JP2004148627A - Polyester film for metal plate lamination molding - Google Patents

Polyester film for metal plate lamination molding Download PDF

Info

Publication number
JP2004148627A
JP2004148627A JP2002315546A JP2002315546A JP2004148627A JP 2004148627 A JP2004148627 A JP 2004148627A JP 2002315546 A JP2002315546 A JP 2002315546A JP 2002315546 A JP2002315546 A JP 2002315546A JP 2004148627 A JP2004148627 A JP 2004148627A
Authority
JP
Japan
Prior art keywords
polyester
film
weight
metal plate
polyester film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002315546A
Other languages
Japanese (ja)
Other versions
JP4084163B2 (en
Inventor
Shinichiro Okada
真一郎 岡田
Atsushi Koyamamatsu
淳 小山松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2002315546A priority Critical patent/JP4084163B2/en
Publication of JP2004148627A publication Critical patent/JP2004148627A/en
Application granted granted Critical
Publication of JP4084163B2 publication Critical patent/JP4084163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester film for metal plate lamination molding which is excellent in molding processability, retort-appearance, and gold coloring properties. <P>SOLUTION: The polyester film is made of a polyester composition of 100 pts.wt. of a polymer comprising 10-70 wt.% of a copolyester (I) 210-250°C in melting point having ethylene terephthalate main repeating units and 30-90 wt.% of a polyester (II) 170-223°C in melting point having butylene terephthalate main repeating units and 0.05-5.0 pts.wt. of a coloring agent. The shortest half-crystallization time of the film is 5-100 s, and an a-value and a b-value by a color-difference meter are -50 to 0 and 5-100, respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、金属板貼合せ成形加工用ポリエステルフィルムに関し、更に詳しくは製膜性に優れ、金属板に貼合せて絞り加工等の製缶加工をする際優れた成形加工性を示し、レトルト後外観、ゴールド発色性等に優れた金属缶、例えば飲料缶、食品缶等を製造し得る金属板貼合せ成形加工用ポリエステルフィルムに関する。
【0002】
【従来の技術】
金属缶には内外面の腐蝕防止として一般に塗装が施されているが、最近、工程簡素化、衛生性向上、公害防止の目的で、有機溶剤を使用せずに防錆性を得る方法の開発が進められ、その一つとして熱可塑性樹脂フィルムによる被覆が試みられている。すなわち、ブリキ、ティンフリースチール、アルミニウム等の金属板に熱可塑性樹脂フィルムをラミネートした後、絞り加工等により製缶する方法の検討が進められている。
【0003】
缶の外観上に高級感を与えるために、ゴールド色に発色する塗料が広く使用されているが、これを着色フィルムのラミネートで代替する提案がされている。しかし、この着色フィルムのラミネートでは、解決するべき多くの課題がある。
【0004】
例えば特開2001−301025号公報では、エチレンテレフタレートを主たる構成成分とした着色ポリエステルフィルムが提案されているが、フィルムの融点が高いことから金属板上への良好な密着性を得られるラミネートが難しく、また成形性が低い浅搾り缶程度しか用いることができず、最も広く普及している飲料缶のような成形加工度の高い用途には適応ができないという問題がある。
【0005】
【特許文献1】
特開2001−301025号公報
【0006】
【発明が解決しようとする課題】
従来の技術では高度な成形加工性を有し、かつレトルト後外観、ゴールド発色性のすべてを満足するものはなかった。
【0007】
本発明はこのような従来技術での課題を解決するためのものであり、本発明の目的は、優れた成形加工性を有し、レトルト後外観、ゴールド発色性に優れた、金属缶、例えば飲料缶、食品缶を製造し得る、金属板貼合せ成形加工用ポリエステルフィルムを提供することにある。
【0008】
【課題を解決するための手段】
すなわち、本発明は、融点が210〜250℃のエチレンテレフタレートを主たる繰り返し単位とする共重合ポリエステル(I)10〜70重量%と、融点が170〜223℃のブチレンテレフタレートを主たる繰り返し単位とするポリエステル(II)30〜90重量%とからなるポリマー100重量部および着色剤0.05〜5.0重量部からなるポリエステル組成物からなるフィルムであって、フィルムの最短半結晶化時間が5〜100秒であり、かつ色差計によるa値が−50〜0、b値が5〜100である、金属板貼合せ成形加工用ポリエステルフィルムである。
【0009】
[共重合ポリエステル(I)]
本発明において、共重合ポリエステル(I)は、エチレンテレフタレートを主たる繰り返し単位とする共重合ポリエステルである。共重合成分は、酸成分でも、アルコール成分でも良い。共重合成分としては、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸の如き芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、1,10−デカンジカルボン酸の如き脂肪族ジカルボン酸が例示できる。アルコール成分としては、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコールの如き脂肪族ジオール、1,4−シクロヘキサンジメタノールの如き脂環族ジオールが例示できる。これらは単独または二種以上を使用することができる。これらの中で、イソフタル酸または2,6−ナフタレンジガルボン酸が好ましい。
【0010】
共重合成分は、その種類にもよるが、結果としてポリマーの融点が、好ましくは210〜250℃、さらに好ましくは215〜245℃の範囲になる割合である。融点が210℃未満では耐熱性が劣ることになる。一方、融点が250℃を超えると、ポリマーの結晶性が高過ぎて成形加工性が損なわれる。
【0011】
共重合ポリエステル(I)の固有粘度は、好ましくは0.52〜0.80、さらに好ましくは0.54〜0.70、特に好ましくは0.57〜0.65である。固有粘度が0.52未満では缶成形時の成形加工性や、耐熱脆化等の特性が不十分であり、0.8を超えるとフィルム製膜時の押出成形性が低下して好ましくない。
【0012】
ここで、共重合ポリエステルの固有粘度は、ο−クロロフェノールに溶解後、35℃で測定する。また、共重合ポリエステルの融点測定は、Du Pont Instruments910DSCを用い、昇温速度20℃/分で融解ピークを求める方法による。サンプル量は20mgとする。
【0013】
[ポリエステル(II)]
本発明において、ポリエステル(II)は、ブチレンテレフタレートを主たる繰り返し単位とするポリエステルであり、ホモポリマーでもコポリマーでもよい。コポリマーの場合の共重合成分は、酸性分でもアルコール成分でも良い。共重合成分としては、アジピン酸、アゼライン酸、セバシン酸、1,10−デカンジカルボン酸の如き脂肪族ジカルボン酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸の如き芳香族ジカルボン酸が例示できる。アルコール成分としては、ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール等の如き脂肪族ジオール、1,4−シクロヘキサンジメタノールの如き脂環族ジオールが例示できる。これらは単独または二種以上を使用することができる。これらの中で、イソフタル酸、2,6−ナフタレンジガルボン酸またはアジピン酸が好ましい。
【0014】
共重合成分は、その種類にもよるが、結果としてポリマー融点が、好ましくは170〜223℃、さらに好ましくは180〜223℃の範囲になる割合である。融点が170℃未満では耐熱性が劣ることになる。なお、ポリブチレンテレフタレートホモポリマーの融点は223℃である。
【0015】
ポリエステル(II)の固有粘度は、好ましくは0.70〜2.00、さらに好ましくは0.80〜1.70、特に好ましくは0.85〜1.50である。
【0016】
なお、ポリエステル(II)の融点および固有粘度の測定方法は、前述の共重合ポリエステルの測定方法とそれぞれ同じである。
【0017】
[着色剤]
着色剤としては、クルクミン誘導体、リボフラビン誘導体、タートラジン誘導体、キノリン誘導体、ナフタレンスルホン酸誘導体およびアンスラキノン誘導体からなる群から選ばれる少なくとも1種の着色剤、好ましくはアンスラキノン誘導体を用いる。着色剤として好ましい化合物は、Curcumin、Riboflavin、Riboflavin phosphate、Tartrazine、Quinoline yellow、Sunset yellow FCF、Orange yellow S、1,1’−[(6−phenyl−1,3,5−triazine−2,4−diyl)diimino]bisanthraquinoneであり、最も好ましいものは1,1’−[(6−phenyl−1,3,5−triazine−2,4−diyl)diimino] bisanthraquinoneである。
【0018】
着色剤として、色調を調整するために、さらに他の成分を併用してもよい。その場合、着色剤としては、耐熱性の良好なものが好ましく、またその用途上、食品衛生面での安全性が認められているものが好ましい。
【0019】
着色剤の添加方法としては、フィルムを構成するポリマーの重合工程にて添加してもよいし、高濃度のマスターチップを、例えば二軸押出機によって作成しておき、このマスターチップを着色剤を含有しないポリマーのチップと混合することにより配合してもよい。この方法では所望の濃度に調整しやすい。また、例えばスクリューフィーダーを使用して製膜工程の押出機に着色剤を粉体のままで直接添加してもよい。
【0020】
[組成比]
本発明において、フィルムを構成するポリエステル組成物は、ポリマーと着色剤からなる。このポリマーは、共重合ポリエステル(I)とポリエステル(II)とからなり、共重合ポリエステル(I)は、ポリマー100重量%あたり、10〜70重量%、好ましくは30重量%を超え60重量%未満であり、ポリエステル(II)は、ポリマー100重量%あたり、30〜90重量%、好ましくは40重量%を超え70重量%未満である。着色剤は、ポリマー100重量部あたり0.05〜5.0重量部、好ましくは0.10〜1.0重量部である。
【0021】
ポリエステル(II)が30重量%未満で、共重合ポリエステル(I)が70重量%を超えると、最短結晶化時間が100秒を超えるため、レトルト処理後の外観が斑点状に乳白色に変色し易い。ポリエステル(I)が90重量%を超え、共重合ポリエステル(I)が10重量%未満であると、最短結晶化時間が30秒未満となり結晶性が上がり過ぎるため製膜性が悪化する。
【0022】
本発明において、着色剤はポリマー100重量部に対して、0.05〜5重量部、好ましくは0.1〜1.0重量部配合する。0.05重量部未満では着色性に乏しく、良好なゴールド発色性が得られない。他方5重量部を超えると着色剤の分散状態が悪化し製膜性が低下する。
【0023】
[ポリマーの製造方法]
本発明において、共重合ポリエステル(I)およびポリエステル(II)は、従来から公知の方法で製造することができる。
【0024】
例えば、共重合ポリエステル(I)は、テレフタル酸、エチレングリコール及び共重合成分をエステル化反応させ、ついで得られる反応生成物を重縮合反応させて共重合ポリエステルとする方法、あるいはジメチルテレフタレート、エチレングリコール及び共重合成分をエステル交換反応させ、ついで得られる反応生成物を重縮合反応させて共重合ポリエステルとする方法で製造することができる。
【0025】
共重合ポリエステルおよびポリエステルポリマーの製造においては、必要に応じ、他の添加剤例えば蛍光増白剤、酸化防止剤、熱安定剤、帯電防止剤等も添加することができ、また白色顔料や黄色顔料の添加により着色することもできる。
【0026】
また、本発明におけるフィルムは、フィルム製造工程における取扱い性、特に巻取り性、を改良するため、平均粒径2.5μm以下、好ましくは0.01〜1.8μmの微粒子を、ポリマー100重量部に対し0.005〜1重量部、好ましくは0.01〜0.5重量部含有させることが特に推奨される。
【0027】
微粒子としては、無機系、有機系のいずれも用いることができるが、無機系が好ましい。無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、硫酸バリウムが例示できる。有機系微粒子としては、架橋ポリスチレン粒子、架橋シリコーン樹脂粒子が例示できる。いずれも平均粒径が2.5μm以下であることが望ましく、微粒子の平均粒径が2.5μmを超える場合は、成形加工により変形した部分の、粗大粒子(例えば10μm以上の粒子)が起点となり、ピンホールを生じたり、場合によっては破断することもあり好ましくない。
【0028】
特に、耐ピンホール性の点で好ましい微粒子は、平均粒径が2.5μm以下であると共に、粒径比(長径/短径)が1.0〜1.2である単分散微粒子である。このような微粒子としては、真球状シリカ、真球状二酸化チタン、真球状ジルコニウム、真球状架橋シリコーン樹脂粒子が例示できる。
【0029】
[最短半結晶化時間]
本発明において、フィルムの最短半結晶化時間は5〜100秒、好ましくは30〜100秒、さらに好ましくは30〜70秒、特に好ましくは30〜50秒である。最短半結晶化時間が5秒未満であると結晶性が上がり過ぎるため製膜性が悪化し、最短結晶化時間が100秒を超えるとレトルト処理後の外観が斑点状に乳白色に変色する。
【0030】
本発明における最短半結晶化時間は、樹脂の結晶化が生じる温度範囲で半結晶化時間を測定し、該温度範囲の中で最も短かった半結晶化時間であり、ポリマー結晶化速度測定装置(コタキ製作所(株)製、MK−801型)を用いて、直交した偏光板の間に置いた試料の結晶化に伴い増加する光学異方性結晶成分による透過光を各試料温度で測定(脱偏光強度法)し、下記のアブラミ式を用いて結晶化度が1/2となる時間を算出した各試料温度での値の中で最も短い時間である。
【0031】
【数1】

Figure 2004148627
【0032】
なお、試料(試料重量:8mg)は該装置に組み込まれた融解炉で樹脂の最高融点+50℃の温度で窒素中で1分間加熱後、直ちに試料を移動させて、結晶化浴中に浸漬し、10秒以内に試料温度を平衡な測定温度になるようにして測定を開始する。
【0033】
また、ここでの最高融点とは示差走査熱量計(Du Pont Instruments 910 DSC型)により20℃/分の昇温速度で昇温した時、1つあるいは2つ以上の吸熱ピークが認められるが、それらの吸熱ピークの最大深さを示す温度の中で最高の温度をいう。
【0034】
該脱偏光強度法は、新実験化学講座(丸善)および高分子化学 Vol.29.No.139、323および336(高分子学会)にも記載されているように、早い結晶化速度を測定する時、有効な方法である。
【0035】
なお、試料が熱平衡に達するまでの時間を考慮し、結晶化浴中に試料を移動して10秒経過した時点をt=0秒として測定する。t=0秒で測定した脱偏光透過強度がIo、Log tに対して脱偏光透過強度をプロットして結晶化温度曲線が直線になりはじめた点の脱偏光透過強度をIgとする。
【0036】
フィルムのポリエステル組成物を構成する共重合ポリエステル(I)とポリエステル(II)は、製膜前までに溶融混練されていることが好ましい。
【0037】
[COOH末端量]
本発明において、共重合ポリエステル(I)とポリエステル(II)のCOOH末端量がフィルムの最短半結晶化時間に大きく関係する。
【0038】
本発明の最短半結晶化時間を達成するためには、溶融混合前の共重合ポリエステル(I)のCOOH末端量を10〜50当量/トンとし、ポリエステル(II)のCOOH末端量を10〜60当量/トンとすることが好ましい。このようにすると、最短半結晶化時間を本発明の範囲に制御することができる。
【0039】
共重合ポリエステル(I)のCOOH末端量が10当量/トン未満であると、かかる最短半結晶化時間が長くなり過ぎて、ポリマーの劣化によるフィルムの製膜性が低下し易くなり、またレトルト処理後の外観が斑点状に乳白色に変色するため好ましくない。COOH末端量が50当量/トンを超えるものは最短半結晶化時間が短くなり過ぎて、製膜工程中、特に延伸工程中で結晶化を起こしてしまい、局所的な厚み斑や幅変動の原因となり製膜性が低下し易く好ましくない。
【0040】
また、ポリエステル(II)のCOOH末端量が10当量/トン未満であると、かかる最短半結晶化時間が長くなり過ぎて、ポリマーの劣化によるフィルムの製膜性が低下し易くなり、またレトルト処理後の外観が斑点状に乳白色に変色するため好ましくない。COOH末端量が60当量/トンを超えるものは最短半結晶化時間が短くなり過ぎて、製膜工程中、特に延伸工程中で結晶化を起こしてしまい、局所的な厚み斑や幅変動の原因となり製膜性が低下し易く好ましくない。
【0041】
なお、COOH末端量は、セイワ技研製COOH自動測定装置を用い、サンプル100mgにベンジルアルコール20mgを加え、窒素雰囲気下にて、200℃で4分間加熱した後、常温に冷却し、フェノールレッドを指示薬として0.02N水酸化ナトリウムベンジルアルコール溶液を滴下して、指示薬変色までの滴定量より下記式を用いて求められる。
【0042】
【数2】
COOH末端量(当量/トン)=滴定量(cc)×200
【0043】
[色相]
本発明の金属板貼合せ成形加工用ポリエステルフィルムは、色差計によるa値が−50〜0かつb値が5〜100、好ましくはa値が−20〜−3かつb値が10〜50である。b値が5未満では着色性に乏しく、良好なゴールド発色性が得られない。100を超えると着色剤の分散状態が悪化し、製膜性が低下する。a値とb値をこの範囲とすることで金属ラミネート後に外観上高級感のあるゴールド発色性を持たせることができる。
【0044】
[厚み]
本発明の金属板貼合せ成形加工用ポリエステルフィルムは、厚みが好ましくは3〜75μm、さらに好ましくは6〜50μm、特に好ましくは9〜30μmである。厚みが3μm未満では成形加工時に破れが生じやすくなり、75μmを超えるものは過剰品質であって不経済であり好ましくない。
【0045】
[金属板]
本発明の金属板貼合せ成形加工用ポリエステルフィルムが貼り合わせられる金属板、特に製缶用金属板としては、ブリキ、ティンフリースチール、ティンニッケルスチール、アルミニウムの板が適切である。
【0046】
金属板へのポリエステルフィルムの貼り合わせは、例えば下記(ア)、(イ)の方法で行うことができる。
【0047】
(ア)金属板をフィルムの融点以上に加熱しておいてフィルムを貼り合わせた後冷却し、金属板に接するフィルムの表層部(薄層部)を非晶化して密着させる。
【0048】
(イ)フィルムにあらかじめ接着剤をプライマーコートしておき、この面と金属板を貼り合わせる。接着剤としては公知の樹脂接着剤、例えばエポキシ系接着剤、エポキシ−エステル系接着剤、アルキッド系接着剤を用いることができる。
【0049】
接着剤に白色顔料や黄色顔料を分散させることにより着色外観を有するフィルムとしてもよい。
【0050】
[製造方法]
本発明の金属板貼合せ成形加工用ポリエステルフィルムは、未延伸フィルム、二軸配向フィルムであってよく、二軸配向フィルムであることが好ましいが、これらは、従来から知られている方法で製造することができる。
【0051】
【実施例】
以下、実施例を掲げて本発明を更に説明する。なお、フィルムの特性は、以下の方法で測定、評価した。
【0052】
(1)融点:
Du Pont Instruments 910 DSCを用い、昇温速度20℃/分で融解ピーク温度を求める方法による。なおサンプル量は約20mgとする。
【0053】
(2)固有粘度:
フィルムをο−クロロフェノールに溶解後、遠心分離機により酸化チタン等のフィラーを取り除き、35℃の温度にて測定した。なお、固有粘度は未延伸フィルムの値である。
【0054】
(3)COOH末端量:
セイワ技研製COOH自動測定装置を用い、サンプル100mgにベンジルアルコール20mgを加え、窒素雰囲気下にて、200℃で4分間加熱した後、常温に冷却し、フェノールレッドを指示薬として0.02N水酸化ナトリウムベンジルアルコール溶液を滴下して、指示薬変色までの滴定量より下記式を用いて求められる。
COOH末端量(当量/トン)=滴定量(cc)×200
【0055】
(4)最短半結晶化時間:
コタキ製作所製ポリマー結晶化速度測定装置MK−801型を用い、サンプル8mgにて100〜180℃の範囲にて測定する。
【0056】
サンプルフィルムを、230℃に加熱した板厚0.25mmのティンフリースチールの両面に貼り合せ、水冷した後、150mm径の円板状に切り取り、絞りダイスとポンチを用いて4段階で深絞り加工し、55mm径の側面無継目容器(以下、缶と略す)を作成する。これらの缶について以下の観察及び試験を行い、各々下記の基準で評価する。
【0057】
(5)深絞り加工性:
缶の加工状況について観察した結果を次の基準で評価する。
○:フィルムに異状なく加工され、フィルムに白化や破断が認められない。
△:フィルムの缶上部に白化が認められる。
×:フィルムの一部にフィルム破断が認められる。
【0058】
(6)レトルト後外観:
前記(5)にて深絞り成型が良好であった缶に水を一杯まで充填した後、レトルト釜に入れ、スチームが直接サンプルに当らないようにして120℃の加圧水蒸気で30分レトルト処理を施し、深絞り缶の底のポリエステル樹脂層の表面外観の変化を肉眼で観察する。次の基準で評価する。
○:変化なし、
△:やや白濁した。
×:著しく斑点状に乳白色に変化した。
【0059】
(7)色相測定:
日本電色工業製自動色差計を用い、5cm角のサンプル1枚のa値およびb値を測定し、下記の基準でゴールド発色性について評価する。
○:a値が−50〜0、b値が5〜100
△:a値が−50〜0、b値が100を超えるもの
×:a値とb値が上記範囲外のもの
【0060】
[実施例1〜6、比較例1]
表1に示す着色剤を含むポリエステル組成物を常法により乾燥、270℃で溶融したあと、ダイから押出して急冷固化し、未延伸フィルムを作成した。
【0061】
次いで、この未延伸フィルムを68℃で3.4倍に縦延伸した後、75℃で3.8倍に横延伸し、185℃で熱固定して二軸配向積層フィルムを得た。得られたフィルムの厚みはいずれも12μmであった。このフィルムを評価した結果を表1および表2に示す。
【0062】
[比較例2]
実施例4において、共重合ポリエステル(I)とポリエステル(II)の比率を表1のとおり変更する以外は実施例4と同様にして製膜を行ない、二軸配向フィルムを得た。製膜時縦延伸工程において幅変動が激しく、かつ厚み斑が悪く切断が多発し製膜性は非常に悪かった。
【0063】
[比較例3]
実施例3において、共重合ポリエステル(I)を表1のとおり変更する以外は実施例3と同様にして製膜を行ない、二軸配向フィルムを得た。製膜時横延伸工程において切断が頻発し製膜性は悪かった。
【0064】
[比較例4]
実施例3において、共重合ポリエステル(I)を表1のとおり変更する以外は実施例3と同様にして製膜を行ない、二軸配向フィルムを得た。製膜時縦延伸工程において幅変動が大きく、切断が頻発し製膜性は悪かった。
【0065】
[比較例5]
実施例3において、ポリエステル(II)を表1のとおり変更する以外は実施例3と同様にして製膜を行ない、二軸配向フィルムを得た。製膜時横延伸工程において切断が頻発し製膜性は悪かった。
【0066】
[比較例6]
実施例3において、ポリエステル(II)を表1のとおり変更する以外は実施例3と同様にして製膜を行ない、二軸配向フィルムを得た。製膜時縦延伸工程において幅変動が激しく、かつ厚み斑が悪く切断が多発し製膜性は非常に悪かった。
【0067】
[比較例7]
実施例1において、着色剤を添加しない以外は実施例1と同様にして製膜を行ない、二軸配向フィルムを得た。ゴールド発色性がないことから外観は非常に悪かった。
【0068】
評価結果は表1および表2に示す通りであった。
【0069】
【表1】
Figure 2004148627
【0070】
【表2】
Figure 2004148627
【0071】
表2の結果から明らかなように、本発明のポリエステルフィルムを使用した缶では、優れた深絞り加工性を有し、レトルト後外観、ゴールド発色性に優れている。
【0072】
【発明の効果】
本発明の金属板貼合せ成形加工用ポリエステルフィルムは、優れた成形加工性、レトルト後外観、ゴールド発色性に非常に優れている。従って、清涼飲料水や食缶用などの金属缶の缶胴部や蓋材部に貼り合せて用いるのに、特に好適である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polyester film for metal plate laminating and forming, and more particularly, has excellent film forming properties, exhibits excellent forming and processing properties when laminating to a metal plate and performing can forming such as drawing, and after retorting. The present invention relates to a polyester film for a metal plate laminating process capable of producing a metal can excellent in appearance, gold coloring property and the like, for example, a beverage can, a food can and the like.
[0002]
[Prior art]
Metal cans are generally coated to prevent corrosion on the inner and outer surfaces. Recently, however, a method of obtaining rust prevention without using organic solvents has been developed for the purpose of simplifying the process, improving hygiene, and preventing pollution. As one of them, coating with a thermoplastic resin film has been attempted. That is, a method of laminating a thermoplastic resin film on a metal plate of tin, tin-free steel, aluminum, or the like, followed by drawing and the like is being studied.
[0003]
In order to give a high-grade appearance to the appearance of a can, a paint that develops a gold color is widely used, but a proposal has been made to replace this with a laminate of a colored film. However, there are many problems to be solved in the lamination of the colored film.
[0004]
For example, Japanese Patent Application Laid-Open No. 2001-301025 proposes a colored polyester film containing ethylene terephthalate as a main component, but it is difficult to obtain a laminate that can obtain good adhesion to a metal plate because the film has a high melting point. In addition, only a canned squeeze can with low formability can be used, and there is a problem that it cannot be applied to an application having a high degree of processing such as a beverage can which is most widely used.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-301025
[Problems to be solved by the invention]
None of the conventional technologies have high moldability and satisfy all of the appearance after retort and the gold coloring.
[0007]
The present invention is to solve such problems in the prior art, the object of the present invention is to have excellent moldability, appearance after retort, excellent in gold coloring, metal cans, for example An object of the present invention is to provide a polyester film for laminating and processing a metal plate, which can produce a beverage can or a food can.
[0008]
[Means for Solving the Problems]
That is, the present invention provides 10 to 70% by weight of a copolymerized polyester (I) containing ethylene terephthalate having a melting point of 210 to 250 ° C as a main repeating unit and a polyester containing butylene terephthalate having a melting point of 170 to 223 ° C as a main repeating unit. (II) A film comprising a polyester composition comprising 100 parts by weight of a polymer consisting of 30 to 90% by weight and 0.05 to 5.0 parts by weight of a coloring agent, wherein the shortest crystallization time of the film is 5 to 100. It is a polyester film for metal plate laminating and forming, which has a value of -50 to 0 and a value b of 5 to 100 measured by a color difference meter in seconds.
[0009]
[Copolymerized polyester (I)]
In the present invention, the copolymer polyester (I) is a copolymer polyester containing ethylene terephthalate as a main repeating unit. The copolymer component may be an acid component or an alcohol component. Examples of the copolymerization component include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and 2,6-naphthalenedicarboxylic acid, and aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and 1,10-decanedicarboxylic acid. it can. Examples of the alcohol component include aliphatic diols such as 1,4-butanediol, 1,6-hexanediol and neopentyl glycol, and alicyclic diols such as 1,4-cyclohexanedimethanol. These can be used alone or in combination of two or more. Of these, isophthalic acid or 2,6-naphthalenedigaric acid is preferred.
[0010]
Although depending on the type of the copolymer component, the resulting polymer preferably has a melting point in a range of preferably 210 to 250 ° C, more preferably 215 to 245 ° C. If the melting point is lower than 210 ° C., the heat resistance will be poor. On the other hand, when the melting point exceeds 250 ° C., the crystallinity of the polymer is too high, and the moldability is impaired.
[0011]
The intrinsic viscosity of the copolymerized polyester (I) is preferably 0.52 to 0.80, more preferably 0.54 to 0.70, and particularly preferably 0.57 to 0.65. If the intrinsic viscosity is less than 0.52, the moldability at the time of can molding and the properties such as heat embrittlement are insufficient, and if it exceeds 0.8, the extrudability at the time of film formation is undesirably reduced.
[0012]
Here, the intrinsic viscosity of the copolymerized polyester is measured at 35 ° C. after dissolving in o-chlorophenol. The melting point of the copolymerized polyester is measured by a method using Du Pont Instruments 910 DSC to determine a melting peak at a heating rate of 20 ° C./min. The sample amount is 20 mg.
[0013]
[Polyester (II)]
In the present invention, the polyester (II) is a polyester having butylene terephthalate as a main repeating unit, and may be a homopolymer or a copolymer. In the case of a copolymer, the copolymer component may be an acidic component or an alcohol component. Examples of the copolymerization component include aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and 1,10-decanedicarboxylic acid, and aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and 2,6-naphthalenedicarboxylic acid. it can. Examples of the alcohol component include aliphatic diols such as butanediol, 1,6-hexanediol, and neopentyl glycol, and alicyclic diols such as 1,4-cyclohexanedimethanol. These can be used alone or in combination of two or more. Among these, isophthalic acid, 2,6-naphthalenedigaric acid or adipic acid is preferred.
[0014]
Depending on the type of the copolymer component, the resulting polymer has a melting point of preferably 170 to 223 ° C, more preferably 180 to 223 ° C. If the melting point is lower than 170 ° C., the heat resistance will be poor. The melting point of the polybutylene terephthalate homopolymer is 223 ° C.
[0015]
The intrinsic viscosity of the polyester (II) is preferably 0.70 to 2.00, more preferably 0.80 to 1.70, and particularly preferably 0.85 to 1.50.
[0016]
The measuring method of the melting point and the intrinsic viscosity of the polyester (II) is the same as the measuring method of the above-mentioned copolymerized polyester.
[0017]
[Colorant]
As the coloring agent, at least one coloring agent selected from the group consisting of curcumin derivatives, riboflavin derivatives, tartrazine derivatives, quinoline derivatives, naphthalenesulfonic acid derivatives and anthraquinone derivatives, preferably an anthraquinone derivative, is used. Preferred compounds as coloring agents include Curcumin, Riboflavin, Riboflavin phosphate, Tartrazine, Quinoline yellow, Sunset yellow FCF, Orange yellow S, 1,1′-, 3,6-ethyl-2-in-3,6-phenyl-2-yl, diyl) dimino] bisanthraquinone, and most preferred is 1,1 ′-[(6-phenyl-1,3,5-triazine-2,4-diyl) dimino] bisanthraquinone.
[0018]
As the colorant, another component may be used in combination to adjust the color tone. In this case, a colorant having good heat resistance is preferable, and a colorant which is recognized as safe in food hygiene is preferred.
[0019]
As a method of adding a coloring agent, it may be added in a polymerization step of a polymer constituting a film, or a high-concentration master chip is prepared by, for example, a twin-screw extruder, and the master chip is coated with a coloring agent. You may mix | blend by mixing with the chip of the polymer which does not contain. In this method, it is easy to adjust to a desired concentration. Further, for example, the colorant may be directly added to the extruder in the film-forming step using a screw feeder as powder.
[0020]
[Composition ratio]
In the present invention, the polyester composition constituting the film comprises a polymer and a colorant. This polymer is composed of a copolyester (I) and a polyester (II), and the copolyester (I) is 10 to 70 wt%, preferably more than 30 wt% and less than 60 wt% per 100 wt% of the polymer. And the amount of the polyester (II) is 30 to 90% by weight, preferably more than 40% by weight and less than 70% by weight, per 100% by weight of the polymer. The colorant is used in an amount of 0.05 to 5.0 parts by weight, preferably 0.10 to 1.0 part by weight, per 100 parts by weight of the polymer.
[0021]
If the polyester (II) content is less than 30% by weight and the copolymerized polyester (I) content is more than 70% by weight, the shortest crystallization time exceeds 100 seconds, so that the appearance after the retort treatment tends to change to a spot-like milky white color. . When the content of the polyester (I) is more than 90% by weight and the content of the copolymerized polyester (I) is less than 10% by weight, the shortest crystallization time is less than 30 seconds, and the crystallinity becomes too high, so that the film forming property is deteriorated.
[0022]
In the present invention, the colorant is added in an amount of 0.05 to 5 parts by weight, preferably 0.1 to 1.0 part by weight, based on 100 parts by weight of the polymer. If the amount is less than 0.05 part by weight, the coloring property is poor and good gold coloring property cannot be obtained. On the other hand, if it exceeds 5 parts by weight, the dispersion state of the colorant is deteriorated, and the film-forming property is reduced.
[0023]
[Method for producing polymer]
In the present invention, the copolyester (I) and the polyester (II) can be produced by a conventionally known method.
[0024]
For example, the copolymerized polyester (I) is obtained by subjecting terephthalic acid, ethylene glycol and a copolymer component to an esterification reaction and then subjecting the resulting reaction product to a polycondensation reaction to obtain a copolymerized polyester, or dimethyl terephthalate, ethylene glycol And a transesterification reaction of the copolymer component, and then a polycondensation reaction of the resulting reaction product to give a copolymerized polyester.
[0025]
In the production of the copolyester and polyester polymer, if necessary, other additives such as a fluorescent whitening agent, an antioxidant, a heat stabilizer, an antistatic agent and the like can be added. Can also be colored by the addition of
[0026]
Further, the film in the present invention contains fine particles having an average particle diameter of 2.5 μm or less, preferably 0.01 to 1.8 μm, and 100 parts by weight of a polymer in order to improve handling properties, particularly winding properties, in the film manufacturing process. It is particularly recommended to contain 0.005 to 1 part by weight, preferably 0.01 to 0.5 part by weight.
[0027]
As the fine particles, any of an inorganic type and an organic type can be used, but an inorganic type is preferable. Examples of the inorganic fine particles include silica, alumina, titanium dioxide, calcium carbonate, and barium sulfate. Examples of the organic fine particles include crosslinked polystyrene particles and crosslinked silicone resin particles. In any case, the average particle diameter is desirably 2.5 μm or less, and when the average particle diameter of the fine particles exceeds 2.5 μm, coarse particles (for example, particles of 10 μm or more) of a portion deformed by molding work become a starting point. It is not preferable because pinholes may be formed or the pinhole may be broken in some cases.
[0028]
In particular, fine particles which are preferable in terms of pinhole resistance are monodisperse fine particles having an average particle diameter of 2.5 μm or less and a particle diameter ratio (major axis / minor axis) of 1.0 to 1.2. Examples of such fine particles include spherical silica, spherical titanium dioxide, spherical zirconium, and spherical crosslinked silicone resin particles.
[0029]
[Shortest semi-crystallization time]
In the present invention, the shortest half-crystallization time of the film is 5 to 100 seconds, preferably 30 to 100 seconds, more preferably 30 to 70 seconds, and particularly preferably 30 to 50 seconds. If the shortest crystallization time is less than 5 seconds, the crystallinity becomes too high, resulting in poor film-forming properties. If the shortest crystallization time exceeds 100 seconds, the appearance after the retort treatment changes to a milky white with spots.
[0030]
The shortest half-crystallization time in the present invention is a half-crystallization time measured in a temperature range in which crystallization of a resin occurs, and is the shortest half-crystallization time in the temperature range, and a polymer crystallization rate measuring device ( Using Kotaki Seisakusho Co., Ltd., Model MK-801), the transmitted light due to the optically anisotropic crystal component that increases with the crystallization of the sample placed between the orthogonal polarizing plates is measured at each sample temperature (depolarization intensity). This is the shortest time among the values at each sample temperature in which the time at which the degree of crystallinity becomes 1 / was calculated using the following Abramie equation.
[0031]
(Equation 1)
Figure 2004148627
[0032]
The sample (sample weight: 8 mg) was heated in a melting furnace incorporated in the apparatus at a temperature of the highest melting point of the resin + 50 ° C for 1 minute in nitrogen, immediately moved, and immersed in a crystallization bath. The measurement is started by setting the sample temperature to an equilibrium measurement temperature within 10 seconds.
[0033]
When the temperature is raised at a heating rate of 20 ° C./min with a differential scanning calorimeter (Du Pont Instruments 910 DSC type), one or more endothermic peaks are recognized. The highest temperature among the temperatures indicating the maximum depth of those endothermic peaks.
[0034]
The depolarization intensity method is described in New Experimental Chemistry Course (Maruzen) and Kobunshi Kagaku Vol. 29. No. As described in 139, 323 and 336 (Polymer Society of Japan), it is an effective method when measuring a fast crystallization rate.
[0035]
In consideration of the time required for the sample to reach thermal equilibrium, the time when 10 seconds have elapsed after the sample was moved into the crystallization bath is measured as t = 0 seconds. The depolarized light transmission intensity measured at t = 0 seconds is plotted against Io and Log t, and the depolarized light transmission intensity at the point where the crystallization temperature curve starts to become a straight line is defined as Ig.
[0036]
It is preferable that the copolymerized polyester (I) and the polyester (II) constituting the polyester composition of the film are melt-kneaded before film formation.
[0037]
[COOH terminal amount]
In the present invention, the COOH terminal amount of the copolymerized polyester (I) and the polyester (II) is greatly related to the shortest half-crystallization time of the film.
[0038]
In order to achieve the shortest half-crystallization time of the present invention, the COOH terminal amount of the copolymerized polyester (I) before melt mixing is 10 to 50 equivalents / ton, and the COOH terminal amount of the polyester (II) is 10 to 60 equivalents / ton. It is preferred to be equivalent / ton. By doing so, the shortest half-crystallization time can be controlled within the range of the present invention.
[0039]
If the COOH terminal amount of the copolymerized polyester (I) is less than 10 equivalents / ton, the shortest half-crystallization time becomes too long, and the film-forming property of the film due to the deterioration of the polymer is liable to deteriorate, and the retort treatment is performed. It is not preferable because the appearance after that turns into milky white in a spot-like manner. If the COOH terminal amount exceeds 50 equivalents / ton, the shortest half-crystallization time is too short, and crystallization occurs during the film formation process, particularly during the stretching process, causing local thickness unevenness and width fluctuation. This is not preferred because the film-forming properties are likely to decrease.
[0040]
On the other hand, if the COOH terminal amount of the polyester (II) is less than 10 equivalents / ton, the shortest half-crystallization time becomes too long, so that the film-forming properties of the film due to the deterioration of the polymer are liable to deteriorate, and the retort treatment is performed. It is not preferable because the appearance after that turns into milky white in a spot-like manner. If the COOH terminal amount exceeds 60 equivalents / ton, the shortest half-crystallization time is too short, and crystallization occurs during the film forming process, especially during the stretching process, causing local thickness unevenness and width fluctuation. This is not preferred because the film-forming properties are likely to decrease.
[0041]
The COOH terminal amount was determined by adding 20 mg of benzyl alcohol to 100 mg of the sample using a COOH automatic measuring device manufactured by Seiwa Giken, heating at 200 ° C. for 4 minutes under a nitrogen atmosphere, cooling to room temperature, and then using phenol red as an indicator. And 0.02 N sodium benzyl alcohol solution is added dropwise, and it is determined from the titer until the indicator discoloration using the following formula.
[0042]
(Equation 2)
COOH terminal amount (equivalent / ton) = titration (cc) x 200
[0043]
[Hue]
The polyester film for metal plate lamination processing of the present invention has an a value of −50 to 0 and a b value of 5 to 100, preferably an a value of −20 to −3 and a b value of 10 to 50, as measured by a color difference meter. is there. When the b value is less than 5, the coloring property is poor, and good gold coloring property cannot be obtained. If it exceeds 100, the dispersion state of the colorant is deteriorated, and the film forming property is reduced. By setting the a value and the b value in this range, it is possible to impart a high-grade gold coloring property in appearance after metal lamination.
[0044]
[Thickness]
The thickness of the polyester film for metal plate lamination processing of the present invention is preferably 3 to 75 μm, more preferably 6 to 50 μm, and particularly preferably 9 to 30 μm. If the thickness is less than 3 μm, tearing is likely to occur during molding, and if it exceeds 75 μm, the quality is excessive and uneconomical, which is not preferable.
[0045]
[Metal plate]
As the metal plate to which the polyester film for metal plate lamination forming process of the present invention is bonded, in particular, a metal plate for can making, tin plate, tin-free steel, tin nickel steel, and aluminum plate are suitable.
[0046]
The bonding of the polyester film to the metal plate can be performed, for example, by the following methods (A) and (A).
[0047]
(A) The metal plate is heated to a temperature equal to or higher than the melting point of the film, the film is bonded and then cooled, and the surface layer (thin layer) of the film in contact with the metal plate is made amorphous and adhered.
[0048]
(A) An adhesive is previously primer-coated on the film, and this surface is bonded to a metal plate. As the adhesive, a known resin adhesive, for example, an epoxy-based adhesive, an epoxy-ester-based adhesive, or an alkyd-based adhesive can be used.
[0049]
A film having a colored appearance may be obtained by dispersing a white pigment or a yellow pigment in the adhesive.
[0050]
[Production method]
The polyester film for metal plate lamination processing of the present invention may be an unstretched film or a biaxially oriented film, and is preferably a biaxially oriented film, but these are produced by a conventionally known method. can do.
[0051]
【Example】
Hereinafter, the present invention will be further described with reference to examples. The properties of the film were measured and evaluated by the following methods.
[0052]
(1) Melting point:
Using Du Pont Instruments 910 DSC at a heating rate of 20 ° C./min to determine the melting peak temperature. The sample amount is about 20 mg.
[0053]
(2) Intrinsic viscosity:
After dissolving the film in o-chlorophenol, the filler such as titanium oxide was removed by a centrifuge, and the measurement was performed at a temperature of 35 ° C. In addition, the intrinsic viscosity is a value of an unstretched film.
[0054]
(3) COOH terminal amount:
20 mg of benzyl alcohol was added to 100 mg of the sample using a COOH automatic measuring apparatus manufactured by Seiwa Giken, and heated at 200 ° C. for 4 minutes under a nitrogen atmosphere, then cooled to room temperature, and 0.02 N sodium hydroxide using phenol red as an indicator. The benzyl alcohol solution is added dropwise, and it can be obtained from the titer up to the discoloration of the indicator using the following formula.
COOH terminal amount (equivalent / ton) = titration (cc) x 200
[0055]
(4) Shortest half-crystallization time:
Using a polymer crystallization rate measuring apparatus MK-801 manufactured by Kotaki Seisakusho, measurement is performed in a range of 100 to 180 ° C. on 8 mg of a sample.
[0056]
The sample film is bonded to both sides of a 0.25 mm thick tin-free steel heated to 230 ° C, cooled with water, cut into a 150 mm diameter disk, and deep-drawn in four steps using a drawing die and punch. Then, a side seamless container having a diameter of 55 mm (hereinafter, abbreviated as a can) is prepared. The following observations and tests are performed on these cans, and each can is evaluated according to the following criteria.
[0057]
(5) Deep drawing workability:
The result of observing the processing status of the can is evaluated according to the following criteria.
:: The film was processed without any abnormality, and no whitening or breakage was observed in the film.
Δ: Whitening is observed at the top of the film can.
X: Film breakage is observed in a part of the film.
[0058]
(6) Appearance after retort:
After filling the can which was good in the deep drawing in the above (5) up to a full cup of water, put it in a retort pot, and perform retort treatment with pressurized steam at 120 ° C. for 30 minutes so that steam does not directly hit the sample. The change in the surface appearance of the polyester resin layer at the bottom of the deep drawn can is visually observed. Evaluate according to the following criteria.
○: No change,
Δ: slightly cloudy
X: It turned into milky white with marked spots.
[0059]
(7) Hue measurement:
Using an automatic color difference meter manufactured by Nippon Denshoku Industries Co., Ltd., the a value and the b value of one sample of 5 cm square are measured, and the gold coloring property is evaluated based on the following criteria.
:: a value is -50 to 0, b value is 5 to 100
Δ: a value of -50 to 0 and b value exceeding 100 x: a value and b value outside the above range
[Examples 1 to 6, Comparative Example 1]
The polyester composition containing the coloring agent shown in Table 1 was dried by a conventional method, melted at 270 ° C., extruded from a die, quenched and solidified to prepare an unstretched film.
[0061]
Next, this unstretched film was longitudinally stretched 3.4 times at 68 ° C, then transversely stretched 3.8 times at 75 ° C, and heat-set at 185 ° C to obtain a biaxially oriented laminated film. The thickness of each of the obtained films was 12 μm. The results of evaluating this film are shown in Tables 1 and 2.
[0062]
[Comparative Example 2]
A film was formed in the same manner as in Example 4 except that the ratio of the copolymerized polyester (I) to the polyester (II) was changed as shown in Table 1, to obtain a biaxially oriented film. In the longitudinal stretching step during film formation, width variation was severe, thickness unevenness was poor, cutting was frequent, and film forming property was very poor.
[0063]
[Comparative Example 3]
A film was formed in the same manner as in Example 3 except that the copolymerized polyester (I) was changed as shown in Table 1, to obtain a biaxially oriented film. In the horizontal stretching process during film formation, cutting frequently occurred, and the film forming property was poor.
[0064]
[Comparative Example 4]
A film was formed in the same manner as in Example 3 except that the copolymerized polyester (I) was changed as shown in Table 1, to obtain a biaxially oriented film. The width variation was large in the longitudinal stretching step during film formation, cutting was frequent, and the film forming property was poor.
[0065]
[Comparative Example 5]
A film was formed in the same manner as in Example 3 except that the polyester (II) was changed as shown in Table 1 to obtain a biaxially oriented film. In the horizontal stretching process during film formation, cutting frequently occurred, and the film forming property was poor.
[0066]
[Comparative Example 6]
A film was formed in the same manner as in Example 3 except that the polyester (II) was changed as shown in Table 1 to obtain a biaxially oriented film. In the longitudinal stretching step during film formation, width variation was severe, thickness unevenness was poor, cutting was frequent, and film forming property was very poor.
[0067]
[Comparative Example 7]
A film was formed in the same manner as in Example 1 except that no coloring agent was added, to obtain a biaxially oriented film. The appearance was very poor due to lack of gold coloration.
[0068]
The evaluation results were as shown in Tables 1 and 2.
[0069]
[Table 1]
Figure 2004148627
[0070]
[Table 2]
Figure 2004148627
[0071]
As is clear from the results in Table 2, the can using the polyester film of the present invention has excellent deep drawing workability, and is excellent in appearance after retort and gold coloring.
[0072]
【The invention's effect】
The polyester film for metal plate lamination molding of the present invention is very excellent in excellent moldability, appearance after retort, and gold coloring. Therefore, it is particularly suitable to be used by sticking it to a can body or a lid of a metal can for soft drink or food can.

Claims (10)

融点が210〜250℃のエチレンテレフタレートを主たる繰り返し単位とする共重合ポリエステル(I)10〜70重量%と、融点が170〜223℃のブチレンテレフタレートを主たる繰り返し単位とするポリエステル(II)30〜90重量%とからなるポリマー100重量部および着色剤0.05〜5.0重量部からなるポリエステル組成物からなるフィルムであって、フィルムの最短半結晶化時間が5〜100秒であり、かつ色差計によるa値が−50〜0、b値が5〜100である、金属板貼合せ成形加工用ポリエステルフィルム。10 to 70% by weight of a copolymerized polyester (I) having a main repeating unit of ethylene terephthalate having a melting point of 210 to 250 ° C., and 30 to 90 of a polyester (II) having a main repeating unit of butylene terephthalate having a melting point of 170 to 223 ° C. A film comprising a polyester composition consisting of 100 parts by weight of a polymer consisting of 100% by weight and 0.05 to 5.0 parts by weight of a colorant, wherein the shortest half-crystallization time of the film is 5 to 100 seconds, and the color difference A polyester film for a metal plate laminating process, having a total value a of -50 to 0 and a total value b of 5 to 100. 着色剤が、クルクミン誘導体、リボフラビン誘導体、タートラジン誘導体、キノリン誘導体、ナフタレンスルホン酸誘導体およびアンスラキノン誘導体からなる群から選ばれる少なくとも1種の着色剤である、請求項1に記載の金属板貼合せ成形加工用ポリエステルフィルム。The metal plate lamination molding according to claim 1, wherein the colorant is at least one colorant selected from the group consisting of curcumin derivatives, riboflavin derivatives, tartrazine derivatives, quinoline derivatives, naphthalenesulfonic acid derivatives, and anthraquinone derivatives. Polyester film for processing. 着色剤が、Curcumin、Riboflavin、 Riboflavin phosphate、 Tartrazine、 Quinoline yellow、 Sunset yellow FCF、 Orange yellow Sおよび 1,1’−[(6−phenyl−1,3,5−triazine−2,4−diyl)diimino]bisanthraquinoneからなる群から選ばれる少なくとも1種の着色剤である、請求項2に記載の金属板貼合せ成形加工用ポリエステルフィルム。The coloring agent may be Curcumin, Riboflavin, Riboflavin phosphate, Tartrazine, Quinoline yellow, Sunset yellow FCF, Orange yellow S and 1,1'-ethyl-i-yl, min-yl-yl-yl-yl-yl-yl-yl-yl-yl-yl-yl-yl-yl-ylyl The polyester film for metal plate laminating processing according to claim 2, wherein the polyester film is at least one kind of colorant selected from the group consisting of bisanthraquinone. 共重合ポリエステル(I)がイソフタル酸共重合ポリエステルである、請求項1に記載の金属板貼合せ成形加工用ポリエステルフィルム。The polyester film according to claim 1, wherein the copolymerized polyester (I) is an isophthalic acid copolymerized polyester. 共重合ポリエステル(I)が2,6−ナフタレンジカルボン酸共重合ポリエステルである、請求項1に記載の金属板貼合せ成形加工用ポリエステルフィルム。The polyester film according to claim 1, wherein the copolymerized polyester (I) is a 2,6-naphthalenedicarboxylic acid copolymerized polyester. 共重合ポリエステル(I)における溶融混合前のCOOH末端基量が10〜50当量/トンである、請求項1〜3のいずれかに記載の金属板貼合せ成形加工用ポリエステルフィルム。The polyester film for metal plate lamination processing according to any one of claims 1 to 3, wherein the amount of COOH terminal groups before melt mixing in the copolymerized polyester (I) is 10 to 50 equivalents / ton. ポリエステル(II)における溶融混合前のCOOH末端基量が10〜60当量/トンである、請求項1に記載の金属板貼合せ成形加工用ポリエステルフィルム。The polyester film for metal plate lamination processing according to claim 1, wherein the amount of COOH terminal groups before melt mixing in the polyester (II) is 10 to 60 equivalents / ton. ポリマーの共重合ポリエステル(I)が30重量%を超え60重量%未満であり、ポリエステル(II)が40重量%を超え70重量%未満であり、着色剤が0.10〜1.0重量部である、請求項1に記載の金属板貼合せ成形加工用ポリエステルフィルム。The copolymerized polyester (I) of the polymer is more than 30% by weight and less than 60% by weight, the polyester (II) is more than 40% by weight and less than 70% by weight, and the colorant is 0.10 to 1.0 part by weight. The polyester film for laminating and processing a metal plate according to claim 1, which is: フィルムの最短半結晶化時間が30〜100秒である、請求項1に記載の金属板貼合せ成形加工用ポリエステルフィルム。The polyester film according to claim 1, wherein the shortest crystallization time of the film is 30 to 100 seconds. フィルムの最短半結晶化時間が30〜50秒である、請求項9に記載の金属板貼合せ成形加工用ポリエステルフィルム。The polyester film for metal plate lamination processing according to claim 9, wherein the shortest crystallization time of the film is 30 to 50 seconds.
JP2002315546A 2002-10-30 2002-10-30 Polyester film for deep drawing molding with metal sheet bonding Expired - Fee Related JP4084163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002315546A JP4084163B2 (en) 2002-10-30 2002-10-30 Polyester film for deep drawing molding with metal sheet bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002315546A JP4084163B2 (en) 2002-10-30 2002-10-30 Polyester film for deep drawing molding with metal sheet bonding

Publications (2)

Publication Number Publication Date
JP2004148627A true JP2004148627A (en) 2004-05-27
JP4084163B2 JP4084163B2 (en) 2008-04-30

Family

ID=32459509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002315546A Expired - Fee Related JP4084163B2 (en) 2002-10-30 2002-10-30 Polyester film for deep drawing molding with metal sheet bonding

Country Status (1)

Country Link
JP (1) JP4084163B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015718A (en) * 2004-05-31 2006-01-19 Teijin Dupont Films Japan Ltd Laminated film for metal lamination molding
JP2006028385A (en) * 2004-07-20 2006-02-02 Toray Ind Inc Polyester film
JP2006142654A (en) * 2004-11-19 2006-06-08 Teijin Dupont Films Japan Ltd Film for metal sheet laminate molding processing
JP2007044945A (en) * 2005-08-09 2007-02-22 Jfe Steel Kk Laminated metal sheet and resin film therefor
JP2007111939A (en) * 2005-10-19 2007-05-10 Toyo Seikan Kaisha Ltd Polyester resin-coated metal sheet and open structure formed by using the metal sheet
JP2007182509A (en) * 2006-01-10 2007-07-19 Mitsubishi Polyester Film Copp Biaxially stretched polyester film for molding transfer
JP2007277365A (en) * 2006-04-05 2007-10-25 Teijin Dupont Films Japan Ltd Colored polyester film for metal plate lamination molding processing
JP2012218335A (en) * 2011-04-12 2012-11-12 Mitsubishi Plastics Inc Colored biaxially oriented laminated polyester film for molding processing
WO2014017457A1 (en) * 2012-07-24 2014-01-30 ユニチカ株式会社 Polyester film for cold forming and method for producing same
JP2015189787A (en) * 2014-03-27 2015-11-02 東レ株式会社 Polybutylene terephthalate resin composition and molded part thereof
JP2017121774A (en) * 2016-01-08 2017-07-13 帝人フィルムソリューション株式会社 Biaxially oriented polyester film for metal sheet lamination molding
WO2018225778A1 (en) * 2017-06-07 2018-12-13 ウィンテックポリマー株式会社 Poly(butylene terephthalate) resin composition
JPWO2020050351A1 (en) * 2018-09-06 2020-09-10 ユニチカ株式会社 Polyester film and its manufacturing method
US11001046B2 (en) * 2015-06-29 2021-05-11 Toray Industries, Inc. Polybutylene terephthalate resin powder mixture

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015718A (en) * 2004-05-31 2006-01-19 Teijin Dupont Films Japan Ltd Laminated film for metal lamination molding
JP2006028385A (en) * 2004-07-20 2006-02-02 Toray Ind Inc Polyester film
JP2006142654A (en) * 2004-11-19 2006-06-08 Teijin Dupont Films Japan Ltd Film for metal sheet laminate molding processing
JP4696769B2 (en) * 2005-08-09 2011-06-08 Jfeスチール株式会社 Laminated metal plate and resin film for metal plate lamination
JP2007044945A (en) * 2005-08-09 2007-02-22 Jfe Steel Kk Laminated metal sheet and resin film therefor
JP4742801B2 (en) * 2005-10-19 2011-08-10 東洋製罐株式会社 Polyester resin-coated metal plate and unsealing structure using the same
JP2007111939A (en) * 2005-10-19 2007-05-10 Toyo Seikan Kaisha Ltd Polyester resin-coated metal sheet and open structure formed by using the metal sheet
JP2007182509A (en) * 2006-01-10 2007-07-19 Mitsubishi Polyester Film Copp Biaxially stretched polyester film for molding transfer
JP2007277365A (en) * 2006-04-05 2007-10-25 Teijin Dupont Films Japan Ltd Colored polyester film for metal plate lamination molding processing
JP2012218335A (en) * 2011-04-12 2012-11-12 Mitsubishi Plastics Inc Colored biaxially oriented laminated polyester film for molding processing
JPWO2014017457A1 (en) * 2012-07-24 2016-07-11 ユニチカ株式会社 POLYESTER FILM FOR COLD MOLDING AND METHOD FOR PRODUCING THE SAME
WO2014017457A1 (en) * 2012-07-24 2014-01-30 ユニチカ株式会社 Polyester film for cold forming and method for producing same
CN104411751A (en) * 2012-07-24 2015-03-11 尤尼吉可株式会社 Polyester film for cold forming and method for producing same
JP2015189787A (en) * 2014-03-27 2015-11-02 東レ株式会社 Polybutylene terephthalate resin composition and molded part thereof
US11001046B2 (en) * 2015-06-29 2021-05-11 Toray Industries, Inc. Polybutylene terephthalate resin powder mixture
JP2017121774A (en) * 2016-01-08 2017-07-13 帝人フィルムソリューション株式会社 Biaxially oriented polyester film for metal sheet lamination molding
WO2018225778A1 (en) * 2017-06-07 2018-12-13 ウィンテックポリマー株式会社 Poly(butylene terephthalate) resin composition
JP2018203932A (en) * 2017-06-07 2018-12-27 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition
JPWO2020050351A1 (en) * 2018-09-06 2020-09-10 ユニチカ株式会社 Polyester film and its manufacturing method

Also Published As

Publication number Publication date
JP4084163B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
WO1995015993A1 (en) Transparent film for lamination coating of metallic can
JP4084163B2 (en) Polyester film for deep drawing molding with metal sheet bonding
WO2001092417A1 (en) Polyester film for metal sheet laminating, metal sheet laminated with this film, and metal vessel formed from this metal sheet
US4725483A (en) Copolyester film and a method for production thereof
JP2851468B2 (en) Polyester film for metal plate lamination processing
JP3942381B2 (en) Film for metal plate lamination molding
JP2007276204A (en) Metal sheet laminate molding processing film
JP2908160B2 (en) Polyester film for metal plate lamination processing
JP2006015718A (en) Laminated film for metal lamination molding
JP4759250B2 (en) Film for metal plate lamination molding
JP7398041B2 (en) Film for laminating metal plates
JP2020041054A (en) Polyester film for laminating metal plate and method for manufacturing the same
JP4832169B2 (en) Film for metal plate lamination molding
JPH05320377A (en) Polyester film for metallic plate cladding processing
JPH11207909A (en) Laminated polyester film for metal sheet laminating molding processing
JP2005314542A (en) Film for metal lamination work
JP2007277365A (en) Colored polyester film for metal plate lamination molding processing
JP3537893B2 (en) Polyester film for metal plate lamination processing
JP2006142766A (en) Laminated film for metal sheet laminate molding processing
JP2908159B2 (en) Polyester film for metal plate lamination processing
JP2908196B2 (en) Polyester film for metal plate lamination processing
JP3330847B2 (en) Polyester film for metal plate lamination processing
JP2001179916A (en) Laminated polyester film for forming laminated metal plate
JP4127983B2 (en) Laminated polyester film for metal plate lamination
JP2005008814A (en) Polyester film for lamination with metallic sheet, film-laminated metallic sheet comprising the same, and metallic container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080214

R150 Certificate of patent or registration of utility model

Ref document number: 4084163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees