JP2004152559A - Electronic component and its manufacturing method - Google Patents

Electronic component and its manufacturing method Download PDF

Info

Publication number
JP2004152559A
JP2004152559A JP2002315178A JP2002315178A JP2004152559A JP 2004152559 A JP2004152559 A JP 2004152559A JP 2002315178 A JP2002315178 A JP 2002315178A JP 2002315178 A JP2002315178 A JP 2002315178A JP 2004152559 A JP2004152559 A JP 2004152559A
Authority
JP
Japan
Prior art keywords
plating
plating film
electronic component
base
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002315178A
Other languages
Japanese (ja)
Inventor
Masakazu Matsushima
松島正和
Satoru Shinoda
信田哲
Kazuomi Ando
安藤和臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshin Kogyo Co Ltd
Original Assignee
Toshin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshin Kogyo Co Ltd filed Critical Toshin Kogyo Co Ltd
Priority to JP2002315178A priority Critical patent/JP2004152559A/en
Publication of JP2004152559A publication Critical patent/JP2004152559A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the creeping of solder to a contact part in an electronic component such as a connector or a switch having a terminal soldered with the contact part. <P>SOLUTION: Surface plating 3 is conducted on a base material 1 or undercoat plating 2 on the base material, one part of the plated surface is heat-treated by using a laser 6 or the like, the mutual thermal diffusion of the base material or a undercoat plating film with a surface plating film is conducted, a reformed layer 5 is formed of the base material or the undercoat plating film and the surface plating film, and the reformed layer 5 is used as a solder creeping preventing region. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、接触部とはんだ付けされる端子部とを持つコネクタ、スイッチなどの電子部品において、接触部として形成される表面めっき層上を這い上がる端子部のはんだの這い上がりを防止する領域を形成する新しい方法及びこのような防止領域を具備する電子部品に関するものである。
【0002】
【従来の技術】
従来、表面処理を施すことで機能を発揮するコネクタ、スイッチなどの電子部品用材料の中で、接触部とはんだ付けされる端子部とを持つ様に表面処理を施す際、例えば図9、図10,図11、図12(ここで使用した図は、図1〜図12のいずれについても電子部品用材料の曲げ加工のない切断面の状態で示す。)に示すように、銅合金や鉄合金などの素材1に、選択的にまたは全面に下地ニッケルめっき2を施し、その上に接触部用表面めっきとして選択的に金めっき3を施し、端子部用表面めっきとして選択的に金めっき又ははんだめっき4を施し、その間に下地めっき部を残し、この部分をはんだ上がり防止領域5として使用することが一般的である。
なを、電子部品材料は成形前にめっき加工するものもあれば、成形後にめっき加工するものもある。
下地めっきとしては、ニッケルめっきのほかに、無電解ニッケルめっきなどが施される例もあるし、素材が鉄系合金材、ニッケル系合金材、ステンレス材などの場合には下地めっきを省略する場合もある。
接触部用表面めっきには金めっきのほかに、パラジウム、パラジウム合金、銀、錫、はんだ(錫鉛合金)、錫銅合金めっきなどが施される例もある。
端子部用表面めっきには、上記のほかに、パラジウム、パラジウム合金、銀、錫、錫銅合金めっきなどが施される例もある。
【0003】
選択的にめっきする方法は、、治具を用いてめっき不必要部をめっき液から遮蔽する方法、接着性のあるテープでマスキングする方法、必要な部分だけめっき液に浸漬してめっきする方法などが使われる。
しかし、治具を用いてめっき不必要部をめっき液より遮蔽する方法では、めっき素材と治具間の密着が完全でないことにより、この部分で、めっき液が若干治具とめっき素材間に浸透し、めっき不必要部にめっきの滲みが生じる(部分的にめっきされてしまう)。
接着性のあるテープを素材に貼り付けてマスキングする方法は、テープ材質が一般的にプラスティックフィルムのため、マスキングの際の張力によりテープが伸び縮みし、幅や位置の誤差を生じる。又プラスティックフィルムは強度的に弱いために、1mm幅程度のプラスティックフィルムを素材に安定して貼り付けて、マスキングすることは難しい。
必要部分だけめっき液に浸漬してめっきする方法は、液の表面張力が存在するため、めっき素材の液面部分にめっき液が吸い上がり、2mm以上のめっき滲みが発生してしまう。
従ってこれらのめっき方法では、めっき位置精度に1〜2mm程度の誤差が常に生じており、はんだ上がり防止領域として必要な下地ニッケルめっきの残存部分としては、最低でも1〜2mm程度の幅が必要になる。
しかし最近では電子部品の軽薄短小化が進み、例えばコネクタでは全長で1mm程度のものも出現するようになり、はんだ上がり防止領域の幅は、1mm以下、場合によっては0.1mm以下が要求されるようになってきた。
つまり、こうした従来の方法では、要求を満足するはんだ上がり防止領域を形成することが不可能になってきている。
【0004】
これを解決するために、ニッケルめっき後、めっき面に感光性樹脂を塗布し、パターン形成方法により、めっき不必要部をマスキングする事が考えられる。
しかしこの方法は、プリント基板作製のように複雑な工程を余儀なくされ、コストが重要視される電子部品の表面処理には向いていない。
【0005】
この解決策の一方策として、素材に下地ニッケルめっき後、表面金めっきを施し、めっき後に、はんだ上がり防止が必要な部分の表面を、酸化処理することによりはんだ上がりを防ぐことが行われている。
しかし、この方法では、接触用金属としてめっきされる金は酸化されないので、酸化物層形成が困難である。
さらに下地のニッケルめっき面の酸化を進めるには与えるエネルギーが大きくなり、はんだ上がり防止面周辺部の接触用めっき部への、熱的影響が大きくなる問題を生ずる。(例えば、特許文献1参照)
【0006】
さらに別の解決策として、素材に下地ニッケルめっき後、表面金めっきを施し、その後にはんだ上がり防止が必要な部分の表面を、機械的な研削あるいは研磨技術、放電加工あるいは電子ビーム加工技術、レーザー加工技術を適用して選択的に取り除き、下地ニッケル表面を露出させる事も行われている。
しかしこの方法では、薄い表面金めっき皮膜を正確に除去するのは難しく、(通常下地ニッケルめっき厚さは0.5〜2.5μm、 表面金めっき厚さは0.03〜0.5μm)除去後の金属表面は、研削による表面荒れが生じたり、素材金属の露出が起こる可能性がある。
また除去部の金属が、周辺部へ飛散や堆積し、接触部表面の金めっき皮膜を汚染する可能性があるなどの問題が発生する。(例えば、特許文献2参照)
【0007】
[特許文献1]
特開平8−213070号公報(第3頁、第1図)
[特許文献2]
特開2002−203627号公報(第4頁、第5図)
【0008】
【発明が解決しようとする課題】
接触部とはんだ付けされる端子部を持つコネクタ、スイッチにおいて、接触部として形成される表面めっき層上を這い上がる端子部のはんだの這い上がりを防止する領域を1mm以下程度の幅で、0.1mm程度の精度で作成することが課題である。
しかし従来の方法では0002〜0006に記述したように、課題を解決出来ない。
つまり、0002〜0004の選択的に表面めっきを施さない部分を形成して、これをはんだ上がり防止領域とする方法では、防止領域の幅を0.1mm程度にする精度上の課題を満たすことが出来ない。
0005の表面めっきを酸化する方法では、接触表面めっき金属として多く用いられる金を酸化することが困難である。
0006の表面めっき後その一部表面を除去して、この面をはんだ上がり防止領域とする方法では、取り除く部分の幅や厚みの制御が難しく、はんだ上がり防止領域の素材露出、表面荒れ等が発生しやすく、除去金属がはんだ上がり防止領域近傍の接触部表面を汚染する問題などが発生する。
【0009】
【課題を解決するための手段】
この発明は、上述のはんだ上がり問題を解消した電子部品及びその方法を提供するものである。
すなわち、接触部とはんだ付けされる端子部とを持つコネクタ、スイッチなどの電子部品材料の表面処理に際し、素材上に表面めっきを施し、その後めっき表面の一部分を熱処理することにより、素材と表面めっき皮膜とを相互に熱拡散させて、両金属を固溶体化、合金化、金属間化合物化することで、素材とめっき皮膜による改質層を形成し、この部分を接触部へのはんだ上がり防止領域としたことを特徴とする。
【0010】
上記電子部品材料の表面処理に際し、素材上に下地めっき及び表面めっきを施し、その後めっき表面の一部分を熱処理することにより、下地めっき皮膜と表面めっき皮膜とを相互に熱拡散させて、両金属を固溶体化、合金化、金属間化合物化することで、下地めっき皮膜と表面めっき皮膜による改質層を形成し、この部分を接触部へのはんだ上がり防止領域としたことを特徴とする。
【0011】
下地めっきとしてニッケルめっきを施し、次に表面めっきとして金めっきを施し、その後めっき表面の一部分を、レーザーなどの熱エネルギーを照射して熱処理することにより、下地ニッケルめっき皮膜と表面金めっき皮膜による微細な幅の改質層を形成し、この部分を接触部へのはんだ上がり防止領域としたことを特徴とする。
【0012】
【発明の実施の形態】
この発明の実施形態を図1〜図8を参照して説明する。
表面処理を施すことで機能を発揮するコネクタ、スイッチなどの電子部品用材料の中で、接触部とはんだ付けされる端子部とを持つ様に表面処理を施す際、まず図1、図3,図5、に例を示すように、素材表面1に、選択的にまたは全面に下地ニッケルめっき2を施し、その上に選択的にまたは全面に表面金めっき3を施す。一般的には下地ニッケルめっき皮膜厚さは0.5〜2.5μm程度であり、表面金めっき厚さは0.03〜0.5μm程度である。
めっき後、図2,図4,図6に例を示すように、レーザーなどの熱エネルギー6を、表面金めっき面の一部に局部的に照射して、1mm〜0.01mmの微細な幅で、表面金めっき皮膜と下地ニッケルめっき皮膜を熱拡散により均一に合金化する。
その際、表面金めっき皮膜より下地ニッケルめっき皮膜が厚いので、レーザーなどの熱エネルギー照射部にニッケル外観を持ったはんだ上がり防止面5を形成する。
熱エネルギー照射部以外の金めっき面の片方を接触部3’にし、残りの片方をはんだ付けされる端子部4’にする。
【0013】
次に実施した実験の一例を示す。
板厚0.1mm、材料幅29.5mmのリン青銅素材に、下地ニッケルめっきを全面に1.5μmの厚さでめっきし、表面に金めっきを3mmの幅で選択的に0.2μmの厚さでめっきして、概念図3のサンプルを作製した。
めっき加工後に、発振波長355nm、平均出力3wのNd:YAGレーザービームを0.3mm幅で、試料表面に50mm/secの走査速度で,金めっき幅先端から1mmの位置に沿って照射した。照射部の試料表面の金色は、0.3mm幅でレーザービームの走査方向に沿ってニッケル外観を呈し、この幅は一定しており、概念図4のごとく、下地ニッケル表面2上に、幅0.85mmの金めっき外観を持った接触部3’と、幅0.3mmのニッケルめっき外観を持った改質部5と、幅1.85mmの金めっき外観を持った端子部4’を得た。
この実験で、図4中、3’、5,4’表面は、凹凸もなくレーザービームの照射により表面性状を劣化させることもなかった。
次にこれをEPMA(電子線マイクロアナライザー)を使用して元素分析したところ、レーザービーム照射部はニッケル外観を呈しているが、この部分からは金元素が非照射部と大差ない強度で検出され、レーザービームの照射により表面金めっき皮膜は除去されたわけではなく、下地ニッケルめっき皮膜と表面金めっき皮膜が、相互に熱拡散してニッケル割合の多いニッケルー金合金層が形成されたことを示し、図4の状態が元素分析により確認された。
こうして作製した図4の4’部をはんだ付けしたところ、レーザービーム照射により改質された幅0.3mmの部分は、はんだ上がり防止領域5として作用し、接触部3’へのはんだの這い上がりを防ぐ効果が確認された。
【0014】
レーザーなどを照射する際、めっき面の一面だけに照射することも出来るし、めっき面の全ての面(4面)に照射することも出来る。もちろん照射して改質したはんだ上がり防止領域は、一面上に一本だけではなく多数本作製することも可能である。
実験の結果、レーザー光線を使用する場合には、赤外部のものよりも可視光部〜紫外部の波長のものが金属表面に吸収されやすく、表面改質に向いていることが判った。
レーザー光線は単一波長でレンズにより焦点を絞ることが出来るため、1mm以下で0.01mm程度までの幅の狭い部分的な熱処理が可能である。
この方法ではビーム径と照射時間を調節することで、めっき表面の面方向と深さ方向を自由に選ぶことが出来るため、仕様の違う色々な要求にも適応可能である。
【0015】
発明の実施の形態については、下地ニッケルめっき、表面金めっきについて説明してきたが、下地ニッケルめっきを省略する場合もある。
この場合には、図7に示すように素材上に直接金めっきを施した後、図8に示すように、レーザーなどの熱エネルギー6を、表面金めっき面の一部に局部的に照射して、1mm〜0.01mmの微細な幅で、表面金めっき皮膜と素材とを熱拡散により固溶体化、合金化、金属間化合物化する。
もちろん素材上への下地めっきはニッケルには限らず、無電解ニッケルあるいはその他のめっきも使用出来る。
表面の接触部めっきも金に限らず、パラジウム、パラジウム合金、銀、錫 などのめっきも使用出来る。
【0016】
以上述べたように、発明の実施形態に従って表面処理したはんだ上がり防止面5は、3’,4’の部分と同一平面を維持し、材料表面に凹凸がなく、金とニッケルの熱拡散によって形成された改質層の合金面であり、金に比較してニッケルが多いために、外観は目視で判別可能なニッケル色であり、しかもこの部分が、はんだ上がり防止面として作用し、図9、図10,図11,図12に示した従来の技術以上の機能を持ち、かつレーザーなどの熱エネルギーを照射することで、従来品と比較して、はんだ上がり防止領域が極端に狭く、同時にその位置精度が際だって良いという効果を発揮する。
【0017】
【発明の効果】
この発明によれば、接触部とはんだ付けされる端子部とを持つコネクタやスイッチの電子部品において、素材あるいはニッケルなどの下地めっき皮膜と金などの表面めっき皮膜を レーザーなどの熱エネルギーを照射して相互に熱拡散させ、両金属を固溶体化、合金化、金属間化合物化して改質層を形成し、はんだの這い上がりをこの箇所で阻止することが出来る。
また、このはんだ上がり防止領域(防止面)は、レーザーなどの熱エネルギー照射により、表面に凹凸のない0.1mm程度と、その幅を極端に狭くすることが可能であるし、防止領域の形成部の選択も容易であり、かつその位置を高精度に制御することも可能である。
はんだ上がり防止領域となる改質層の変色を目視で確認出来ることも、処理の確認という点で効果的である。
これらの技術は、微細な電子部品を加工する上で要求される量産性向上にも効果を発揮する。
【図面の簡単な説明】
【図1】めっき後熱エネルギーを照射前の図
【図2】図1にレーザーなどの熱エネルギーを照射後の状態例
【図3】めっき後熱エネルギーを照射前の図
【図4】図3にレーザーなどの熱エネルギーを照射後の状態例
【図5】めっき後熱エネルギーを照射前の図
【図6】図5にレーザーなどの熱エネルギーを照射後の状態例
【図7】めっき後熱エネルギーを照射前の図
【図8】図7にレーザーなどの熱エネルギーを照射後の状態例
【図9】従来例を説明する図
【図10】従来例を説明する図
【図11】従来例を説明する図
【図12】従来例を説明する図
【符号の説明】
1 銅合金、鉄合金などの素材
2 下地ニッケルめっき皮膜
3 表面金めっき皮膜
3’ 熱処理後の接触部用金表面
4 表面金またははんだめっき皮膜
4’ 熱処理後のはんだ付け端子用金表面
5 はんだ上がり防止領域
6 レーザーなどの熱エネルギー照射部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an electronic component such as a connector or a switch having a contact portion and a terminal portion to be soldered, in which an area for preventing solder from creeping up on a terminal portion creeping up on a surface plating layer formed as a contact portion is provided. A new method of forming and an electronic component having such a prevention zone.
[0002]
[Prior art]
Conventionally, when a surface treatment is performed so as to have a contact portion and a terminal portion to be soldered in a material for an electronic component such as a connector or a switch, which functions by performing the surface treatment, for example, FIGS. As shown in FIGS. 10, 11, and 12 (the drawings used here are shown in the cut surfaces of the electronic component materials without bending in any of FIGS. 1 to 12), copper alloys and iron A base material nickel plating 2 is selectively or entirely applied to a material 1 such as an alloy, and a gold plating 3 is selectively applied thereon as a surface plating for a contact portion. In general, the solder plating 4 is applied, and a base plating portion is left therebetween, and this portion is generally used as a solder rising prevention region 5.
Some electronic component materials are plated before molding, while others are plated after molding.
In addition to nickel plating, there are also examples of electroless nickel plating, etc. applied as the base plating, and if the base material is iron-based alloy, nickel-based alloy, stainless steel, etc., omit the base plating There is also.
In addition to gold plating, surface plating for the contact portion may be plated with palladium, palladium alloy, silver, tin, solder (tin-lead alloy), tin-copper alloy, or the like.
In addition to the above, there are examples in which the surface plating for the terminal is plated with palladium, a palladium alloy, silver, tin, tin-copper alloy, or the like.
[0003]
Selective plating methods include using a jig to shield unnecessary plating from the plating solution, masking with an adhesive tape, immersing only the necessary parts in the plating solution, and plating. Is used.
However, in the method of using a jig to shield unnecessary plating from the plating solution, the adhesion between the plating material and the jig is not perfect, so the plating solution slightly penetrates between the jig and the plating material at this part. However, bleeding of the plating occurs in the unnecessary portion of the plating (partial plating occurs).
In a method of masking by attaching an adhesive tape to a material, since the tape material is generally a plastic film, the tape expands and contracts due to the tension at the time of masking, causing errors in width and position. Further, since the plastic film is weak in strength, it is difficult to stably attach the plastic film having a width of about 1 mm to the material and mask it.
In the method of immersing only a necessary portion in a plating solution to perform plating, since the surface tension of the solution exists, the plating solution is sucked into the liquid surface portion of the plating material, and plating bleed of 2 mm or more occurs.
Therefore, in these plating methods, there is always an error of about 1 to 2 mm in the plating position accuracy, and a minimum of about 1 to 2 mm width is required as the remaining portion of the base nickel plating required as the solder drip prevention area. Become.
However, recently, electronic components have become lighter and thinner and smaller. For example, connectors having a total length of about 1 mm have also appeared, and the width of the solder drip prevention area is required to be 1 mm or less, and in some cases 0.1 mm or less. It has become.
That is, it is becoming impossible for such a conventional method to form a solder wicking prevention region satisfying the requirements.
[0004]
In order to solve this problem, it is conceivable to apply a photosensitive resin to the plating surface after nickel plating and mask the unnecessary portion by a pattern forming method.
However, this method is not suitable for the surface treatment of an electronic component in which cost is regarded as important due to the necessity of a complicated process like the production of a printed circuit board.
[0005]
As one measure of this solution, after the base nickel plating is applied to the material, the surface is plated with gold, and after plating, the surface of the portion where the prevention of solder rising is required is oxidized to prevent the solder rising. .
However, in this method, it is difficult to form an oxide layer because gold plated as a contact metal is not oxidized.
Further, the energy applied to promote oxidation of the nickel plating surface of the base increases, which causes a problem that the thermal influence on the contact plating portion around the solder drip prevention surface is increased. (For example, see Patent Document 1)
[0006]
As another solution, the material is plated with nickel under the surface, then the surface is plated with gold, and then the surface of the part that needs to be protected from solder erosion is mechanically ground or polished, electric discharge or electron beam processing, laser It is also practiced to selectively remove by applying a processing technique to expose the underlying nickel surface.
However, in this method, it is difficult to accurately remove the thin surface gold plating film, and usually, the thickness of the underlying nickel plating is 0.5 to 2.5 μm, and the thickness of the surface gold plating is 0.03 to 0.5 μm. The subsequent metal surface may be roughened due to the grinding, or the material metal may be exposed.
Further, there arises a problem that the metal in the removed portion scatters or accumulates in the peripheral portion and may contaminate the gold plating film on the surface of the contact portion. (For example, see Patent Document 2)
[0007]
[Patent Document 1]
JP-A-8-213070 (page 3, FIG. 1)
[Patent Document 2]
JP-A-2002-203627 (Page 4, FIG. 5)
[0008]
[Problems to be solved by the invention]
In a connector or a switch having a contact portion and a terminal portion to be soldered, a region for preventing the solder from creeping up on the surface plating layer formed as the contact portion has a width of about 1 mm or less, and has a width of 0.1 mm or less. The challenge is to make it with an accuracy of about 1 mm.
However, the conventional method cannot solve the problem as described in 0002 to 0006.
In other words, in the method of selectively forming a non-surface-plated portion of 0002 to 0004 and using the portion as a solder-up prevention region, it is possible to satisfy the problem of accuracy of reducing the width of the prevention region to about 0.1 mm. Can not.
With the method of oxidizing surface plating of 0005, it is difficult to oxidize gold, which is often used as a contact surface plating metal.
In the method in which a part of the surface is removed after the surface plating of 0006, and this surface is used as a solder wicking prevention area, it is difficult to control the width and thickness of the part to be removed, and material exposure and surface roughness of the solder wicking prevention area occur. And the problem that the removed metal contaminates the surface of the contact portion near the solder wicking prevention region occurs.
[0009]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention provides an electronic component and a method for solving the above-mentioned solder drip problem.
That is, in the surface treatment of electronic component materials such as connectors and switches having contact parts and terminal parts to be soldered, surface plating is applied to the material, and then a part of the plating surface is heat-treated, so that the material and the surface plating By thermally diffusing the film with each other and forming a solid solution, alloying, and intermetallic compounding of both metals, a reformed layer is formed by the material and the plating film. It is characterized by having.
[0010]
In the surface treatment of the electronic component material, a base plating and a surface plating are performed on the material, and then a part of the plating surface is heat-treated, whereby the base plating film and the surface plating film are mutually thermally diffused, and both metals are diffused. A solid solution, alloying, and intermetallic compounding form a modified layer of a base plating film and a surface plating film, and this portion is used as a region for preventing solder from rising to the contact portion.
[0011]
Nickel plating is applied as a base plating, followed by gold plating as a surface plating, and then a part of the plating surface is heat-treated by irradiating thermal energy such as a laser. A modified layer having a wide width is formed, and this portion is used as a region for preventing solder from rising to a contact portion.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
When surface treatment is performed so as to have a contact portion and a terminal portion to be soldered in a material for electronic components such as connectors and switches that exhibit a function by performing the surface treatment, first, FIGS. As shown in FIG. 5, an underlying nickel plating 2 is selectively or entirely applied to the material surface 1, and a surface gold plating 3 is selectively or entirely applied thereto. Generally, the thickness of the underlying nickel plating film is about 0.5 to 2.5 μm, and the thickness of the surface gold plating is about 0.03 to 0.5 μm.
After plating, as shown in FIG. 2, FIG. 4, and FIG. 6, thermal energy 6 such as a laser is locally applied to a part of the surface gold plating surface to form a fine width of 1 mm to 0.01 mm. Then, the surface gold plating film and the underlying nickel plating film are uniformly alloyed by thermal diffusion.
At this time, since the underlying nickel plating film is thicker than the surface gold plating film, a solder rising prevention surface 5 having a nickel appearance is formed on a heat energy irradiation portion such as a laser.
One of the gold-plated surfaces other than the heat energy irradiating part is used as a contact part 3 ', and the other is used as a terminal part 4' to be soldered.
[0013]
Next, an example of the experiment performed is shown.
Phosphor bronze material with a board thickness of 0.1 mm and a material width of 29.5 mm is plated with a 1.5-μm-thick nickel plating over the entire surface, and a gold plating is selectively applied on the surface with a width of 3 mm and a thickness of 0.2 μm. Then, the sample of the conceptual diagram 3 was produced.
After the plating, a Nd: YAG laser beam having an oscillation wavelength of 355 nm and an average output of 3 w was irradiated onto the sample surface at a scanning speed of 50 mm / sec at a scanning speed of 50 mm / sec along a position 1 mm from the end of the gold plating width. The gold color on the sample surface of the irradiated part has a width of 0.3 mm and has a nickel appearance along the scanning direction of the laser beam, and the width is constant. A contact portion 3 'having a gold plating appearance of .85 mm, a modified portion 5 having a nickel plating appearance of 0.3 mm width, and a terminal portion 4' having a gold plating appearance of 1.85 mm width were obtained. .
In this experiment, in FIG. 4, the 3 ′, 5, 4 ′ surfaces did not have irregularities and did not deteriorate in surface properties due to laser beam irradiation.
Next, when this was subjected to elemental analysis using an EPMA (Electron Beam Microanalyzer), the laser beam irradiated part had a nickel appearance, but from this part the gold element was detected with a strength not much different from that of the non-irradiated part. The surface gold plating film was not removed by the laser beam irradiation, indicating that the underlying nickel plating film and the surface gold plating film were thermally diffused with each other to form a nickel-gold alloy layer with a high nickel ratio, The state of FIG. 4 was confirmed by elemental analysis.
When the 4 ′ portion of FIG. 4 manufactured in this manner was soldered, the portion having a width of 0.3 mm modified by laser beam irradiation acts as a solder rising prevention region 5, and the solder creeps up to the contact portion 3 ′. The effect of preventing was confirmed.
[0014]
When irradiating a laser or the like, it is possible to irradiate only one surface of the plating surface, or to irradiate all surfaces (four surfaces) of the plating surface. Of course, it is also possible to manufacture not only one but also a large number of solder rising prevention areas modified by irradiation.
As a result of the experiment, it was found that when a laser beam was used, those having a wavelength in the visible light portion to the ultraviolet portion were more easily absorbed by the metal surface than those in the infrared portion, and were suitable for surface modification.
Since the laser beam can be focused by a lens at a single wavelength, a partial heat treatment with a narrow width of 1 mm or less and about 0.01 mm is possible.
In this method, the surface direction and the depth direction of the plating surface can be freely selected by adjusting the beam diameter and the irradiation time, so that it can be applied to various requirements with different specifications.
[0015]
Although the embodiment of the invention has been described with reference to the underlying nickel plating and the surface gold plating, the underlying nickel plating may be omitted in some cases.
In this case, as shown in FIG. 7, after performing gold plating directly on the material, as shown in FIG. 8, heat energy 6 such as a laser is locally applied to a part of the surface gold plating surface. Then, the surface gold plating film and the material are formed into a solid solution, alloyed, and intermetallic compound by thermal diffusion with a fine width of 1 mm to 0.01 mm.
Of course, the underlying plating on the material is not limited to nickel, and electroless nickel or other plating can be used.
The plating of the contact portion on the surface is not limited to gold, and plating of palladium, palladium alloy, silver, tin, etc. can also be used.
[0016]
As described above, the solder wicking prevention surface 5 surface-treated according to the embodiment of the present invention maintains the same plane as the 3 ′ and 4 ′ portions, has no unevenness on the material surface, and is formed by thermal diffusion of gold and nickel. 9 is an alloy surface of the modified layer, which has more nickel than gold, so that the appearance is a nickel color that can be visually discriminated, and this portion acts as a solder wicking prevention surface. By irradiating thermal energy such as a laser with the function more than the conventional technology shown in FIGS. 10, 11 and 12, the area for preventing solder drip is extremely narrow as compared with the conventional product. This has the effect that the position accuracy is outstanding.
[0017]
【The invention's effect】
According to the present invention, in a connector or switch electronic component having a contact portion and a terminal portion to be soldered, a material or a base plating film such as nickel and a surface plating film such as gold are irradiated with thermal energy such as laser. To form a modified layer by solid-solution, alloying, and intermetallic compounding of both metals to prevent the solder from creeping up at this point.
In addition, the solder rising prevention area (prevention surface) can be extremely narrowed to about 0.1 mm with no irregularities on the surface by irradiating thermal energy such as a laser, and the prevention area can be formed. Selection of a part is easy, and its position can be controlled with high accuracy.
It is also effective in visually confirming the discoloration of the modified layer, which is the solder drip prevention area, in terms of processing confirmation.
These techniques are also effective for improving mass productivity required for processing fine electronic components.
[Brief description of the drawings]
FIG. 1 is a view before irradiation with heat energy after plating FIG. 2 is an example of a state after irradiation with heat energy such as a laser in FIG. 1 FIG. 3 is a view before irradiation with heat energy after plating FIG. Example of state after irradiating thermal energy such as laser to plate [Fig. 5] Figure before irradiating heat energy after plating [Fig. 6] Fig. 5 Example of state after irradiating heat energy such as laser [Fig. 7] Heat after plating FIG. 8 shows a state before irradiation with thermal energy such as a laser in FIG. 7; FIG. 9 is a diagram illustrating a conventional example; FIG. 10 is a diagram illustrating a conventional example; FIG. FIG. 12 illustrates a conventional example. [Description of References]
Reference Signs List 1 Material such as copper alloy and iron alloy 2 Base nickel plating film 3 Surface gold plating film 3 'Gold surface for contact part after heat treatment 4 Surface gold or solder plating film 4' Gold surface for soldering terminals after heat treatment 5 Solder finish Prevention area 6 Heat energy irradiation part such as laser

Claims (6)

接触部とはんだ付けされる端子部とを持つコネクタ、スイッチなどの電子部品であって、素材上に表面めっきを施し、その後めっき表面の一部分を熱処理することにより、素材と表面めっき皮膜とを相互に熱拡散させて、素材とめっき皮膜による改質層を形成し、この部分を接触部へのはんだ上がり防止領域としたことを特徴とする電子部品の製造方法。An electronic component such as a connector or a switch that has a contact part and a terminal part to be soldered. The material is subjected to surface plating, and then a part of the plating surface is heat-treated to allow the material and the surface plating film to interact with each other. A method for producing an electronic component, comprising: forming a modified layer of a material and a plating film by heat diffusion to form a region for preventing solder from rising to a contact portion. 接触部とはんだ付けされる端子部とを持つコネクタ、スイッチなどの電子部品であって、素材上に下地めっき及び表面めっきを施し、その後めっき表面の一部分を熱処理することにより、下地めっき皮膜と表面めっき皮膜とを相互に熱拡散させて、下地めっき皮膜と表面めっき皮膜による改質層を形成し、この部分を接触部へのはんだ上がり防止領域としたことを特徴とする電子部品の製造方法。An electronic component, such as a connector or a switch, having a contact portion and a terminal portion to be soldered, which is provided with a base plating and a surface plating on a material, and then a part of the plating surface is subjected to a heat treatment, so that a base plating film and a surface are formed. A method for manufacturing an electronic component, comprising: forming a modified layer of a base plating film and a surface plating film by thermally diffusing a plating film with each other; 下地めっきとしてニッケルめっきを施し、次に表面めっきとして金めっきを施し、その後めっき表面の一部分をレーザーなどの熱エネルギーを照射して熱処理することにより、下地ニッケルめっき皮膜と表面金めっき皮膜による改質層を形成し、この部分を接触部へのはんだ上がり防止領域としたことを特徴とする請求項2記載の電子部品の製造方法。Nickel plating as a base plating, then gold plating as a surface plating, and then heat treatment by irradiating thermal energy such as laser to a part of the plating surface, thereby modifying the base nickel plating film and the surface gold plating film 3. The method for manufacturing an electronic component according to claim 2, wherein a layer is formed, and this portion is used as a region for preventing solder from rising to the contact portion. 接触部とはんだ付けされる端子部とを持つコネクタ、スイッチなどの電子部品であって、素材上に表面めっきが施され、このめっき表面の一部分を熱処理することで、その素材と表面めっき皮膜とを相互に熱拡散させて、素材とめっき皮膜による改質層を形成し、この部分を接触部へのはんだ上がり防止領域としたことを特徴とする電子部品。An electronic component such as a connector or a switch that has a contact part and a terminal part to be soldered. Surface plating is applied to the material, and a part of the plating surface is heat-treated to form the material and the surface plating film. An electronic component characterized by forming a modified layer of a material and a plating film by thermally diffusing each other, and using this portion as a region for preventing solder from rising to a contact portion. 接触部とはんだ付けされる端子部とを持つコネクタ、スイッチなどの電子部品であって、素材上に下地めっき及び表面めっきが施され、このめっき表面の一部分を熱処理することで、下地めっき皮膜と表面めっき皮膜とを相互に熱拡散させて、下地めっき皮膜と表面めっき皮膜による改質層を形成し、この部分を接触部へのはんだ上がり防止領域としたことを特徴とする電子部品。An electronic component, such as a connector or a switch, having a contact portion and a terminal portion to be soldered, and a base plating and a surface plating are applied to a material, and a part of the plating surface is heat-treated to form a base plating film. An electronic component, wherein a surface plating film is mutually thermally diffused to form a modified layer of a base plating film and a surface plating film, and this portion is used as a region for preventing solder from rising to a contact portion. 下地めっきとしてのニッケルめっきと、表面めっきとしての金めっきとを有し、このめっき面の一部分をレーザーなどの熱エネルギーの照射により、下地ニッケルめっき皮膜と表面金めっき皮膜とを相互に熱拡散させて、下地ニッケルめっき皮膜と表面金めっき皮膜による改質層を形成し、この部分を接触部へのはんだ上がり防止領域としたことを特徴とする請求項5記載の電子部品。It has nickel plating as a base plating and gold plating as a surface plating. By irradiating thermal energy such as laser to a part of this plating surface, the base nickel plating film and the surface gold plating film are mutually thermally diffused. 6. The electronic component according to claim 5, wherein a modified layer comprising a base nickel plating film and a surface gold plating film is formed, and this portion is used as a region for preventing solder from rising to a contact portion.
JP2002315178A 2002-10-30 2002-10-30 Electronic component and its manufacturing method Pending JP2004152559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002315178A JP2004152559A (en) 2002-10-30 2002-10-30 Electronic component and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002315178A JP2004152559A (en) 2002-10-30 2002-10-30 Electronic component and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004152559A true JP2004152559A (en) 2004-05-27

Family

ID=32459258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002315178A Pending JP2004152559A (en) 2002-10-30 2002-10-30 Electronic component and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004152559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019334A (en) * 2003-06-27 2005-01-20 Matsushita Electric Works Ltd Manufacturing method of soldering terminal
WO2007024005A1 (en) * 2005-08-23 2007-03-01 Ddk Ltd. Microminiature contact and method for manufacturing same, and electronic component
JP2007173224A (en) * 2005-11-25 2007-07-05 Om Sangyo Kk Manufacturing method of electronic parts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019334A (en) * 2003-06-27 2005-01-20 Matsushita Electric Works Ltd Manufacturing method of soldering terminal
WO2007024005A1 (en) * 2005-08-23 2007-03-01 Ddk Ltd. Microminiature contact and method for manufacturing same, and electronic component
US8373091B2 (en) 2005-08-23 2013-02-12 Ddk, Ltd. Method of manufacturing a contact
JP2007173224A (en) * 2005-11-25 2007-07-05 Om Sangyo Kk Manufacturing method of electronic parts

Similar Documents

Publication Publication Date Title
JPH07171689A (en) Method for treating metal surface
JP4445014B2 (en) Ultra-small contact, method for manufacturing the same, and electronic component
JP2006120288A (en) Suspension substrate with circuit
WO2019102701A1 (en) Electronic component manufacturing method and electronic component
JP2002203627A (en) Electronic components and manufacturing method
WO2004034521A1 (en) Connector-use contact and production method for component to be soldered
US5023407A (en) Printed circuit board with a uniform conductive layer formed by equalization of metals therein
JP2004152559A (en) Electronic component and its manufacturing method
JP2005243468A (en) Electronic parts and its manufacturing method
JP2005243468A5 (en)
JPH0831848A (en) Production of semiconductor device
JP2004152750A (en) Soldering terminal and treatment method of surface of soldering terminal
JP5060146B2 (en) TERMINAL HAVING SOLDER SUCTION BARRIER AND ITS MANUFACTURING METHOD
JP2002289652A (en) Semiconductor device tape carrier and its manufacturing method
JP2007297668A (en) Method for manufacturing plated product
JP4050198B2 (en) Manufacturing method of connection device
JP2005019334A (en) Manufacturing method of soldering terminal
JP2006216474A (en) Wiring body, electronic apparatus, manufacturing method of wiring body and manufacturing method of electronic apparatus
JP2004103706A (en) Tape carrier for semiconductor devices, and its manufacturing method
JP2004281892A (en) Mounted assembly of electronic components, and manufacturing method thereof
JP3560334B2 (en) Printed circuit board and manufacturing method thereof
JP3458648B2 (en) Circuit board
JP2009043958A (en) Chip type metal plate resistor, and manufacturing method thereof
JP3201356B2 (en) Substrate surface treatment method using excimer laser
JP2713282B2 (en) Manufacturing method of printed wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050624

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307