and side reactions hardly occur. At this time, divalent Pd such as palladium acetate (Pd (OAc) 2 ) can be used as Pd. Further, a ligand can be used in combination for the purpose of controlling the reaction activity of Pd. The type of the ligand is not particularly limited, but a bidentate type containing nitrogen is preferred because of a small amount of by-products. For example, 2,2′- Bipyridyl, 1,10-phenanthrin and the like. The preparation of Pd and the ligand can be performed in advance, but the purpose can be achieved by separately adding both to the reaction system during the reaction and performing the coordination during the reaction.
[0015]
A solvent can be used during the reaction. They are not particularly limited as long as they do not inhibit the desired reaction, and examples thereof include general-purpose organic solvents such as tetrahydrofuran, diethyl ether, and dimethylformamide. Further, vinyl ether serving as a substrate for the vinyl exchange reaction can also be used as a solvent. That is, in the present invention, a fluorine-containing vinyl ether is used as a reaction substrate and a solvent, and a fluorine-containing vinyl ether is obtained by a reaction with a fluorine-containing alcohol. The temperature during the synthesis is not particularly limited, but is preferably in the range of -80 ° C to 200 ° C from the viewpoint of reactivity and ease of handling of peripheral devices. More preferably, it is in the range of −30 ° C. to 150 ° C. The reaction product may be separated and purified by a general method, and examples thereof include concentration, extraction, distillation, recrystallization, filtration, and column chromatography. Moreover, you may perform combining these.
[0016]
Next, the fluoropolymer of the present invention will be described. The fluorine-containing polymer of the present invention is a polymer containing a unit composed of the fluorine-containing vinyl ether in the present invention, and a homopolymer or a copolymer corresponds thereto.
[0017]
The copolymerized monomer in the copolymer can be used without any particular limitation, and several kinds can be used in combination. Examples thereof include α-olefins such as ethylene and propylene, cyclic olefins such as norbornene and cyclohexene, vinyl ethers, vinyl esters, acrylic acid or methacrylic acid, acrylic acid or methacrylic acid esters other than the present invention, and α-olefins. Examples include trifluoromethyl acrylic acid, α-trifluoromethyl acrylate, allyl ether, styrene, vinyl silane, and maleic anhydride. And they may contain a fluorine atom, a hetero atom such as oxygen, or a functional group, or may have a cyclic structure organic group such as an adamantyl group, and furthermore, by the action of an acid. It may contain a reactive group that can be eliminated. Further, it is also possible to use a fluoroolefin such as tetrafluoroethylene, chlorotrifluoroethylene, hexafluoroisobutene, hexafluoropropylene, trifluoroethylene, perfluorovinyl ether, octafluorocyclopentene, and an olefin represented by the following general formula (8). it can. R 9 is an alkyl group having 1 to 15 carbon atoms and may contain a hetero atom such as oxygen.
[0018]
Embedded image
Figure 2004155680
[0019]
The ratio of the fluorinated vinyl ether and the copolymerized monomer in these copolymers is not particularly limited, and an arbitrary range is selected. However, in order for the fluoropolymer of the present invention to exhibit high transparency, it is desirable that the unit based on the fluorovinyl ether of the present invention be contained in the copolymer in an amount of 0.1 mol% or more. It is more preferably at least 1 mol%.
[0020]
The number average molecular weight of the fluorinated polymer of the present invention is usually from 1,000 to 1,000,000, preferably from 2,000 to 100,000. When the molecular weight is smaller than that, the strength as a polymer compound is insufficient or the heat resistance when used as various materials is poor. When the molecular weight exceeds 100,000, the solubility in a solvent is poor.
[0021]
The method for producing the fluoropolymer of the present invention is not particularly limited, but known methods such as anionic polymerization, radical polymerization, cationic polymerization, and coordination polymerization can be employed. Preferably, radical polymerization is employed. Known polymerization methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization can be used.
[0022]
The temperature of the polymerization reaction can be appropriately selected depending on the polymerization method, the form of the polymerization, the type of the polymerization initiator, and the like, and is specifically 20 to 200 ° C, preferably 40 to 120 ° C.
[0023]
Examples of the radical polymerization initiator are not particularly limited, but examples include an azo compound, a peroxide compound, and a redox compound.
[0024]
In the polymerization reaction for producing the fluoropolymer of the present invention, a solvent may be used. The solvent is not particularly limited, but is preferably a solvent that does not greatly inhibit polymerization, and is preferably a ketone solvent such as acetone, an aromatic solvent such as toluene, a hydrocarbon solvent such as cyclohexane, an alcohol solvent such as isopropyl alcohol, or acetic acid. Ester solvents such as butyl are exemplified. Further, a molecular weight modifier such as mercaptan may be used in combination.
[0025]
As an emulsifier for performing emulsion polymerization, an anionic emulsifier, a nonionic emulsifier, or both of them can be used. The radical initiator in that case is not particularly limited, but a water-soluble initiator such as persulfate can be preferably used.
[0026]
The suspension stabilizer used in the suspension polymerization is not particularly limited, and a commonly used water-soluble polymer such as methyl cellulose can be used.
[0027]
The fluorine-containing vinyl ether of the present invention is useful as a raw material monomer of a transparent polymer compound for coating. The fluoropolymer synthesized from the raw material can be applied as various transparent polymers.
[0028]
That is, the fluorinated polymer of the present invention is useful as a resist material or an antireflection film material for semiconductor production. It is also useful as a core material, a cladding material, a coating material, an optical adhesive and the like for resin optical fibers and optical waveguides.
[0029]
In the resist material according to the present invention, the method of using the fluoropolymer in the present invention is not particularly limited, but as an example, it is applied as a polymer compound whose solubility in an alkaline aqueous solution changes due to generation of an acid or an amine. The type is applicable to both positive type and negative type. The acid labile group that can be used at that time can be achieved by introducing it into a fluorinated vinyl ether or a copolymer component, or by introducing it in combination with them.
[0030]
In that case, a resist can be constituted by an organic solvent, a photoacid generator, and other additives in addition to the fluoropolymer in the present invention. Further, in order to use the resin in a blend, other polymers can be mixed in the solution at an arbitrary ratio.
[0031]
The organic solvent dissolves the fluoropolymer in the present invention and is used as a coating material. The organic solvent is not particularly limited, but ketones such as acetone and methyl ethyl ketone, polyhydric alcohols such as ethylene glycol monoacetate, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether acetate and the like, derivatives thereof, tetrahydrofuran, dioxane, etc. Ethers, esters such as ethyl acetate, butyl acetate, methyl lactate and ethyl lactate, aromatic solvents such as xylene and toluene, and fluorine solvents such as chlorofluorocarbon, and these can be used alone or in combination.
[0032]
The photoacid generator is not particularly limited, and any photoacid generator can be selected from those used as acid generators for chemically amplified resists. Examples of such acid generators include bissulfonyldiazomethanes, nitrobenzyl derivatives, onium salts, halogen-containing triazine compounds, cyano group-containing oxime sulfonate compounds, and other oxime sulfonate compounds. These acid generators may be used alone or in combination of two or more. The content is usually used in the range of 0.5 to 20 parts by weight based on 100 parts by weight of the polymer compound.
[0033]
Examples of other additives include a solubility inhibitor, a plasticizer, a stabilizer, a colorant, a photosensitizer, a surfactant, a thickener, a leveling agent, an antifoaming agent, an adhesive, and a quencher.
[0034]
The resist material of the present invention can be used in the same manner as in the conventional photoresist technology. For example, when the fluorine-containing polymer of the present invention is applied as a polymer compound whose solubility in an alkaline aqueous solution changes due to generation of an acid, a solution of a resist composition is spin-coated on a silicon wafer, and then dried and formed into a film. Is irradiated with a pattern through a mask by an exposure apparatus. By heating this and developing with alkali, a desired pattern can be formed on the resin layer.
[0035]
In the application of the anti-reflective coating material, it is achieved by applying a solution of the fluoropolymer of the present invention on a substrate, drying and heating if necessary, and forming a film having a thickness and a film configuration exhibiting anti-reflective performance. can do.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
[0037]
【Example】
[Synthesis Example 1]
A 100 mL glass container was charged with 11.2 g of palladium acetate and 1 L of toluene to prepare a solution. A separately prepared 8 g of bipyridyl and 200 mL of a toluene solution were gradually added thereto, followed by stirring for 10 minutes. The obtained precipitate was filtered, washed with ether, and recrystallized in 500 mL of dichloromethane. After 3 hours, the crystals were taken out by filtration and vacuum-dried for 12 hours to prepare a Pd catalyst.
[0038]
[Example 1]
In a 100 mL glass container, 2.96 g of the alcohol 1 shown below, 0.19 g of the Pd catalyst prepared in Synthesis Example 1, and 19 mL of ethyl vinyl ether were added, and the mixture was stirred for 24 hours while cooling in a water bath. The reaction mixture was filtered through celite, washed with water and saturated saline, and dried over anhydrous magnesium sulfate. The solvent was distilled off, and 1.7 g of the target vinyl ether 1 shown below was obtained by silica gel chromatography. Vinyl ether 1 is a mixture of two kinds of stereoisomers. The obtained compound was identified by nuclear magnetic resonance and mass spectrometry.
Physical property data
1 H NMR (CDCl 3 , TMS standard, 400 MHz)
δ 1.70-1.73 (m, 2H), 2.0-2.5 (m, 2H), 2.8-3.8 (m, 2H), 4.1-4.5 (m, 2H) 3H), 6.29 (dd, J = 6.8, 14.4 Hz, 0.4H) isomer 1, 6.31 (dd, J = 6.8, 14.4 Hz, 0.6H) isomer Body 2
MS m / z (%) 322 (M + , 100), 239 (36), 95 (45).
[0039]
Embedded image
Figure 2004155680
[0040]
[Example 2]
In a 100 mL glass container, 2.36 g of the alcohol 2 shown below, 0.19 g of the Pd catalyst prepared in Synthesis Example 1 and 26 mL of t-butyl vinyl ether were added and stirred at reflux temperature for 4 hours. Thereafter, in the same manner as in Example 1, 1.2 g of the target vinyl ether 2 shown below was obtained. The obtained compound was identified by nuclear magnetic resonance and mass spectrometry.
Physical property data
1 H NMR (CDCl 3 , TMS standard, 400 MHz)
δ 1.3-1.4 (m, 3H), 2.1-2.3 (m, 3H), 2.32-2.36 (m, 2H), 3.72-3.83 (m, 3H) 1H), 4.11 (dd, J = 2.0, 6.6 Hz, 1H), 4.34 (dd, J = 2.0, 14.0 Hz, 1H), 6.30 (dd, J).
= 6.6, 14.0 Hz, 1H)
MS m / z (%) 262 (M + , 47), 199 (75), 109 (100).
[0041]
Embedded image
Figure 2004155680
[0042]
[Example 3]
In a 100 mL glass container, 2.92 g of the alcohol 3 shown below, 0.19 g of the Pd catalyst prepared in Synthesis Example 1, and 19 mL of ethyl vinyl ether were added, and the mixture was stirred for 24 hours while cooling in a water bath. Thereafter, in the same manner as in Example 1, 1.2 g of the target vinyl ether 3 shown below was obtained. The obtained compound was identified by nuclear magnetic resonance and mass spectrometry.
Physical property data
1 H NMR (CDCl 3 , TMS standard, 400 MHz)
δ 1.1-2.3 (m, 11H), 2.85-2.95 (m, 1H), 3.81-3.88 (m, 1H), 3.98-4.01 (m, 11H) 1H), 4.11-4.19 (m, 1H), 6.31 (dd, J = 6.8, 14.4 Hz, 1H)
MS m / z (%) 318 (M + , 41), 275 (100), 233 (28)
[0043]
Embedded image
Figure 2004155680
[0044]
[Example 4]
A 100 mL glass container was charged with 4.32 g of the alcohol 4 shown below, 0.19 g of the Pd catalyst prepared in Synthesis Example 1, and 19 mL of ethyl vinyl ether, and stirred for 3 hours while cooling in a water bath. Thereafter, 1.1 g of the target vinyl ether 4 shown below was obtained in the same manner as in Example 1. The obtained compound was identified by nuclear magnetic resonance and mass spectrometry.
Physical property data
1 H NMR (CDCl 3 , TMS standard, 400 MHz)
δ 1.1-1.6 (m, 4H), 2.31 (d, J = 14.0 Hz, 2H), 2.42-2.50 (m, 2H), 3.13 (s, 2H) ), 4.12 (dd, J = 1.6, 6.8 Hz, 1H), 4.29-4.32 (m, 1H), 4.35 (dd, J = 1.6, 14.0). Hz, 1H), 6.27 (dd, J = 6.8, 14.0 Hz, 1H)
MS m / z (%) 458 (M + , 1), 377 (19), 247 (100).
[0045]
Embedded image
Figure 2004155680
[0046]
[Example 5]
0.64 g of vinyl ether 1, 0.007 g of di-t-butyl peroxypivalate, and 0.13 g of butyl acetate were placed in a 10 mL pressure vessel, and the inside of the vessel was replaced with nitrogen. Thereafter, the reaction was carried out while keeping the reaction vessel at 60 ° C. for 20 hours. After completion of the reaction, the polymer was reprecipitated from the cooled reaction solution with 30 mL of n-hexane, filtered, and dried under reduced pressure to obtain 0.07 g of a white polymer. The obtained polymer had a weight average molecular weight in terms of polystyrene of 5,000 determined by GPC measurement. Further, the obtained polymer was soluble in propylene glycol monomethyl acetate, and the light transmittance at a wavelength of 193 nm in terms of 100 nm thickness of a coating film formed from the solution was 98%.
[0047]
[Example 6]
In a 10 mL pressure vessel, 0.32 g of vinyl ether 3 and 0.003 g of azobisisobutyronitrile were put, and the inside of the vessel was replaced with nitrogen. Thereafter, the reaction was carried out while keeping the reaction vessel at 60 ° C. for 20 hours. After completion of the reaction, 0.5 g of butyl acetate was added to the cooled reaction solution to make a homogeneous solution, and the polymer was reprecipitated with 30 mL of n-hexane, and filtered and dried under reduced pressure to obtain 0.05 g of a white polymer. The weight average molecular weight of the obtained polymer was 5,600. Further, the obtained polymer was soluble in propylene glycol monomethyl acetate, and the light transmittance at a wavelength of 193 nm in terms of 100 nm thickness of a coating film formed from the solution was 99%.
[0048]
[Example 7]
In a 10 mL pressure vessel, 0.48 g of vinyl ether 1, 0.29 g of t-butyl α-trifluoromethylacrylate (hereinafter abbreviated as TFMA-B), 0.01 g of di-t-butyl peroxypivalate, 0.16 g of butyl acetate was added, and the inside of the container was replaced with nitrogen. Thereafter, the reaction was carried out while keeping the reaction vessel at 60 ° C. for 20 hours. After completion of the reaction, 1 g of butyl acetate was added to the cooled reaction solution to make a homogeneous solution, and the polymer was reprecipitated with 30 mL of n-hexane, filtered, and dried under reduced pressure to obtain 0.52 g of a white polymer. The polystyrene equivalent weight average molecular weight of the obtained polymer determined by GPC measurement was 48,200. The molar composition ratio of the polymer determined from the peak intensity of 19 F NMR was vinyl ether 1: TFMA-B = 47: 53%. Further, the obtained polymer was soluble in propylene glycol monomethyl acetate, and the light transmittance at a wavelength of 193 nm in terms of 100 nm thickness of a coating film formed from the solution was 98%.
[0049]
Example 8
In a 50 mL pressure vessel, 0.48 g of vinyl ether 1, 0.32 g of octafluorocyclopentene (hereinafter abbreviated as OFCPE), 0.01 g of di-t-butylperoxypivalate, and 0.21 g of butyl acetate were placed. The inside of the container was replaced with nitrogen. Thereafter, the reaction was carried out while keeping the reaction vessel at 60 ° C. for 20 hours. After completion of the reaction, 1 g of butyl acetate was added to the cooled reaction solution to make a homogeneous solution, and the polymer was reprecipitated with 30 mL of n-hexane, filtered and dried under reduced pressure to obtain 0.41 g of a white polymer. The weight average molecular weight of the obtained polymer was 4,800. Further, the obtained polymer was soluble in propylene glycol monomethyl acetate, and the light transmittance at a wavelength of 193 nm in terms of 100 nm thickness of a coating film formed from the solution was 99%.
[0050]
[Example 9]
In a 10 mL pressure vessel, 0.48 g of vinyl ether 3, 0.29 g of t-butyl α-trifluoromethylacrylate (hereinafter abbreviated as TFMA-B), 0.01 g of di-t-butyl peroxypivalate, 0.16 g of butyl acetate was added, and the inside of the container was replaced with nitrogen. Thereafter, the reaction was carried out while keeping the reaction vessel at 60 ° C. for 20 hours. After completion of the reaction, 1 g of butyl acetate was added to the cooled reaction solution to make a homogeneous solution, and the polymer was reprecipitated with 30 mL of n-hexane, filtered, and dried under reduced pressure to obtain 0.55 g of a white polymer. The polystyrene equivalent weight average molecular weight of the obtained polymer determined by GPC measurement was 7,600. Further, the molar composition ratio of the polymer determined from the peak intensity of 19 F NMR was vinyl ether 1: TFMA-B = 50: 50%. Further, the obtained polymer was soluble in propylene glycol monomethyl acetate, and the light transmittance at a wavelength of 193 nm in terms of 100 nm thickness of a coating film formed from the solution was 99%.
[0051]
[Example 10]
The polymer obtained in Example 9 was dissolved in propylene glycol monomethyl ether acetate so as to have a solid content of 10% by weight, and then 100 parts by weight of the polymer was used as an acid generator as a triphenylsulfonium trif available from Midori Kagaku. The rate was dissolved to 2 parts by weight and filtered through a 0.2 micron membrane filter to prepare a resist solution. This was spin-coated on a silicon wafer to obtain a resist film having a thickness of 500 nm. After pre-baking at 110 ° C., exposure with a KrF excimer laser at 248 nm was performed, and then post-exposure baking was performed at 120 ° C. Next, after developing by a paddle method at 23 ° C. for 1 minute using a 2.38% by weight aqueous solution of tetramethylammonium hydroxide, the film was washed with pure water and dried. As a result, the laser-irradiated portion was completely dissolved while the laser-irradiated portion was insoluble in the tetramethylammonium hydroxide aqueous solution, and a positive type behavior required as a resist was observed.
[0052]
【The invention's effect】
The polymer compound obtained by polymerization or copolymerization using the fluorine-containing vinyl ether compound of the present invention as a raw material monomer has characteristics such that light scattering and absorption are small, and the solubility in a solvent is excellent. It is useful as a suitable transparent resist material.

Claims (10)

下記一般式(1)で表される含フッ素ビニルエーテル。
Figure 2004155680
(式中、Rはフッ素原子を少なくとも1個含有し、環状構造を有する有機基を表す。)
A fluorine-containing vinyl ether represented by the following general formula (1).
Figure 2004155680
(In the formula, R represents an organic group containing at least one fluorine atom and having a cyclic structure.)
Rがシクロペンタン環、シクロヘキサン環、ノルボルネン環、芳香環、トリシクロデカン環から選択される環状構造と、(−OH)m、(−R)n、−COORから選ばれる一種または二種以上の置換基を、同時に有する請求項1記載の含フッ素ビニルエーテル。(ここで、Rは−F、−CF、−RC(CFORから選ばれる一種または二種以上の置換基である。RはCHまたはC、RはHまたは酸不安定基。RはH、または炭素数1〜15のアルキル基、またはエーテル結合を含む炭素数1〜15の置換基である。mは0または1、nは1〜8の整数。)R is a cyclic structure selected from a cyclopentane ring, a cyclohexane ring, a norbornene ring, an aromatic ring, and a tricyclodecane ring, and one or two selected from (—OH) m, (—R 1 ) n, and —COOR 4 The fluorinated vinyl ether according to claim 1, which has the above substituents at the same time. (Where R 1 is one or more substituents selected from —F, —CF 3 , and —R 2 C (CF 3 ) 2 OR 3. R 2 is CH 2 or C 2 H 4 , R 3 is H or an acid labile group, R 4 is H or an alkyl group having 1 to 15 carbon atoms or a substituent having 1 to 15 carbon atoms containing an ether bond, m is 0 or 1, and n is 1 An integer from to 8.) 下記一般式(2)で表される、請求項1または2に記載の含フッ素ビニルエーテル。
Figure 2004155680
(式中、Rは−F、−CF、−RC(CFORから選ばれる一種または二種以上の置換基である。RはCHまたはC、RはHまたは酸不安定基。pは1〜5の整数、mは0または1。)
The fluorine-containing vinyl ether according to claim 1, which is represented by the following general formula (2).
Figure 2004155680
(Wherein, R 1 is one or more substituents selected from —F, —CF 3 , and —R 2 C (CF 3 ) 2 OR 3. R 2 is CH 2 or C 2 H 4 , R 3 is H or an acid labile group, p is an integer of 1 to 5, m is 0 or 1.)
下記一般式(3)で表される、請求項1または2に記載の含フッ素ビニルエーテル。
Figure 2004155680
(式中、Rは−F、−CF、−RC(CFORから選ばれる一種または二種以上の置換基である。RはCHまたはC、RはHまたは酸不安定基。qは1〜4の整数、mは0または1。)
The fluorinated vinyl ether according to claim 1, which is represented by the following general formula (3).
Figure 2004155680
(Wherein, R 1 is one or more substituents selected from —F, —CF 3 , and —R 2 C (CF 3 ) 2 OR 3. R 2 is CH 2 or C 2 H 4 , R 3 is H or an acid labile group, q is an integer of 1 to 4, and m is 0 or 1.)
下記一般式(4)で表される、請求項1または2に記載の含フッ素ビニルエーテル。
Figure 2004155680
(式中、Rは−F、−CF、−RC(CFORから選ばれる一種または二種以上の置換基である。RはCHまたはC、RはHまたは酸不安定基。pは1〜5の整数、mは0または1。)
The fluorinated vinyl ether according to claim 1, which is represented by the following general formula (4).
Figure 2004155680
(Wherein, R 1 is one or more substituents selected from —F, —CF 3 , and —R 2 C (CF 3 ) 2 OR 3. R 2 is CH 2 or C 2 H 4 , R 3 is H or an acid labile group, p is an integer of 1 to 5, m is 0 or 1.)
下記一般式(5)で表される、請求項1または2に記載の含フッ素ビニルエーテル。
Figure 2004155680
(式中、nは1〜8の整数。)
The fluorine-containing vinyl ether according to claim 1, which is represented by the following general formula (5).
Figure 2004155680
(In the formula, n is an integer of 1 to 8.)
下記一般式(6)で表される、請求項1または2に記載の含フッ素ビニルエーテル。
Figure 2004155680
(式中、Rは炭素数0〜5のアルキル基。nは1〜8の整数。)
The fluorinated vinyl ether according to claim 1, which is represented by the following general formula (6).
Figure 2004155680
(In the formula, R 5 is an alkyl group having 0 to 5 carbon atoms. N is an integer of 1 to 8.)
下記一般式(7)で表される、ヘキサフルオロイソプロパノール単位を含有することを特徴とする請求項1〜7のいずれか1項に記載の含フッ素ビニルエーテル。
Figure 2004155680
The fluorine-containing vinyl ether according to any one of claims 1 to 7, comprising a hexafluoroisopropanol unit represented by the following general formula (7).
Figure 2004155680
請求項1〜8のいずれか1項に記載の含フッ素ビニルエーテルを使用した含フッ素重合体または含フッ素共重合体。A fluorinated polymer or fluorinated copolymer using the fluorinated vinyl ether according to any one of claims 1 to 8. 請求項9に記載の含フッ素重合体を使用したレジスト材料。A resist material using the fluoropolymer according to claim 9.
JP2002320871A 2002-11-05 2002-11-05 Fluorine-containing vinyl ether, fluorine-containing polymer using the same, and resist material using the fluorine-containing polymer Expired - Fee Related JP4166076B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002320871A JP4166076B2 (en) 2002-11-05 2002-11-05 Fluorine-containing vinyl ether, fluorine-containing polymer using the same, and resist material using the fluorine-containing polymer
KR1020057007904A KR100740803B1 (en) 2002-11-05 2003-10-30 Fluorine-containing vinyl ethers, their polymers, and resist compositions using such polymers
US10/533,788 US7256316B2 (en) 2002-11-05 2003-10-30 Fluorine-containing vinyl ethers, their polymers, and resist compositions using such polymers
PCT/JP2003/013924 WO2004041762A1 (en) 2002-11-05 2003-10-30 Fluorine-containing vinyl ethers, their polymers, and resist compositions using such polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320871A JP4166076B2 (en) 2002-11-05 2002-11-05 Fluorine-containing vinyl ether, fluorine-containing polymer using the same, and resist material using the fluorine-containing polymer

Publications (2)

Publication Number Publication Date
JP2004155680A true JP2004155680A (en) 2004-06-03
JP4166076B2 JP4166076B2 (en) 2008-10-15

Family

ID=32801589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320871A Expired - Fee Related JP4166076B2 (en) 2002-11-05 2002-11-05 Fluorine-containing vinyl ether, fluorine-containing polymer using the same, and resist material using the fluorine-containing polymer

Country Status (1)

Country Link
JP (1) JP4166076B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321685A (en) * 2004-05-11 2005-11-17 Fuji Photo Film Co Ltd Plastic optical fiber and fluorine-containing copolymer used for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321685A (en) * 2004-05-11 2005-11-17 Fuji Photo Film Co Ltd Plastic optical fiber and fluorine-containing copolymer used for the same

Also Published As

Publication number Publication date
JP4166076B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP5018743B2 (en) Fluorine-containing compounds and their polymer compounds
JP4410508B2 (en) Fluorine-containing compounds and their polymer compounds
JP4083399B2 (en) Fluorine-containing polymerizable monomer and polymer compound using the same
TWI444391B (en) A polymerizable fluorine-containing sulfonate, a fluorine-containing sulfonate resin, a barrier composition and a pattern forming method using the same
KR101067970B1 (en) Cyclic fluorine compounds, polymerizable fluoromonomers, fluoropolymers, and resist materials containing the fluoropolymers and method for pattern formation
KR101343962B1 (en) Polymerizable fluoromonomer, fluoropolymer, resist material, and method of pattern formation and semiconductor device
JP2005029527A5 (en)
WO2006030609A1 (en) Lactone compound, lactone-containing monomer, polymer of those, resist composition using same, method for forming pattern using same
JP3999030B2 (en) Fluorine-containing polymerizable monomer, polymer compound using the same, and antireflection film material
JP4079893B2 (en) Fluorine-containing cyclic compound, fluorine-containing polymer compound, resist material and pattern forming method using the same
US7282549B2 (en) Fluorine-containing compounds, fluorine-containing polymerizable monomers, fluorine-containing polymers, dissolution inhibitors, and resist compositions
JP4557500B2 (en) Fluorine-based cyclic compound
KR100740803B1 (en) Fluorine-containing vinyl ethers, their polymers, and resist compositions using such polymers
JP2004323422A5 (en)
JP2004307447A (en) Fluorine-containing cyclic compound, fluorine-containing polymerizable monomer, fluorine-containing polymer compound, resist material produced by using the same and pattern forming method
US7399815B2 (en) Fluorine-containing allyl ether compounds, their copolymers, and resist compositions and anti-reflection film materials using such copolymers
JP4166076B2 (en) Fluorine-containing vinyl ether, fluorine-containing polymer using the same, and resist material using the fluorine-containing polymer
JP2004099689A (en) Fluorine-containing polycyclic compound, polymer compound using it as raw material and photoresist material using it
JP4770780B2 (en) Method for producing fluorine-containing polymerizable monomer
JP3916425B2 (en) Fluorine-containing acrylate derivative, process for producing the same, and polymer compound using the same
JP4190296B2 (en) Fluorine-containing copolymer using fluorine-containing vinyl ether, and resist material using fluorine-containing copolymer
JP2003137940A (en) Fluorine-containing polymer and photosensitive coating material
JP4943305B2 (en) Polymer compounds using fluorine-containing polymerizable monomers
JP2004115692A (en) Fluorine-containing copolymer and resist material and anti-reflection film material using it
JP2009073835A (en) Fluorine-containing compound, dissolution-suppressing agent and resist material using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees