JP2004148385A - Manufacturing method and apparatus for bearing with groove - Google Patents

Manufacturing method and apparatus for bearing with groove Download PDF

Info

Publication number
JP2004148385A
JP2004148385A JP2002318097A JP2002318097A JP2004148385A JP 2004148385 A JP2004148385 A JP 2004148385A JP 2002318097 A JP2002318097 A JP 2002318097A JP 2002318097 A JP2002318097 A JP 2002318097A JP 2004148385 A JP2004148385 A JP 2004148385A
Authority
JP
Japan
Prior art keywords
split mold
blank
face
pushing
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002318097A
Other languages
Japanese (ja)
Inventor
Fumio Shinano
文男 科野
Takeshi Muneyuki
健 宗行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002318097A priority Critical patent/JP2004148385A/en
Publication of JP2004148385A publication Critical patent/JP2004148385A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/12Forming profiles on internal or external surfaces

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a highly precise machining, an efficient production in a short period of time as well as a possible reduction of cost. <P>SOLUTION: A split die 3 made of a hard material, which has a main body of mostly cylindrical shape with a hole for thrusting, herringbone-shaped projections 33 on its outer circumferential surface as well as a plurality of slits, is inserted from an opening 23 on one end into a lower hole 20 of a cylindrical blank body 2 made of a soft material. A wedge-shaped shaft 4 with its diameter narrower toward its tip is inserted from an opening 22 on the other end of the cylindrical blank body 2, forcibly expands an outer diameter of the split die 3 by thrusting of the shaft 4, and forms pressure grooves for bearing by transferring the pattern of projection 33 onto the inner peripheral surface of the cylindrical blank body 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、回転軸を溝付き軸受けで回転自在に支持する溝付き軸受けの製造方法及び装置に関するものである。
【0002】
【従来の技術】
ノート型などのパーソナルコンピュータでは、高速化、高性能化に伴い、本体内部に搭載しているMPUなどからの熱を構造的に放出するのが難しくなってきているため、例えば、専用のファンモータなどを搭載させて冷却性能を高めたものが知られている。
【0003】
このようなファンモータにあっては、回転数の上昇は冷却効果に直接つながるが、その反面、騒音の増大が問題となってきており、高い冷却性と低い騒音性との双方を満たすものが要求されている。そこで、モータの回転軸を支持する軸受けに、従来のボールベアリング方式とは全く構造の異なる、動圧型の溝付き流体軸受けを用いたモータが提案・開発されており、前述したファンモータの他に、例えばHDD用のスピンドルモータなどの幅広い分野への適用も期待されている。
【0004】
この流体軸受けは、ボールベアリングの金属球の替わりに、特殊成分を含む潤滑油を回転軸との間に充填させた構成のものであって、非接触状態で浮上回転するために摩擦による騒音の発生がなく、耐衝撃性も高く、振動の発生も少ないといった優れた特徴を有している。
【0005】
次に、この流体軸受けの構造について、具体的に説明する。
図9は、前述した動圧型流体軸受けの一例を示すものであり、この動圧型流体軸受けは、スリーブ筒体101の回転孔102の内周面に動圧発生用の圧力溝103が形成されている。また、このスリーブ筒体101の回転孔102には、回転軸104が挿入されており、このスリーブ筒体101の回転孔102と回転軸104との間に、潤滑油105が注入され、軸受けを構成している。
【0006】
このような構成の動圧型流体軸受けは、図示外の回転駆動手段で回転軸104が回転し、α方向に回転すると、潤滑油105は回転軸104とともに、動圧発生用の圧力溝103に沿って流れようとするので、中央部βの圧力が高まる。その結果、回転軸104はスリーブ筒体101に対して非接触状態で支持され、回転することとなる。
【0007】
次に、溝付き流体軸受けの加工製造方法について、図10を参照しながら説明する(例えば、特許文献1参照。)。
初めに、旋盤などで軸受け用の下孔106Aを貫通させた略筒形状を有する被加工物106(以下、これをブランク筒体とよぶ)を用意してこれを保持部材107に固定しておく。
次に、外周面にボール(剛球)108Aを有する溝加工用ツール108を軸方向にスライド移動させてブランク筒体106の下穴106Aに挿入するとともに、時計回り及び反時計回りの回転動作を行いながら、押し込んでいく。
その結果、下孔106Aの内周面には、へンリングボーン状(杉綾模様)或いはヘリカル状(螺旋状)の圧力溝106Bが刻設される。これにより、スリーブ筒体101が製造される。
【0008】
【特許文献1】
特開平7−299524号公報(第2頁右欄 図1)
【0009】
【発明が解決しようとする課題】
しかしながら、このような構成の溝加工用ツールを用いて加工すると、ブランク筒体106の下穴106Aに挿入した溝加工用ツール108の回転速度と押し込み速度のバランスを調整するのが難しく、これらの速度が変動すると、形成される圧力溝の模様も微妙に変化するので、圧力溝の加工がむつかしく、精度にばらつきを発生しやすい。しかも例えばスリーブ1個毎に10秒程度の加工時間を必要とするので、同時に複数個のものの加工作業が困難であることから生産性も悪く、コスト高を招いている。
【0010】
そこで、この発明は、上記した事情に鑑み、高精度に圧力溝を加工することができ、しかも短時間内で効率よく生産することができ、延いてはコストの削減を図ることが可能な溝付き軸受けの製造方法及び装置を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
この発明は、回転軸を溝付き軸受けで回転自在に支持する溝付き軸受けの製造方法であって、
押し込み孔を中央部に貫通して有する略円筒状に形成した本体の外周面に固有模様の凸部を有するとともに、前記本体の軸方向に単数又は複数のスリットとを有し、硬質材料で形成した割金型を、一方側端面から他方側端面まで貫通する下孔を有し軟質材料で形成した円筒状のブランク筒体の前記下孔に一方側端面の開口部から挿入し、
このブランク筒体に前記一方側端面の開口部から挿入した前記割金型の内部に、前記ブランク筒体の他方側端面の開口部から先端部がすぼまった楔状のシャフトを挿入し、
前記シャフトの押し込み力で割金型の外径を押し広げることにより、前記円筒状のブランク筒体の内周面に食い込んだ凸部により軸受用の圧力溝を前記固有模様に塑性加工し、溝付き軸受けを構成するスリーブ筒体を形成することを特徴としている。
【0012】
これにより、高精度に圧力溝を加工することができ、しかも短時間内で効率よく生産することができる。
【0013】
また、前記割金型のスリットを一定角度位相をずらして形成してある部分以外は前記割金型と同一の形状を有する別の割金型を用い、
前記割金型による圧力溝を加工後に、その割金型とシャフトを引き抜き、
さらに、前記別の割金型を前記ブランク筒体に前記一方側端面の開口部から挿入し、
その後、前記ブランク筒体に前記他方側端面の開口部から楔状のシャフトを挿入して前記別の割金型の外径を広げることにより、前記ブランク筒体内周面に、前記圧力溝の間をつないで補完する圧力溝を形成し、
前記圧力溝を連続一体に形成するのが好ましい。
【0014】
これにより、連続一体の圧力溝を容易に形成することができる。
【0015】
また、前記凸部の形状を段階的に拡大させた複数種類の割金型を用いて、前記圧力溝を所要の形状に塑性加工してもよい。
【0016】
また、前記凸部の厚さを段階的に増大させた複数種類の割金型を用いて、前記圧力溝を所要の形状に塑性加工してもよい。
【0017】
これにより、連続一体の圧力溝を容易に深く形成することができる。
【0018】
また、この発明は、回転軸を溝付き軸受けで回転自在に支持する溝付き軸受けの製造装置であって、
請求項1又は請求項2に記載のブランク筒体を配設した保持部と、
請求項1ないし請求項4のいずれか1項に記載の割金型を前記ブランク筒体の一方の端面に対向して配設した作業部と、
先端がすぼまった楔状のシャフトを前記各ブランク筒体の他方の端面に対向して配設し前記ブランク筒体に向けて移動可能に配置した押動部と、
前記作業部を保持部に向けて前進移動させて前記ブランク筒体の一方の端面から各割金型を圧入するとともに、前記押動部を保持部に向けて前進移動させて前記ブランク筒体の他方の端面から各割金型の押し込み孔にシャフトを押し込む駆動手段と、
を備えたことを特徴としている。
【0019】
これにより、高精度に圧力溝を加工することができ、しかも短時間内で効率よく生産することができる。
【0020】
また、この発明は、回転軸を溝付き軸受けで回転自在に支持する溝付き軸受けの製造装置であって、
請求項1及び請求項2に記載のブランク筒体を複数個配設した保持部と、
請求項1ないし請求項3に記載の割金型を、多角形状を有する本体の各面に同一形状のものを前記ブランク筒体の設置個数と同数個配設し前記保持部に向けて移動可能に、かつ、回転可能に配置した作業部と、
先端がすぼまった楔状のシャフトを各ブランク筒体と同数個配設し、前記保持部に対して作業部とは反対位置から前記保持部材に向けて移動可能に配置した押動部と、
これらの割金型を適宜にタイミングで移動させるとともに回動させる駆動手段と
を備えたことを特徴としている。
【0021】
これにより、同一形状の圧力溝をブランク体に同時に多数形成することができる。
【0022】
また、前記駆動手段は、
前記ブランク筒体の一方側端面の開口部から各割金型を圧入するために前記作業部を保持部に向けて前進移動させるとともに、前記ブランク筒体の他方側端面の開口部から各割金型の押し込み孔にシャフトを押し込むために前記押動部を保持部に向けて前進移動させる進退機構と、
前記作業部及び押動部を各作業工程の完了したタイミングに合わせて後退させ前記割金型及びシャフトをそれぞれ引き抜いたのちの次の割金型の押し込みのための前記作業部の前進動作に先立ち、前記作業部を一定角度回動させて次の段階の各割金型を前記ブランク筒体に対面させる回転機構と
を備えることが好ましい。
【0023】
これにより、効率よく多数の圧力溝を同時に形成することができる。
【0024】
【発明の実施の形態】
以下、この発明に係る実施の形態について、添付図面を参照しながら詳細に説明する。
[第1の実施形態]
図1は、この発明に係る溝付き軸受けの製造方法は適用された溝付き軸受けの製造装置を示すものであり、この溝付き軸受けの製造装置は、ワーク規制治具1に固定された溝付き軸受けとなるブランク筒体(被加工物)2の軸受け用の下孔20に一方側端面の開口部22から挿入させる割金型3と、ブランク筒体2に挿入された割金型3にブランク筒体2の他方側端面の開口部23から押し込んでいくシャフト4とを備えている。
【0025】
ワーク規制治具1は、ブランク筒体2を外側から回動不能状態でしっかりと固定・保持するものであり、図示外の作業台の定位置に載置されている。
【0026】
ブランク筒体2は、図2に示すように、軟質材料、例えば真鍮や黄銅などで円筒状に形成されており、一端面から他端面まで貫通して断面略円形の下孔20が形成されている。そして、このブランク筒体2の下孔20の内周面24の中間部には、溝加工の逃がしオイルなどのために、全周に亙って中間溝21Aが刻設されている。さらに、このブランク筒体2の下孔20の内周面24の両端の開口部22、23に臨む部分には、オイルシールのために、中間溝21Aと略同一深さ、同一幅で凹部21B、21Cが形成されている。また、さらに、このブランク筒体2の外周面の中間部には、回転させる対象物を固定させるために、全周に亙ってフランジ25が形成されている。
【0027】
割金型3Aは、図3に示すように、本体部分が硬質材料で形成された大径部31A及び小径部31Bを有する略円筒状を呈しており、中央部には(厚さdを残して)半径rの押し込み孔32が形成されている。また、この本体部分には、小径部31Bの外周面に、動圧溝形成のために、固有模様、即ちへンリングボーン状(又はヘリカル状でもよい)の凸部33を有している。さらに、この本体部分には、大径部31の一部から小径部31Bの全体(先端部まで)に亙り軸方向に沿って等角的に4本のスリット34が形成されており、半径方向に変位可能になっている。
【0028】
なお、この実施形態では、図4に示すように、このような4個の第1割金型3A〜第4割金型3Dを備えており、このうち、第1、第2の割金型3A、3Bは、小径部31Bの外径寸法ともにD1であって、肉厚寸法はt1であるが、スリット34の形成位置が互いに略45度移相をずらして形成されたものが用いられている。一方、第3、第4の割金型3C、3Dは、小径部31Bの外径寸法ともにD2(D1<D2)であって、肉厚寸法はt2(t1<t2)であるが、スリット34の形成位置が互いに略45度移相をずらして形成されたものが用いられている。
【0029】
このように、第1、第2の割金型3A、3Bよりも、第3、第4の割金型3C、3Dの方の外径寸法を大きくしており、図4に示すように、同一のシャフト4を用いて押し込み孔32に挿入させたときに、より大きな圧入力をブランク筒体2内周面に作用させるようになっている。また第1、第2の割金型3A、3Bよりも第3、第4の割金型3C、3Dの方の肉厚寸法d(図3参照)を厚くするのは、凸部33の厚みを増してより深い圧入溝を形成させるためである。なお、これらの割金型3A〜3Dは、それぞれの押し込み孔32にシャフト4を挿入した状態で凸部33の位置が、全ての割金型3A〜3Dにおいて連続してつながるように形成することが必要である。
【0030】
シャフト4は、円筒状のブランク筒体2内周面に軸受用の圧力溝2Aを塑性加工により形成するものであり、ブランク筒体2の下孔20に挿入された割金型3の押し込み孔34へ、ブランク筒体2の他方側の開口部から押し込んで割金型の小径部の内径を押し広げるようになっており、先端部がテーパ状に傾斜している。なお、このシャフト4は、先端部分を除く中間部から基端部の外径部分の寸法Rが、少なくとも割金型3の押し込み孔34の内径寸法rよりも大きく形成されている。
【0031】
次に、この実施形態に係る溝付き軸受けの製造装置を用いて溝付き軸受けを製造するときの製造方法について説明する。
(1)ブランク筒体2をワーク規制治具1に取付け、図4(A)に示すブランク筒体2の下孔20に割金型3(3A)を挿入する。
(2)次に、楔状のシャフト4を割金型3(3A)の内径部側の押し込み孔33に挿入する。
【0032】
(3)これにより、図5に示すように、割金型3(3A)の小径部31B側の押し込み孔33がシャフト4によって押し広げられていき、割金型3(3A)の小径部31B側の外周面上に形成されているヘンリングボーン状の凸部33をブランク筒体2の下孔20の内周面24A、24Bに押し付けていく。
その結果、割金型3(3A)の凸部33がブランク筒体2の下孔内周面内周面24A、24Bに食い込んでいき、その食い込まれたブランク筒体2の内周面24A、24B部分が、凸部33と同様の溝模様に刻設される。つまり、シャフトの内周面に、ヘンリングボーン状の圧力溝2Aが塑性加工されていくわけである。
【0033】
(4)このようにして、圧力溝2Aがブランク筒体2の内周面に形成されたならば、シャフト4を抜いて戻すとともに、割金型3(3A)を引き抜く。
(5)次に、スリット34の形成位置が45度だけ移相がずれて設けられた、図4(B)に示す同様の割金型3(3B)をブランク筒体2に挿入し、同様に、楔型のシャフト4を下孔20に同様に押し込んで挿入していく。これにより、ブランク筒体2の内周面の45度移相がずれた位置に、換言すればブランク筒体2のほぼ全内周面に亙ってヘンリングボーン状の圧力溝2Aが塑性加工されていく。
【0034】
(6)さらに、図4(C)、(D)に示すように、第1、第2の割金型3A、3Bより若干大きめの外径寸法を有するとともに、凸部33が厚い第3、第4の割金型3C、3Dを同様にブランク筒体2に順次挿入し、これに対応する楔型のシャフト4を下孔20に同様に押し込んで挿入していく。
(7)これにより、割金型3C、3Dの凸部33が厚くなった分だけ深く、ブランク筒体2の内周面の圧力溝2Aを段階的に任意の形状、例えばこの実施形態ではヘンリングボーン状に形成することができるので、高い精度で加工することができる。なお、この圧力溝2Aの固有模様(形状)は、特にこのヘンリングボーン状に限るものではなく、動圧型の溝付き流体軸受け用として、同様の効果が得られるものであれば、例えばヘリカル状などあってもよい。
【0035】
[第2の実施形態]
次に、この発明に係る第2の実施形態について図9を参照しながら説明する。なお、この実施形態において、第1の実施形態と同一部分には、同一符号を付して重複説明を避ける。
図7は、この発明に係る溝付き軸受けの製造方法は適用された溝付き軸受けの製造装置の第2実施形態を示すものであり、この溝付き軸受けの製造装置は、保持部10と、作業部30と、押動部40と、駆動手段(図略)とを備えている。
【0036】
保持部10は、作業効率を考慮して3個(少なくとも2個以上)のブランク筒体2を同時に、しかも簡単に着脱できるように構成されており、この実施形態では、ブランク筒体2を装着させるための装着孔を一定間隔に開口した四角柱状の固定部材11と、この固定部材11の一面に圧接・圧着可能に設け装着孔に対応する部分に孔を開口させた板状の蓋部材12とで構成されている。
【0037】
作業部30は、ブランク筒体2の一方の開口部23に対向して配置されており、第1の実施形態の各割金型3をブランク筒体2と同数(複数個)ライン状に配設している。具体的には、第1ないし第4の搭載面35A〜35D(但し、図7には第4搭載面を図示せず)を有する四角柱状(断面略四角形)の回動部材35の各搭載面に、それぞれ3個(少なくとも2個以上)の同一割金型を一定間隔で固設させている。
【0038】
即ち、第1の搭載面35A〜第4の搭載面には、第1の割金型3A〜第4の搭載面3Dをそれぞれ固設させている。なお、この作業部30は、駆動手段でブランク筒体2の一方の開口部23に向けて前進可能で、しかも、作業ステップに従って、回動して各搭載面が順次保持部と対面するように構成されている。
【0039】
押動部40と、各ブランク筒体2の他方の開口部22に対向して外径寸法の異なる楔状のシャフト4をライン状に配設した押動部材41を備えており、図示外の駆動手段によって保持部10に向けて前進可能に配置されている。
【0040】
駆動手段は、各ブランク筒体2の加工に先立ってブランク筒体2の一方の開口部23から下孔20へ割金型3を押し込ませるために、作業部30を保持部10に向けて前進移動させる前進動作(以下、これをA動作とよぶ)と、このA動作の直後にブランク筒体2の他方の開口部22から各割金型3の押し込み孔33内にシャフト4を圧入するために、押動部材40を保持部10に向けて前進移動させる前進動作(以下、これをB動作とよぶ)とを行う進退機構を備えている。
【0041】
さらに、この駆動手段は、第1加工作業として、各割金型、つまり、第1金型3AでのA動作及びシャフト4でのB動作の後にブランク筒体2の圧力溝2Aの加工作業が行われると、その後に引き続いて第2加工作業として、次の第2金型3BでのA動作及びシャフト4でのB動作の後にブランク筒体2の圧力溝2Aの加工作業を行わせるために、作業分30の回動部材35の90度の回動動作(以下、これをC動作とよぶ)を行うため、回転機構も備えている。
なお、このC動作は、第1加工作業から第2加工作業へ移行するステップにおいて、第2加工作業から第3加工作業へ移行するステップにおいて、また、第3加工作業から第4加工作業へ移行するステップにおいて、それぞれ行われる。
【0042】
次に、この実施形態の作用について説明する。
従って、この実施形態によれば、ブランク筒体2に圧力溝を形成する一連の加工作業を1度行うことで、3個のブランク筒体2からスリーブ筒体(溝付き軸受け)が同時に、しかも高い精度で形成できるので、高品質のものを短時間で効率良く生産できる。
【0043】
なお、この実施形態では、作業部30として4種類の割金型3A〜3Dをそれぞれ3組備えた構成のものを用いたが、第2の実施形態に比べて生産性は多少低下するが、例えば図8に示すように、作業部50として、単一の搭載面のみに互いに異なる複数種類の割金型を加工工程に沿って順次配列させた作業部材51を備えたものを用いてもよい。
【0044】
この場合には、作業部材51は回動させず、前進動作の他に、使用する割金型を順次ブランク筒体2に向けて繰り出すように、並進動作をさせる。また、これに合わせて、押動部40も同様にブランク筒体2に向けて繰り出すように、並進動作をさせるようにすればよい。
【0045】
【発明の効果】
以上説明してきたように、この発明では、略円筒状に形成した外周面に固有模様の凸部を有するとともに、軸方向に単数又は複数のスリットとを有し、硬質材料で形成した割金型を、軟質材料で形成した円筒状のブランク筒体の下孔に一方側端面の開口部から挿入し、割金型の内部にブランク筒体の他方側端面の開口部から先端部がすぼまった楔状のシャフトを挿入し、このシャフトの押し込み力で割金型の外径を押し広げることにより、ブランク筒体の内周面に食い込んだ割金型の凸部により軸受用の圧力溝を塑性加工するようになっている。
【0046】
従って、この発明によれば、軸受用の圧力溝を精度良く加工することができるようになるとともに、短時間内で効率よく溝付き軸受けを生産することができ、延いてはコストの削減を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る溝付き軸受け製造装置を示す概略断面図である。
【図2】本発明の第1の実施形態の溝付き軸受け製造装置に用いるスリーブ筒体を示すものであり、(A)は斜視図、(B)は断面図である。
【図3】本発明の第1の実施形態の溝付き軸受け製造装置に用いる割金型の一つを示す斜視図である。
【図4】(A)〜(D)は、本発明の第1の実施形態の溝付き軸受け製造装置に用いる割金型などの端面形状を示す説明図である。
【図5】本発明の第1の実施形態の溝付き軸受け製造装置を用いて溝付き軸受けを加工・製造するときの方法を説明図である。
【図6】本発明の第1の実施形態の溝付き軸受け製造装置を用いて加工・製造した溝付き軸受けを示す破断斜視図である。
【図7】本発明の第2の実施形態に係る溝付き軸受け製造装置を示す概略構成図である。
【図8】第2の実施形態に係る溝付き軸受け製造装置の変形例を示す概略構成図である。
【図9】従来の溝付き軸受けの構成を示す概略断面図である。
【図10】従来の溝付き軸受けの製造方法を示す概略断面図である。
【符号の説明】
1 ワーク規制治具
2 スリーブ(被加工物)
2A (一方の)開口面
2B (他方の)開口面
20 下孔
21A 中間溝
21B 凹部
21C 凹部
22 開口部
23 開口部
24 内周面
25 フランジ
3 割金型
3A 割金型(第1)
3B 割金型(第2)
3C 割金型(第3)
3D 割金型(第4)
31A 大径部
31B 小径部
32 押し込み孔
33 凸部(へンリングボーン状)
34 スリット
4 シャフト
10 保持部
11 固定部材
12 蓋部材
30 作業部
35 回動部材
35A 第1の搭載面
35B 第2の搭載面
35C 第3の搭載面
35D 第4の搭載面
40 押動部
50 作業部
51 作業部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing a grooved bearing that rotatably supports a rotating shaft with a grooved bearing.
[0002]
[Prior art]
With personal computers such as notebook computers, it has become difficult to structurally release heat from the MPU and other components mounted inside the main unit as the speed and performance have increased. For example, a dedicated fan motor It is known that a cooling performance is enhanced by mounting the above.
[0003]
In such a fan motor, an increase in the number of revolutions directly leads to a cooling effect, but on the other hand, an increase in noise has become a problem, and a fan motor that satisfies both high cooling performance and low noise performance is required. Is required. Therefore, a motor that uses a dynamic pressure type grooved fluid bearing, which has a completely different structure from the conventional ball bearing system, for the bearing that supports the rotating shaft of the motor has been proposed and developed. For example, application to a wide range of fields such as a spindle motor for an HDD is also expected.
[0004]
This fluid bearing has a structure in which lubricating oil containing a special component is filled between the rotating shaft and the ball instead of the metal ball of the ball bearing. It has excellent features such as no generation, high impact resistance, and little vibration.
[0005]
Next, the structure of the fluid bearing will be specifically described.
FIG. 9 shows an example of the above-mentioned dynamic pressure type fluid bearing. In this dynamic pressure type fluid bearing, a pressure groove 103 for generating a dynamic pressure is formed on the inner peripheral surface of a rotary hole 102 of a sleeve cylinder 101. I have. A rotating shaft 104 is inserted into the rotating hole 102 of the sleeve cylinder 101, and lubricating oil 105 is injected between the rotating hole 102 and the rotating shaft 104 of the sleeve cylinder 101, and the bearing is mounted. Make up.
[0006]
In the dynamic pressure type fluid bearing having such a configuration, when the rotation shaft 104 is rotated by a rotation driving means (not shown) and rotates in the α direction, the lubricating oil 105 moves along with the rotation shaft 104 along the pressure groove 103 for generating dynamic pressure. Therefore, the pressure in the central portion β increases. As a result, the rotating shaft 104 is supported in a non-contact state with respect to the sleeve cylinder 101 and rotates.
[0007]
Next, a method of processing and manufacturing a grooved fluid bearing will be described with reference to FIG. 10 (for example, see Patent Document 1).
First, a workpiece 106 having a substantially cylindrical shape (hereinafter referred to as a blank cylindrical body) having a bearing pilot hole 106A penetrated by a lathe or the like is prepared and fixed to the holding member 107. .
Next, the groove processing tool 108 having a ball (hard sphere) 108A on the outer peripheral surface is slid in the axial direction and inserted into the prepared hole 106A of the blank cylinder 106, and is also rotated clockwise and counterclockwise. While pushing in.
As a result, a pressure groove 106B having a herringbone (spiral) or helical (spiral) shape is formed on the inner peripheral surface of the pilot hole 106A. Thereby, the sleeve cylinder 101 is manufactured.
[0008]
[Patent Document 1]
JP-A-7-299524 (FIG. 1 on the right column on page 2)
[0009]
[Problems to be solved by the invention]
However, when processing is performed using the groove processing tool having such a configuration, it is difficult to adjust the balance between the rotation speed and the pushing speed of the groove processing tool 108 inserted into the prepared hole 106A of the blank cylindrical body 106, and these are difficult. When the speed fluctuates, the pattern of the formed pressure groove also slightly changes, so that the processing of the pressure groove is difficult, and the accuracy tends to vary. In addition, for example, since a processing time of about 10 seconds is required for each sleeve, it is difficult to process a plurality of sleeves at the same time, resulting in poor productivity and high cost.
[0010]
In view of the above circumstances, the present invention provides a groove capable of processing a pressure groove with high accuracy, and capable of efficiently producing the pressure groove in a short time, and further reducing the cost. It is an object of the present invention to provide a method and an apparatus for manufacturing a bearing.
[0011]
[Means for Solving the Problems]
The present invention is a method of manufacturing a grooved bearing that rotatably supports a rotating shaft with a grooved bearing,
The main body formed into a substantially cylindrical shape having a push hole penetrating the center portion has a convex portion of a unique pattern on the outer peripheral surface, and has one or more slits in the axial direction of the main body, and is formed of a hard material. Insert the split mold into the pilot hole of the cylindrical blank cylindrical body having a pilot hole penetrating from one end face to the other end face and formed from a soft material from the opening of the one end face,
Into the inside of the split mold inserted into the blank cylinder from the opening on the one end face, insert a wedge-shaped shaft whose tip is narrowed from the opening on the other end face of the blank cylinder,
By expanding the outer diameter of the split mold by the pushing force of the shaft, a pressure groove for a bearing is plastically worked into the unique pattern by a convex portion that has digged into the inner peripheral surface of the cylindrical blank cylindrical body. The present invention is characterized in that a sleeve cylinder constituting a bearing with a bearing is formed.
[0012]
As a result, the pressure groove can be processed with high precision, and can be efficiently produced in a short time.
[0013]
In addition, except for the portion where the slit of the split mold is formed by shifting the phase by a constant angle, another split mold having the same shape as the split mold is used,
After processing the pressure groove by the split mold, pull out the split mold and the shaft,
Further, the another split mold is inserted into the blank cylinder from the opening on the one end face,
After that, by inserting a wedge-shaped shaft into the blank cylinder from the opening on the other end surface and expanding the outer diameter of the another split mold, the gap between the pressure grooves is formed on the peripheral surface of the blank cylinder. Form a complementary pressure groove by connecting
It is preferable that the pressure groove is formed continuously and integrally.
[0014]
This makes it possible to easily form a continuously integrated pressure groove.
[0015]
Further, the pressure groove may be plastically worked into a required shape by using a plurality of types of split dies in which the shape of the projection is enlarged stepwise.
[0016]
Further, the pressure groove may be plastically worked into a required shape by using a plurality of types of split dies in which the thickness of the convex portion is increased stepwise.
[0017]
This makes it possible to easily and continuously form a deep pressure groove.
[0018]
Further, the present invention is a grooved bearing manufacturing apparatus for rotatably supporting a rotating shaft with a grooved bearing,
A holding portion provided with the blank cylindrical body according to claim 1 or 2,
A working unit in which the split mold according to any one of claims 1 to 4 is disposed to face one end surface of the blank cylindrical body,
A pushing portion in which a wedge-shaped shaft whose tip is narrowed is disposed to face the other end surface of each of the blank cylinders and is movably arranged toward the blank cylinder;
The working unit is moved forward toward the holding unit to press-fit each split mold from one end surface of the blank cylinder, and the pushing unit is moved forward toward the holding unit to move the pressing unit forward. Driving means for pushing the shaft from the other end face into the pushing hole of each split mold,
It is characterized by having.
[0019]
As a result, the pressure groove can be processed with high precision, and can be efficiently produced in a short time.
[0020]
Further, the present invention is a grooved bearing manufacturing apparatus for rotatably supporting a rotating shaft with a grooved bearing,
A holding portion provided with a plurality of the blank cylinders according to claim 1 and 2,
The split mold according to claim 1, wherein the same number of molds having the same shape are provided on each surface of the main body having a polygonal shape and the same number as the number of the blank cylinders, and can be moved toward the holding portion. And a work unit arranged rotatably,
A push-moving portion in which the same number of wedge-shaped shafts with the narrowed ends are arranged as the respective blank cylinders, and are movably arranged toward the holding member from a position opposite to the working portion with respect to the holding portion,
A drive means for moving and rotating these split molds at appropriate timing is provided.
[0021]
Thereby, many pressure grooves of the same shape can be simultaneously formed in the blank body.
[0022]
Further, the driving means includes:
In order to press-fit each split mold from the opening on one end face of the blank cylinder, the working section is moved forward toward the holding section, and each split piece is opened from the opening on the other end face of the blank cylinder. An advancing / retracting mechanism for advancing the pushing portion toward the holding portion to push the shaft into the pushing hole of the mold,
The working part and the pushing part are retracted in accordance with the timing of completion of each working step, and after pulling out the split mold and the shaft, respectively, prior to the forward movement of the working part for pushing in the next split mold. And a rotating mechanism for rotating the working unit by a fixed angle so as to face each of the split molds in the next stage to the blank cylinder.
[0023]
Thereby, a large number of pressure grooves can be simultaneously formed efficiently.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[First Embodiment]
FIG. 1 shows an apparatus for manufacturing a grooved bearing to which the method for manufacturing a grooved bearing according to the present invention is applied. The apparatus for manufacturing a grooved bearing includes a grooved fixing device fixed to a work regulating jig 1. A split mold 3 that is inserted into a prepared pilot hole 20 of a blank cylindrical body (workpiece) 2 serving as a bearing from an opening 22 on one end face, and a blank is formed in the split mold 3 inserted in the blank cylindrical body 2. And a shaft 4 that is pushed in from an opening 23 on the other end surface of the cylindrical body 2.
[0025]
The work regulating jig 1 is for firmly fixing and holding the blank cylindrical body 2 from the outside in a non-rotatable state, and is placed at a fixed position on a worktable (not shown).
[0026]
As shown in FIG. 2, the blank cylinder 2 is formed of a soft material, for example, brass or brass, in a cylindrical shape, and has a pilot hole 20 having a substantially circular cross section penetrating from one end surface to the other end surface. I have. An intermediate groove 21A is engraved in the middle of the inner peripheral surface 24 of the pilot hole 20 of the blank cylindrical body 2 over the entire periphery for relief oil for groove processing or the like. Further, in the portions facing the openings 22 and 23 at both ends of the inner peripheral surface 24 of the prepared hole 20 of the blank cylindrical body 2, a concave portion 21B having substantially the same depth and the same width as the intermediate groove 21A for oil sealing. , 21C are formed. Further, a flange 25 is formed over the entire circumference at an intermediate portion of the outer peripheral surface of the blank cylindrical body 2 in order to fix an object to be rotated.
[0027]
As shown in FIG. 3, the split mold 3A has a substantially cylindrical shape having a large-diameter portion 31A and a small-diameter portion 31B whose main body is formed of a hard material. (3) A push hole 32 having a radius r is formed. In addition, the main body portion has a unique pattern, that is, a convex portion 33 having a herringbone shape (or a helical shape) for forming a dynamic pressure groove on the outer peripheral surface of the small diameter portion 31B. Further, in the main body portion, four slits 34 are formed conformally along the axial direction from a part of the large-diameter portion 31 to the whole of the small-diameter portion 31B (up to the distal end portion), and are formed in the radial direction. Can be displaced.
[0028]
In addition, in this embodiment, as shown in FIG. 4, four such first split molds 3A to 4D split molds 3D are provided, of which the first and second split molds are provided. 3A and 3B, both the outer diameter of the small-diameter portion 31B is D1 and the thickness is t1, but the slits 34 are formed at positions shifted by approximately 45 degrees from each other. I have. On the other hand, in the third and fourth split molds 3C and 3D, the outer diameter of the small diameter portion 31B is D2 (D1 <D2) and the thickness is t2 (t1 <t2), but the slit 34 is formed. Are formed with a phase shift of about 45 degrees from each other.
[0029]
As described above, the outer diameters of the third and fourth split molds 3C and 3D are larger than those of the first and second split molds 3A and 3B, and as shown in FIG. When the same shaft 4 is inserted into the push-in hole 32, a larger press input is applied to the inner peripheral surface of the blank cylinder 2. Further, the thickness d (see FIG. 3) of the third and fourth split molds 3C and 3D is made thicker than that of the first and second split molds 3A and 3B because the thickness of the projection 33 is large. To form a deeper press-fit groove. In addition, these split molds 3A to 3D are formed such that the position of the projection 33 is continuously connected in all the split molds 3A to 3D in a state where the shaft 4 is inserted into the respective push-in holes 32. is necessary.
[0030]
The shaft 4 is formed by forming a pressure groove 2 </ b> A for bearing on the inner peripheral surface of the cylindrical blank cylinder 2 by plastic working, and is a push-in hole of the split mold 3 inserted into the pilot hole 20 of the blank cylinder 2. 34, the inner diameter of the small-diameter portion of the split mold is pushed out by being pushed into the blank cylinder 2 from the opening on the other side, and the tip is tapered. The shaft 4 is formed such that the dimension R from the intermediate portion excluding the distal end portion to the outer diameter portion from the base end portion is larger than at least the inner diameter dimension r of the pushing hole 34 of the split mold 3.
[0031]
Next, a method of manufacturing a grooved bearing using the grooved bearing manufacturing apparatus according to this embodiment will be described.
(1) The blank cylinder 2 is attached to the work regulating jig 1, and the split mold 3 (3A) is inserted into the prepared hole 20 of the blank cylinder 2 shown in FIG.
(2) Next, the wedge-shaped shaft 4 is inserted into the pushing hole 33 on the inner diameter side of the split mold 3 (3A).
[0032]
(3) As a result, as shown in FIG. 5, the push-in hole 33 on the small-diameter portion 31B side of the split mold 3 (3A) is expanded by the shaft 4, and the small-diameter portion 31B of the split mold 3 (3A). The henling-bone-shaped convex portion 33 formed on the outer peripheral surface on the side is pressed against the inner peripheral surfaces 24A and 24B of the prepared hole 20 of the blank cylindrical body 2.
As a result, the projections 33 of the split mold 3 (3A) bite into the inner circumferential surfaces 24A and 24B of the prepared hole inner circumferential surfaces of the blank cylindrical body 2, and the cut inner circumferential surfaces 24A and 24A of the blank cylindrical body 2 The portion 24 </ b> B is engraved in the same groove pattern as the projection 33. That is, the henling bone-shaped pressure groove 2A is plastically worked on the inner peripheral surface of the shaft.
[0033]
(4) When the pressure groove 2A is thus formed on the inner peripheral surface of the blank cylinder 2, the shaft 4 is pulled out and returned, and the split mold 3 (3A) is pulled out.
(5) Next, a similar split mold 3 (3B) shown in FIG. 4B in which the slit 34 is formed with a phase shift of 45 degrees is inserted into the blank cylinder 2 and Then, the wedge-shaped shaft 4 is similarly pushed into the prepared hole 20 and inserted. As a result, the henling-bone-shaped pressure grooves 2A are formed by plastic working at positions where the phase shift of the inner peripheral surface of the blank cylindrical body 2 is shifted by 45 degrees, in other words, over substantially the entire inner peripheral surface of the blank cylindrical body 2. Will be done.
[0034]
(6) Further, as shown in FIGS. 4C and 4D, the third and third split molds 3A and 3B have an outer diameter slightly larger than that of the first and second split molds 3A and 3B, and the third and third split molds 3A and 3B are thick. Similarly, the fourth split molds 3C and 3D are sequentially inserted into the blank cylinder 2, and the corresponding wedge-shaped shafts 4 are similarly pushed into the pilot holes 20 and inserted.
(7) As a result, the pressure grooves 2A on the inner peripheral surface of the blank cylindrical body 2 are gradually formed into an arbitrary shape, for example, in the present embodiment, Since it can be formed in a ring bone shape, it can be processed with high accuracy. The specific pattern (shape) of the pressure groove 2A is not particularly limited to the henling bone shape, but may be, for example, a helical shape as long as the same effect can be obtained for a dynamic pressure type grooved fluid bearing. There may be.
[0035]
[Second embodiment]
Next, a second embodiment according to the present invention will be described with reference to FIG. In this embodiment, the same portions as those in the first embodiment are denoted by the same reference numerals, and the description thereof will not be repeated.
FIG. 7 shows a second embodiment of a grooved bearing manufacturing apparatus to which the grooved bearing manufacturing method according to the present invention is applied. The grooved bearing manufacturing apparatus includes a holding unit 10 and an operation unit. It includes a unit 30, a pushing unit 40, and a driving unit (not shown).
[0036]
The holding unit 10 is configured so that three (at least two or more) blank cylinders 2 can be simultaneously and easily attached and detached in consideration of work efficiency. In this embodiment, the blank cylinders 2 are mounted. A rectangular column-shaped fixing member 11 having mounting holes for opening at regular intervals, and a plate-like lid member 12 provided on one surface of the fixing member 11 so as to be able to be pressed and crimped and having a hole opened at a portion corresponding to the mounting hole. It is composed of
[0037]
The working unit 30 is disposed so as to face one of the openings 23 of the blank cylinder 2, and the split molds 3 of the first embodiment are arranged in the same number (plurality) of the blank cylinders 2 as a line. Has been established. Specifically, each mounting surface of a quadrangular prismatic (substantially square-shaped) rotating member 35 having first to fourth mounting surfaces 35A to 35D (a fourth mounting surface is not shown in FIG. 7). , Three (at least two or more) identical split dies are fixedly mounted at regular intervals.
[0038]
That is, the first split mold 3A to the fourth mounting surface 3D are fixed to the first mounting surface 35A to the fourth mounting surface, respectively. The working unit 30 can be advanced toward one opening 23 of the blank cylindrical body 2 by a driving means, and is rotated so that each mounting surface sequentially faces the holding unit in accordance with a working step. It is configured.
[0039]
A push member 41 having a push member 40 and a wedge-shaped shaft 4 having a different outer diameter and arranged in a line shape facing the other opening 22 of each blank cylinder 2 is provided. It is arranged so as to be able to advance toward the holding portion 10 by means.
[0040]
The driving unit advances the working unit 30 toward the holding unit 10 in order to push the split mold 3 from one opening 23 of the blank cylinder 2 into the pilot hole 20 prior to processing of each blank cylinder 2. In order to press-fit the shaft 4 into the push hole 33 of each split mold 3 from the other opening 22 of the blank cylindrical body 2 immediately after the forward operation for moving (hereinafter, this operation is referred to as an A operation). Further, there is provided an advancing / retracting mechanism for performing an advancing operation of moving the pushing member 40 toward the holding unit 10 (hereinafter, this operation is referred to as a B operation).
[0041]
Further, as a first processing operation, the driving means performs a processing operation of the pressure groove 2A of the blank cylinder 2 after each split mold, that is, the A operation in the first die 3A and the B operation in the shaft 4. When the operation is performed, subsequently, as a second processing operation, in order to perform the processing operation of the pressure groove 2A of the blank cylindrical body 2 after the next A operation in the second mold 3B and the B operation in the shaft 4, A rotating mechanism is also provided for performing a 90-degree rotating operation of the rotating member 35 of the work 30 (hereinafter, this operation is referred to as C operation).
The C operation is performed in the step of shifting from the first processing operation to the second processing operation, in the step of shifting from the second processing operation to the third processing operation, and in the step of shifting from the third processing operation to the fourth processing operation. Is performed in each step.
[0042]
Next, the operation of this embodiment will be described.
Therefore, according to this embodiment, by performing a series of processing operations for forming a pressure groove in the blank cylinder 2 once, the sleeve cylinders (grooved bearings) can be simultaneously and simultaneously formed from the three blank cylinders 2. Since it can be formed with high precision, high quality products can be efficiently produced in a short time.
[0043]
In this embodiment, the working unit 30 has a configuration including three sets of four types of split molds 3A to 3D. However, the productivity is slightly lower than that of the second embodiment. For example, as shown in FIG. 8, as the working unit 50, a working unit provided with a working member 51 in which a plurality of different types of split dies are sequentially arranged along a processing step only on a single mounting surface may be used. .
[0044]
In this case, the working member 51 is not rotated, and is subjected to a translation operation such that the split mold to be used is sequentially fed toward the blank cylinder 2 in addition to the forward operation. In addition, in accordance with this, the translational operation may be performed so that the pushing portion 40 is similarly extended toward the blank cylinder 2.
[0045]
【The invention's effect】
As described above, in the present invention, a split mold formed of a hard material, having a convex portion of a unique pattern on the outer peripheral surface formed in a substantially cylindrical shape, having one or more slits in the axial direction, Is inserted into the lower hole of the cylindrical blank cylinder formed of a soft material from the opening at one end face, and the tip narrows from the opening at the other end face of the blank cylinder inside the split mold. The wedge-shaped shaft is inserted, and the outer diameter of the split mold is expanded by the pushing force of this shaft, so that the pressure groove for the bearing is plastically formed by the convex part of the split mold that cuts into the inner peripheral surface of the blank cylinder. It is designed to be processed.
[0046]
Therefore, according to the present invention, a pressure groove for a bearing can be processed with high accuracy, and a grooved bearing can be efficiently produced in a short period of time, which leads to cost reduction. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a grooved bearing manufacturing apparatus according to a first embodiment of the present invention.
FIGS. 2A and 2B show a sleeve cylinder used in the grooved bearing manufacturing apparatus according to the first embodiment of the present invention, wherein FIG. 2A is a perspective view and FIG.
FIG. 3 is a perspective view showing one of split dies used in the grooved bearing manufacturing apparatus according to the first embodiment of the present invention.
FIGS. 4A to 4D are explanatory views showing end face shapes of a split mold and the like used in the grooved bearing manufacturing apparatus according to the first embodiment of the present invention.
FIG. 5 is an explanatory diagram illustrating a method for processing and manufacturing a grooved bearing using the grooved bearing manufacturing apparatus according to the first embodiment of the present invention.
FIG. 6 is a cutaway perspective view showing a grooved bearing processed and manufactured by using the grooved bearing manufacturing apparatus according to the first embodiment of the present invention.
FIG. 7 is a schematic configuration diagram showing a grooved bearing manufacturing device according to a second embodiment of the present invention.
FIG. 8 is a schematic configuration diagram illustrating a modified example of the grooved bearing manufacturing device according to the second embodiment.
FIG. 9 is a schematic sectional view showing a configuration of a conventional grooved bearing.
FIG. 10 is a schematic sectional view showing a method for manufacturing a conventional grooved bearing.
[Explanation of symbols]
1 Workpiece regulating jig 2 Sleeve (workpiece)
2A (one) opening surface 2B (other) opening surface 20 pilot hole 21A intermediate groove 21B recess 21C recess 22 opening 23 opening 24 inner peripheral surface 25 flange 3 split mold 3A split mold (first)
3B split mold (second)
3C split mold (third)
3D split mold (4th)
31A Large diameter part 31B Small diameter part 32 Push-in hole 33 Convex part (herringbone shape)
34 slit 4 shaft 10 holding unit 11 fixing member 12 lid member 30 working unit 35 rotating member 35A first mounting surface 35B second mounting surface 35C third mounting surface 35D fourth mounting surface 40 pressing unit 50 operation Part 51 work member

Claims (7)

回転軸を溝付き軸受けで回転自在に支持する溝付き軸受けの製造方法であって、
押し込み孔を中央部に貫通して有する略円筒状に形成した本体の外周面に固有模様の凸部を有するとともに、前記本体の軸方向に単数又は複数のスリットとを有し、硬質材料で形成した割金型を、一方側端面から他方側端面まで貫通する下孔を有し軟質材料で形成した円筒状のブランク筒体の前記下孔に一方側端面の開口部から挿入し、
このブランク筒体に前記一方側端面の開口部から挿入した前記割金型の内部に、前記ブランク筒体の他方側端面の開口部から先端部がすぼまった楔状のシャフトを挿入し、
前記シャフトの押し込み力で割金型の外径を押し広げることにより、前記円筒状のブランク筒体の内周面に食い込んだ凸部により軸受用の圧力溝を前記固有模様に塑性加工し、溝付き軸受けを構成するスリーブ筒体を形成することを特徴とする溝付き軸受けの製造方法。
A method of manufacturing a grooved bearing for rotatably supporting a rotating shaft with a grooved bearing,
The main body formed into a substantially cylindrical shape having a push hole penetrating the center portion has a convex portion of a unique pattern on the outer peripheral surface, and has one or more slits in the axial direction of the main body, and is formed of a hard material. Insert the split mold into the pilot hole of the cylindrical blank cylindrical body having a pilot hole penetrating from one end face to the other end face and formed from a soft material from the opening of the one end face,
Into the inside of the split mold inserted into the blank cylinder from the opening on the one end face, insert a wedge-shaped shaft whose tip is narrowed from the opening on the other end face of the blank cylinder,
By expanding the outer diameter of the split mold by the pushing force of the shaft, a pressure groove for a bearing is plastically worked into the unique pattern by a convex portion that has digged into the inner peripheral surface of the cylindrical blank cylindrical body. A method for manufacturing a grooved bearing, comprising forming a sleeve cylinder constituting a bearing with a groove.
前記割金型のスリットを一定角度位相をずらして形成してある部分以外は前記割金型と同一の形状を有する別の割金型を用い、
前記割金型による圧力溝を加工後に、その割金型とシャフトを引き抜き、
さらに、前記別の割金型を前記ブランク筒体に前記一方側端面の開口部から挿入し、
その後、前記ブランク筒体に前記他方側端面の開口部から楔状のシャフトを挿入して前記別の割金型の外径を広げることにより、前記ブランク筒体内周面に、前記圧力溝の間をつないで補完する圧力溝を形成し、
前記圧力溝を連続一体に形成することを特徴とする請求項1に記載の溝付き軸受けの製造方法。
Except for the part formed by shifting the slit of the split mold by a constant angle phase, using another split mold having the same shape as the split mold,
After processing the pressure groove by the split mold, pull out the split mold and the shaft,
Further, the another split mold is inserted into the blank cylinder from the opening on the one end face,
After that, by inserting a wedge-shaped shaft into the blank cylinder from the opening on the other end surface and expanding the outer diameter of the another split mold, the gap between the pressure grooves is formed on the peripheral surface of the blank cylinder. Form a complementary pressure groove by connecting
The method for manufacturing a grooved bearing according to claim 1, wherein the pressure groove is formed continuously and integrally.
前記凸部の形状を段階的に拡大させた複数種類の割金型を用いて、前記圧力溝を所要の形状に塑性加工することを特徴とする請求項1又は2に記載の溝付き軸受けの製造方法。The grooved bearing according to claim 1 or 2, wherein the pressure groove is plastically worked into a required shape by using a plurality of types of split dies in which the shape of the convex portion is enlarged stepwise. Production method. 前記凸部の厚さを段階的に増大させた複数種類の割金型を用いて、前記圧力溝を所要の形状に塑性加工することを特徴とする請求項1又は2に記載の溝付き軸受けの製造方法。The grooved bearing according to claim 1 or 2, wherein the pressure groove is plastically worked into a required shape by using a plurality of types of split dies in which the thickness of the convex portion is increased stepwise. Manufacturing method. 回転軸を溝付き軸受けで回転自在に支持する溝付き軸受けの製造装置であって、
請求項1又は請求項2に記載のブランク筒体を配設した保持部と、
請求項1ないし請求項4のいずれか1項に記載の割金型を前記ブランク筒体の一方の端面に対向して配設した作業部と、
先端がすぼまった楔状のシャフトを前記各ブランク筒体の他方の端面に対向して配設し前記ブランク筒体に向けて移動可能に配置した押動部と、
前記作業部を保持部に向けて前進移動させて前記ブランク筒体の一方の端面から各割金型を圧入するとともに、前記押動部を保持部に向けて前進移動させて前記ブランク筒体の他方の端面から各割金型の押し込み孔にシャフトを押し込む駆動手段と、
を備えたことを特徴とする溝付き軸受けの製造装置。
A grooved bearing manufacturing device for rotatably supporting a rotating shaft with a grooved bearing,
A holding portion provided with the blank cylindrical body according to claim 1 or 2,
A working unit in which the split mold according to any one of claims 1 to 4 is disposed so as to face one end surface of the blank cylindrical body,
A pushing portion in which a wedge-shaped shaft whose tip is narrowed is disposed to face the other end surface of each of the blank cylinders and is movably arranged toward the blank cylinder;
The working unit is moved forward toward the holding unit to press-fit each split mold from one end surface of the blank cylinder, and the pushing unit is moved forward toward the holding unit to move the pressing unit forward. Driving means for pushing the shaft from the other end face into the pushing hole of each split mold,
A manufacturing device for a grooved bearing, comprising:
回転軸を溝付き軸受けで回転自在に支持する溝付き軸受けの製造装置であって、
請求項1及び請求項2に記載のブランク筒体を複数個配設した保持部と、
請求項1ないし請求項3に記載の割金型を、多角形状を有する本体の各面に同一形状のものを前記ブランク筒体の設置個数と同数個配設し前記保持部に向けて移動可能に、かつ、回動可能に配置した作業部と、
先端がすぼまった楔状のシャフトを各ブランク筒体と同数個配設し、前記保持部に対して作業部とは反対位置から前記保持部材に向けて移動可能に配置した押動部と
前記前記作業部を移動させるとともに適宜のタイミングで回動させ、かつ、前記押動部を移動させる駆動手段と
を備えたことを特徴とする溝付き軸受けの製造装置。
A grooved bearing manufacturing device for rotatably supporting a rotating shaft with a grooved bearing,
A holding portion provided with a plurality of the blank cylinders according to claim 1 and 2,
The split mold according to claim 1, wherein the same number of molds having the same shape are provided on each surface of the main body having a polygonal shape and the same number as the number of the blank cylinders, and can be moved toward the holding portion. And a work unit arranged rotatably,
The same number of wedge-shaped shafts each having a tapered tip are arranged as the number of blank cylinders, and the pushing portion, which is movably disposed toward the holding member from a position opposite to the working portion with respect to the holding portion, and A driving device for moving the working unit, rotating the working unit at an appropriate timing, and moving the pushing unit.
前記駆動手段は、
前記ブランク筒体の一方側端面の開口部から各割金型を圧入するために前記作業部を保持部に向けて前進移動させるとともに、前記ブランク筒体の他方側端面の開口部から各割金型の押し込み孔にシャフトを押し込むために前記押動部を保持部に向けて前進移動させる進退機構と、
前記作業部及び押動部を各作業工程の完了したタイミングに合わせて後退させ前記割金型及びシャフトをそれぞれ引き抜いたのちの次の割金型の押し込みのための前記作業部の前進動作に先立ち、前記作業部を一定角度回動させて次の段階の各割金型を前記ブランク筒体に対面させる回転機構と
を備えたことを特徴とする請求項6に記載の溝付き軸受けの製造装置。
The driving means,
In order to press-fit each split mold from the opening on one end face of the blank cylinder, the working section is moved forward toward the holding section, and each split piece is opened from the opening on the other end face of the blank cylinder. An advance / retreat mechanism for advancing the pushing portion toward the holding portion to push the shaft into the pushing hole of the mold,
The working part and the pushing part are retracted in accordance with the timing of completion of each working step, and after pulling out the split mold and the shaft, respectively, prior to the forward movement of the working part for pushing in the next split mold. 7. A manufacturing apparatus for a grooved bearing according to claim 6, further comprising: a rotating mechanism for rotating said working portion by a fixed angle to cause each split mold in the next stage to face said blank cylindrical body. .
JP2002318097A 2002-10-31 2002-10-31 Manufacturing method and apparatus for bearing with groove Pending JP2004148385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318097A JP2004148385A (en) 2002-10-31 2002-10-31 Manufacturing method and apparatus for bearing with groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318097A JP2004148385A (en) 2002-10-31 2002-10-31 Manufacturing method and apparatus for bearing with groove

Publications (1)

Publication Number Publication Date
JP2004148385A true JP2004148385A (en) 2004-05-27

Family

ID=32461319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318097A Pending JP2004148385A (en) 2002-10-31 2002-10-31 Manufacturing method and apparatus for bearing with groove

Country Status (1)

Country Link
JP (1) JP2004148385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122053A1 (en) * 2010-03-31 2011-10-06 日本精工株式会社 Ball screw and method for manufacturing ball screw nut
WO2020164762A1 (en) * 2019-02-11 2020-08-20 Federal-Mogul Valvetrain Gmbh Method and devices for embossing surface structures into an inside of a pipe or a valve shaft of a poppet valve and poppet valve having an embossed inner structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122053A1 (en) * 2010-03-31 2011-10-06 日本精工株式会社 Ball screw and method for manufacturing ball screw nut
CN102869463A (en) * 2010-03-31 2013-01-09 日本精工株式会社 Ball screw and method for manufacturing ball screw nut
KR101450986B1 (en) * 2010-03-31 2014-10-22 닛본 세이고 가부시끼가이샤 Ball screw and method for manufacturing ball screw nut
US8950283B2 (en) 2010-03-31 2015-02-10 Nsk Ltd. Method for manufacturing nut for ball screw and ball screw
WO2020164762A1 (en) * 2019-02-11 2020-08-20 Federal-Mogul Valvetrain Gmbh Method and devices for embossing surface structures into an inside of a pipe or a valve shaft of a poppet valve and poppet valve having an embossed inner structure

Similar Documents

Publication Publication Date Title
JPWO2012077354A1 (en) Method for manufacturing variator part of continuously variable transmission and chuck device for manufacturing variator part
US5758421A (en) Method for manufacturing fluid bearing
JP2004148385A (en) Manufacturing method and apparatus for bearing with groove
JPH10113832A (en) Manufacture of dynamic pressure fluid beaking
JP2005351374A (en) Dynamic pressure bearing
JPH11104781A (en) Method and device for processing bearing with groove
BRPI0621995A2 (en) process for forming hollow profiles, motor vehicle component and motor vehicle
JP4349093B2 (en) Apparatus and method for machining oil pits on bore inner surface of cylinder block
JPH11333542A (en) Method for rolling outer peripheral surface of cylinder and working jig
JP3519569B2 (en) Method of manufacturing rotary bearing having dynamic pressure generating groove for small motor
JPS63242422A (en) Manufacture of fluid bearing
JP2005106105A (en) Bearing machining method and its machining device
JP2007051771A (en) Method of manufacturing dynamic pressure bearing
JP6944302B2 (en) Cutting tools
JP2001263355A (en) Method of working bearing sleeve with dynamic pressure groove
JP2004344931A (en) Method and apparatus for forming blank for forging
JPH1177210A (en) Form rolling device, and form rolling method using it
JP2004125097A (en) Method of manufacturing radial bearing component
JPH10309635A (en) Method for machining dynamic-pressure grooved bearing sleeve
JP2007038307A (en) Collet chuck and turning product manufacturing method
JP4523806B2 (en) Retainer
JPH1193954A (en) Working device of dynamic pressure generating groove
JP2005351376A (en) Dynamic pressure bearing
JPH1151056A (en) Processing method of bearing sleeve with dynamic pressure groove
JP2004257510A (en) Fluid bearing device and working method