JP2004151493A - Apparatus for manufacturing dielectric multilayer film - Google Patents

Apparatus for manufacturing dielectric multilayer film Download PDF

Info

Publication number
JP2004151493A
JP2004151493A JP2002317999A JP2002317999A JP2004151493A JP 2004151493 A JP2004151493 A JP 2004151493A JP 2002317999 A JP2002317999 A JP 2002317999A JP 2002317999 A JP2002317999 A JP 2002317999A JP 2004151493 A JP2004151493 A JP 2004151493A
Authority
JP
Japan
Prior art keywords
film
dielectric multilayer
multilayer film
monitoring
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002317999A
Other languages
Japanese (ja)
Other versions
JP4327440B2 (en
Inventor
Haruo Takahashi
晴夫 高橋
Koichi Hanzawa
幸一 半沢
Takafumi Matsumoto
孝文 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002317999A priority Critical patent/JP4327440B2/en
Priority to US10/394,667 priority patent/US7247345B2/en
Priority to TW092106852A priority patent/TWI255906B/en
Priority to CN2007101121450A priority patent/CN101078107B/en
Priority to KR1020030018487A priority patent/KR100972769B1/en
Priority to CN2007101121446A priority patent/CN101078106B/en
Priority to CNB031082297A priority patent/CN100398694C/en
Publication of JP2004151493A publication Critical patent/JP2004151493A/en
Priority to US11/819,838 priority patent/US7927472B2/en
Application granted granted Critical
Publication of JP4327440B2 publication Critical patent/JP4327440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric multilayer film manufacturing apparatus which can use a direct monitoring method with many kinds of monitor wavelengths by performing high-precision film thickness control and is suitably mass-produced. <P>SOLUTION: The apparatus equipped with a sputter cathode part 32 and an ion gun part 33 side by side opposite a rotating substrate 34 and manufactures a dielectric multilayer film in a vacuum chamber 31 is provided with variable openings 51a and 51b for restricting the deposition rate of the dielectric multilayer film to be deposited on the rotating substrate 34 and divided shutters 52 to 55 for correcting the film thickness of the dielectric multilayer film to be deposited on the rotating substrate 34 between the rotating substrate 34 and the sputter cathode part 32. Further, a digital signal processor 41 is provided which measures the intensity of monitoring monochromatic light received by a photodetector 38 after passing a plurality of monitor points 56a to 56h along a radius of the rotating substrate 34. Further, a computer 42 is provided which instructs the divided shutters 52 to 55 to block light according to variation in light intensity measured by the digital signal processor 41 when the monitoring monochromatic luminous flux consisting of one or more wavelengths passes through those monitor points 56a to 56h. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光学薄膜を主用途とし、その形成に際して高精度の膜厚制御を行い得る誘電体多層膜の製造装置に関する。光学薄膜は、導波路、回折格子、発光、表示素子、光メモリ、太陽電池などの各種光学部品や光素子に用途が拡大している。特に、光通信などの通信技術分野では、稠密波長多重通信(DWDM)システムにおいて合分波器などのデバイス用光学薄膜の多層化傾向が顕著であり、これに伴い、このような多層構造の光学薄膜の製造に際して、その各構成層の光学膜厚を高精度に制御することが求められている。
【0002】
【従来の技術】
薄膜成長中の膜厚測定は堆積速度や膜厚の制御のために重要であり、また、光学薄膜においては、物理的膜厚よりも反射率あるいは透過率などの光学的性質を決める光学膜厚(屈折率と物理的膜厚との積)が有用である。このため、薄膜の光学的性質を測定する、いわゆる光学式膜厚制御方法により、薄膜成長中に光学的性質を測定して光学膜厚をモニタすることが広く行われている。光学式膜厚制御方法には、単色測光法、二色測光法、多色測光法などがあり、これらの光学式膜厚制御方法のうち、単色測光法が最も簡便である。
【0003】
これは、成長中の薄膜の光学膜厚において、λ/4(λ:入射単色光の波長)の整数倍となる際のピーク(ボトムをも含み、また、極大及び極小と同義。以下同じ)を利用するものである。このようなピークは、成長中の最新表面層膜がその付着面を介して積層する基板側の隣接層が上記λ/4の整数倍にならないような光学膜厚で形成される場合や、この隣接層をも含んだ系のアドミッタンスが数学的に実数でない場合は、成長開始からの光学膜厚が最初にλ/4の整数倍に到達したときに出現するとは限らない。ただ、これらの場合でも、ピーク自体はその出現後、λ/4の整数倍に相当する光学膜厚間隔で周期的に現れる。
【0004】
しかし、単色測光法を用いる場合、上記のように出現するピークを用いてピーク制御を行う従来の方法では、ピーク近傍において成長する光学膜厚に対する光量変化が小さく、原理的に制御精度が悪化することは避けられない。
【0005】
このような場合、制御対象の所望の波長と若干異なるモニタ波長の干渉フィルタを使用してピーク近傍以外の光量変化の大きいところで成膜を停止するなどして、精度を向上させることができる。この種の装置として、光学的性質たる光量(透過率の逆数)を測定して成長する光学膜厚の制御精度が良好に得られるような光学位相角領域を選択し、成膜停止時点を決定するものがある。(例えば、特許文献1)。
【0006】
これに対し、例えば、特許文献2に示す装置は、所望のモニタ波長をそのまま用いて従来の単色測光法を追求するものである。このものは、測定される光量(透過率)が、上記のλ/4の整数倍の光学膜厚成長に対応してピークを形成する直前の実測データ群を最小二乗法により二次関数回帰し、この回帰関数上のピークに到達する時点を予測する。このとき、予測時点自体が最も好適であるが、個別の条件を勘案する必要がある場合は、これを基準時点として成膜停止のタイミングを決定している。
【0007】
ところで、光学薄膜の多層化の要請は、上記したように通信技術分野で顕著であり、特に、光通信に用いられるDWDMシステム用デバイス(例えば、バンドパスフィルタ、以下BPFとも言う。)の光学薄膜の多層構造は100層以上から成ることもある。このような多層構造は、それぞれ上記λ/4の奇数倍の光学膜厚を有する高屈折率層と低屈折率層とから成る交互層で構成される。(ただし、BPFの場合は、交互層中の高屈折率層及び低屈折率層の光学膜厚を上記λ/4の偶数倍としたものでキャビティ層を構成しても良い。)このとき、多層構造の構成薄膜ごとに、これに対応するモニタ基板を交換しながら膜厚を制御する通常の方法では工程が煩雑になり実用的でない。
【0008】
そこで、多層構造の光学薄膜に対しては、製品基板上に積層形成される多数の交互層そのものをモニタする直接監視法により膜厚制御を行うことが多い。図1は、直接監視法による膜厚制御装置の一例を示す。図1(a)に示す真空チャンバ1内に、電子銃2とイオンガン3とがともに回転基板4に対向して並置されており、さらに、チャンバ1外の投光部5が回転基板4の対向位置に配置されており、投光器5から回転基板4の回転軸4aに照射される光が下部光導入窓6と上部光導入窓7とを介してチャンバ1外の受光器8で受光される。本装置で膜厚制御を行うに際しては、まず、駆動モ−タ9の駆動により製品基板4を回転させ、次に、投光器5から下部光導入窓6を介して、1本の監視用単色光光束を回転軸4aに沿って通過させる。この状態でシャッタ2aを開放して電子銃2により製品基板4上に蒸着膜形成を行う。このとき、干渉による光強度変化が下部光導入窓6と上部光導入窓7とを介して介して受光器8で観測される。さらに、この光強度変化に基づき蒸着膜形成時の膜厚を制御し、即ち、例えば特許文献1や特許文献2で示す膜厚制御法により成膜停止時点を決定し、シャッタ2aにより電子銃2による成膜を遮断することにより膜厚成長を終了させる。このようにして、製品基板中心付近で良好な分光特性を有する誘電体多層膜が生産される。
【0009】
ところが、この場合、積層が進行するに伴って成長中の多層構造中の反射率が増加し、即ち、透過率が次第に減少して測定値の信頼度が低下する。この影響は、特に、高屈折率のλ/4膜と低屈折率のλ/4膜からなる交互層を連続的に多数積層して形成される狭帯域BPFにおいて深刻である。さらに、この交互層が多層になるほど、膜厚成長とともに変化する透過光量変化曲線が、そのピ−ク及びボトム近傍で二次回帰関数から乖離して精度の高い膜厚制御が困難になる。図2は、このような二次回帰関数の乖離を示すものであり、透過光量が低下するとき(低屈折率層L上の高屈折率層Hが最新表面層となる場合)と増大するとき(高屈折率層H上の高屈折率層Hが最新表面層となる場合)とで、二次関数回帰したときに予測されるピ−ク/ボトム位置は大きく異なって誤差がばらつく。これにより、成膜停止時点は、透過光量が低下するときは早く予測され、透過光量が増大するときは遅く予測される。
【0010】
さらに、今日の光通信市場においては、例えば、DWDMシステムの合分波器に用いられる狭帯域BPFは、4、8、16・・・128種類という具合に、ITU−T(国際通信連合電気通信標準化セクタ)で決められた波長ごとに多種類の中心波長に対応したBPFのセット搭載が要求される。このため、多種類の中心波長を持つフィルタを同時にかつ多量に製造することが要望されている。
【0011】
ところが、図1に示す多層膜製造装置では、監視用単色光光束を回転中心軸のみに沿って通過させるため、直接監視法が有効であるのは図1(b)において19で示す中心領域部分のみであり、11で示す中心から離れた基板領域から得られる光学薄膜製品は、蒸発分布揺らぎ、製品基板と蒸発源との相対距離差、あるいは製品基板面の温度不均一などにより、波長特性の差異などが生じて直接監視法のモニタ波長に対応する良好な特性を示すことにならない。
【0012】
そこで、監視用単色光光束の照射通過位置を、回転中心軸ではなく回転基板領域内の同心円位置に変更して、この円周上に帯状に形成される環状領域を直接監視法の有効部分とすることも行われるが、このようにしても有効部分面積に多少の改善が得られるに過ぎない。その一方で、直接監視法による監視用単色光光束の通過領域では、仮に最新表面層の直前層の制御精度が悪くてもその次の最新層の成膜停止時点をピ−ク及びボトムで正確に制御することが出来れば、自然と誤差が補正されるので誤差が緩和される。それゆえ、良好な光学薄膜製品を得るには監視領域部分の有利さが際立っており、この領域を拡大することが重要である。
【0013】
この種の拡大監視領域を備える誘電体多層膜製造装置として本発明者らによる特許文献3のものがある。このものは、高速回転する基板上に多点の監視ポイントを設け、そこに同一波長の監視用単色光光束を通過させて成膜停止時点を予測制御し、可動自在なシャッタと連動させる。そして、多点に設けた監視ポイントに対応して拡大された監視領域のすべてから良好な光学薄膜製品を得られる。しかしながら、この装置では1種類の波長特性を有する誘電体多層膜の量産はできるが、多種類のモニタ波長に対応した光学薄膜製品が得られないという不利は解消されないままである。また、基板の半径方向に一様に増加または減少するような膜厚分布を作り出してしまう、という難しさが残る。
【0014】
【特許文献1】
特開昭58−140605号公報(第2〜3頁、第1図)
【特許文献2】
特開昭63−28862号公報(第2〜6頁、第1、2図)
【特許文献3】
特願2002−083260号明細書(図1)
【0015】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑み、高精度の膜厚制御を行うことができ、また、所望の多種類のモニタ波長での直接監視法を用いることを可能とした量産化対応の誘電体多層膜製造装置を提供することを課題としている。そして、この誘電体多層膜は、とりわけ、狭帯域BPF用途に堪え得ることを想定している。
【0016】
【課題を解決するための手段】
上記課題を解決するため、本発明は、ともに回転基板に対向させて並設した成膜源と反応源とを備える真空室内で誘電体多層膜を製造する装置に、回転基板上に成膜される誘電体多層膜の成膜速度を規制するための開口部を有する成膜速度規制部材と、回転基板上に成膜される誘電体多層膜の膜厚を補正するための開口部を有する膜厚補正部材とを、回転基板と成膜源との間に設けると共に、回転基板の半径に沿った複数の監視点を通過する監視用単色光の強度を計測する光強度計測手段を設け、1種類以上の波長から成る監視用単色光光束のそれぞれがこれら監視点を通過する際に、光強度計測手段により計測される光強度変化に応じて膜厚補正部材の開口部を可動とする制御系を備えるものとした。
【0017】
これによれば、基板上に形成される誘電体多層膜の最新表面層膜の膜厚増加に対応して変化する光強度を光強度計測手段により検出し、これに応じて膜厚補正部材の開口部を可動することにより、誘電体多層膜の膜厚増加を補正できる。即ち、高い精度で誘電体多層膜の最新表面層膜の膜厚制御を行うことができる。また、この際に、1種類以上の波長の単色光を監視用光束として用いているため、多種類のモニタ波長に対応した直接監視法により膜厚制御を行って誘電体多層膜を製造することができる。
【0018】
そして、膜厚補正部材の可動開口部として、回転基板の回転時に監視点のそれぞれの軌跡が描く各同心円の円周に沿って、円弧帯状に形成される開口領域のそれぞれを独立に開閉する分割シャッタを用いる。
【0019】
これにより、監視点での通過の際の異なる波長種類の単色光ごとに上記円弧帯状に形成される同質の誘電体多層膜に対して、同一条件で成膜の遮断を行うことができる。したがって、円弧帯状の各監視領域で得られる高品質誘電体多層膜の多品種量産が可能となる。
【0020】
さらに、誘電体多層膜製造装置の制御系により、まず、回転基板上の誘電体多層膜の成膜期間に亘って、1種類以上の波長から成る監視用単色光光束を複数の監視点のそれぞれに通過させる際に、光強度計測手段により計測される光強度変化を誘電体多層膜の透過率変化として測定すると共に、この透過率の逆数を逆透過率として算出する。
【0021】
このとき、これらのような構造の境界条件(電場、磁場のそれぞれの接線成分B、Cが連続)より、基板系のアドミッタンスYは、単層膜の特性マトリックスを用いて、
【0022】
【式1】

Figure 2004151493
[式1]((1)式)と表される。(ここで、Nは単層膜の屈折率、θは単層膜上の異なる界面における位相差を示す。)
このとき、単層膜の透過率Tは、
T=4Y/(B+C)(B+C)・・・(2)
(ここで、*は共役する複素数を示す。)
で表されるので、(1)式と(2)式とにより
T=4Y/[(1+Y)+{(Y/N+N)−(1+Y)}sinθ] ・・・(3)
となる。ただし、空気あるいは真空の屈折率は1としている。
【0023】
本発明においては、さらに、付着成長中の最新表面層膜の光学膜厚Nd(Nは薄膜の屈折率、dは薄膜の物理的膜厚)を、
θ=2πNd/λ ・・・(4)
として、光学膜厚と単色光の波長とを算入して成る光学位相角として表す。
【0024】
さらに、光学膜厚の増加に要する表面層膜の成長時間(t)と逆透過率(1/T)との2変数の実測データ群を用いた最小二乗法により、実測データ群が極大または極小に到達する以前に二次関数回帰を行って、二次回帰関数
1/T=A+B(t−t・・・(5)
として算出する。(ここで、A及びBは定数、tは極大または極小に到達するときの成長時間を表す。)
このとき、回帰関数の相関を高くするため、関数曲線の極大または極小に到達すべき表面層膜の光学膜厚が、この極大または極小まで残すところλ/4相当の光学膜厚のおおむね25%から10%となった時点からの実測データ群を用いて関数回帰することが望ましい。(λ:単色光の波長)
ところで、(3)式を変形して、
1/T=(1+Y)/4Y+{(Y/N+N)−(1+Y)}sinθ/4Y ・・・(6)
としたとき、最新表面層膜の成長開始時点の透過率をTと、最新表面層膜の光学膜厚がλ/4に達するときの成長時間経過時の透過率T90とは、
=4Y/(1+Y)・・・(7)
90=4Y/(Y/N+N) ・・・(8)
として表される。
【0025】
さらに、これらによりアドミッタンスYが実数であるとき、
(1/T−1/T)/(1/T−1/T90)=sinθ ・・・(9)
が得られ、逆透過率は光学位相角のみの関数で示すことができる。
【0026】
上記したような干渉の原理に基づいて逆透過率は、単色光の波長の1/4に相当する光学膜厚間隔で周期分布する。そして、逆透過率の極大点及び極小点の近傍においては、(9)式を展開して得られる逆透過率の関数(θを変数とし、 sinθ項を含む関数)は二次関数に近似できる。したがって、極大点及び極小点における光学膜厚に到達するときの最新表面層膜の膜厚到達予測時間として、二次回帰関数上の極大点または極小点に対応する成長時間を用いることができる。そして、この膜厚到達予測時間に表面層膜に対する成膜を停止する。この際、相関の良好な二次回帰関数によるピーク制御をおこなうため、単色光の波長の1/4に相当する光学膜厚達成のための制御精度がさらに向上する。
【0027】
この場合、表面層膜の光学膜厚は、上記のように(9)式を展開して得られる逆透過率の関数から算出できる。したがって、この時間微分または時間差分を最新表面層膜の成膜速度として算出し、この成膜速度により最新表面層膜が所定の光学膜厚に到達するために要する時間とすることができる。そして、これにより、所望の光学膜厚の膜厚制御が可能となる。即ち、制御すべき光学膜厚は、単色光の波長の1/4相当のものに限定されず、任意の光学膜厚に制御できることになる。
【0028】
この際、上記の成膜源として、少なくとも2種類の異なる材質のスパッタターゲットを選択可能な状態で用いることにより、各ターゲット材質を選択して誘電体多層膜の各構成層の膜材料とすることができ、多層膜製造の利便性が向上する。
【0029】
そして、スパッタターゲットの異なる材質種類として、Ta金属とSi金属とを用いることにより、例えば、BPFのような光学薄膜製品の高屈折率層材料として代表的なTaなどのタンタル化合物膜や、低屈折率層材料として代表的なSiO膜などのシリコン化合物膜の製造が可能となる。
【0030】
このとき、上記の反応源を、中性ラジカル反応ガスを放出するものとすることにより、表面層膜において上記したような化合物膜の生成時に基板温度の上昇が抑制される。この結果、光学膜厚の制御精度の低下も抑制される。
【0031】
【発明の実施の形態】
図3(a)は、本発明の誘電体多層膜製造装置の略断面図である。図3を参照して、真空チャンバ31内に、成膜源たるスパッタターゲット部32と反応源たるイオンガン部33とがともに回転基板34に対向して並置されている。さらに、チャンバ31外の投光器35が回転基板34の上方位置に配置されており、8チャンネル投光器35からの8本の平行単色光光束が上部光導入窓36と回転基板34と下部光導入窓37とを介してチャンバ1外の8チャンネル受光器38で受光される。
【0032】
さらに、受光器38で受光された8本の単色光光束は、図中点線で示す電気信号ラインを経由して8チャンネルプリアンプ39、8チャンネルA/D変換器40、ディジタルシグナルプロセッサ(DSP)41を介してコンピュータ42に接続されており、このコンピュータ42において、所望膜厚の到達予測時間を算出すると共に、算出された予測時間を成膜停止時点として成膜停止を指示して膜厚制御を行う。
【0033】
スパッタターゲット部32は、回転機構43により上下逆転可能に設けたTaターゲット44とSiターゲット45とを備えており、各ターゲット44、45にはそれぞれ防着板44a、45aが覆設されるとともに、各防着板44a、45aで包囲される空間内に、スパッタガス導入管46が貫入する構造となっている。さらに、各ターゲット44、45が上面位置にあるときに、固定開口47を介して回転基板34と対向する。また、イオンガン部33は、反応ガス導入管48が貫入して成るECRイオンガン49により構成されている。
【0034】
回転基板34は、駆動モータ50の駆動により回転され、回転基板34と成膜源32との間には、成膜速度規制部材たる可変開口51a、51bと、膜厚補正部材たる分割シャッタ52〜55が設けられている。
【0035】
回転基板34と成膜源32との間の構成をさらに詳説すると、基板34とこれに近接して設けられた分割シャッタ52〜55とは、図3(b)に示すように、8本の監視用単色光光束の基板34上通過点(監視点)56a〜56hのそれぞれの軌跡が描く各同心円の円周に沿って、円弧帯状に形成される開口領域のそれぞれを独立の駆動軸52a、53a、54a、55aにより開閉するものとして構成する。
【0036】
さらに、基板34と分割シャッタ52〜55とを含む装置31の上面図を図3(c)として示す。図中、図外のスパッタターゲット44、45を最下位置として、その上方に固定開口47を穿設した平板47aを配置し、次にその上方に可変開口51a、51bを配置し、さらにその上方に分割シャッタ52〜55を配置し、最後に回転基板34を配置した構成である。上記中、固定開口47は、製品基板34への蒸発分布を整えて広い範囲で光学特性を得るためのものであり、固定及び可変開口のいずれでも良い。また、可変開口51a、51bは、成膜終点付近で膜厚を精密に制御するために成膜速度を減速させるためのものであり、スパッタターゲット44、45の出力調整による減速では即効性が得られず時間がかかり生産性が悪くため、これに替るものである。即ち、当初は高い成膜速度で成膜を行い、成膜終点に近づいた時点で可変開口51a、51bの開度を減少することにより、成膜速度を減速させ、膜厚成長を精密制御するのである。さらに、分割シャッタ52〜55は、監視用単色光光束の基板34上の通過点56a〜56h(図示せず)のそれぞれの軌跡が描く各同心円の円周に沿って、円弧帯状に形成される開口領域のそれぞれを、独立の駆動シャフト52a、53a、54a、55aを介して出し入れすることにより開閉し、これにより、上記開口領域における成膜を遮断するためのものである。また、可変開口51a、51bの開度調整や分割シャッタ52〜55の開閉は、受光器38に連なるコンピュータ42の指示により装置外部から制御される。
【0037】
図3(a)に示す誘電体多層膜製造装置で膜厚制御を行うに際しては、まず、図外の真空ポンプの作動によりチャンバ31内を所定の圧力状態に到達させる。そして、駆動モ−タ50の駆動により製品基板34を回転させ、次に、投光器35から上部光導入窓36と回転基板34と下部光導入窓37とを介して、8本の監視用単色光光束を受光部38に通過させる。このとき、8本の監視用単色光は、2チャンネルずつ同一モニタ波長の単色光として計4種類のモニタ波長を用いる設計とした。さらに、可変開口51a、51bを所定の開度に保ち、また、分割シャッタ52〜55を全開にし、回転基板34とTaターゲット44またはSiターゲット45との間を遮断せずに両者を対向させる。そして、ターゲット44または45の近傍にスパッタガス導入管43を介してアルゴンガスを導入し、所定のカソード電力を投入してスパッタ成膜を開始する。その際に、反応ガス導入管48より酸素ガスとアルゴンガスとの混合ガスを導入しながらECRイオンガン49から中性ラジカル酸素を発し、これにより、基板34上に堆積するTaまたはSiから成る金属種の酸化反応を行う。
さらに、Taターゲット44とSiターゲット45とを選択的に作動させることにより、製品基板34上に高屈折率層のTa膜と、低屈折率層のSiO膜とから成る交互多層膜が形成されるが、上記したように交互多層膜の各構成層の光学膜厚を高精度で制御することが重要である。このため、上記のターゲット44または45によるスパッタ成膜開始時点を膜厚増加に要する成長時間の始点とする。
【0038】
そして、上記4種類のモニタ波長を2本ずつ割り当てて計8本の平行光束とした監視用単色光が回転基板34を通過した後に受光器38で受光される。その後、各単色光は8チャンネルプリアンプ39で電圧信号に変換され、さらに、8チャンネルA/D変換器40でデジタル数値信号とされ、DSP41に入力されて、式(5)に基づき成長時間を定義域とする二次関数に回帰演算される。
【0039】
そして、この二次回帰関数の極大または極小に対応する成長時間を膜厚到達予測時間として、これを、各モニタ波長の監視領域の成膜停止時点として、コンピュータ42の指示により分割シャッタ52〜55を閉じることにより、円弧帯状の該当監視領域の成膜が遮断される。
【0040】
すべてのモニタ波長の監視領域での成膜が停止した後に、ターゲット部32において、次の最新表面層膜積層のため、下面で待機していたターゲット45または44を上面に逆転させ、上記と同様にして次の成膜工程に備える。そして、このような工程を繰り返すことにより、それぞれの監視領域における積層が独立に終了する。
【0041】
さらに、以下各[実施例]において、本発明の誘電体多層膜製造装置により得られる光学薄膜製品の光学膜厚の制御精度を検討する。
【0042】
【実施例】
[実施例1]
図3の誘電体多層膜製造装置を用い、Ta膜を高屈折率層とし、SiO膜を低屈折率層とし、全構成層の光学膜厚がλ/4(λはモニタ波長)の整数倍である交互多層膜を積層形成して中帯域BPFを製作した。このときに用いるモニタ波長は、それぞれ1552.52nm、1554.12nm、1555.72nm及び1557.32nmであり、光学薄膜設計は以下の通りである。
反射防止膜付きガラス製品基板(BK7)|(HL)L(HL)L(HL)L(HL)|空気
なお、屈折率の設計値は、低屈折率層において1.444、及び、高屈折率層において2.08、製品基板(BK7)を1.5とした。
【0043】
即ち、図3において、φ300mmの製品基板34の外周縁から5mm内側の位置に監視用単色光通過路チャンネル1に対応する監視点を設定し、この監視点から回転円中心方向に10mm間隔でチャンネル2〜8を設定した。
【0044】
そして、図3の投光器35に相当する波長可変レ−ザ−光源からの8本の単色光光束に対し、モニタ波長1552.52nmの単色光通過路としてチャンネル1及び2を割り当て、モニタ波長1554.12nmの単色光の光束路としてチャンネル3及び4を割り当て、モニタ波長1555.72nmの単色光の光束路としてチャンネル5及び6を割り当て、モニタ波長1557.32nmの単色光の光束路としてチャンネル7及び8を割り当てた。そして、受光部38で受光されてDSP41で計測される透過率を用いて、透過率曲線のピ−ク近傍で二次関数回帰を行い、各ピ−クに到達する到達予測時間を算出して成膜停止時点とした。この工程を繰り返した後の製品基板34上の特性分布を図4に示す。図4に示すように、約10mm程度の幅の環状帯領域57〜60においてそれぞれ同質の光学特性が分布することが分る。
【0045】
また、図5は、チャンネル1〜8に対応する基板上監視領域の分光透過率特性であり、それぞれ中帯域BPFとして良好な光学製品が得られていることが分る。
【0046】
[実施例2]
図3の誘電体多層膜製造装置を用い、Ta膜を高屈折率層とし、SiO膜を低屈折率層とし、全構成層の光学膜厚がλ/4(λはモニタ波長)の整数倍である交互多層膜を積層形成して狭帯域BPFを製作した。このときに用いるモニタ波長は、それぞれ1552.52nm、1553.32nm、1554.12nm及び1554.92nmであり、光学薄膜設計は以下の通りである。
反射防止膜付きガラス製品基板(BK7)|(HL)L(HL)16L(HL)16L(HL)|空気
なお、屈折率の設計値は、低屈折率層において1.444、及び、高屈折率層において2.08、製品基板(BK7)を1.5とした。
【0047】
即ち、図3において、φ300mmの製品基板34の外周縁から5mm内側の位置に監視用単色光通過路チャンネル1に対応する監視点を設定し、この監視点から回転円中心方向に10mm間隔でチャンネル2〜8を設定した。
【0048】
そして、図3の投光器35に相当する波長可変レ−ザ−光源からの8本の単色光光束に対し、モニタ波長1552.52nmの単色光通過路としてチャンネル1及び2を割り当て、モニタ波長1553.32nmの単色光の光束路としてチャンネル3及び4を割り当て、モニタ波長1554.12nmの単色光の光束路としてチャンネル5及び6を割り当て、モニタ波長1554.92nmの単色光の光束路としてチャンネル7及び8を割り当てた。そして、受光部38で受光されてDSP41で計測される透過率により逆透過率を算出し、これを用いて逆透過率曲線のピ−ク近傍で二次関数回帰を行い、各ピ−クに到達する到達予測時間を算出して成膜停止時点とした。
【0049】
図6は、チャンネル1〜8に対応する基板上監視領域の分光透過率特性であり、それぞれ狭帯域BPFとして良好な光学製品が得られていることが分る。
【0050】
[実施例3]
図3の誘電体多層膜製造装置を用い、Ta膜を高屈折率層とし、SiO膜を低屈折率層とし、第1層及び第2層の光学膜厚はλ/4(λはモニタ波長)の整数倍とは異なるが、最終的な表面層(第2層)の成膜停止時点はピーク制御により予測した交互多層膜で反射防止膜膜を製作した。このときに用いるモニタ波長は、それぞれ1550nm、1555nm、1560nm、1565nmであり、光学薄膜設計は以下の通りである。
反射防止膜付きガラス製品基板(BK7)|0.35H、1.288L|空気
なお、屈折率の設計値は、低屈折率層において1.444、及び、高屈折率層において2.08、製品基板(BK7)を1.5とした。
【0051】
即ち、図3において、φ300mmの製品基板34の外周縁から5mm内側の位置に監視用単色光通過路チャンネル1に対応する監視点を設定し、この監視点から回転円中心方向に10mm間隔でチャンネル2〜8を設定した。
【0052】
そして、図3の投光器35に相当する波長可変レ−ザ−光源からの8本の単色光光束に対し、モニタ波長1550nmの単色光通過路としてチャンネル1及び2を割り当て、モニタ波長1555nmの単色光の光束路としてチャンネル3及び4を割り当て、モニタ波長1560nmの単色光の光束路としてチャンネル5及び6を割り当て、モニタ波長1565nmの単色光の光束路としてチャンネル7及び8を割り当てた。そして、受光部38で受光されてDSP41で計測される透過率により逆透過率を算出し、第1層においては、逆透過率を用いて0.35Hに相当する成膜停止時点を予測し、また、第2層においては、逆透過率曲線のピ−ク近傍で二次関数回帰を行い、ピ−クに到達する到達予測時間を算出して成膜停止時点とした。
【0053】
図7は、チャンネル1〜8に対応する基板上監視領域の分光反射率特性であり、それぞれ反射防止膜として良好な光学製品が得られていることが分る。
【0054】
【発明の効果】
以上の説明から明らかなように、本発明によれば、透過率または逆透過率のピーク近傍で二次関数回帰したときの極大または極小に対応する成長時間を膜厚到達予測時間として用いることができるため、高精度で光学膜厚の膜厚成長を制御できる。また、多種類のモニタ波長による直接監視法を用い、良好な特性の誘電体薄膜が得られる監視領域を拡大することができる。このため、例えば狭帯域バンドパスフィルタなど、稠密波長多重通信システム用デバイスとして高品質の光学薄膜製品の量産化が可能となる。
【図面の簡単な説明】
【図1】(a)直接監視法を用いる従来の誘電体多層膜製造装置の略断面図
(b)(a)の製造装置で得られる基板上の光学特性領域の概念図
【図2】従来の光学膜厚制御法による二次回帰関数の乖離を示すグラフ図
【図3】(a)本発明の誘電体誘電体多層膜製造装置の略断面図
(b)(a)の製造装置中の基板と分割シャッタとを示す上面図
(c)(a)の製造装置の上面図
【図4】[実施例1]で得られる基板上の光学特性領域の概念図
【図5】[実施例1]で得られる中帯域BPFの分光透過率特性を示すグラフ図
【図6】[実施例2]で得られる狭帯域BPFの分光透過率特性を示すグラフ図
【図7】[実施例3]で得られる反射防止膜の分光反射率特性を示すグラフ図
【符号の説明】
1 31 真空チャンバ
2 電子銃 2a シャッタ
4 34 回転基板
32 スパッタターゲット部(成膜源)
33 イオンガン部(反応源)
35 投光器
36 上部光導入窓
37 下部光導入窓
38 受光器(光強度計測手段)
39 8チャンネルプリアンプ
40 8チャンネルA/D変換器
41 ディジタルシグナルプロセッサ(DSP)
42 コンピュータ
44 Taターゲット
45 Siターゲット
46 スパッタガス導入管
47 固定開口部
48 反応ガス導入管
49 ECRイオンガン
51a、51b 可変開口(成膜速度規制部材)
52、53、54、55 分割シャッタ(膜厚補正部材)
56a〜56h 監視点[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for producing a dielectric multilayer film, which mainly uses an optical thin film and can control the film thickness with high precision at the time of its formation. The use of optical thin films is expanding to various optical components and optical elements such as waveguides, diffraction gratings, light emission, display elements, optical memories, and solar cells. In particular, in the field of communication technology such as optical communication, in a dense wavelength division multiplexing communication (DWDM) system, there is a remarkable tendency to multilayer optical thin films for devices such as a multiplexer / demultiplexer. When manufacturing a thin film, it is required to control the optical film thickness of each constituent layer with high precision.
[0002]
[Prior art]
Film thickness measurement during thin film growth is important for controlling the deposition rate and film thickness, and in the case of optical thin films, the optical film thickness that determines optical properties such as reflectance and transmittance rather than physical film thickness (Product of refractive index and physical film thickness) is useful. For this reason, it is widely practiced to monitor the optical film thickness by measuring the optical properties during the growth of the thin film by a so-called optical film thickness control method for measuring the optical properties of the thin film. The optical film thickness control method includes a monochromatic photometric method, a two-color photometric method, a multicolor photometric method, and the like. Of these optical film thickness control methods, the monochromatic photometric method is the simplest.
[0003]
This is a peak (including the bottom and also synonymous with the maximum and the minimum, the same applies hereinafter) when the optical film thickness of the growing thin film is an integral multiple of λ / 4 (λ: wavelength of incident monochromatic light). Is used. Such a peak occurs when an adjacent layer on the substrate side on which the latest surface layer film being grown is laminated via the adhesion surface is formed with an optical film thickness that does not become an integral multiple of λ / 4. If the admittance of the system including the adjacent layer is not mathematically real, it does not always appear when the optical film thickness from the start of growth first reaches an integral multiple of λ / 4. However, even in these cases, the peak itself appears periodically at an optical film thickness interval corresponding to an integral multiple of λ / 4 after its appearance.
[0004]
However, in the case of using the monochromatic photometry, in the conventional method of performing peak control using the peak that appears as described above, the change in the amount of light with respect to the optical film thickness growing near the peak is small, and the control accuracy is deteriorated in principle. That is inevitable.
[0005]
In such a case, the accuracy can be improved by using an interference filter having a monitor wavelength slightly different from the desired wavelength to be controlled and stopping film formation at a large change in the amount of light other than near the peak. As this type of apparatus, an optical phase angle region is selected so as to obtain good control accuracy of an optical film thickness to be grown by measuring a light amount (reciprocal of transmittance) as an optical property, and determine a film forming stop point. There is something to do. (For example, Patent Document 1).
[0006]
On the other hand, for example, an apparatus disclosed in Patent Document 2 pursues a conventional monochromatic photometric method using a desired monitor wavelength as it is. In this method, the measured data immediately before forming a peak corresponding to the optical film thickness growth in which the measured light amount (transmittance) is an integral multiple of λ / 4 is subjected to a quadratic function regression by the least square method. , The point at which the peak on this regression function is reached. At this time, the prediction time itself is the most preferable, but when individual conditions need to be considered, the timing for stopping the film formation is determined using this as a reference time.
[0007]
By the way, the demand for a multilayer optical thin film is remarkable in the field of communication technology as described above, and in particular, an optical thin film of a device for a DWDM system (for example, a bandpass filter, hereinafter also referred to as a BPF) used for optical communication. May have more than 100 layers. Such a multilayer structure is composed of alternating layers of a high-refractive-index layer and a low-refractive-index layer each having an optical thickness of an odd multiple of λ / 4. (However, in the case of the BPF, the cavity layer may be formed by setting the optical film thickness of the high refractive index layer and the low refractive index layer in the alternating layers to an even multiple of the above λ / 4.) The usual method of controlling the film thickness while replacing the monitor substrate corresponding to each of the constituent thin films of the multilayer structure becomes complicated and impractical.
[0008]
Therefore, for an optical thin film having a multilayer structure, the film thickness is often controlled by a direct monitoring method that monitors a large number of alternating layers themselves formed on a product substrate. FIG. 1 shows an example of a film thickness control device using a direct monitoring method. In a vacuum chamber 1 shown in FIG. 1A, an electron gun 2 and an ion gun 3 are both juxtaposed so as to face a rotating substrate 4, and a light projecting unit 5 outside the chamber 1 is opposed to the rotating substrate 4. The light emitted from the light projector 5 to the rotation axis 4a of the rotating substrate 4 is received by the light receiver 8 outside the chamber 1 via the lower light introduction window 6 and the upper light introduction window 7. When the film thickness is controlled by the present apparatus, first, the product substrate 4 is rotated by driving the drive motor 9, and then one monitoring monochromatic light is transmitted from the light projector 5 through the lower light introducing window 6. The light beam passes along the rotation axis 4a. In this state, the shutter 2a is opened, and a vapor deposition film is formed on the product substrate 4 by the electron gun 2. At this time, a change in light intensity due to interference is observed by the light receiver 8 via the lower light introduction window 6 and the upper light introduction window 7. Further, the film thickness at the time of forming the vapor-deposited film is controlled based on this light intensity change, that is, the film forming stop time is determined by the film thickness control method disclosed in Patent Document 1 or Patent Document 2, for example, and the electron gun 2 is controlled by the shutter 2a. The film thickness growth is terminated by cutting off the film formation. In this way, a dielectric multilayer film having good spectral characteristics near the center of the product substrate is produced.
[0009]
However, in this case, as the lamination proceeds, the reflectance in the growing multilayer structure increases, that is, the transmittance gradually decreases, and the reliability of the measured value decreases. This effect is particularly serious in a narrow-band BPF formed by continuously laminating a large number of alternating layers each composed of a high-refractive-index λ / 4 film and a low-refractive-index λ / 4 film. Further, as the number of the alternating layers increases, the transmitted light amount change curve that changes with the film thickness growth deviates from the quadratic regression function near the peak and bottom, making it difficult to control the film thickness with high accuracy. FIG. 2 shows such a divergence of the quadratic regression function, in which the amount of transmitted light decreases (when the high refractive index layer H on the low refractive index layer L becomes the latest surface layer) and when it increases. (When the high refractive index layer H on the high refractive index layer H becomes the latest surface layer), the peak / bottom position predicted when the quadratic function regression is performed is greatly different, and the error varies. Thus, the point at which the film formation is stopped is predicted earlier when the amount of transmitted light decreases, and is predicted later when the amount of transmitted light increases.
[0010]
Further, in today's optical communication market, for example, ITU-T (International Telecommunication Union Telecommunications Co., Ltd.) has used narrow band BPFs used in multiplexers / demultiplexers of DWDM systems in 4, 8, 16,... A set of BPFs corresponding to various types of center wavelengths is required for each wavelength determined by the standardization sector. For this reason, it is demanded that filters having various types of center wavelengths be manufactured simultaneously and in large quantities.
[0011]
However, in the multilayer film manufacturing apparatus shown in FIG. 1, the direct monitoring method is effective because the monochromatic light beam for monitoring passes only along the rotation center axis. The optical thin film product obtained from the substrate region distant from the center indicated by 11 has wavelength characteristic fluctuation due to fluctuation of evaporation distribution, relative distance difference between the product substrate and the evaporation source, or uneven temperature of the product substrate surface. Due to the difference or the like, good characteristics corresponding to the monitor wavelength of the direct monitoring method are not shown.
[0012]
Therefore, the irradiation passage position of the monitoring monochromatic light beam is changed to a concentric position in the rotating substrate area instead of the rotation center axis, and the annular area formed in a belt shape on this circumference is an effective part of the direct monitoring method. However, only a slight improvement in the effective part area can be obtained. On the other hand, in the passing region of the monochromatic light beam for monitoring by the direct monitoring method, even if the control accuracy of the layer immediately before the latest surface layer is poor, the point at which the formation of the next latest layer is stopped is accurately determined by peak and bottom. , The error is naturally corrected, so that the error is reduced. Therefore, to obtain a good optical thin film product, the advantage of the monitoring area portion is remarkable, and it is important to expand this area.
[0013]
Patent Document 3 by the present inventors is an example of a dielectric multilayer film manufacturing apparatus having such an extended monitoring area. In this apparatus, a plurality of monitoring points are provided on a substrate rotating at a high speed, and a monitoring monochromatic light beam having the same wavelength is passed through the monitoring points to predictively control a film forming stop time and to be linked with a movable shutter. Then, good optical thin film products can be obtained from all of the monitoring areas enlarged corresponding to the monitoring points provided at multiple points. However, although this apparatus can mass-produce a dielectric multilayer film having one kind of wavelength characteristic, the disadvantage that an optical thin film product corresponding to various kinds of monitor wavelengths cannot be obtained remains. In addition, there remains a difficulty that a film thickness distribution that increases or decreases uniformly in the radial direction of the substrate is created.
[0014]
[Patent Document 1]
JP-A-58-140605 (pages 2-3, FIG. 1)
[Patent Document 2]
JP-A-63-28862 (pages 2 to 6, FIGS. 1 and 2)
[Patent Document 3]
Japanese Patent Application No. 2002-083260 (FIG. 1)
[0015]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and has been made in consideration of the above problems, and is capable of performing high-precision film thickness control, and is capable of using a direct monitoring method at a desired various kinds of monitor wavelengths. It is an object to provide a film manufacturing apparatus. In addition, it is assumed that this dielectric multilayer film can withstand narrow band BPF applications.
[0016]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides an apparatus for manufacturing a dielectric multilayer film in a vacuum chamber including a film forming source and a reaction source arranged side by side opposite to a rotating substrate. Film-forming rate regulating member having an opening for regulating the film-forming speed of a dielectric multilayer film, and a film having an opening for correcting the film thickness of the dielectric multilayer film formed on the rotating substrate A thickness correcting member provided between the rotating substrate and the film forming source; and a light intensity measuring means for measuring the intensity of the monitoring monochromatic light passing through a plurality of monitoring points along the radius of the rotating substrate. A control system that enables the opening of the film thickness correction member to move in accordance with a change in light intensity measured by the light intensity measuring means when each of the monitoring monochromatic light beams having more than one type of wavelength passes through these monitoring points. It was provided with.
[0017]
According to this, the light intensity that changes in accordance with the increase in the thickness of the latest surface layer film of the dielectric multilayer film formed on the substrate is detected by the light intensity measuring means, and the thickness correction member of the film thickness correction member is accordingly detected. By moving the opening, an increase in the thickness of the dielectric multilayer film can be corrected. That is, it is possible to control the thickness of the latest surface layer film of the dielectric multilayer film with high accuracy. At this time, since monochromatic light of one or more wavelengths is used as a monitoring light flux, it is necessary to control the film thickness by a direct monitoring method corresponding to various monitor wavelengths to manufacture a dielectric multilayer film. Can be.
[0018]
Then, as a movable opening of the film thickness correcting member, a division for independently opening and closing each of the opening areas formed in the shape of an arc band along the circumference of each concentric circle drawn by each locus of the monitoring point when the rotating substrate is rotated. Use a shutter.
[0019]
This makes it possible to cut off the film formation under the same conditions for the same dielectric multilayer film formed in the shape of an arc band for each monochromatic light of a different wavelength when passing through the monitoring point. Therefore, it is possible to mass-produce a variety of high-quality dielectric multilayer films obtained in each of the arc-shaped monitoring regions.
[0020]
Further, the control system of the dielectric multilayer film manufacturing apparatus first transmits a monitoring monochromatic luminous flux having one or more wavelengths to each of a plurality of monitoring points over the period of forming the dielectric multilayer film on the rotating substrate. When the light passes through, the change in the light intensity measured by the light intensity measuring means is measured as the change in the transmittance of the dielectric multilayer film, and the reciprocal of this transmittance is calculated as the reverse transmittance.
[0021]
At this time, the admittance Y of the substrate can be calculated by using the characteristic matrix of the single-layer film according to the boundary conditions of the structure (the tangential components B and C of the electric field and the magnetic field are continuous).
[0022]
(Equation 1)
Figure 2004151493
It is expressed as [Equation 1] (Equation (1)). (Here, N indicates the refractive index of the single-layer film, and θ indicates the phase difference at different interfaces on the single-layer film.)
At this time, the transmittance T of the single-layer film is
T = 4Y / (B + C) (B + C) * ... (2)
(Here, * indicates a conjugate complex number.)
T = 4Y / [(1 + Y) 2 + {(Y / N + N) 2 − (1 + Y) 2 } sin 2 θ] (3) by the equations (1) and (2).
It becomes. However, the refractive index of air or vacuum is 1.
[0023]
In the present invention, the optical thickness Nd (N is the refractive index of the thin film, d is the physical thickness of the thin film) of the latest surface layer film during the adhesion growth is further defined as:
θ = 2πNd / λ (4)
Is expressed as an optical phase angle obtained by adding the optical film thickness and the wavelength of monochromatic light.
[0024]
Further, the least-square method using the measured data group of two variables of the growth time (t) of the surface layer film required for increasing the optical film thickness and the reverse transmittance (1 / T) makes the measured data group maximum or minimum. performing quadratic function regression prior to reaching the secondary regression function 1 / T = a 0 + B 0 (t-t p) 2 ··· (5)
Is calculated as (Wherein, A 0 and B 0 are constants, t p represents the growth time when it reaches the maximum or minimum.)
At this time, in order to increase the correlation of the regression function, the optical film thickness of the surface layer film which should reach the maximum or minimum of the function curve is approximately 25% of the optical film thickness equivalent to λ / 4 where the maximum or minimum is left. It is desirable to perform a function regression using an actual measurement data group from the time point when the value becomes 10%. (Λ: wavelength of monochromatic light)
By the way, by transforming equation (3),
1 / T = (1 + Y) 2 / 4Y + {(Y / N + N) 2 − (1 + Y) 2 } sin 2 θ / 4Y (6)
, The transmittance at the start of the growth of the latest surface layer film is T 0, and the transmittance T 90 at the elapse of the growth time when the optical thickness of the latest surface layer film reaches λ / 4 is:
T 0 = 4Y / (1 + Y) 2 (7)
T 90 = 4Y / (Y / N + N) 2 (8)
It is expressed as
[0025]
Further, when admittance Y is a real number,
(1 / T 0 −1 / T) / (1 / T 0 −1 / T 90 ) = sin 2 θ (9)
Is obtained, and the reverse transmittance can be represented by a function of only the optical phase angle.
[0026]
Based on the principle of interference as described above, the reverse transmittance is periodically distributed at an optical film thickness interval corresponding to 1 / of the wavelength of monochromatic light. In the vicinity of the maximum point and the minimum point of the reverse transmittance, the function of the reverse transmittance (a function including θ as a variable and a sin 2 θ term) obtained by expanding Expression (9) becomes a quadratic function. Can be approximated. Therefore, the growth time corresponding to the maximum point or the minimum point on the quadratic regression function can be used as the estimated time to reach the film thickness of the latest surface layer film when reaching the optical film thickness at the maximum point and the minimum point. Then, the film formation on the surface layer film is stopped at the estimated film thickness reaching time. At this time, since peak control is performed by a quadratic regression function having a good correlation, control accuracy for achieving an optical film thickness equivalent to 1 / of the wavelength of monochromatic light is further improved.
[0027]
In this case, the optical film thickness of the surface layer film can be calculated from the function of the reverse transmittance obtained by expanding Expression (9) as described above. Therefore, this time differential or time difference is calculated as the film formation speed of the latest surface layer film, and the film formation speed can be used as the time required for the latest surface layer film to reach a predetermined optical film thickness. This makes it possible to control the thickness of the desired optical film thickness. That is, the optical film thickness to be controlled is not limited to one equivalent to 1 / of the wavelength of the monochromatic light, but can be controlled to an arbitrary optical film thickness.
[0028]
At this time, by using at least two types of sputter targets of different materials in a selectable state as the film forming source, each target material is selected and used as a film material of each constituent layer of the dielectric multilayer film. And the convenience of manufacturing a multilayer film is improved.
[0029]
By using Ta metal and Si metal as different material types of the sputter target, for example, a tantalum compound film such as Ta 2 O 5 or the like as a high refractive index layer material of an optical thin film product such as BPF, In addition, it is possible to manufacture a silicon compound film such as a typical SiO 2 film as a low refractive index layer material.
[0030]
At this time, by raising the reaction source to emit a neutral radical reaction gas, an increase in the substrate temperature during the formation of the compound film as described above in the surface layer film is suppressed. As a result, a decrease in the control accuracy of the optical film thickness is suppressed.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 3A is a schematic sectional view of a dielectric multilayer film manufacturing apparatus according to the present invention. Referring to FIG. 3, in a vacuum chamber 31, a sputter target portion 32 as a film formation source and an ion gun portion 33 as a reaction source are both arranged to face a rotating substrate 34. Further, a light projector 35 outside the chamber 31 is disposed above the rotating substrate 34, and eight parallel monochromatic light beams from the eight-channel light projector 35 are transmitted through the upper light introducing window 36, the rotating substrate 34, and the lower light introducing window 37. The light is received by the eight-channel light receiver 38 outside the chamber 1 via.
[0032]
Further, the eight monochromatic light beams received by the light receiver 38 are converted into eight-channel preamplifiers 39, eight-channel A / D converters 40, and digital signal processors (DSP) 41 via electric signal lines shown by dotted lines in the figure. Is connected to a computer 42 through which the predicted time to reach the desired film thickness is calculated, and the calculated predicted time is used as a film formation stop point to instruct film formation stop to control film thickness control. Do.
[0033]
The sputter target unit 32 includes a Ta target 44 and a Si target 45 provided so as to be able to be turned upside down by a rotating mechanism 43. The targets 44, 45 are covered with deposition prevention plates 44a, 45a, respectively. The structure is such that a sputter gas introduction pipe 46 penetrates into a space surrounded by the deposition-inhibiting plates 44a and 45a. Further, when each of the targets 44 and 45 is at the upper surface position, it faces the rotating substrate 34 via the fixed opening 47. The ion gun section 33 is constituted by an ECR ion gun 49 into which a reaction gas introduction pipe 48 penetrates.
[0034]
The rotating substrate 34 is rotated by the driving of a drive motor 50. Between the rotating substrate 34 and the film forming source 32, variable openings 51a and 51b serving as film forming speed regulating members, and divided shutters 52 to 51 serving as film thickness correcting members. 55 are provided.
[0035]
The configuration between the rotating substrate 34 and the film forming source 32 will be described in more detail. The substrate 34 and the divided shutters 52 to 55 provided in the vicinity of the substrate 34, as shown in FIG. Along the circumference of each concentric circle drawn by the respective trajectories of the monitoring monochromatic light beam passing points (monitoring points) 56a to 56h on the substrate 34, each of the opening regions formed in the shape of an arc band is formed by an independent drive shaft 52a. It is configured to be opened and closed by 53a, 54a, 55a.
[0036]
Further, a top view of the device 31 including the substrate 34 and the divided shutters 52 to 55 is shown in FIG. In the drawing, a flat plate 47a having a fixed opening 47 is disposed above the sputter targets 44, 45 (not shown) at the lowest position, and variable openings 51a, 51b are disposed above the sputter targets 44, 45. In this configuration, divided shutters 52 to 55 are arranged, and finally, a rotating substrate 34 is arranged. Among the above, the fixed opening 47 is for adjusting the evaporation distribution to the product substrate 34 to obtain optical characteristics in a wide range, and may be either a fixed or variable opening. The variable openings 51a and 51b are used to reduce the film forming speed in order to precisely control the film thickness near the film forming end point. This is an alternative because it takes time and productivity is low. That is, the film is initially formed at a high film forming speed, and the film forming speed is reduced by decreasing the opening degree of the variable openings 51a and 51b when approaching the film forming end point, thereby precisely controlling the film thickness growth. It is. Further, the divided shutters 52 to 55 are formed in an arc band along the circumference of each concentric circle drawn by each locus of passing points 56a to 56h (not shown) of the monitoring monochromatic light beam on the substrate 34. Each of the opening areas is opened and closed by moving in and out through independent drive shafts 52a, 53a, 54a, and 55a, thereby blocking film formation in the opening areas. The opening adjustment of the variable openings 51a and 51b and the opening and closing of the divided shutters 52 to 55 are controlled from the outside of the apparatus by instructions from a computer 42 connected to the light receiver 38.
[0037]
When controlling the film thickness by the dielectric multilayer film manufacturing apparatus shown in FIG. 3A, first, the inside of the chamber 31 is brought to a predetermined pressure state by operating a vacuum pump (not shown). Then, the product substrate 34 is rotated by driving the drive motor 50, and then eight monochromatic light beams for monitoring are transmitted from the projector 35 through the upper light introducing window 36, the rotating substrate 34, and the lower light introducing window 37. The light beam passes through the light receiving unit 38. At this time, the eight monitoring monochromatic lights were designed to use a total of four monitor wavelengths as monochromatic lights having the same monitor wavelength for each of two channels. Further, the variable openings 51a and 51b are kept at a predetermined opening degree, the divided shutters 52 to 55 are fully opened, and the rotating substrate 34 and the Ta target 44 or the Si target 45 are opposed to each other without being interrupted. Then, an argon gas is introduced into the vicinity of the target 44 or 45 through the sputtering gas introduction pipe 43, and a predetermined cathode power is applied to start sputtering film formation. At this time, neutral radical oxygen is emitted from the ECR ion gun 49 while introducing a mixed gas of oxygen gas and argon gas from the reaction gas introduction pipe 48, whereby the metal species of Ta or Si deposited on the substrate 34 is formed. Oxidation reaction.
Further, by selectively operating the Ta target 44 and the Si target 45, an alternating multilayer film composed of a high refractive index layer of Ta 2 O 5 film and a low refractive index layer of SiO 2 film is formed on the product substrate. Is formed, but as described above, it is important to control the optical film thickness of each constituent layer of the alternating multilayer film with high accuracy. For this reason, the starting point of the sputtering film formation by the target 44 or 45 is set as the starting point of the growth time required for increasing the film thickness.
[0038]
The monochromatic light for monitoring, which is a total of eight parallel light beams by allocating the four types of monitor wavelengths two by two, is received by the light receiver 38 after passing through the rotating substrate 34. Thereafter, each monochromatic light is converted into a voltage signal by an 8-channel preamplifier 39, further converted into a digital numerical signal by an 8-channel A / D converter 40, input to a DSP 41, and defines a growth time based on the equation (5). A regression operation is performed on a quadratic function as a region.
[0039]
Then, the growth time corresponding to the maximum or the minimum of the quadratic regression function is set as the film thickness reaching prediction time, and this is set as the stop time of the film formation in the monitoring region of each monitor wavelength. Is closed, the film formation in the arc-shaped monitoring region is cut off.
[0040]
After the film formation in the monitoring areas of all monitor wavelengths is stopped, the target 45 or 44 waiting on the lower surface is reversed to the upper surface in the target portion 32 for the next latest surface layer film lamination, and the same as above. To prepare for the next film forming step. Then, by repeating such a process, the lamination in each monitoring area is independently finished.
[0041]
Further, in each of the following Examples, the control accuracy of the optical film thickness of the optical thin film product obtained by the dielectric multilayer film manufacturing apparatus of the present invention will be examined.
[0042]
【Example】
[Example 1]
3, the Ta 2 O 5 film is used as the high refractive index layer, the SiO 2 film is used as the low refractive index layer, and the optical thickness of all the constituent layers is λ / 4 (where λ is the monitor wavelength). ) To form an intermediate multilayer BPF. The monitor wavelengths used at this time are 155.52 nm, 1554.12 nm, 1555.72 nm, and 1557.32 nm, respectively, and the optical thin film design is as follows.
Glass product substrate with antireflection film (BK7) | (HL) 3 L (HL) 6 L (HL) 6 L (HL) 3 | Air The design value of the refractive index is 1.444 in the low refractive index layer. Further, the high refractive index layer was set to 2.08, and the product substrate (BK7) was set to 1.5.
[0043]
That is, in FIG. 3, a monitoring point corresponding to the monitoring monochromatic light passage channel 1 is set at a position 5 mm inward from the outer peripheral edge of the product substrate 34 having a diameter of 300 mm, and the channels are spaced from the monitoring point by 10 mm toward the center of the rotating circle. 2 to 8 was set.
[0044]
Channels 1 and 2 are assigned to the eight monochromatic light beams from the wavelength variable laser light source corresponding to the light projector 35 in FIG. 3 as monochromatic light passages with a monitor wavelength of 1552.52 nm. Channels 3 and 4 are assigned as a light path of a monochromatic light of 12 nm, channels 5 and 6 are assigned as a light path of a monochromatic light of a monitor wavelength of 1555.72 nm, and channels 7 and 8 are assigned as a light path of a monochromatic light of a monitor wavelength of 1557.32 nm. Assigned. Then, using the transmittance received by the light receiving unit 38 and measured by the DSP 41, a quadratic function regression is performed in the vicinity of the peak of the transmittance curve to calculate a predicted arrival time at each peak. The time when the film formation was stopped was set. FIG. 4 shows the characteristic distribution on the product substrate 34 after repeating this process. As shown in FIG. 4, it can be seen that optical properties of the same quality are distributed in the annular band areas 57 to 60 having a width of about 10 mm.
[0045]
FIG. 5 shows the spectral transmittance characteristics of the monitoring area on the substrate corresponding to channels 1 to 8, and it can be seen that good optical products are obtained as the middle band BPFs.
[0046]
[Example 2]
3, the Ta 2 O 5 film is used as the high refractive index layer, the SiO 2 film is used as the low refractive index layer, and the optical thickness of all the constituent layers is λ / 4 (where λ is the monitor wavelength). ) To form a narrow band BPF. The monitor wavelengths used at this time are 155.52 nm, 1553.32 nm, 1554.12 nm and 1554.92 nm, respectively, and the optical thin film design is as follows.
Glass product substrate with antireflection film (BK7) | (HL) 8 L (HL) 16 L (HL) 16 L (HL) 8 | Air The design value of the refractive index is 1.444 in the low refractive index layer. Further, the high refractive index layer was set to 2.08, and the product substrate (BK7) was set to 1.5.
[0047]
That is, in FIG. 3, a monitoring point corresponding to the monitoring monochromatic light passage channel 1 is set at a position 5 mm inward from the outer peripheral edge of the product substrate 34 having a diameter of 300 mm, and the channels are spaced from the monitoring point by 10 mm toward the center of the rotating circle. 2 to 8 was set.
[0048]
Channels 1 and 2 are assigned to the eight monochromatic light beams from the wavelength variable laser light source corresponding to the light projector 35 in FIG. Channels 3 and 4 are assigned as a light path of a monochromatic light of 32 nm, channels 5 and 6 are assigned as a light path of a monochromatic light of a monitor wavelength of 1554.12 nm, and channels 7 and 8 are assigned as a light path of a monochromatic light of a monitor wavelength of 1554.92 nm. Assigned. Then, a reverse transmittance is calculated based on the transmittance received by the light receiving unit 38 and measured by the DSP 41, and using this, a quadratic function regression is performed near the peak of the reverse transmittance curve, and each peak is calculated. The predicted arrival time was calculated and defined as the time point when the film formation was stopped.
[0049]
FIG. 6 shows the spectral transmittance characteristics of the monitoring area on the substrate corresponding to channels 1 to 8, and it can be seen that good optical products are obtained as narrow band BPFs.
[0050]
[Example 3]
3, the Ta 2 O 5 film is used as a high refractive index layer, the SiO 2 film is used as a low refractive index layer, and the optical thickness of the first and second layers is λ / 4 ( Although [lambda] is different from an integral multiple of the monitor wavelength), the anti-reflection film was manufactured using an alternate multilayer film predicted by peak control at the final stop of the surface layer (second layer) film formation. The monitor wavelengths used at this time are 1550 nm, 1555 nm, 1560 nm, and 1565 nm, respectively, and the optical thin film design is as follows.
Glass product substrate with anti-reflection coating (BK7) | 0.35H, 1.288L | Air Note that the design value of the refractive index is 1.444 for the low refractive index layer and 2.08 for the high refractive index layer, and the product. The substrate (BK7) was set to 1.5.
[0051]
That is, in FIG. 3, a monitoring point corresponding to the monitoring monochromatic light passage channel 1 is set at a position 5 mm inward from the outer peripheral edge of the product substrate 34 having a diameter of 300 mm, and the channels are spaced from the monitoring point by 10 mm toward the center of the rotating circle. 2 to 8 was set.
[0052]
Channels 1 and 2 are assigned to the eight monochromatic light beams from the wavelength-tunable laser light source corresponding to the light projector 35 in FIG. Channels 3 and 4 were assigned as light flux paths, channels 5 and 6 were assigned as light flux paths for monochromatic light having a monitor wavelength of 1560 nm, and channels 7 and 8 were assigned as light flux paths for monochromatic light having a monitor wavelength of 1565 nm. Then, a reverse transmittance is calculated based on the transmittance received by the light receiving unit 38 and measured by the DSP 41, and in the first layer, a film formation stop time corresponding to 0.35H is predicted using the reverse transmittance, In the second layer, a quadratic function regression was performed in the vicinity of the peak of the reverse transmittance curve, and a predicted arrival time at which the peak was reached was determined as the film formation stop time.
[0053]
FIG. 7 shows the spectral reflectance characteristics of the monitoring area on the substrate corresponding to channels 1 to 8, and it can be seen that good optical products are obtained as antireflection films.
[0054]
【The invention's effect】
As apparent from the above description, according to the present invention, the growth time corresponding to the maximum or minimum when the quadratic function regression is performed in the vicinity of the peak of the transmittance or the inverse transmittance is used as the film thickness reaching prediction time. Therefore, the growth of the optical film thickness can be controlled with high accuracy. In addition, by using a direct monitoring method using various types of monitor wavelengths, it is possible to expand a monitoring region in which a dielectric thin film having good characteristics can be obtained. For this reason, it is possible to mass-produce high-quality optical thin film products as devices for dense wavelength division multiplexing communication systems such as narrow band pass filters.
[Brief description of the drawings]
FIG. 1A is a schematic cross-sectional view of a conventional dielectric multilayer film manufacturing apparatus using a direct monitoring method. FIG. 1B is a conceptual diagram of an optical characteristic region on a substrate obtained by the manufacturing apparatus of FIG. FIG. 3A is a graph showing the deviation of a quadratic regression function according to the optical film thickness control method. FIG. 3A is a schematic cross-sectional view of the dielectric / dielectric multilayer film manufacturing apparatus of the present invention. FIG. 4 is a top view of the manufacturing apparatus shown in FIGS. 4C and 4A showing a substrate and a divided shutter. FIG. 4 is a conceptual diagram of an optical characteristic region on a substrate obtained in [Example 1]. FIG. 6 is a graph showing the spectral transmittance characteristics of the middle band BPF obtained in [Example 2]. FIG. 7 is a graph showing the spectral transmittance characteristics of the narrow band BPF obtained in [Example 2]. A graph showing the spectral reflectance characteristics of the obtained anti-reflection film.
1 31 Vacuum chamber 2 Electron gun 2a Shutter 4 34 Rotating substrate 32 Sputter target unit (film formation source)
33 Ion gun part (reaction source)
35 Projector 36 Upper light introduction window 37 Lower light introduction window 38 Light receiver (light intensity measuring means)
39 8-channel preamplifier 40 8-channel A / D converter 41 Digital signal processor (DSP)
42 Computer 44 Ta target 45 Si target 46 Sputtering gas introduction pipe 47 Fixed opening 48 Reaction gas introduction pipe 49 ECR ion guns 51a, 51b Variable opening (film-forming speed regulating member)
52, 53, 54, 55 Divided shutter (film thickness correction member)
56a-56h Monitoring point

Claims (7)

ともに回転基板に対向させて並設した成膜源と反応源とを備える真空室内で誘電体多層膜を製造する装置において、前記回転基板上に成膜される誘電体多層膜の成膜速度を規制するための開口部を有する成膜速度規制部材と、前記回転基板上に成膜される誘電体多層膜の膜厚を補正するための開口部を有する膜厚補正部材とを、前記回転基板と前記成膜源との間に設けると共に、前記回転基板の半径に沿った複数の監視点を通過する監視用単色光の強度を計測する光強度計測手段を設け、1種類以上の波長から成る監視用単色光光束のそれぞれが前記監視点を通過する際に、前記光強度計測手段により計測される光強度変化に応じて前記膜厚補正部材の開口部を可動とする制御系を備えることを特徴とする誘電体多層膜の製造装置。In an apparatus for manufacturing a dielectric multilayer film in a vacuum chamber having a film forming source and a reaction source which are arranged side by side to face a rotating substrate, the film forming speed of the dielectric multilayer film formed on the rotating substrate is reduced. A film forming speed regulating member having an opening for regulating, and a film thickness correcting member having an opening for compensating a film thickness of a dielectric multilayer film formed on the rotating substrate; A light intensity measuring means for measuring the intensity of monochromatic light for monitoring passing through a plurality of monitoring points along the radius of the rotating substrate, and comprising one or more wavelengths. When each of the monochromatic light beams for monitoring passes through the monitoring point, a control system is provided that makes the opening of the film thickness correction member movable in accordance with a change in light intensity measured by the light intensity measuring means. Characteristic dielectric multilayer film manufacturing equipment. 前記膜厚補正部材の可動開口部は、前記回転基板の回転時に前記監視点のそれぞれの軌跡による各同心円の円周に沿って円弧帯状に形成された開口領域がおのおの独立に開閉する分割シャッタから成ることを特徴とする請求項1に記載の誘電体多層膜の製造装置。The movable opening of the film thickness correction member is formed by a divided shutter in which an opening area formed in an arc band along the circumference of each concentric circle by each locus of the monitoring point when the rotating substrate rotates is independently opened and closed. The apparatus for manufacturing a dielectric multilayer film according to claim 1, wherein: 前記制御系は、前記回転基板上の誘電体多層膜の成膜期間に亘って、前記1種類以上の波長から成る監視用単色光光束を前記複数の監視点のそれぞれに通過させる際に、前記光強度計測手段により計測される光強度変化を前記誘電体多層膜の透過率変化として測定すると共に、該透過率の逆数を逆透過率として算出し、付着成長中の最新表面層膜の膜厚増加に要する成長時間と前記逆透過率との2変数の実測データ群を用いた最小二乗法により、前記実測データ群が極大または極小に到達する以前に二次関数回帰を行い、干渉の原理に基づいて前記監視用単色光の波長の1/4相当の光学膜厚間隔で周期分布する前記逆透過率の極大及び極小における光学膜厚に到達するときの前記最新表面層膜の膜厚到達予測時間として、前記二次回帰関数上の極大点または極小点に対応する成長時間を用いることを特徴とする請求項1または2に記載の誘電体多層膜の製造装置。The control system, during the film formation period of the dielectric multilayer film on the rotating substrate, when passing the monitoring monochromatic light beam composed of the one or more wavelengths to each of the plurality of monitoring points, The light intensity change measured by the light intensity measuring means is measured as the transmittance change of the dielectric multilayer film, and the reciprocal of the transmittance is calculated as the reverse transmittance, and the thickness of the latest surface layer film during the adhesion growth is calculated. By the least squares method using the measured data group of the two variables of the growth time required for the increase and the reverse transmittance, a quadratic function regression is performed before the measured data group reaches the maximum or the minimum, and the principle of interference The thickness of the latest surface layer film when reaching the optical film thickness at the maximum and minimum of the reverse transmittance periodically distributed at an optical film thickness interval corresponding to 1 / of the wavelength of the monochromatic light for monitoring As time, the quadratic regression function The dielectric multilayer film manufacturing apparatus according to claim 1 or 2, characterized in that a growth time corresponding to the maximum point or minimum point. 前記最新表面層膜の膜厚成長に伴い、前記1/4波長相当の光学膜厚間隔で周期分布する前記逆透過率から算出される光学膜厚により、前記最新表面層膜が所定の光学膜厚に到達した事を検知して、前記膜厚成長を制御することを特徴とする請求項項1または2に記載の誘電体多層膜の製造装置。As the thickness of the latest surface layer film grows, the latest surface layer film is formed into a predetermined optical film by an optical film thickness calculated from the reverse transmittance periodically distributed at an optical film thickness interval corresponding to the 1 / wavelength. 3. The apparatus for manufacturing a dielectric multilayer film according to claim 1, wherein the control unit controls the film thickness growth by detecting that the thickness has reached. 前記成膜源が、少なくとも2種類の異なる材質のスパッタターゲットから成り、該スパッタターゲットを選択可能に設けたことを特徴とする請求項1乃至4のいずれか1項に記載の誘電体多層膜の製造装置。5. The dielectric multilayer film according to claim 1, wherein the film forming source is made of at least two types of sputter targets of different materials, and the sputter targets are provided so as to be selectable. 6. manufacturing device. 前記スパッタターゲットの異なる材質種類として、Ta金属とSi金属とを用いることを特徴とする請求項5に記載の誘電体多層膜の製造装置。The apparatus according to claim 5, wherein Ta metal and Si metal are used as different material types of the sputtering target. 前記反応源は、中性ラジカル反応ガスを放出することを特徴とする請求項1乃至6のいずれか1項に記載の誘電体多層膜の製造装置。The apparatus according to claim 1, wherein the reaction source emits a neutral radical reaction gas.
JP2002317999A 2002-03-25 2002-10-31 Dielectric multilayer film manufacturing equipment Expired - Fee Related JP4327440B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002317999A JP4327440B2 (en) 2002-10-31 2002-10-31 Dielectric multilayer film manufacturing equipment
US10/394,667 US7247345B2 (en) 2002-03-25 2003-03-24 Optical film thickness controlling method and apparatus, dielectric multilayer film and manufacturing apparatus thereof
CN2007101121450A CN101078107B (en) 2002-03-25 2003-03-25 Insulation multilayer thin film manufacturing device
KR1020030018487A KR100972769B1 (en) 2002-03-25 2003-03-25 Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus
TW092106852A TWI255906B (en) 2002-03-25 2003-03-25 Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus
CN2007101121446A CN101078106B (en) 2002-03-25 2003-03-25 Insulation multilayer thin film manufacturing device
CNB031082297A CN100398694C (en) 2002-03-25 2003-03-25 Method and device for controlling thickness of optical film, insulation multilayer film and making device
US11/819,838 US7927472B2 (en) 2002-03-25 2007-06-29 Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317999A JP4327440B2 (en) 2002-10-31 2002-10-31 Dielectric multilayer film manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2004151493A true JP2004151493A (en) 2004-05-27
JP4327440B2 JP4327440B2 (en) 2009-09-09

Family

ID=32461247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317999A Expired - Fee Related JP4327440B2 (en) 2002-03-25 2002-10-31 Dielectric multilayer film manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4327440B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838045B1 (en) 2007-11-28 2008-06-12 심문식 Sputtering and ion beam deposition
JP2018085381A (en) * 2016-11-21 2018-05-31 日本放送協会 Photoelectric conversion film, method of producing photoelectric conversion film, and photoelectric conversion element
JP2021031693A (en) * 2019-08-19 2021-03-01 株式会社オプトラン Optical film thickness control device, thin film formation device, optical film thickness control method, and thin film formation method
US11536884B2 (en) 2018-08-30 2022-12-27 Seiko Epson Corporation Optical device and electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838045B1 (en) 2007-11-28 2008-06-12 심문식 Sputtering and ion beam deposition
WO2009069891A1 (en) * 2007-11-28 2009-06-04 Mun-Sik Chim Sputtering and ion beam deposition
JP2018085381A (en) * 2016-11-21 2018-05-31 日本放送協会 Photoelectric conversion film, method of producing photoelectric conversion film, and photoelectric conversion element
US11536884B2 (en) 2018-08-30 2022-12-27 Seiko Epson Corporation Optical device and electronic device
JP2021031693A (en) * 2019-08-19 2021-03-01 株式会社オプトラン Optical film thickness control device, thin film formation device, optical film thickness control method, and thin film formation method
JP7303701B2 (en) 2019-08-19 2023-07-05 株式会社オプトラン Optical film thickness control device, thin film forming device, optical film thickness control method, and thin film forming method

Also Published As

Publication number Publication date
JP4327440B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
KR100972769B1 (en) Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus
CN110737040B (en) 3D recognition filter
US10418231B2 (en) Method for producing a multilayer coating and device for carrying out said method
EP1229356A2 (en) Methods and apparatus for the production of optical filters
JPWO2002063064A1 (en) Sputtering apparatus and sputtering film forming method
JP2003322709A (en) Thin film type nd filter
JP4327440B2 (en) Dielectric multilayer film manufacturing equipment
JP4327439B2 (en) Dielectric multilayer film manufacturing equipment
JP4034979B2 (en) Optical film thickness control method, optical film thickness control apparatus, and dielectric thin film produced using the optical film thickness control method
US20060012881A1 (en) Atomic layer controlled optical filter design for next generation dense wavelength division multiplexer
JP2006071402A (en) Thickness control method for multilayer film and film forming device
JP2005107010A (en) Method for manufacturing multilayer optical filter, and multilayer optical filter
JP2004061810A (en) Method and device for manufacturing multilayered film optical filter
JP4280890B2 (en) Sputtering apparatus and sputter deposition method
JP2004233646A (en) Method and apparatus for manufacturing thin film filter, thin film filter substrate, and wavelength variable filter
JP2005154855A (en) Vacuum film deposition system for optical multilayer film, and method of depositing optical multilayer film
JP3737408B2 (en) Film thickness monitoring apparatus and method
JPH04107505A (en) Wedgelike interference filter
JP2004177762A (en) Wavelength variable filter module
JP2005121699A (en) Method for manufacturing thin film filter, apparatus for manufacturing thin film filter, thin film-fixed filter and tunable filter
CN116676582A (en) Direct light control system and method of coating equipment
JP2004177761A (en) Wavelength variable filter module
JP2002071944A (en) Apparatus and method for manufacturing optical band pass filter
KR100397598B1 (en) Method of forming multiple thin films using electron beam
Zideluns et al. Comparison of monochromatic and broadband monitoring of optical interference filters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4327440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees