JP2004151103A - 低ノイズのキャビティ内レーザー粒子カウンター - Google Patents

低ノイズのキャビティ内レーザー粒子カウンター Download PDF

Info

Publication number
JP2004151103A
JP2004151103A JP2003368136A JP2003368136A JP2004151103A JP 2004151103 A JP2004151103 A JP 2004151103A JP 2003368136 A JP2003368136 A JP 2003368136A JP 2003368136 A JP2003368136 A JP 2003368136A JP 2004151103 A JP2004151103 A JP 2004151103A
Authority
JP
Japan
Prior art keywords
laser
light
aperture
optical
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003368136A
Other languages
English (en)
Inventor
Todd A Cerni
エイ. サーニ トッド
Dwight A Sehler
エイ. セーラー ドワイト
Mark A Lilly
エイ. リリー マーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Particle Measuring Systems Inc
Original Assignee
Particle Measuring Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Particle Measuring Systems Inc filed Critical Particle Measuring Systems Inc
Publication of JP2004151103A publication Critical patent/JP2004151103A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

【課題】1.0CFM以下の流速で、所望の計数効率にて小さい粒子の有効な検出を可能にするように、ノイズレベルを低減しつつ、高出力のレーザー操作を保つ。
【解決手段】単一の粒子を光学的に検出する、キャビティ内レーザー検出のための方法であって、レーザー光414を有するソリッドステートレーザーキャビティ404を提供する工程;光学ポンプ412を用いて、このレーザーキャビティをゲイン開口する工程;このレーザー光によって照射されるこのゲイン開口されたレーザーキャビティ内の検出領域408において、粒子を含む流体フローを提供する工程;ならびにこの粒子によって散乱された光を収集する工程およびこの粒子を示す出力信号を発生させる工程を包含する。光学バリア複合物105を配置して、0.1CMF以上のこの流体フローの流速で、この出力信号中のノイズを低減する。
【選択図】 図4

Description

(発明の背景)
(1.発明の分野)
本発明は、概して、流体中の所望でない粒子を検出および計数するために光散乱原理を利用する、当該分野で光散乱粒子カウンターと称されるシステムに関し、そしてより具体的には、高出力の低ノイズキャビティ内レーザー粒子カウンターに関する。
(2.問題点の記述)
半導体産業の歴史は、線幅を確実に減少させる、一貫した経路を示してきた。未来への半導体産業のロードマップは、この傾向が引き続き衰えないことを示している。より小さい半導体の線幅は、より小さい致命的欠陥サイズを意味し、このことは、次に、クリーンルームの空気の有効な混入物モニタリングのためにより小さい粒子の検出を必要とする。従って、半導体ロードマップは、さらにより小さい粒子サイズを測定するために、さらにより感受性のOPC(光学粒子カウンター)を開発することを研究者に頻繁に強いている。合理的な時間量で統計的に妥当なサンプリングを達成するために、非常にクリーンな環境で操作した場合に、高性能のOPCはまた、高いサンプルリング速度(単位時間当たりにサンプリングされた空気の容積)を有するべきである。
既存の粒子検出システムは、特許文献1(1999年3月30日に、Jon C.Sandbergに対して発行された)に記載されている。特許文献1のOPCは、サンプル容積を通過する粒子から散乱されたレーザー放射を測定する。散乱されたレーザー放射の強度は、粒子サイズに比例し、そして各粒子は、単一の光学パルスを生じる。このことは、粒子カウンターがサンプル容積を通過する粒子を検出することを可能にする。レーザー波長(「レイリーレンジ」)よりもかなり小さい粒子については、散乱したレーザー放射の強度は、粒子直径の6乗に比例する。従って、より小さい粒子を測定することは、すぐに非常に困難になる。
ソリッドステートレーザーの高いキャビティ内出力を利用して、サンプル空気は、レーザービームの近位に配置された入口ジェットによって、レーザーのアクティブキャビティを通して方向付けられる。サンプル空気は、出口ジェットに真空源を適用することによって、サンプル容積から引き出される。
レーザー媒体は、その出力が焦点レンズシステムを通してほぼ結合された光学ポンプ源によって光学的にポンピングされる。このレーザー媒体要素は、ある結晶ファミリー(例えば、Nd:YAG、Nd:YLF、Nd;YALO、Nd:YVO4)の1つであり得る。ダイオードレーザーポンプ放射を、ソリッドステートレーザー結晶内の小さいウエストに集束させるためにレンズを使用することによって、開口制御は、ゲイン開口(gain−aperturing)によって獲得される。この設計は、直射(single transverse)モードおよび高いキャビティ内出力を導く。
特許文献1は、先行技術を超える、そのゲイン開口システムのいくつかの利点(ポンピングされた容積の形状、サイズおよび配置に依存して、弱く作動することを可能にすること、フロー誘導されたレーザーのノイズを低減すること、ならびに高出力の作動を可能にすること、を含む)を確認している。特許文献1の第6欄、第11行〜27行を参照のこと。この特許文献1はまた、物理的開口をゲイン開口と組み合わせることに付随する問題を確認している。約1ミリメートルの直径を有する開口が、このゲイン開口システムに付加される実施形態を記載した後に、この特許文献1は、「物理的開口の存在が、流速が増大するにつれて、キャビティ内出力および相対的ノイズに悪影響を及ぼす」ことを主張している。特許文献1の第7欄、第6行〜8行を参照のこと。従って、この特許文献1は、特に、ゲイン開口を備える物理的開口を組み合わせることと反対の教示をする。
0.1立方フィート/分(CFM)以上の速度で流れる流体中の非常に小さい粒子(例えば、0.065マイクロメートル(μm)またはさらに小さい粒子)を、30%以上の有効レベルで正確に検出するために、低ノイズおよび高い出力操作を有するレーザーシステムを提供することが、非常に所望される。特許文献1の粒子カウンターは、比較的大きい振幅のノイズのバーストによって特徴づけられる、所望のノイズレベルよりも高いノイズレベルを経る。検出器の閾値は、一般に、誤った計数を拒絶するように最悪の場合のノイズを拒絶するのに、十分高く設定されるべきである。しかし、これらの高い閾値は、一般に、1.0CFM以上の流速で、合理的な計数効率での非常に小さい粒子の有効な検出を阻害した。
米国特許第5,889,589号
従って、1.0CFM以下の流速で、所望の計数効率にて小さい粒子の有効な検出を可能にするように、このようなレーザーのノイズレベルを低減しつつ、高出力のレーザー操作を保つことが、当該分野で必要である。
本発明は、以下を提供する:
(1)単一の粒子を光学的に検出する、キャビティ内レーザー検出のための方法であって、この方法は、以下:
レーザー光(414)を有するソリッドステートレーザーキャビティ(404)を提供する工程;
光学ポンプ(412)を用いて、このレーザーキャビティをゲイン開口する工程;
このレーザー光によって照射されるこのゲイン開口されたレーザーキャビティ内の検出領域(408)において、粒子を含む流体フローを提供する工程;ならびに
この粒子によって散乱された光を収集する工程およびこの粒子を示す出力信号を発生させる工程、
を包含し、この方法は、
光学バリア複合物(105、630、632)を配置して、0.1立方フィート/分以上のこの流体フローの流速で、この出力信号中のノイズを低減する工程によって特徴付けられる、方法。
(2)項目1に記載の方法であって、上記粒子が、0.1ミクロン以下のサイズを有する、方法。
(3)項目1に記載の方法であって、上記配置する工程が、バックグラウンド光における、フロー誘導された乱れを低減するために、上記光学バリア複合物を配置することを含む、方法。
(4)項目1に記載の方法であって、上記配置する工程が、上記レーザー光を物理的に開口することを含む、方法。
(5)項目1に記載の方法であって、上記流体フローが、入口ジェットオリフィス(524)によって提供され、そしてこの配置する工程が、上記レーザー光からこの入口ジェットオリフィスを遮断することを含む、方法。
(6)単一の粒子を光学的に検出するための方法であって、この方法は、以下:
ソリッドステートレーザー媒体を使用して、キャビティ内レーザーシステム(101)においてレーザービーム(414)を提供する工程;ならびに
エアロゾルジェット(500)を利用して、このレーザービームを介して粒子含有流体のフローを方向付け、その結果、上記レーザービームからの光がこの粒子によって散乱される工程、
を包含し、この方法は、
この粒子によって散乱された光を収集する工程およびこの粒子を示す出力信号を発生させる工程によって特徴付けられ、この出力信号は、このエアロゾルジェットの内壁(525)からの乱流渦の削減によって引き起こされるノイズを実質的に含まない、
方法。
(7)項目6に記載の方法であって、上記粒子が、0.1ミクロン以下のサイズを有する、方法。
(8)レーザーキャビティ(404)中の単一の粒子を光学的に検出するための方法であって、この方法は、以下:
このレーザーキャビティ内のレーザー媒体(403)を光学的にポンピングして、レーザー光を発生する工程;
このレーザーキャビティをゲイン開口する工程;
粒子を含む流体フローを、このレーザーキャビティへと方向付ける工程であって、この流体フローは、渦流を含む、工程;および
この粒子から散乱されたレーザー光を収集して、この単一の粒子を示す出力を発生させる工程、
を包含し、この方法は、
この提供されたレーザー光がこの渦流に衝突することを妨げる工程によって特徴付けられる、
方法。
(9)項目8に記載の方法であって、上記妨げる工程が、上記レーザー光を物理的に開口することを含む、方法。
(10)項目8に記載の方法であって、上記妨げる工程が、上記発生したレーザー光による照射から、入口ジェットオリフィスを遮断することを含む、方法。
(11)項目10に記載の方法であって、上記遮断する工程が、上記レーザー光の供給源と上記入口ジェットオリフィスとの間に第一の光絞り構造体を配置することを包含する、方法。
(12)項目11に記載の方法であって、上記遮断する工程が、レーザーキャビティエンドミラーと上記入口ジェットオリフィスとの間に第二の光絞り構造体を配置することをさらに包含する、方法。
(13)項目9に記載の方法であって、上記物理的に開口する工程が、上記レーザー媒体と上記検出領域との間に第一開口アセンブリを、そしてレーザーキャビティエンドミラーと上記検出領域との間に第二開口アセンブリを提供することを含む、方法。
(14)粒子のキャビティ内検出のためのデバイス(100)であって、このデバイスは、以下:
レーザーキャビティ(404);
このレーザーキャビティ内に配置された、ソリッドステートレーザー媒体(403);
このソリッドステートレーザー媒体に方向付けられた、光学ポンプ源(412);
このレーザーキャビティのゲイン開口を達成し、そしてこのソリッドステートレーザー媒体を励起して、このレーザーキャビティ内にレーザー光を提供するために、このソリッドステートレーザー媒体中へと、この光学ポンプ源によって提供されるポンピング光を集束させるための、集束ユニット(402);
このレーザーキャビティ内、またはこのレーザー光の通路中の検出領域(408)へと粒子を導入するための、粒子供給源(406);および
この検出領域から光を収集するように配置された、検出光学アセンブリ、
を備え、このデバイスは、
光がこの検出領域へ入り得る領域において生じる渦流流体フローを、このレーザー光への暴露から遮断するための、光学バリア複合物(105、630、632)、
によって特徴付けられる、
デバイス。
(15)項目14に記載のデバイスであって、上記光学バリア複合物が、物理的開口(105)を備える、デバイス。
(16)項目14に記載のデバイスであって、上記光学バリア複合物が、以下:
上記光学ポンプ源と上記検出領域との間に位置する第一開口アセンブリ;および
上記提供されたレーザー光のレーザーキャビティエンドミラーとこの検出領域との間に位置する第二開口アセンブリ、
を備える、デバイス。
(17)項目16に記載のデバイスであって、上記第一開口アセンブリが、開口プレートを備える、デバイス。
(18)項目16に記載のデバイスであって、上記第一開口アセンブリが、複数の開口プレートを備える、デバイス。
(19)項目16に記載のデバイスであって、上記第二開口アセンブリが、開口プレートを備える、デバイス。
(20)項目16に記載のデバイスであって、上記第二開口アセンブリが、複数の開口プレートを備える、デバイス。
(21)項目14に記載のデバイスであって、上記光学バリア複合物が、光絞りを備える、デバイス。
(22)項目16に記載のデバイスであって、上記光学バリア複合物が、以下:
上記光学ポンプ源と上記渦流流体フローが生じる上記領域との間に位置する第一光絞り構造体;および
上記提供されたレーザー光の上記レーザーキャビティエンドミラーとこの渦流流体フローが生じるこの領域との間に位置する第二光絞り構造体、
を備える、デバイス。
(23)項目14に記載のデバイスであって、上記渦流流体フローが生じる上記領域が、入口ジェットオリフィスに対して近位である、デバイス。
(24)項目14に記載のデバイスであって、上記ソリッドステートレーザー媒体が、ドープ媒体である、デバイス。
(25)項目14に記載のデバイスであって、上記光学ポンプ源が、半導体レーザーである、デバイス。
(26)光学粒子カウンター(101)であって、この光学粒子カウンターは、以下:
レーザー光を発生する、ゲイン開口レーザーキャビティ(104);
このレーザーキャビティ内の粒子検出領域(408)へと流体フローを提供する、入口ジェット(113)であって、この入口ジェットは、入口ジェットオリフィス(524)を有する、入口ジェット;および
この検出領域内の粒子から散乱される光を収集して、この粒子を示す出力信号を生じるように配置される、検出光学アセンブリ(103)、
を備え、この粒子カウンターは、
0.1立方フィート/分以上の流体流速について、光学バリア複合物なしのこのゲイン開口システムと比較した場合、ノイズを低減するように配置された、光学バリア複合物(105、630、632)によって特徴付けられる、
粒子カウンター。
(27)項目26に記載の粒子カウンターであって、上記光学バリア複合物が、上記レーザー光の物理的開口を提供する開口アセンブリを備える、粒子カウンター。
(28)項目27に記載の粒子カウンターであって、上記光学バリア複合物が、上記レーザー光への暴露から上記入口ジェットオリフィスを遮断するための、第一光絞り構造体を備える、粒子カウンター。
(29)項目28に記載の粒子カウンターであって、上記第一光絞り構造体、上記ゲイン開口および上記物理的開口が、この粒子カウンターにおいてフロー誘導されたバックグラウンド光の乱れを排除するように協同する、粒子カウンター。
(30)項目27に記載の粒子カウンターであって、上記開口アセンブリが、単一の開口プレートから実質的になる、粒子カウンター。
(31)項目27に記載の粒子カウンターであって、上記開口アセンブリが、複数の開口プレートを備える、粒子カウンター。
(32)項目27に記載の粒子カウンターであって、上記入口ジェットオリフィスが、上記第一光絞り構造体の末端に関して、0.010インチと0.040インチとの間だけ、上記レーザー光から離れて窪んでいる、粒子カウンター。
(33)項目26に記載の粒子カウンターであって、上記光学バリア複合物が、上記レーザー光への暴露から上記入口ジェットオリフィスを遮断するための、第一光絞り構造体を備える、粒子カウンター。
(34)項目33に記載の粒子カウンターであって、上記第一光絞り構造体が、単一の光絞りから実質的になる、粒子カウンター。
(35)項目33に記載の粒子カウンターであって、上記第一光絞り構造体が、複数の光絞りを備える、粒子カウンター。
(36)項目33に記載の粒子カウンターであって、上記光学バリア複合物が、上記第一光絞り構造体から、上記入口ジェットオリフィスの反対側に、第二光絞り構造体をさらに備える、粒子カウンター。
(発明の要旨)
本発明は、効果的なノイズの減少と高出力操作とを組み合わせてOPC内の非常に小さい粒子の効率的な計数を可能にするシステムを提供することによって、先行技術を進歩させ、かつ前出の問題点を克服するのに役立つ。本発明は、光学的粒子カウンターを提供し、このカウンターは、ゲイン開口と光学バリアとの両方を備え、この光学バリアは、ノイズに寄与するレーザービームの一部を物理的に遮断する。詳細には、流体の入口ジェットを中断させている乱流渦が光を散乱させ得、これが、光検出器に入り得る迷光に寄与することが、見出されている。光学バリア(例えば、レーザービーム開口または光絞り)が、この迷光を効果的に減少させることが、見出されている。
本発明の1つの実施形態は、キャビティ内粒子カウンターを提供し、このカウンターは、乱電流および/または渦流のフロー方向へのレーザー光の拡散を阻害するために、光学バリア複合物を用いる。関連するフローは、一般に、入口ジェットオリフィスの近位であり、かつ一般に、キャビティ内粒子カウンターの粒子検出領域の外側である。
本発明は、単一粒子を光学的に検出するキャビティ内レーザー検出のための方法を提供し、この方法は、以下の工程を包含する:レーザー光を有するソリッドステートレーザーキャビティを提供する工程;光学ポンプを用いてこのレーザーキャビティをゲイン開口する工程;このレーザー光によって照射されるゲイン開口されたレーザーキャビティ内の検出領域にて、粒子を含む流体フローを提供する工程;粒子によって散乱された光を収集し、そしてこの粒子を示す出力信号を作製する工程;および、光学バリア複合物を配置して、約0.1立方フィート/分以上の流体フローの流速にて、出力信号におけるノイズを減少させる工程。好ましくは、粒子は、0.1ミクロン以下のサイズを有する。好ましくは、配置する工程は、光学バリア複合物を配置して、バックグラウンド光においてフローにより誘導される乱れを減少させる工程を包含する。好ましくは、配置する工程は、レーザー光を物理的に開口する工程を包含する。好ましくは、この流体フローは、入口ジェットオリフィスよって与えられ、そしてこの配置する工程は、レーザー光から入口ジェットオリフィスを遮断する工程を包含する。
別の局面において、本発明は、単一粒子を光学的に検出するための方法を提供し、この方法は、以下の工程を包含する:ソリッドステートレーザー媒体を用いてキャビティ内レーザービームにおいてレーザービームを提供する工程;エアロゾルジェットを用いて、レーザービームを通る粒子含有流体のフローを方向付ける工程であって、その結果、レーザービームからの光が、粒子によって散乱される、工程;および、この粒子によって散乱された光を収集し、そしてこの粒子を示す出力信号を作製する工程(この出力信号は、エアロゾルジェットの内壁からの乱流渦の離脱によって生じるノイズを本質的に有さない)。好ましくは、この粒子は、0.1ミクロン以下のサイズを有する。
なお別の局面において、本発明は、レーザーキャビティ内の単一粒子を光学的に検出するための方法を提供し、この方法は、以下の工程を包含する:レーザーキャビティ内のレーザー媒体を光学的にポンピングして、レーザー光を作製する工程;このレーザーキャビティをゲイン開口する工程;このレーザーキャビティ内へ、粒子を含有する流体フローを方向付ける工程であって、この流体フローが渦流を含む、工程;粒子から散乱されるレーザー光を収集して、この単一粒子が示す出力を作製する工程;および、この提供されたレーザー光が渦流に衝突することを抑制する工程。好ましくは、この抑制する工程は、レーザー光を物理的に開口する工程を包含する。好ましくは、この抑制する工程は、生じたレーザー光による照射から、入口ジェットオリフィスを遮断する工程を包含する。好ましくは、この遮断する工程は、レーザー光源と入口ジェットオリフィスとの間に、第一の光絞り構造体を配置する工程を包含する。好ましくは、この遮断する工程は、レーザーキャビティのエンドミラーと入口ジェットオリフィスとの間に、第二の光絞り構造体を配置する工程をさらに包含する。好ましくは、物理的に開口する工程は、レーザー媒体と検出領域との間に第一の開口アセンブリを提供し、かつレーザーキャビティのエンドミラーと検出領域との間に第二の開口アセンブリを提供する工程を包含する。
なお別の局面において、本発明は、粒子をキャビティ内検出するためのデバイスを提供し、このデバイスは、以下を備える:レーザーキャビティ;このレーザーキャビティ内に配置される、ソリッドステートレーザー媒体;このソリッドステートレーザー媒体方向に方向付けられた、光学ポンプ源;この光学的ポンプ源によって提供されるポンピング光を、ソリッドステートレーザー媒体へ集束させて、レーザーキャビティのゲイン開口を行い、そしてソリッドステートレーザー媒体を励起させてレーザーキャビティ内にレーザー光を提供するための、集束ユニット;レーザーキャビティ内の検出領域におよびレーザーの通路に粒子を導入するための、粒子供給源;検出領域からの光を収集するために配置された、検出光学アセンブリ;ならびに、渦流のフロー(これは、特定の領域において生じ、光は、この領域から検出領域に入り得る)をレーザー光への曝露から遮断するための光学バリア複合物。好ましくは、この光学バリア複合物は、物理的開口を備える。好ましくは、この光学バリア複合物は、以下を備える:光学ポンプ源と検出領域との間に配置された、第一の開口アセンブリ;および、提供されたレーザー光のレーザーキャビティのエンドミラーと検出領域との間に配置された、第二の開口アセンブリ。好ましくは、第一の開口アセンブリは、開口プレートを備える。好ましくは、第一の開口アセンブリは、複数の開口プレートを備える。好ましくは、第二の開口アセンブリは、開口プレートを備える。好ましくは、第二の開口アセンブリは、複数の開口プレートを備える。好ましくは、光学バリア複合物は、光絞りを備える。好ましくは、光学バリア複合物は、以下を備える:光学ポンプ源と渦流の流体フローが生じる領域との間に配置された、第一の光絞り構造体;および、提供されるレーザー光のレーザーキャビティのエンドミラーと渦流の流体フローが生じる領域との間に配置された、第二の光絞り構造体。好ましくは、渦流の流体フローが生じる領域は、入口ジェットオリフィスの近位である。好ましくは、ソリッドステートレーザー媒体は、ドープ(doped)媒体である。好ましくは、光学ポンプ源は、半導体レーザーである。
なお別の局面に従って、本発明は、光学粒子カウンターを提供し、このカウンターは、以下を備える:レーザー光を作製する、ゲイン開口されたレーザーキャビティ;レーザーキャビティ内の粒子検出領域に流体フローを提供する入口ジェットであって、入口ジェットオリフィスを有する、入口ジェット;粒子を示す出力信号を作製するために、検出領域で粒子から散乱された光を収集するように配置された、検出光学アセンブリ;ならびに、光学バリア複合物を備えていないゲイン開口システムと比較した際に、約0.1立方フィート/分以上の流体の流速に関するノイズを減少するために配置された、光学バリア複合物。好ましくは、光学バリア複合物は、開口アセンブリを備え、この開口アセンブリは、レーザー光の物理的開口を提供する。好ましくは、光学バリア複合物は、レーザー光への曝露から、入口ジェットオリフィスを遮断するための、第一の光絞り構造体を備える。好ましくは、第一の光絞り構造体、ゲイン開口および物理的開口は、粒子カウンター内のフローにより誘導されるバックグラウンド光の乱れを排除するように協働する。好ましくは、開口アセンブリは、本質的に、単一の開口プレートからなる。好ましくは、開口アセンブリは、複数の開口プレートを備える。好ましくは、入口ジェットオリフィスは、第一の光絞り構造体の末端に対して、0.010インチと0.040インチとの間だけ、レーザー光から離れて窪んでいる。好ましくは、光学バリア複合物は、レーザー光への曝露から、入口ジェットオリフィスを遮断するための、第一の光絞り構造体を備える。好ましくは、第一の光絞り構造体は、本質的に、単一の光絞りからなる。好ましくは、第一の光絞り構造体は、複数の光絞り構造体を備える。好ましくは、光学バリア複合物は、入口ジェットオリフィスの、第一の光絞り構造体から反対側に、第二の光絞り構造体をさらに備える。
本発明により、ゲイン開口されたキャビティは、1.0立方フィート/分の流速にて、0.065μ(ミクロン)以下の粒子を正確に検出するのに使用され得、計数効率は、30%以上である。本発明の上記および他の利点は、図面とともに以下の本発明の好ましい例示的な実施形態の記載を読むことによって、より理解され得る。
光学粒子カウンター(100)は、以下を有する:レーザー光を発生するゲイン開口レーザーキャビティ(404)、このレーザーキャビティ内の粒子検出領域へと流体フローを提供し、入口ジェットオリフィス(524)を有する入口ジェット(113);検出領域内の粒子によって散乱された光を収集して、この粒子を示す出力信号を発生させるように配置された、検出光学アセンブリ(103);および約0.1立方フィート/分以上の流体流速について、光学バリア複合物なしのゲイン開口システムと比較した場合、ノイズを低減するように配置された、光学バリア複合物(105、630、632)。この光学バリア複合物は、レーザー光が入口ジェットの内壁上に発する乱流渦流を照射することを妨げる。光学バリア複合物は、レーザー光が渦流を照射することを妨げるように配置された、1つ以上の物理的開口(105)、1つ以上の光絞り(630a、630b、632a、632b)、またはこれら両方を備える。
本発明によれば、1.0CFM以下の流速で、所望の計数効率にて小さい粒子の有効な検出を可能にするように、このようなレーザーのノイズレベルを低減しつつ、高出力のレーザー操作を保つことが、可能となる。
(好ましい実施形態の詳細な説明)
本開示において、用語「光」とは、可視光線に限定されず、任意の電磁放射線を意味した広範な意味で使用される。本開示において、レーザー装置から直接現れるレーザー光が、「本来のレーザー光」であり、そしてレーザーキャビティのエンドミラーによって反射されるレーザー光が、「反射レーザー光」である。
本開示において、開口アセンブリは、1つ以上の物理的開口を備える。「開口アセンブリ」は、図1、図2および図4に記述される「光捕捉アセンブリ」と同じ意味である。本開示において、「開口」、「物理的開口」および「開口プレート」は、同じ意味である。本開示において、「光絞り構造体」は、オリフィスとレーザー光源との間かまたはオリフィスとレーザーキャビティのエンドミラーとの間に配置された、流体フローのためのオリフィスに、拡散レーザー光が到達するのを防ぐための、構造体である。単一の光絞り構造体は、1つ以上の光絞りを備え得る。光絞り構造体を機械加工することによって、複数の光絞りが単一の光絞り構造体に備えられ得、複数の障壁を光へ曝露させる。あるいは、別々の部分の収集部(collection)は、複数絞りの光絞り構造体を形成するように組み立てられ得る。本明細書中で、「光絞り対」は、2つの光絞りを有する光絞り構造体である。本明細書中で、「光学バリア複合物」は、選択領域方向へのレーザー光の拡散を阻害する傾向がある1つ以上の障害物を含む。例示的な光学バリア複合物は、1つ以上の開口アセンブリ、および/または1つ以上の光絞り構造体を備え得る。光学バリア複合物は、1つ以上の開口(開口アセンブリに含まれていても含まれていなくても)、および/または1つ以上の光絞り(光絞り構造体に含まれていても含まれていなくても)を備え得る。例示的な光学バリア複合物は、粒子検出領域の外側領域および/または入口ジェットオリフィスの近位の領域に向かうレーザー光の拡散を阻害するように作動し得る。
本開示において、用語「レーザー光」、「レーザービーム」、および「レーザー放射線」は、相互交換可能に使用される。「集束ユニット」は、レーザービームを集束するためのレンズ、反射器、および/またはミラーを含むがこれらに限定されない、光を集束するためのデバイスである。「レーザーキャビティのエンドミラー」は、レーザー結晶(レーザー媒体)からレーザーキャビティの反対側の端部に配置されている。図4の反射器405は、レーザービーム反射器ミラーの1つの例を例示している。用語「レーザービーム反射器」は、用語「レーザービーム反射器ミラー」と相互交換可能に使用される。本明細書中で、「光学的ポンプ」および「光学的ポンプ源」は、レーザー媒体を照射するための光の供給源である。
この開示は、技術用語でいう流体粒子カウンターに限定されることに注意されたい。真空中で粒子を検出する粒子カウンターが存在する。流体は存在しないか、むしろ存在するいかなる流体も、通常の流体と比較して希薄なので、流体フロー、この流体からの光の散乱、および流体のフローを制御するために使用される装置に関連する問題は存在せず、そしてこのような粒子カウンターの物理学は、流体粒子カウンターの物理学と有意に異なる。さらに、本明細書中に開示される粒子カウンターは、流れる流体において拘束されていない単一粒子群を検出し得るよう設計されており、流体自体の粒子、流体中に懸濁された粒子の塊(cloud)、または流体中に拘束されている粒子(例えば、光ビームを通る単一の線のフローに拘束されている粒子)を検出および分析する他のシステムと区別されることに注意されるべきである。当業者は、流体中で拘束されずに流れる単一粒子群を検出およびサイズ分けすることがずっと困難な作業であることを認識しており;従って、粒子計数の分野は、これらの他の粒子の検出および分析システムと異なる技術を含む。
キャビティ内OPCノイズは、4つの原因:(1)電気的ノイズ、(2)バックグラウンド光からの光学的ノイズ、(3)フロー誘導レーザーパワーノイズ(power noise)、および(4)分子散乱からの光学的ノイズ、から生じ得ることが、一般的に認められている。電気的ノイズは、一般的に、ほとんどの現在のOPCについて、制限因子ではない。なぜならば、信号処理システムは、それらのノイズレベルが、光学的ノイズ源から生じるノイズより小さくなるように設計されるからである。バックグラウンド光からの光学的ノイズは、OPCに対する性能制限因子であり得、光学台の設計およびレーザー照射を反射し得る表面に対する検出領域の近さに依存する。フロー誘導レーザーパワーノイズは、一般的に、キャビティ内OPCに対してのみ問題となり、そして古典的には、レーザービームを通して流れる空気によりレーザーキャビティパワー(laser cavity power)において誘導されるノイズをいう。分子散乱からの光学的ノイズは、全てのOPCについて性能の理論的限界を確立する。他の全ての供給源からのノイズを減少させることが、OPC設計者の目的である。従って、分子散乱からのノイズが、主なノイズ源である。
フロー誘導レーザーパワーノイズを最小限に抑えるために、レーザービームを通じた気流は層状であるべきである。層流の存在は、乱流の非存在を示す。層流を提供するためには、一般的に、入口ジェットオリフィスが、レーザービームの中心に非常に近く、その結果、検出器の視界により規定される検出領域に、そのオリフィスが非常に近いことを必要とする。レーザービームを通る層流の達成はまた、レーザービームと入口ジェットオリフィスの正確な整列からも利益を受ける。
特許文献1のシステムにおいて、粒子供給源からの粒子は、オリフィスを有する入口ジェットにより検出領域(サンプル体積)に導入される。一般的に、バックグラウンド光に起因する光学的ノイズの量は、検出領域に対する入口ジェットオリフィスの近さが増加すると共に増加する。特許文献1のシステムは、当初、バックグラウンド光からの光学的ノイズの抑制に成功したように思えた。しかし、ノイズの大きな、一過的な噴出が後で観察され、これは、未知の供給源のノイズであり、そして制御不可能であった。この一過性のノイズにより、特許文献1の設計は、最適な性能特性を達成できなかった。
本発明者らは、観察された一過性のノイズが、一般的に、流体の流速の増加と共に増加し、そして低頻度で発生し、大噴出が、ほんの0.5〜5分毎に発生することを発見した。このような大きなノイズの噴出は、単一のこのような噴出が多くの偽粒子計数を生じ得ることに起因して、問題となる。本発明者らは、当初、フロー誘導レーザーノイズが、これらの大きなノイズ噴出の原因ではないかと疑問を抱いた。しかし、これらのノイズ噴出に関する一連の観察は、この当初の疑問に疑いを抱かせた。詳細には、検出器アレイ内の少数の検出器エレメントのみが、この一過性のノイズ噴出を示した。検出器アレイ内の異なる検出器エレメントは、サンプル体積の異なる部分を画像化するので、この一過性のノイズの原因は、サンプル体積の特定のセグメント内に位置すると推定した。ノイズ解消信号処理(noise cancellation signal processing)(米国特許第4,893,928号に記載される)は、フロー誘導レーザーノイズが、検出器アレイにおける全ての検出器エレメントにわたって均一に広がると仮定するので、異なる検出エレメント間のノイズ強度において観察された大きな不均等性は、フロー誘導レーザーノイズが問題の原因であるとの疑問に異議を唱える傾向がある。
代わりに、検出器エレメント間のノイズ検出の観察されたパターンは、サンプル体積内またはその付近の特定の領域に特徴的な現象と一致する。本発明者らは、このノイズの一過性の性質が、入口ジェットオリフィス113の内部壁525からの乱れた渦電流の発生と一致することを観察した(図5Cおよび7)。従って、入口ジェットに近位の体積は、観察された一過性のノイズの潜在的な原因となる「特定領域」として出現する。
入口ジェットに近位の領域は、粒子カウンターのサンプル体積の外側であるが、にもかかわらず、検出器エレメントにより測定可能な反射を発生し得る拡散したレーザー光の範囲内である。本発明者らは、入口ジェット領域における乱流および渦電流に対する拡散したレーザー光の衝突が、この観察された一過性のノイズ信号を説明し得ると考えた。結果として、本発明者らは、この観察された一過性のノイズが、入口ジェットオリフィスに近位の乱流のフローおよび渦電流の流体のフローに対する拡散したレーザー光の衝突から生じるバックグラウンド光におけるフローにより誘導される乱れの、以前に同定されていない現象から生じたと理論付けた。
キャビティ内DPSSL(Diode Pumped Solid State Laser)OPCについて以前は知られていなかったノイズ源を同定するこの理論は、設計の改善を導き、予測可能な基準の所望の設計規格の達成、および信頼できる製造可能な市販機器の製造を可能にした。この一過性のノイズの疑われた原因に対して導入された1つの改善は、特許文献1に開示される溝状開口に加えて、レーザービームの物理的開口の導入である。別の改善は、拡散したレーザー光への曝露からの入口ジェットオリフィスの十分な光遮断(shadowing)を一貫して達成するために入口ジェットに対して配置された、入口ジェットハウジングへの光絞りの機械加工である。
図1は、本発明の1つの実施形態に従う粒子カウンター100の分解透視図である。粒子カウンター100は、好ましくは、レーザー光学アセンブリ101、フローチャンバアセンブリ102、および検出光学アセンブリ103を備える。レーザー光学アセンブリ101は、好ましくは、レーザー集中光学アセンブリ104、2つのレーザービーム開口アセンブリ105(サンプルブロック108のいずれの側にも1つ)、およびレーザーキャビティミラーアセンブリ106を備える。フローチャンバアセンブリ102は、好ましくは、入口ジェット113を備える入口ジェットアセンブリ107、サンプルブロック108、および排出ポート109を備える。入口ジェット113は、好ましくは、入口ジェットノズル500およびノズルハウジング600を備え、そしてこれは、図7と組み合わせてより詳細に議論される。排出穴115は、サンプルブロック108の右下に示される。検出光学アセンブリ103は、好ましくは、2つの低fナンバー検出器収集光学装置110、2つの光検出器マウント111、および2つの光検出器信号処理アセンブリ112を備える。好ましくは、信号処理アセンブリ112と連通したプログラム可能な装置(粒子の計数およびサイズ分離のための設備を含む)は、メインプロセッサボード(示されない)により操作される。1つの実施形態において、各々のアイテム110〜112のうちの1つは、サンプルブロック108の各々の側に配置される。しかし、粒子カウンター100は、わずか1セットの検出要素110〜112と共に使用され得る。
図2は、光捕捉アセンブリ105の分解透視図である。光捕捉アセンブリ105は、好ましくは、光捕捉ハウジング203と、光捕捉ハウジング203の第1端208に取り付け可能なエンドキャップ205とを備える。光捕捉アセンブリ105は、好ましくは、光捕捉スペーサー202により互いから分離された複数の開口プレート201をさらに備える。光捕捉アセンブリ105は、好ましくは、光捕捉ハウジング203の第2端210に取り付け可能なエンドキャップ204をさらに備える。図2の実施形態において、合計5つの開口プレート201、および合計4つの光捕捉スペーサー202が存在する。しかし、任意の数の開口プレートまたは「開口」201が、適切な数の光捕捉スペーサー202と共に、光捕捉アセンブリ105に含まれ得る。好ましくは、光捕捉スペーサー202は、内側がねじ状であり、そして黒色に塗られている。
図3Aは、開口プレート201の平面図であり、そして図3Bは、開口プレート201の縁の側面図である。1つの実施形態において、開口プレート201の外側直径「a」は、0.248インチ(+0.000/−0.002インチの許容差)に等しいが、他の直径を有する開口プレートが使用され得る。開口穴302は、好ましくは、0.071インチ(+0.003/−0.003インチの許容差)の直径「b」を有するが、0.071インチよりも小さい直径および大きい直径を有する開口穴の両方が使用され得る。開口プレート201は、好ましくは、0.005インチの厚み「c」を有するが、他の厚みが使用され得る。開口プレート201は、好ましくは、黒色陽極処理アルミニウム製であるが、他の適切な金属、プラスチック、または他の材料が使用され得る。
図4は、本発明の好ましい実施形態に従う粒子カウンター100の概略側面図である。図1と組み合わせて議論されるように、粒子カウンター100は、好ましくは、レーザー光学アセンブリ101、フローチャンバアセンブリ102、および検出光学アセンブリ103を備える。図1に示される特定の要素のいくつかは、利便性の目的で、図4から省略されている。しかし、3つの基本的な要素アセンブリ101〜103は、全て示されている。
レーザー光学アセンブリ101は、好ましくは、光学的ポンプ源412(好ましくは、レーザーダイオードである)、第1のレンズアセンブリ401、光ファイバーリンク423、第2のレンズアセンブリ402、コーティング形成ミラー413、ソリッドステートレーザー媒体403、レーザー開口アセンブリ105、および第2のミラー(レーザービーム反射ミラー)405、ならびにレーザーキャビティ404(ミラー413と405との間の領域)を備える。フローチャンバアセンブリ102は、好ましくは、粒子源406、検出領域408、入口ジェット113、および収集光学装置110(図1にも示される)を備える。検出光学アセンブリ103は、好ましくは、検出器410およびシグナルプロセッサ411を備える。図1と組み合わせて議論される、開口アセンブリ105の一部のみが図4に示される。開口アセンブリ105のスペーサーおよびハウジングを含む選択された要素の描写は、単純性の目的のために省略されている。
各々の開口アセンブリ105は、1つ以上の開口プレートを備え得る。図4に示される実施形態において、各々の開口アセンブリ105は、4つの開口プレートを備える。実験データは、レーザー媒体403と検出領域408との間に4つの開口プレートを配置し、第2のミラー405と検出領域408との間に1つの開口プレートを配置する場合に、所望の性能特性が獲得されることを示す。
図5Aは、図7に示されるような入口ジェット113の一部である、入口ジェットノズル500の上面図である。入口ジェットノズル500は、好ましくは、黄銅製である。入口ジェットノズル出口500は、好ましくは、その長さに沿って、3つの基本的な部分である入口管518(好ましくは、円形の断面形態を有する)、移動領域520、および出口管522(好ましくは、矩形の断面形態を有する)を備える。図5Dに示されるように、入口ジェットオリフィス524は、出口管522の開口端に配置される。入口ジェットオリフィス524は、好ましくは、実質的に矩形の断面形態を有し、この矩形の長い方の部分の対向する端部に丸みのある部分を有する。オリフィス524のこの実質的に矩形の断面形態は、好ましくは、0.394インチの内部長および0.025インチの内部幅を有する。しかし、オリフィス524に関する他の内部寸法が使用され得る。
1つの実施形態において、入口管518は、好ましくは、約1.49インチ長の502であり、出口管522は、好ましくは、0.875+/−0.030インチ長の506であり、そして入口ジェットノズル500は、全体で、好ましくは3.11インチ+/−0.030インチ長である。出口管522の幅の外部寸法508は、好ましくは、0.412インチである。
図5Bは、図5Aに示される入口ジェットノズル500の側面図であり;図5Cは、内部壁525を示す図5Aに示される入口ジェットノズル500の断面図であり;そして図5Dは、図5Aに示される入口ジェットノズル500の透視図である。入口管518の外部直径512は、好ましくは、0.281インチであるが、他の直径が使用され得る。入口管518を形成する材料の厚み514は、好ましくは、0.016インチであり、入口管516に関して、0.249インチの内径516を生じる。1つの実施形態において、出口管522は、0.057インチの外部厚510を有するが、他の寸法が使用され得る。
図6Aは、ノズルハウジング600の透視図である。ノズルハウジング600は、好ましくは、単一の6061−T6アルミニウム片製である。しかし、ノズルハウジング600は、他の金属または非金属材料製であり得る。ノズルハウジング600は、好ましくは、入口ジェットノズル500がノズルハウジング600の内側に適合するのを許容する寸法である。好ましくは、入口ジェットノズル500とノズルハウジング600との組み合せが、入口ジェット113を形成する。
ノズルハウジング600は、一般的に、その長さに沿って、3つの主要要素であるハウジング入口部607、メインシャフト603、および光絞りプラットホーム605を備える。ショルダー601は、ノズルハウジング600の直径がハウジング入口607の直径からメインシャフト603の直径に広がる点である。光絞りプラットホーム605の一部を形成する光絞りは、図6Bおよび6Cと組み合わせて議論される。
図6Bは、図6Aに示されるノズルハウジング600の上面図である。図6Aと組み合わせて議論されるノズルハウジング600のエレメントに加えて、光絞り630−a、630−b、632−a、および632−bが示される。オリフィススリーブ626もまた示される。オリフィススリーブ626は、好ましくは、入口ジェットノズル500の出口管522がそのオリフィススリーブ626通過するのを可能にする寸法である。オリフィススリーブ626は、好ましくは、光絞りプラットホーム605の一部を通る実質的に矩形の断面の穴である。
メインシャフト603は、好ましくは、0.690インチ幅の602である。ノズルハウジング600の入口端609からオリフィススリーブ626の内部縁までの距離610は、好ましくは、1.28インチである。ノズルハウジング600の入口端609からオリフィススリーブ626の外部縁までの距離612は、好ましくは、1.388インチである。言及した寸法は、オリフィススリーブ626の好ましい長さを確立する。しかし、異なる長さのオリフィススリーブ626が、ノズルハウジング600において配置され得ることが理解されている。光絞りプラットホーム605は、好ましくは、0.772インチの幅である。
好ましい実施形態において、光絞り構造体630および632は、実質的に同じ長さを有し、一旦入口ジェットノズル500(図6Bに示さず)がノズルハウジング600内に適切に配置されると、入口ジェットオリフィス524に対して対称的に位置決めされる。この好ましい実施形態において、光絞り630−a、630−b、632−a、および632−bのうち最も遠位の延長部と、ノズルハウジング600の入口端部609との間の距離604、614は、1.510インチである。好ましくは、光絞り630−a、630−b、632−a、および632−b全てが、入口ジェットオリフィス524(示さず)を越えて0.014インチ延びる。
代替の実施形態において、光絞り構造体630および632の端部から、それぞれノズルハウジング600の入口端部609までの距離604および614の間において、非対称性を有する。具体的には、ノズルハウジング600の入口端部609から光絞り構造体632の端部までの距離614は、好ましくは1.1510インチである。この代替の実施形態において、ノズルハウジング600の入口端部609から光絞り構造体630の最も遠位の延長部までの距離604は、好ましくは1.502インチである。記載された形状は、元のレーザー光が図6Bにおいて右から左へ移動するとの仮定のもとで確立される。従って、反射したレーザー光は、図6Bにおいて、左から右に移動する。実験は、反射したレーザー光がレーザービームの経路内に光絞りがさほど侵入することなく、効果的に遮断され得ることを示した。
図6Cは、図6A内に示したノズルハウジング600の前方端面図である。光絞りプラットフォーム605の好ましい矩形輪郭は、オリフィススリーブ626の周りに示される。図6Cにおいて、光絞りプラットフォーム605の背後に、主軸603の肩部601およびハウジング入口607がある。
1実施形態において、オリフィススリーブ626は、矩形の長手寸法の端部に丸みのある端部を有する実質的に矩形の断面を有する光学プラットフォーム605を通る通路である。オリフィススリーブ626の丸みのある端部620は、好ましくは、一定曲率半径を有する半円として機械加工されるが、他の形状も使用され得る。オリフィススリーブ626は、好ましくは、出口菅522の外側寸法に密接に適合するように、寸法決めされる。一旦、入口ジェット113が組み立てられると、入口ジェットノズル500の出口522は、好ましくは、オリフィススリーブ626を通して、ぴったり適合する。
1実施形態において、オリフィススリーブ626は、0.424インチ+0.005/−0.000インチの長さ616を有する。好ましくは、オリフィススリーブ626は、0.062インチ+0.005/−0.000インチの幅616を有する。この幅は、約0.015インチの隙間を提供する、0.057インチの外側厚み(図5B)を有するノズル出口522を受容することが予想されることが注意される。代替の実施形態において、入口ジェットノズル500は、円形断面の入口管から実質的に矩形断面の出口管までの滑らかな移動領域を提供するように、放電加工によって作製したノズルと取り換えられ得る。
図7は、レーザービームに対して近位の入口ジェット113の上部断面図である。図7に示した実施形態において、入口ジェット113は、入口ジェットノズル500およびノズルハウジング600を備える。簡便にするために、本明細書中で他の図面と組み合わせて議論される入口ジェットノズル500およびノズルハウジング600の幾つかの形状についての詳細は、図7の議論から省略されている。即時の議論のために、光絞り632−aおよび632−bの末端は、レーザービーム414のエッジの右であると考えられる。図7の実施形態において、光学ポンプ源412(示さず)は、入口ジェット113の右側にあり、レーザービーム反射ミラー405(示さず)は、入口ジェット113の左側にある。
図7の実施形態において、入口ジェットノズル500は、入口ジェットオリフィス524が光絞り632−aおよび632−bから選択した距離702の分だけ陥没するように、ノズルハウジング600の内部に位置決めされる。実験結果は、オリフィスリセス距離702、すなわち、入口ジェットオリフィス534と光絞りの遠位端との間の距離が0.010インチと0.040インチとの間の距離である場合に、レーザービーム414からの入口ジェットオリフィス524の遮断が最適であることを示す。しかし、オリフィスリセス距離702は調節可能であり、他のリセス距離が選択され得る。このリセス距離702は、好ましくは対称的である。すなわち、この距離は、絞りの対630から測定しようと、絞りの対632から測定しようと、同じである。しかし、この距離は非対称的であってもよい。すなわち、絞りの対630に対して測定した距離は、絞りの対632に対して測定した距離と異なり得る。レーザービーム414についての1つの好ましい直径は、約0.0315インチ(0.8ミリメートル[mm])である。粒子カウンター100の1実施形態において、入口ジェットオリフィス524は、好ましくは、レーザービーム414の中心から、0.03075インチ〜0.059インチの間に位置決めされ、より好ましくは、0.043インチと0.059インチとの間に位置決めされる。1実施形態において、光絞りの対630および632内の個々の光絞りは、0.140インチ+/−0.002インチの隔たった距離706を有する。
光絞りの対630についての2つの可能な長さが、図7に示される。好ましい対称的な実施形態と一貫して、上で議論されるように、長さ710は、光絞りの対632と同様にビーム414に向かって延びる光絞りの対630を示す。また、代替の非対称の実施形態と一貫して、上で議論されるように、長さ708は、光絞りの対630が光絞りの対632に対して光絞りのリセス不整合距離704によって陥没されることを示す。代表的には、光絞り不整合距離704は、0.008インチ+/−0.002インチに等しい。
1実施形態において、光絞り630−a、630−b、632−a、および632−bは、Cardinal(登録商標)Velvethane光学黒色塗料を用いてコートされ、入口ジェットオリフィス524の遮断を最適化する。この塗料は、好ましくは、二成分のハイソリッドポリウレタン塗料であり、Cardinal Industrial Finishes,1329 Potrero Ave.,South EI Monte,California 91733から入手可能である。
図7に、全部で4個の光絞り630−a、630−b、632−a、および632−bが示されている;しかし、より少ない光絞り、または4個より多い光絞りが、レーザー照射に対する所望されない曝露から入口ジェットオリフィスを遮断するために使用され得ることが理解される。一般に、元のレーザー光および反射したレーザー光の両方から入口ジェットオリフィス524を保護するために、入口ジェットオリフィス524の各サイド上の1個以上の光絞りを使用することが所望される。実験は、入口ジェットオリフィス524の各サイド上の2個の光絞りを使用する際に、有利な結果が得られることを示している。従って、図7の実施形態において、2個の光絞りは、入口ジェットオリフィス524の各サイド上に配備される。図7に示されるような、光絞り630、632の数および位置の配備は、入口ジェットオリフィス524の効果的な遮断と、光絞りについての合理的に小さな空間要件とを組み合わせる。
図7に、全部で4個の光絞り630−a、630−b、632−a、および632−bが示されているが、任意の数の光絞りが使用され得る。具体的には、入口ジェットオリフィス113は、唯一の単一光絞りを用いて、または入口ジェットオリフィス524の各サイド上で1個の光絞りを用いて、作動し得る。入口ジェットオリフィス524の右側(図7において)での唯一の単一光絞りの使用は、図7に示した実施形態に比べ、入口ジェットオリフィス524のより少ない遮断を提供する。しかし、入口ジェットオリフィス524の一方のサイド上の唯一の単一光絞りの配備は、有利に、図7に示した実施形態より小さな空間を占有する。従って、空間要件が重んじられる場合、単一の光絞りの実施形態が、有利に使用され得る。別の代替の実施形態において、3個以上の光絞りが、入口ジェットオリフィス524の1個またはそれ以上のサイド上で使用され得る。
図1〜7を参照して、粒子カウンター100は、好ましくは、以下に記載されるように、作動する。好ましい実施形態において、本出願に開示される粒子カウンター100は、開口アセンブリ105ならびに光絞り630および632の包括を通して、特許文献1に開示される粒子カウンターとは異なる。従って、以下の議論は、主に、開口アセンブリおよび光絞りの作動に関する。読者は、特許文献1および本開示に共通する特徴の議論について、特許文献1を参照する。
好ましくは、光学ポンプ源412は、第1のレンズアセンブリ401、光ファイバリンク423、第2のレンズアセンブリ402、コート形成ミラー413、ソリッドステートレーザー媒体403、レーザー開口アセンブリ105、およびレーザービーム反射ミラー405を通過するレーザービーム414を生成する。開口アセンブリ105内の第1の開口板415(図2に示した開口板201に対応する)は、好ましくは、ノイズのほとんどを除去するためにレーザービーム414をマスクするが、そうする際に所望されない回折パターンを生成する。開口アセンブリ105内の第2の開口板416は、第1の開口板415によって生成される回折パターンを吸収するが、これは次にそれ自体の回折パターンを発生する。この回折パターンは、第1の開口板415からの回折パターンに比べ、有意に強くない。このパターンを継続すると、各々の後続の開口板は、好ましくは、以前の開口板から回折をマスクし、それ自体の低減した回折パターンを生成する。この様式において、レーザービーム414の経路内に配置された開口板(例えば、開口板415〜418および開口板419〜422)の連続は、好ましくは、各々の後続の開口板を用いて、漸次的に小さくなる回折パターンを生成する。図4の実施形態において、レーザー開口アセンブリ105は、好ましくは、入口ジェットオリフィス524を遮断する際に援助し、それによって、バックグラウンド光内のフロー誘導ノイズを軽減する。開口アセンブリ105は、好ましくは、特許文献1で議論されるゲイン−開口と組み合わさって、低ノイズ環境における高電力作動を提供する。
流体の供給源(これは、好ましくは、粒子カウンター100内の気体、代表的には空気である)は、粒子供給源406によって提供される。この流体は、入口ジェット113を通って検出領域408の方へと指向される。検出領域408において、流体がレーザービーム414を通過する一方で、それによって流体内の粒子からレーザー光の散乱を発生する。検出領域408における粒子からの散乱は、好ましくは、集光レンズ409に指向され、検出器410に向けられる。次いで、反射を示す信号は、好ましくは、検出器410からシグナルプロセッサ411に送られる。
光絞り630−a、630−b、632−a、および632−bの作動と組み合わせて、図7に注意が向けられる。図7の実施形態において、光絞り構造体630および632は各々、2個の光絞りを有し、それ故に、以前に提供された定義によれば、光絞りの対である。一般に、レーザービーム414は、右側の光学ポンプ412(図4)から発生され、左手側のレーザービーム反射ミラーによって反射される。従って、元のレーザー光は、右から入口ジェット113に接近し、反射したレーザー光は、左から入口ジェット113に接近する。元のレーザー光は、入口ジェット113に接近する際に、光絞り構造体632に遭遇し、従って、入口ジェットオリフィス524に達するのを阻害される。好ましくは、光絞り構造体632は、レーザービーム414に隣接する地点まで延びる。光絞り構造体632に対する入口ジェットオリフィス524のリセス距離702は、好ましくは、入口ジェットオリフィス524が、レーザービーム414内の元のレーザー光に対する曝露から遮断されるのを引き起こす。
一般に、光絞り構造体内に複数の光絞りを設けることによって、単一の光絞りを使用するのに比べ、より効果的にノイズを低減する。一般に、各光絞りは、この絞りに衝突する拡散レーザー光内に存在するノイズの量を低減する。一般に、連続した2個の光絞りは、受容可能なレベルまで光学ノイズを低減するのに十分である。この理由から、および空間を考慮して、図7に示した実施形態は、光絞り構造体630および632の各々に、2個の光絞りを備える。しかし、任意の数の光絞りは、各光絞り構造体内に含まれ得る。
既存の粒子計数システムにおけるノイズの性能限定測定は、入口ジェット付近の検出領域の外側の渦電流への拡散レーザー光(または漂遊光)の衝突から生じる。本明細書中に開示された技術は、一般に、レーザービーム414の幅ならびにレーザービーム414およびそこからの拡散レーザー光の入口ジェットオリフィス524付近への侵入を低減する開口415〜422を使用することによって、この問題を解決する。この侵入の低減は、好ましくは、入口ジェットオリフィス524に近位の渦電流へのレーザー光の問題の衝突を低減する。光絞り構造体630および632は、好ましくは、レーザービーム414から拡散した光に対する曝露から入口ジェットオリフィス524を含む容量を遮断することによって、渦電流へのレーザー光のこの問題の衝突をなおさらに低減するよう作動する。開口415〜422ならびに光絞り構造体630および632の組み合わせは、好ましくは、合わさって、分子散乱ノイズが粒子カウンター100内の有意なノイズ源であるのを可能にするのに十分に、渦電流へのレーザー光の衝突から生じるノイズを低減する。
新規なレーザー粒子カウンターが記載されてきた。図面に示され、そして本明細書に記載された特定の実施形態は、例示の目的のためであり、上述の特許請求の範囲に記載された本発明を限定すると解釈されるべきではないことが、理解されるべきである。さらに、本発明の概念から逸脱することなく、当業者が記載される特定の実施形態の多くの使用および改変を行い得ることは明らかである。記載された方法が、多くの例において、異なる順序で実施され得るか;または等価な構造体およびプロセスが記載される種々の構造体およびプロセスと置き換えられ得ることもまた、明らかである。従って、本発明は、上述の特許請求の範囲に規定されるように解釈されるべきである。
図1は、本発明の1つの実施形態に従う粒子カウンターの分解斜視図である。 図2は、光捕捉アセンブリの分解斜視図である。 図3Aは、開口プレートの平面図である。 図3Bは、図3Aに示される開口プレートの縁部の側面図である。 図4は、本発明の好ましい実施形態に従う粒子カウンターの概略側面図である。 図5Aは、入口ジェットノズルの上部平面図である。 図5Bは、図5Aに示される入口ジェットノズルの側面図である。 図5Cは、図5Aに示される入口ジェットノズルの断面図である。 図5Dは、図5Aに示される入口ジェットノズルの斜視図である。 図6Aは、ノズルハウジングの斜視図である。 図6Bは、図6Aに示されるノズルハウジングの上部平面図である。 図6Cは、図6Aに示されるノズルハウジングの前部端面図である。 図7は、レーザービームに近位の入口ジェットの上部断面図である。

Claims (36)

  1. 単一の粒子を光学的に検出する、キャビティ内レーザー検出のための方法であって、該方法は、以下:
    レーザー光(414)を有するソリッドステートレーザーキャビティ(404)を提供する工程;
    光学ポンプ(412)を用いて、該レーザーキャビティをゲイン開口する工程;
    該レーザー光によって照射される該ゲイン開口されたレーザーキャビティ内の検出領域(408)において、粒子を含む流体フローを提供する工程;ならびに
    該粒子によって散乱された光を収集する工程および該粒子を示す出力信号を発生させる工程、
    を包含し、該方法は、
    光学バリア複合物(105、630、632)を配置して、0.1立方フィート/分以上の該流体フローの流速で、該出力信号中のノイズを低減する工程によって特徴付けられる、
    方法。
  2. 請求項1に記載の方法であって、前記粒子が、0.1ミクロン以下のサイズを有する、方法。
  3. 請求項1に記載の方法であって、前記配置する工程が、バックグラウンド光における、フロー誘導された乱れを低減するために、前記光学バリア複合物を配置することを含む、方法。
  4. 請求項1に記載の方法であって、前記配置する工程が、前記レーザー光を物理的に開口することを含む、方法。
  5. 請求項1に記載の方法であって、前記流体フローが、入口ジェットオリフィス(524)によって提供され、そして該配置する工程が、前記レーザー光から該入口ジェットオリフィスを遮断することを含む、方法。
  6. 単一の粒子を光学的に検出するための方法であって、該方法は、以下:
    ソリッドステートレーザー媒体を使用して、キャビティ内レーザーシステム(101)においてレーザービーム(414)を提供する工程;ならびに
    エアロゾルジェット(500)を利用して、該レーザービームを介して粒子含有流体のフローを方向付け、その結果、前記レーザービームからの光が該粒子によって散乱される工程、
    を包含し、該方法は、
    該粒子によって散乱された光を収集する工程および該粒子を示す出力信号を発生させる工程によって特徴付けられ、該出力信号は、該エアロゾルジェットの内壁(525)からの乱流渦の削減によって引き起こされるノイズを実質的に含まない、
    方法。
  7. 請求項6に記載の方法であって、前記粒子が、0.1ミクロン以下のサイズを有する、方法。
  8. レーザーキャビティ(404)中の単一の粒子を光学的に検出するための方法であって、該方法は、以下:
    該レーザーキャビティ内のレーザー媒体(403)を光学的にポンピングして、レーザー光を発生する工程;
    該レーザーキャビティをゲイン開口する工程;
    粒子を含む流体フローを、該レーザーキャビティへと方向付ける工程であって、該流体フローは、渦流を含む、工程;および
    該粒子から散乱されたレーザー光を収集して、該単一の粒子を示す出力を発生させる工程、
    を包含し、該方法は、
    該提供されたレーザー光が該渦流に衝突することを妨げる工程によって特徴付けられる、
    方法。
  9. 請求項8に記載の方法であって、前記妨げる工程が、前記レーザー光を物理的に開口することを含む、方法。
  10. 請求項8に記載の方法であって、前記妨げる工程が、前記発生したレーザー光による照射から、入口ジェットオリフィスを遮断することを含む、方法。
  11. 請求項10に記載の方法であって、前記遮断する工程が、前記レーザー光の供給源と前記入口ジェットオリフィスとの間に第一の光絞り構造体を配置することを包含する、方法。
  12. 請求項11に記載の方法であって、前記遮断する工程が、レーザーキャビティエンドミラーと前記入口ジェットオリフィスとの間に第二の光絞り構造体を配置することをさらに包含する、方法。
  13. 請求項9に記載の方法であって、前記物理的に開口する工程が、前記レーザー媒体と前記検出領域との間に第一開口アセンブリを、そしてレーザーキャビティエンドミラーと前記検出領域との間に第二開口アセンブリを提供することを含む、方法。
  14. 粒子のキャビティ内検出のためのデバイス(100)であって、該デバイスは、以下:
    レーザーキャビティ(404);
    該レーザーキャビティ内に配置された、ソリッドステートレーザー媒体(403);
    該ソリッドステートレーザー媒体に方向付けられた、光学ポンプ源(412);
    該レーザーキャビティのゲイン開口を達成し、そして該ソリッドステートレーザー媒体を励起して、該レーザーキャビティ内にレーザー光を提供するために、該ソリッドステートレーザー媒体中へと、該光学ポンプ源によって提供されるポンピング光を集束させるための、集束ユニット(402);
    該レーザーキャビティ内、または該レーザー光の通路中の検出領域(408)へと粒子を導入するための、粒子供給源(406);および
    該検出領域から光を収集するように配置された、検出光学アセンブリ、
    を備え、該デバイスは、
    光が該検出領域へ入り得る領域において生じる渦流流体フローを、該レーザー光への暴露から遮断するための、光学バリア複合物(105、630、632)、
    によって特徴付けられる、
    デバイス。
  15. 請求項14に記載のデバイスであって、前記光学バリア複合物が、物理的開口(105)を備える、デバイス。
  16. 請求項14に記載のデバイスであって、前記光学バリア複合物が、以下:
    前記光学ポンプ源と前記検出領域との間に位置する第一開口アセンブリ;および
    前記提供されたレーザー光のレーザーキャビティエンドミラーと該検出領域との間に位置する第二開口アセンブリ、
    を備える、デバイス。
  17. 請求項16に記載のデバイスであって、前記第一開口アセンブリが、開口プレートを備える、デバイス。
  18. 請求項16に記載のデバイスであって、前記第一開口アセンブリが、複数の開口プレートを備える、デバイス。
  19. 請求項16に記載のデバイスであって、前記第二開口アセンブリが、開口プレートを備える、デバイス。
  20. 請求項16に記載のデバイスであって、前記第二開口アセンブリが、複数の開口プレートを備える、デバイス。
  21. 請求項14に記載のデバイスであって、前記光学バリア複合物が、光絞りを備える、デバイス。
  22. 請求項16に記載のデバイスであって、前記光学バリア複合物が、以下:
    前記光学ポンプ源と前記渦流流体フローが生じる前記領域との間に位置する第一光絞り構造体;および
    前記提供されたレーザー光の前記レーザーキャビティエンドミラーと該渦流流体フローが生じる該領域との間に位置する第二光絞り構造体、
    を備える、デバイス。
  23. 請求項14に記載のデバイスであって、前記渦流流体フローが生じる前記領域が、入口ジェットオリフィスに対して近位である、デバイス。
  24. 請求項14に記載のデバイスであって、前記ソリッドステートレーザー媒体が、ドープ媒体である、デバイス。
  25. 請求項14に記載のデバイスであって、前記光学ポンプ源が、半導体レーザーである、デバイス。
  26. 光学粒子カウンター(101)であって、該光学粒子カウンターは、以下:
    レーザー光を発生する、ゲイン開口レーザーキャビティ(104);
    該レーザーキャビティ内の粒子検出領域(408)へと流体フローを提供する、入口ジェット(113)であって、該入口ジェットは、入口ジェットオリフィス(524)を有する、入口ジェット;および
    該検出領域内の粒子から散乱される光を収集して、該粒子を示す出力信号を生じるように配置される、検出光学アセンブリ(103)、
    を備え、該粒子カウンターは、
    0.1立方フィート/分以上の流体流速について、光学バリア複合物なしの該ゲイン開口システムと比較した場合、ノイズを低減するように配置された、光学バリア複合物(105、630、632)によって特徴付けられる、
    粒子カウンター。
  27. 請求項26に記載の粒子カウンターであって、前記光学バリア複合物が、前記レーザー光の物理的開口を提供する開口アセンブリを備える、粒子カウンター。
  28. 請求項27に記載の粒子カウンターであって、前記光学バリア複合物が、前記レーザー光への暴露から前記入口ジェットオリフィスを遮断するための、第一光絞り構造体を備える、粒子カウンター。
  29. 請求項28に記載の粒子カウンターであって、前記第一光絞り構造体、前記ゲイン開口および前記物理的開口が、該粒子カウンターにおいてフロー誘導されたバックグラウンド光の乱れを排除するように協同する、粒子カウンター。
  30. 請求項27に記載の粒子カウンターであって、前記開口アセンブリが、単一の開口プレートから実質的になる、粒子カウンター。
  31. 請求項27に記載の粒子カウンターであって、前記開口アセンブリが、複数の開口プレートを備える、粒子カウンター。
  32. 請求項27に記載の粒子カウンターであって、前記入口ジェットオリフィスが、前記第一光絞り構造体の末端に関して、0.010インチと0.040インチとの間だけ、前記レーザー光から離れて窪んでいる、粒子カウンター。
  33. 請求項26に記載の粒子カウンターであって、前記光学バリア複合物が、前記レーザー光への暴露から前記入口ジェットオリフィスを遮断するための、第一光絞り構造体を備える、粒子カウンター。
  34. 請求項33に記載の粒子カウンターであって、前記第一光絞り構造体が、単一の光絞りから実質的になる、粒子カウンター。
  35. 請求項33に記載の粒子カウンターであって、前記第一光絞り構造体が、複数の光絞りを備える、粒子カウンター。
  36. 請求項33に記載の粒子カウンターであって、前記光学バリア複合物が、前記第一光絞り構造体から、前記入口ジェットオリフィスの反対側に、第二光絞り構造体をさらに備える、粒子カウンター。
JP2003368136A 2002-10-28 2003-10-28 低ノイズのキャビティ内レーザー粒子カウンター Pending JP2004151103A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/282,169 US6903818B2 (en) 2002-10-28 2002-10-28 Low noise intracavity laser particle counter

Publications (1)

Publication Number Publication Date
JP2004151103A true JP2004151103A (ja) 2004-05-27

Family

ID=29735709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368136A Pending JP2004151103A (ja) 2002-10-28 2003-10-28 低ノイズのキャビティ内レーザー粒子カウンター

Country Status (4)

Country Link
US (1) US6903818B2 (ja)
JP (1) JP2004151103A (ja)
DE (1) DE10350051A1 (ja)
GB (1) GB0325045D0 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015587A (ja) * 2015-07-02 2017-01-19 富士電機株式会社 粒子計測装置

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295309B1 (en) * 2003-12-09 2007-11-13 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Microparticle analysis system and method
US7268881B2 (en) 2004-02-17 2007-09-11 The Curators Of The University Of Missouri Light scattering detector
US7030980B1 (en) 2004-12-29 2006-04-18 Particle Measuring Systems, Inc. Diode pumped intracavity laser particle counter with improved reliability and reduced noise
US7903252B2 (en) * 2005-01-13 2011-03-08 The Curators Of The University Of Missouri Noise cancellation in fourier transform spectrophotometry
US7793851B2 (en) * 2005-05-09 2010-09-14 Dynamics Inc. Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
US20080035738A1 (en) * 2005-05-09 2008-02-14 Mullen Jeffrey D Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
US8397553B2 (en) * 2006-12-06 2013-03-19 The Curators Of The University Of Missouri Liquid chromatography detector and flow controller therefor
US20100288026A1 (en) * 2006-12-06 2010-11-18 The Curators Of The University Of Missouri Liquid chromatography detector and flow controller therefor
US7796255B2 (en) * 2007-03-23 2010-09-14 Particle Measuring Systems, Inc. Optical particle sensor with exhaust-cooled optical source
US7631568B2 (en) * 2007-08-28 2009-12-15 Quest Technologies Particulate monitor
EP2232231A4 (en) 2007-12-04 2015-12-02 Particle Measuring Syst SYSTEMS AND METHODS FOR DETECTION OF NON-ORTHOGONAL PARTICLES
CN102087197B (zh) * 2009-12-08 2014-06-18 龚维燕 全功能血液分析仪器中库尔特微孔的共轴照明方法及其分析仪器
WO2011025763A1 (en) 2009-08-24 2011-03-03 Particle Measuring Systems, Inc. Flow monitored particle sensor
KR101159761B1 (ko) * 2010-01-06 2012-06-28 (주)에이치시티 입자 측정 장치
KR101159762B1 (ko) * 2010-01-06 2012-06-28 (주)에이치시티 입자 측정 장치
KR101088863B1 (ko) 2010-05-19 2011-12-06 (주)에이치시티 입자 측정 장치
US9880097B2 (en) 2011-09-20 2018-01-30 Tsi Incorporated Apparatus and system for simultaneously measuring particle concentration and biocontaminants in an aerosol particle flow
WO2013091118A1 (en) * 2011-12-22 2013-06-27 Nanotion Ag Method and apparatus for analysis of samples containing small particles
CN103149136A (zh) * 2013-03-08 2013-06-12 苏州市尚科产品检测中心 一种传感器腔体
US10983040B2 (en) 2013-03-15 2021-04-20 Particles Plus, Inc. Particle counter with integrated bootloader
US11579072B2 (en) 2013-03-15 2023-02-14 Particles Plus, Inc. Personal air quality monitoring system
US10352844B2 (en) 2013-03-15 2019-07-16 Particles Plus, Inc. Multiple particle sensors in a particle counter
US9677990B2 (en) 2014-04-30 2017-06-13 Particles Plus, Inc. Particle counter with advanced features
ITRM20130128U1 (it) 2013-07-23 2015-01-24 Particle Measuring Systems S R L Dispositivo per il campionamento microbico dell'aria
US9810558B2 (en) 2014-03-14 2017-11-07 Particle Measuring Systems, Inc. Pressure-based airflow sensing in particle impactor systems
US9631222B2 (en) 2014-03-14 2017-04-25 Particle Measuring Systems, Inc. Filter and blower geometry for particle sampler
GB2524836A (en) * 2014-04-04 2015-10-07 Servomex Group Ltd Attachment and alignment device for optical sources, detectors and analysers, and modular analysis system
ITUB20159550A1 (it) * 2015-12-24 2016-03-24 Istituto Naz Di Ricerca Metrologica Sistema per la determinazione delle caratteristiche di un gas e relativo metodo di misura di tali caratteristiche
US9933350B2 (en) 2016-08-16 2018-04-03 International Business Machines Corporation Atmospheric particle counting
US11781965B2 (en) 2017-10-26 2023-10-10 Particle Measuring Systems, Inc. System and method for particles measurement
JP1680755S (ja) 2018-05-01 2021-03-08
JP1680387S (ja) 2018-05-01 2021-03-01
USD907085S1 (en) 2018-05-01 2021-01-05 Hamamatsu Photonics K.K. Laser beam reflector
JP1680507S (ja) 2018-05-01 2021-03-08
JP1625135S (ja) 2018-05-01 2019-03-18
JP1625495S (ja) 2018-05-01 2019-03-18
JP1680386S (ja) 2018-05-01 2021-03-01
JP1680385S (ja) 2018-05-01 2021-03-01
JP1680388S (ja) 2018-05-01 2021-03-01
USD903614S1 (en) 2018-05-01 2020-12-01 Hamamatsu Photonics K.K. Laser beam reflector
JP1639597S (ja) 2018-05-01 2019-08-19
CN112601948A (zh) 2018-08-31 2021-04-02 粒子监测系统有限公司 流体折射率优化粒子计数器
TWI728453B (zh) 2018-09-04 2021-05-21 美商粒子監測系統有限公司 在生產儀器及表面上偵測奈米粒子
WO2020102038A1 (en) 2018-11-12 2020-05-22 Particle Measuring Systems, Inc. Calibration verification for optical particle analyzers
US11385161B2 (en) 2018-11-12 2022-07-12 Particle Measuring Systems, Inc. Calibration verification for optical particle analyzers
WO2020102032A1 (en) 2018-11-16 2020-05-22 Particle Measuring Systems, Inc. Particle sampling systems and methods for robotic controlled manufacturing barrier systems
WO2020102299A1 (en) 2018-11-16 2020-05-22 Particle Measuring Systems, Inc. Slurry monitor coupling bulk size distribution and single particle detection
WO2020219841A1 (en) 2019-04-25 2020-10-29 Particle Measuring Systems, Inc. Particle detection systems and methods for on-axis particle detection and/or differential detection
TWI833984B (zh) 2019-08-26 2024-03-01 美商粒子監測系統有限公司 觸發式採樣系統及方法
US20220291110A1 (en) * 2019-09-06 2022-09-15 Safera Oy A device for measuring the quality of air
WO2021071792A1 (en) 2019-10-07 2021-04-15 Particle Measuring Systems, Inc. Particle detectors with remote alarm monitoring and control
EP4041462A4 (en) 2019-10-07 2022-12-14 Particle Measuring Systems, Inc. ANTIMICROBIAL PARTICLE DETECTORS
IT201900020248A1 (it) 2019-11-04 2021-05-04 Particle Measuring Systems S R L Dispositivo di monitoraggio mobile per aree a contaminazione controllata
US11988593B2 (en) 2019-11-22 2024-05-21 Particle Measuring Systems, Inc. Advanced systems and methods for interferometric particle detection and detection of particles having small size dimensions
CN114981636A (zh) 2020-01-21 2022-08-30 粒子监测系统有限公司 用于无菌处理的机器人控制
US11988591B2 (en) 2020-07-01 2024-05-21 Particles Plus, Inc. Modular optical particle counter sensor and apparatus
CN112504924B (zh) * 2020-12-21 2022-12-02 华南师范大学 一种用于动态光散射法的散射光接收系统
CN113281005B (zh) * 2021-05-13 2022-09-06 中国科学技术大学 一种激光制备分子束源装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700333A (en) * 1971-02-04 1972-10-24 Battelle Development Corp Method and apparatus for making an in-situ determination of the chemical properties of atmospheric aerosols
US3983743A (en) * 1973-09-19 1976-10-05 Sierra Instruments, Inc. Apparatus and method for the analysis of a particle-laden gas
US4992190A (en) * 1989-09-22 1991-02-12 Trw Inc. Fluid responsive to a magnetic field
US5726753A (en) 1996-02-26 1998-03-10 Research Electro-Optics, Inc. Intracavity particle detection using optically pumped laser media
US5872361A (en) * 1997-03-24 1999-02-16 Hach Company Turbidimeter with non-imaging optical concentrator
US6137572A (en) * 1998-02-27 2000-10-24 Pacific Scientific Instruments Company High sensitivity optical fluid-borne particle detection
US5946093A (en) * 1998-08-19 1999-08-31 Met One, Inc. Particle detection system and method employing an upconversion laser
US6404494B1 (en) * 1998-12-22 2002-06-11 University Of Washington Measurement of the lidar ratio for atmospheric aerosols using a 180 degree-backscatter nephelometer
US6275288B1 (en) * 1999-04-14 2001-08-14 Innovative Lasers Corp. Gas cell for detection of trace gases via intracavity laser spectroscopy
US6091494A (en) * 1999-05-25 2000-07-18 Venturedyne, Ltd. Particle sensor with cooled light trap and related method
US6710878B1 (en) * 1999-06-14 2004-03-23 General Electric Company In-line particulate detector
US6414754B1 (en) * 2000-03-08 2002-07-02 Pacific Scientific Instruments Company Method and apparatus for suppressing stray light in particle detectors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015587A (ja) * 2015-07-02 2017-01-19 富士電機株式会社 粒子計測装置

Also Published As

Publication number Publication date
US6903818B2 (en) 2005-06-07
US20040080747A1 (en) 2004-04-29
DE10350051A1 (de) 2004-05-27
GB0325045D0 (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP2004151103A (ja) 低ノイズのキャビティ内レーザー粒子カウンター
JP4607437B2 (ja) ストラップレーザダイオードを備える粒子カウンタ
US5085500A (en) Non-imaging laser particle counter
EP3761008B1 (en) Micro object detection apparatus
US20060038998A1 (en) Particle counter with laser diode
US10119908B2 (en) Particle sensor
JP2007286067A (ja) 浮揚汚染物質の検出
JP2006511822A (ja) 空中浮遊病原体検出システム及び方法
JP2014514556A (ja) 微生物検出装置及び方法
KR101574435B1 (ko) 미세먼지 및 미생물 검출 장치
EP0571077B1 (en) Fluid pollution monitor
EP0862733A1 (en) Particle sensor with fiber optic conductor
KR20200033619A (ko) 미세먼지 감지 센서 어셈블리
JP5703987B2 (ja) 粒子計測装置
CA2490532C (en) Optical transit time velocimeter
US6967338B1 (en) Micro UV particle detector
KR20160103287A (ko) 미세 먼지 및 미생물 검출 장치
KR20110058063A (ko) 광 흡수 방식 입자 측정 장치
KR102479361B1 (ko) 광학 챔버용 커튼 유동 설계
KR20160103285A (ko) 미세 먼지 및 미생물 검출 장치
JPH0137689B2 (ja)
JP3966851B2 (ja) 光散乱式粒子計数装置
JP2005351835A (ja) 微粒子測定装置
EP3821227B1 (en) System, apparatus and method for off-axis illumination in flow cytometry
JP2017044679A (ja) パーティクルカウンタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090629

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090730

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100108