CN113281005B - 一种激光制备分子束源装置 - Google Patents

一种激光制备分子束源装置 Download PDF

Info

Publication number
CN113281005B
CN113281005B CN202110522210.7A CN202110522210A CN113281005B CN 113281005 B CN113281005 B CN 113281005B CN 202110522210 A CN202110522210 A CN 202110522210A CN 113281005 B CN113281005 B CN 113281005B
Authority
CN
China
Prior art keywords
beam source
cavity
laser
shielding cylinder
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110522210.7A
Other languages
English (en)
Other versions
CN113281005A (zh
Inventor
王兴安
唐翎
陈文韬
栾志文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202110522210.7A priority Critical patent/CN113281005B/zh
Publication of CN113281005A publication Critical patent/CN113281005A/zh
Application granted granted Critical
Publication of CN113281005B publication Critical patent/CN113281005B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Lasers (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开一种激光制备分子束源装置,具有低背景噪声,该装置包括真空系统、束源制备系统和光学系统,通过在束源制备腔侧面开进光口,利用激光将脉冲阀喷射的母体分子制备成碎片分子,再经过绝热膨胀形成量子态单一的碎片分子束源,以满足反应动力学实验需求。在腔体内部光路上设计屏蔽筒,防止激光暴露在探测腔造成较大的背景噪声,屏蔽筒与腔体间的连接通过特殊设计的部件实现,利用橡胶O圈密封,维持束源制备腔和探测腔的差分抽系统。屏蔽筒中光阑的设计有助于确保激光与分子在空间上相交,提高制备的束源强度。通过一系列设计,能有效降低激光造成的背景噪声,可以利用激光制备量子态单一的碎片分子束源用于实验研究并具有较低的背景噪声。

Description

一种激光制备分子束源装置
技术领域
本发明涉及束源制备技术领域,尤其涉及一种激光制备分子束源装置。
背景技术
反应动力学是物理化学的一个分支,分子束技术是反应动力学实验研究的重要工具。分子束中分子间距离大、相互作用弱,且分子作准直的定向运动,因此十分适合用于研究分子本身的性质和分子与其他粒子间的相互作用。超声射流是产生分子束源的重要方法,即束源制备腔中的分子通过绝热膨胀进入探测腔,期间分子在束源制备腔的开口附近剧烈碰撞,分子内部的转动能和振动能转化成分子的平动能,从而形成内部温度低的超声射流分子束源,使量子态分辨的反应动力学实验成为可能。
市场上能购买到的气体通常是处于基态的稳定的中性分子,但激发态的分子、自由基、离子等在化学反应中同样扮演着重要角色。为研究这些粒子在化学反应中的作用,需要借助外界能量场来制备相应的束源。光与分子相互作用可以使分子跃迁到激发态、解离生成碎片分子或电离生成离子。目前的激光技术波长覆盖范围广、线宽窄,可以将分子精确地制备到所需要的量子态,因此激光常用于制备束源。
激光制备束源中,激光与分子作用有两种方案,一种是超声射流完成之后激光与分子束作用,即作用区域在束源制备腔开口的漏勺下游;另一种是在超声射流未完成时,即在阀和漏勺之间激光与分子相互作用。前一种方案可以用来精确制备激发态的分子束,例如利用受激拉曼泵浦制备振动激发的氘代氢气束源。后一种方案常出现在光解碎片分子束源的制备中,例如硝酸光解制备氢氧自由基束源。这是因为如果在超声射流之后再进行光解,产生的碎片分子内部量子态不纯,可能布局在多个振转态。因此在制备单一量子态的碎片分子束源时,通常需要让激光穿过束源制备腔,在阀与漏勺之间与母体分子反应。
束源制备完成后,可以对束源本身速度、量子态等进行探测,或是作为反应物进一步参与反应。探测的信号通常包括荧光信号、离子信号等。然而这类信号通常不大,要求漏勺与探测区域的距离不能太远,一般为几厘米,因此通常需要将束源制备腔伸入探测腔内。激光本身或散射光打到腔壁上溅射出的粒子均会造成可探测的背景噪声,影响实验的信噪比。此外,为了使激光与分子充分反应、保证束源有足够的强度,激光光束应与分子束在空间上相交,确保激光处于正确位置对于一个庞大的真空腔室而言也是一个难题。
因此,如何提供一种激光制备分子束源装置,以降低背景噪声,是目前本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本发明的目的在于提供一种激光制备分子束源装置,以降低背景噪声。
为了达到上述目的,本发明提供如下技术方案:
一种激光制备分子束源装置,包括真空系统、束源制备系统和光学系统,其中,
所述真空系统包括真空腔和真空泵,所述真空腔包括一号真空腔、束源制备腔和探测腔,所述束源制备腔上设置有开孔与所述探测腔连通,所述真空泵包括一号真空泵和二号真空泵,
所述一号真空腔与所述束源制备腔连通且通过所述一号真空泵抽真空,所述探测腔通过所述二号真空泵抽真空,构建所述束源制备腔和所述探测腔的差分抽气系统,维持制备束源需要的真空度;
所述束源制备系统包括脉冲阀和漏勺,所述脉冲阀设置在所述束源制备腔的内部用于喷射分子,所述漏勺设置在所述开孔用于准直和减小束源发散角;
所述光学系统包括用于发射激光提供制备分子束源所需能量的激光器和用于降低激光造成的背景噪声的一号屏蔽筒,所述一号屏蔽筒包括一号遮光筒和内置在所述一号遮光筒中的一号光阑,所述束源制备腔的两侧分别设置有进光口且对称设置,每个所述进光口对应一个所述一号屏蔽筒,所述一号屏蔽筒的一端设置有一号窗片,其另一端与所述进光口连通;
激光从所述一号窗片进入所述一号屏蔽筒,然后通过所述进光口进入所述束源制备腔内,与所述脉冲阀喷出的分子互相作用,之后分子通过所述漏勺准直进入所述探测腔,完成束源制备。
优选的,上述一号遮光筒、所述一号光阑、所述进光口和所述脉冲阀四者的中心同高。
优选的,上述束源制备腔通过双面刀口法兰与所述探测腔和所述一号真空腔密封连接。
优选的,上述脉冲阀与所述漏勺的中心等高。
优选的,上述的激光制备分子束源装置还包括束源探测系统,所述束源探测系统包括探测器和二号屏蔽筒,所述探测器为光电倍增管,其中,
每个所述一号屏蔽筒的一侧设置有一个所述二号屏蔽筒,
所述二号屏蔽筒包括二号遮光筒和内置在所述二号遮光筒中的二号光阑,
两个所述二号屏蔽筒的一端设置有二号窗片,两个所述二号屏蔽筒的另一端相对设置,
所述脉冲阀和所述漏勺的连线与两个所述二号窗片的连线相交于所述探测腔的中心,使得探测激光透过所述二号窗片进入所述探测腔,与碎片分子束源相交于所述探测腔的中心,碎片分子在探测激光的作用下产生荧光信号,被所述光电倍增管收集探测。
优选的,上述的激光制备分子束源装置还包括时序控制系统,所述时序控制系统包括用于控制所述脉冲阀、所述激光器以及所述探测器的工作频率、脉冲起始时间和脉冲宽度的脉冲时序发生器。
优选的,上述进光口所在平面为斜切面。
优选的,上述一号屏蔽筒的另一端通过转换部件伸入所述束源制备腔内,所述转换部件通过连接件固定在所述进光口处且通过O型圈密封。
优选的,上述探测腔的两侧对称设有开口,
所述开口上均设置有窗片法兰,所述窗片法兰上设置有所述一号窗片,所述一号屏蔽筒的一端固定在所述窗片法兰上且通过O型圈密封且对准所述一号窗片。
优选的,上述一号屏蔽筒由两节所述一号遮光筒和一节所述一号光阑交替螺纹连接组成,所述一号光阑位于两节所述一号遮光筒之间。
本发明提供的激光制备分子束源装置,包括真空系统、束源制备系统和光学系统,其中,
所述真空系统包括真空腔和真空泵,所述真空腔包括一号真空腔、束源制备腔和探测腔,所述束源制备腔上设置有开孔与所述探测腔连通,所述真空泵包括一号真空泵和二号真空泵,
所述一号真空腔与所述束源制备腔连通且通过所述一号真空泵抽真空,所述探测腔通过所述二号真空泵抽真空,构建所述束源制备腔和所述探测腔的差分抽气系统,维持制备束源需要的真空度;
所述束源制备系统包括脉冲阀和漏勺,所述脉冲阀设置在所述束源制备腔的内部用于喷射分子,所述漏勺设置在所述开孔用于准直和减小束源发散角;
所述光学系统包括用于发射激光提供制备分子束源所需能量的激光器和用于降低激光造成的背景噪声的一号屏蔽筒,所述一号屏蔽筒包括一号遮光筒和内置在所述一号遮光筒中的一号光阑,所述束源制备腔的两侧分别设置有进光口且对称设置,每个所述进光口对应一个所述一号屏蔽筒,所述一号屏蔽筒的一端设置有一号窗片,其另一端与所述进光口连通;
激光从所述一号窗片进入所述一号屏蔽筒,然后通过所述进光口进入所述束源制备腔内,与所述脉冲阀喷出的分子互相作用,之后分子通过所述漏勺准直进入所述探测腔,完成束源制备。
本发明提供的激光制备分子束源装置,在束源制备腔侧面开进光口引入激光的同时,能达到差分抽真空的效果,防止束源制备腔中大量分子溢入探测腔造成多次碰撞、干扰探测,也减少了束源制备腔中可能出现的漏气状况损坏探测腔中真空探测器的风险;另一方面,在腔体内部光路上引入屏蔽筒,能有效降低激光造成的背景噪声,提高实验信噪比;其次,光阑的设计有效降低了激光空间位置调节的难度,保证激光能与分子充分反应。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的激光制备分子束源装置的部分爆炸结构示意图;
图2为本发明实施例提供的激光制备分子束源装置的侧剖结构示意图;
图3为本发明实施例提供的一号屏蔽筒的结构示意图。
上图1-3中:
一号真空腔1、束源制备腔2、探测腔3、一号真空泵4、二号真空泵5、脉冲阀6、漏勺7、激光8、进光口9、一号窗片10、一号屏蔽筒11、一号光阑12、双面刀口法兰13、阀架子14、二号窗片15、转换部件16、固定部件17、窗片法兰18、探测器19、一号遮光筒20、二号屏蔽筒21。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1至图3,图1为本发明实施例提供的激光制备分子束源装置的部分爆炸结构示意图;图2为本发明实施例提供的激光制备分子束源装置的侧剖结构示意图;图3为本发明实施例提供的一号屏蔽筒的结构示意图。
本发明实施例提供的激光制备分子束源装置,包括真空系统、束源制备系统和光学系统,其中,
真空系统包括真空腔和真空泵,真空腔包括一号真空腔1、束源制备腔2和探测腔3,束源制备腔2上设置有开孔与探测腔3连通,真空泵包括一号真空泵4和二号真空泵5,
一号真空腔1与束源制备腔2连通且通过一号真空泵4抽真空,探测腔3通过二号真空泵5抽真空,构建束源制备腔2和探测腔3的差分抽气系统,维持制备束源需要的真空度;
束源制备系统包括脉冲阀6和漏勺7,脉冲阀6设置在束源制备腔2的内部用于喷射分子,漏勺7设置在开孔用于准直和减小束源发散角;
光学系统包括用于发射激光提供制备分子束源所需能量的激光器和用于降低激光8造成的背景噪声的一号屏蔽筒11,一号屏蔽筒11包括一号遮光筒20和内置在一号遮光筒20中的一号光阑12,束源制备腔2的两侧分别设置有进光口9且对称设置,每个进光口9对应一个一号屏蔽筒11,一号屏蔽筒11的一端设置有一号窗片10,其另一端与进光口9连通;
激光8从一号窗片10进入一号屏蔽筒11,然后通过进光口9进入束源制备腔2内,与脉冲阀6喷出的母体分子互相作用,之后分子通过漏勺7准直进入探测腔3,完成束源制备。
本发明实施例提供的激光制备分子束源装置,在束源制备腔2侧面开进光口9引入激光8的同时,能达到差分抽真空的效果,防止束源制备腔2中大量分子溢入探测腔3造成多次碰撞、干扰探测,也减少了束源制备腔2中可能出现的漏气状况损坏探测腔3中真空探测器的风险;另一方面,在腔体内部光路上引入屏蔽筒,能有效降低激光8造成的背景噪声,提高实验信噪比;其次,光阑的设计有效降低了激光空间位置调节的难度,保证激光8能与分子充分反应。
为了进一步优化上述方案,一号遮光筒20、一号光阑12、进光口9和脉冲阀6四者的中心同高,有效保证通过一号屏蔽筒11的激光和分子在空间上相交。
其中,束源制备腔2通过双面刀口法兰13与探测腔3和一号真空腔1密封连接,束源制备腔2伸入探测腔3中。
为了进一步优化上述方案,脉冲阀6固定在阀架子14上,阀架子14通过螺丝固定在束源制备腔2内部平坦的底面,脉冲阀6和漏勺7的间距通过阀架子14的固定位置进行调整,以获得最佳状态的分子束源。
为了进一步优化上述方案,上述的激光制备分子束源装置还包括束源探测系统,束源探测系统包括探测器19和二号屏蔽筒21,探测器19为光电倍增管,其中,
每个一号屏蔽筒11的一侧设置有一个二号屏蔽筒21,
二号屏蔽筒21包括二号遮光筒和内置在二号遮光筒中的二号光阑,
两个二号屏蔽筒21的一端设置有二号窗片15,两个二号屏蔽筒21的另一端相对设置,
脉冲阀6和漏勺7的连线与两个二号窗片15的连线相交于探测腔3的中心,使得探测激光透过二号窗片15进入探测腔3,与碎片分子束源相交于探测腔3的中心,碎片分子在探测激光的作用下产生荧光信号,被光电倍增管收集探测。
为了进一步优化上述方案,上述的激光制备分子束源装置还包括时序控制系统,时序控制系统包括用于控制脉冲阀6、激光器以及探测器19的工作频率、脉冲起始时间和脉冲宽度的脉冲时序发生器。
为了进一步优化上述方案,脉冲阀6与漏勺7的中心等高。脉冲阀6和漏勺7的连线与两个二号窗片15的连线相交于探测腔3的中心,以便其它功能腔室位置的设计。
为了进一步优化上述方案,进光口9所在平面为斜切面。即束源制备腔2的进光口9所在平面进行了斜切,减小束源制备腔2在探测腔3内占用的体积,减少束源制备腔2遮挡探测腔3内光路的可能。
其中,探测腔3的两侧对称设有开口,开口上均设置有窗片法兰18,窗片法兰18上设置有一号窗片10和二号窗片15,一号屏蔽筒11的一端固定在窗片法兰18上且通过O型圈密封且对准一号窗片10,二号屏蔽筒21的一端固定在窗片法兰18上且通过O型圈密封且对准二号窗片15。
为了进一步优化上述方案,一号屏蔽筒11的另一端通过转换部件16伸入束源制备腔2内,转换部件16通过连接件固定在进光口9处且通过O型圈密封。具体的,即一号屏蔽筒11的另一端需通过转换部件16进入束源制备腔2的进光口9,一号屏蔽筒11与转换部件16紧配合,转换部件16通过螺丝固定在束源制备腔2的进光口9外,通过O圈密封;一号屏蔽筒11的一端通过固定部件17用螺丝固定在一号窗片10所在的窗片法兰18上,通过O圈密封,以此保证差分抽真空的效果,避免束源制备腔漏气可能造成的探测腔3中真空度的剧烈变化。
为了进一步优化上述方案,一号屏蔽筒11由两节一号遮光筒20和一节一号光阑12交替螺纹连接组成,如图3所示,一号光阑12位于两节一号遮光筒20之间。具体的,即一号屏蔽筒11由两节遮光筒和一节光阑交替连接组成,一号遮光筒20和一号光阑12均通过发黑处理;一号遮光筒20、一号光阑12、固定部件17的连接端均刻有内螺纹或外螺纹,固定部件17-一号遮光筒20-一号光阑12-一号遮光筒20的连接均通过螺纹实现,方便安装、拆卸和调整整个屏蔽筒长度,二号屏蔽筒21的结构与一号屏蔽筒11的结构相同。
具体的,以上屏蔽筒、转换部件16和固定部件17等,在无需利用激光制备束源时,可以全部卸下,为特定角度的进光腾出空间;并利用O圈和盲板等零件密封束源制备腔2上的进光口9,保证束源制备腔2与探测腔3的差分抽系统。从图1中可以看到,束源制备腔2的外壁上设置有四个斜切面,每个斜切面上均可设置进光口9。
本发明实施例提供的激光制备分子束源装置,是针对现有的激光制备分子束源技术中存在的背景噪声大、激光位置难确定等不足之处,提供的一种具有低背景噪声的激光制备分子束源装置。
本发明实施例提供的激光制备分子束源装置,在束源制备腔2的侧面开进光口9引入激光8的同时,通过转换部件16和固定部件17的设计,依然能达到差分抽真空的效果,防止束源制备腔2中大量分子溢入探测腔3造成多次碰撞、干扰探测,也减少了束源制备腔2中可能出现的漏气状况损坏探测腔3中真空探测器的风险;另一方面,在腔体内部光路上引入屏蔽筒,能有效降低激光造成的背景噪声,提高实验信噪比;其次,光阑的设计有效降低了激光空间位置调节的难度,保证激光能与分子充分反应。
本发明实施例提供的激光制备分子束源装置,在具体实施时:
真空系统由真空腔和真空泵组成,真空腔包括一号真空腔1、束源制备腔2和探测腔3,均为不锈钢材质;束源制备腔2通过双面刀口法兰13分别与一号真空腔1和探测腔3密封连接,束源制备腔2伸入探测腔3中;束源制备腔2和一号真空腔1通过一号真空泵4抽真空,探测腔3由二号真空泵5抽真空,以此构建束源制备腔和探测腔的差分抽系统,实现并维持制备和探测束源需要的真空环境,其中,真空泵均为磁悬浮分子泵。
束源制备系统包括一个脉冲阀6和一个漏勺7,脉冲阀6通过阀架子14固定在束源制备腔2内部,用于喷射母体分子;漏勺7固定在束源制备腔2的前端开孔处,用于准直和减小束源发散角;阀架子14的固定位置决定了脉冲阀6与漏勺7的间距,通常需改变间距以获得最佳束源状态。
光学系统包括激光8和多个屏蔽筒,激光8用于提供制备分子束源所需的能量,将母体分子激发、光解或电离,一号屏蔽筒11用于降低激光8造成的背景噪声。
激光8通过探测腔3上的一号窗片10进入探测腔3,穿过一号屏蔽筒11,通过束源制备腔2侧面的进光口9进入束源制备腔2,与脉冲阀6喷出的气体分子相交。
一号屏蔽筒11由遮光筒和光阑组成,整体呈一个圆柱体,通过固定部件17固定在探测腔3一号窗片10所在窗片法兰18上,并通过橡胶O圈密封,固定部件17-遮光筒-光阑-遮光筒的连接均靠螺纹实现。
一号屏蔽筒11通过转换部件16透过进光口9,伸入束源制备腔2内;转换部件16通过螺丝固定在束源制备腔2侧面进光口9处,并通过橡胶O圈密封;一号屏蔽筒11与转换部件16为紧配合。
一号窗片10、固定部件17、一号屏蔽筒11、转换部件16和进光口9的中心在同一条水平线上,即激光的理想光路,且与脉冲阀6喷射中心同高,即激光8与母体分子在空间上相交。母体分子在激光8的作用下生成碎片分子,碎片分子在漏勺7附近剧烈碰撞,通过绝热膨胀进入探测腔3,形成内部量子态单一的碎片分子束源。
束源探测系统包括探测器19,本实施例中探测器为光电倍增管,当然也可以为其他现有探测器。探测器安19装在探测腔3上,用于探测碎片分子束源的量子态布局情况。探测激光透过探测腔3上的二号窗片15进入探测腔3,与碎片分子束源相交于探测腔3中心,二号窗片15处同样安装有上述在一号窗片10处安装的屏蔽筒,即二号屏蔽筒21。碎片分子在探测激光的作用下产生荧光信号,被光电倍增管探测器收集探测。
时序控制系统包括脉冲时序发生器,用于控制脉冲阀6、激光8、探测器19的工作频率、脉冲起始时间和脉冲宽度,使激光8和分子在时间上相交,并及时探测信号。
本发明实施例提供的激光制备分子束源装置,具体操作过程如下:
1、将转换部件16用螺丝固定在束源制备腔2侧面进光口9处,将束源制备腔2伸入探测腔3并利用双面刀口法兰13密封;
2、在束源制备腔2内安装阀架子17、脉冲阀6和漏勺7,使其连线对准探测腔3的中心;
3、将一号真空腔1与束源制备腔2密封连接;
4、将一号屏蔽筒11和固定部件17组合,通过转换部件16伸入束源制备腔2中,将固定部件17固定在一号窗片10所在的窗片法兰18上;
5、调节制备用的激光位置,使激光8通过一号窗片10,且能通过先后两个一号屏蔽筒11的一号光阑12,到达腔体的另一端。使激光8通过两个光阑的具体调节方法为:调节进光前外部光路中的最后两个高反镜,调节倒数第二个高反镜使激光通过第一个一号光阑,再调节倒数第一个高反镜使激光通过第二个一号光阑,重复上述两个操作直到激光能同时通过两个光阑;
6、调节探测用的激光位置,使探测激光通过二号窗片15和两个二号光阑,到达腔体的另一端;
7、封好所有盲板盖板,开启所有真空泵,使束源制备腔2和探测腔3真空度均达到1E-7mbar量级;
8、开启脉冲阀6、激光器和探测器19,调节脉冲阀6、激光器和探测器19时序,使分子束与制备用的激光在时间上重合,制备碎片分子束源,并得到探测信号;
9、根据探测信号优化时序和激光位置,采集探测信号并分析,获得碎片分子的量子态分布等信息。
综上,本发明实施例提供的激光制备分子束源装置,是一种具有低背景噪声的激光制备分子束源装置,通过在束源制备腔2侧面开进光口9,利用激光8将脉冲阀6喷射的母体分子制备成碎片分子,再经过绝热膨胀形成内部量子态单一的碎片分子束源,以满足反应动力学实验需求。在腔体内部光路上设计屏蔽筒,防止激光暴露在探测腔3造成较大的背景噪声。屏蔽筒与腔体间的连接通过特殊设计的部件实现,利用橡胶O圈密封,维持束源制备腔2和探测腔3的差分抽系统,即使侧面开进光口9也能满足差分抽要求。屏蔽筒中光阑的设计有助于确保激光与分子在空间上相交,提高制备的束源强度。通过这一系列的设计,可利用激光制备内部量子态单一的碎片分子束源用于实验研究,具有激光位置调节容易、背景噪声小的优点,能在信号弱的实验研究中实现更高的信噪比。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种激光制备分子束源装置,其特征在于,包括真空系统、束源制备系统和光学系统,其中,
所述真空系统包括真空腔和真空泵,所述真空腔包括一号真空腔、束源制备腔和探测腔,所述束源制备腔伸入所述探测腔中,所述束源制备腔上设置有开孔与所述探测腔连通,所述真空泵包括一号真空泵和二号真空泵,
所述一号真空腔与所述束源制备腔连通且通过所述一号真空泵抽真空,所述探测腔通过所述二号真空泵抽真空,构建所述束源制备腔和所述探测腔的差分抽气系统,维持制备束源需要的真空度;
所述束源制备系统包括脉冲阀和漏勺,所述脉冲阀设置在所述束源制备腔的内部用于喷射分子,所述漏勺设置在所述开孔用于准直和减小束源发散角;
所述光学系统包括用于发射激光提供制备分子束源所需能量的激光器和用于降低激光造成的背景噪声的一号屏蔽筒,所述一号屏蔽筒包括一号遮光筒和内置在所述一号遮光筒中的一号光阑,所述束源制备腔的两侧分别设置有进光口且对称设置,每个所述进光口对应一个所述一号屏蔽筒,所述一号屏蔽筒的一端设置有一号窗片,其另一端与所述进光口连通;
激光从所述一号窗片进入所述一号屏蔽筒,然后通过所述进光口进入所述束源制备腔内,与所述脉冲阀喷出的分子互相作用,之后分子通过所述漏勺准直进入所述探测腔,完成束源制备。
2.根据权利要求1所述的激光制备分子束源装置,其特征在于,所述一号遮光筒、所述一号光阑、所述进光口和所述脉冲阀四者的中心同高。
3.根据权利要求1所述的激光制备分子束源装置,其特征在于,所述束源制备腔通过双面刀口法兰与所述探测腔和所述一号真空腔密封连接。
4.根据权利要求1所述的激光制备分子束源装置,其特征在于,所述脉冲阀与所述漏勺的中心等高。
5.根据权利要求1所述的激光制备分子束源装置,其特征在于,还包括束源探测系统,所述束源探测系统包括探测器和二号屏蔽筒,所述探测器为光电倍增管,其中,
每个所述一号屏蔽筒的一侧设置有一个所述二号屏蔽筒,
所述二号屏蔽筒包括二号遮光筒和内置在所述二号遮光筒中的二号光阑,
两个所述二号屏蔽筒的一端设置有二号窗片,两个所述二号屏蔽筒的另一端相对设置,
所述脉冲阀和所述漏勺的连线与两个所述二号窗片的连线相交于所述探测腔的中心,使得探测激光透过所述二号窗片进入所述探测腔,与碎片分子束源相交于所述探测腔的中心,碎片分子在探测激光的作用下产生荧光信号,被所述光电倍增管收集探测。
6.根据权利要求5所述的激光制备分子束源装置,其特征在于,还包括时序控制系统,所述时序控制系统包括用于控制所述脉冲阀、所述激光器以及所述探测器的工作频率、脉冲起始时间和脉冲宽度的脉冲时序发生器。
7.根据权利要求1所述的激光制备分子束源装置,其特征在于,所述进光口所在平面为斜切面。
8.根据权利要求1所述的激光制备分子束源装置,其特征在于,所述一号屏蔽筒的另一端通过转换部件伸入所述束源制备腔内,所述转换部件通过连接件固定在所述进光口处且通过O型圈密封。
9.根据权利要求1所述的激光制备分子束源装置,其特征在于,所述探测腔的两侧对称设有开口,
所述开口上均设置有窗片法兰,所述窗片法兰上设置有所述一号窗片,所述一号屏蔽筒的一端固定在所述窗片法兰上且通过O型圈密封且对准所述一号窗片。
10.根据权利要求1所述的激光制备分子束源装置,其特征在于,所述一号屏蔽筒由两节所述一号遮光筒和一节所述一号光阑交替螺纹连接组成,所述一号光阑位于两节所述一号遮光筒之间。
CN202110522210.7A 2021-05-13 2021-05-13 一种激光制备分子束源装置 Active CN113281005B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110522210.7A CN113281005B (zh) 2021-05-13 2021-05-13 一种激光制备分子束源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110522210.7A CN113281005B (zh) 2021-05-13 2021-05-13 一种激光制备分子束源装置

Publications (2)

Publication Number Publication Date
CN113281005A CN113281005A (zh) 2021-08-20
CN113281005B true CN113281005B (zh) 2022-09-06

Family

ID=77278796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110522210.7A Active CN113281005B (zh) 2021-05-13 2021-05-13 一种激光制备分子束源装置

Country Status (1)

Country Link
CN (1) CN113281005B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146914A (ja) * 1998-11-09 2000-05-26 Jeol Ltd Frit−レーザーイオン源

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2474036C (en) * 2001-11-07 2012-09-25 S3I, Llc System and method for detecting and classifying biological particles
JP3530942B2 (ja) * 2002-03-05 2004-05-24 独立行政法人通信総合研究所 分子ビーム発生方法及び装置
US6903818B2 (en) * 2002-10-28 2005-06-07 Particle Measuring Systems, Inc. Low noise intracavity laser particle counter
CN101625326B (zh) * 2009-07-21 2011-03-30 华东师范大学 分子光解离电离速度成像装置
CN103558628A (zh) * 2013-10-09 2014-02-05 中国科学院大连化学物理研究所 一种新型双反射式飞行时间质谱光电子速度成像仪
CN104597112A (zh) * 2013-10-31 2015-05-06 中国科学院大连化学物理研究所 一种时间分辨的带电粒子成像装置
CN104570002B (zh) * 2014-12-29 2018-10-16 中国科学院合肥物质科学研究院 探测云精细结构的双波长四通道激光雷达系统
CN104614154B (zh) * 2015-02-03 2017-06-27 南京理工大学 一种紫外像增强器的辐射亮度增益测试装置
US10300444B2 (en) * 2015-05-15 2019-05-28 Hydroatomic Inst/Informationstjänst i Solna AB Hydro nano-gas reactor
CN105807551B (zh) * 2016-04-20 2017-07-07 中国工程物理研究院上海激光等离子体研究所 一种用于强激光条件下的x射线针孔相机及安装调节方法
CN105865997A (zh) * 2016-06-07 2016-08-17 中国科学院合肥物质科学研究院 一种基于前向散射原理的大气扬尘浓度测量装置及方法
CN109916507B (zh) * 2017-12-13 2021-06-11 中国科学院大连化学物理研究所 基于离子成像的真空紫外光横向分布在线测量装置及方法
CN108761486B (zh) * 2018-05-16 2021-02-19 泛测(北京)环境科技有限公司 基于Scheimpflug原理的激光雷达系统
CN210376641U (zh) * 2019-06-26 2020-04-21 北京中教金源科技有限公司 一种新型氙灯光电化学测试系统
CN210109366U (zh) * 2019-07-26 2020-02-21 合肥美石生物科技有限公司 一种光阑调节机构
CN110824807A (zh) * 2019-12-13 2020-02-21 中国科学技术大学 一种速度可调氢自由基束源的产生方法
CN111625878B (zh) * 2020-05-22 2023-06-30 中国科学院光电技术研究所 一种紧凑型多孔径离轴合束系统内遮光筒阵列设计方法
CN111739785B (zh) * 2020-06-30 2023-08-01 中国科学院上海应用物理研究所 一种双重离子源慢电子速度成像装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146914A (ja) * 1998-11-09 2000-05-26 Jeol Ltd Frit−レーザーイオン源

Also Published As

Publication number Publication date
CN113281005A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
Yeh et al. Vibrational spectroscopy of the hydrated hydronium cluster ions H3O+⋅(H2O) n (n= 1, 2, 3)
EP3382371B1 (en) Aerosol real time monitor
Zhu et al. Mass analyzed threshold ionization spectroscopy
Ashfold et al. Photofragment translational spectroscopy
Young et al. Line emission in single-bubble sonoluminescence
Filseth et al. Flash Photolytic Production, Reactive Lifetime, and Collisional Quenching of O2 (b 1Σg+, υ′= 0)
Lubman et al. Design for improved resolution in a time‐of‐flight mass spectrometer using a supersonic beam and laser ionization source
US3740552A (en) Method and apparatus for mass separation employing photo enhanced surface ionization
DE50014782D1 (de) Ionisationskammer für ionenstrahlen
GB2450270A (en) An atomic beam optical frequency atomic clock and a producing method thereof
CN113281005B (zh) 一种激光制备分子束源装置
US20080116369A1 (en) Method and apparatus for selectively performing chemical ionization or electron ionization
Brucker et al. Time-resolved studies of NO2 photoinitiated unimolecular decomposition: step-like variation of κuni (E)
CN104716010A (zh) 一种基于四极杆射频电场增强的真空紫外光电离和化学电离复合电离源
CA1179050A (en) Collision laser
CN102507524B (zh) 一种诊断空气等离子体中n2长寿命电子亚稳态的方法
Kühn et al. Low energy (0–10 eV) electron attachment to CF3Cl clusters: Formation of product ions and analysis of excess translational energy
US9036676B2 (en) Catalytic generation of metastable singlet oxygen
CN211744834U (zh) 一种用于高能化学反应研究的原子束制备装置
US3635561A (en) Apparatus and method for determining the content of chemical elements in a solid sample
Döbele et al. Diagnostics of atoms by laser spectroscopic methods in plasmas and plasma-wall interaction studies (vacuum ultraviolet and two-photon techniques)
Booth et al. Time‐resolved electric‐field measurements in 30 kHz hydrogen discharges by optical emission Stark spectroscopy
CN115032153A (zh) 一种用于光声光谱检测的光声池
US4238742A (en) Laser system
CN110824807A (zh) 一种速度可调氢自由基束源的产生方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant